51
|
Chen LS, Zhang M, Chen P, Xiong XF, Liu PQ, Wang HB, Wang JJ, Shen J. The m 6A demethylase FTO promotes the osteogenesis of mesenchymal stem cells by downregulating PPARG. Acta Pharmacol Sin 2022; 43:1311-1323. [PMID: 34462564 PMCID: PMC9061799 DOI: 10.1038/s41401-021-00756-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant posttranscriptional methylation modification that occurs in mRNA and modulates the fine-tuning of various biological processes in mammalian development and human diseases. In this study we investigated the role of m6A modification in the osteogenesis of mesenchymal stem cells (MSCs), and the possible mechanisms by which m6A modification regulated the processes of osteoporosis and bone necrosis. We performed systematic analysis of the differential gene signatures in patients with osteoporosis and bone necrosis and conducted m6A-RNA immunoprecipitation (m6A-RIP) sequencing to identify the potential regulatory genes involved in osteogenesis. We showed that fat mass and obesity (FTO), a primary m6A demethylase, was significantly downregulated in patients with osteoporosis and osteonecrosis. During the differentiation of human MSCs into osteoblasts, FTO was markedly upregulated. Both depletion of FTO and application of the FTO inhibitor FB23 or FB23-2 impaired osteogenic differentiation of human MSCs. Knockout of FTO in mice resulted in decreased bone mineral density and impaired bone formation. PPARG, a biomarker for osteoporosis, was identified as a critical downstream target of FTO. We further revealed that FTO mediated m6A demethylation in the 3'UTR of PPARG mRNA, and reduced PPARG mRNA stability in an YTHDF1-dependent manner. Overexpression of PPARG alleviated FTO-mediated osteogenic differentiation of MSCs, whereas knockdown of PPARG promoted FTO-induced expression of the osteoblast biomarkers ALPL and OPN during osteogenic differentiation. Taken together, this study demonstrates the functional significance of the FTO-PPARG axis in promoting the osteogenesis of human MSCs and sheds light on the role of m6A modification in mediating osteoporosis and osteonecrosis.
Collapse
Affiliation(s)
- Liu-shan Chen
- grid.411847.f0000 0004 1804 4300Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006 China
| | - Meng Zhang
- grid.414011.10000 0004 1808 090XDepartment of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, 450003 China
| | - Peng Chen
- grid.411866.c0000 0000 8848 7685The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Xiao-feng Xiong
- grid.12981.330000 0001 2360 039XDepartment of Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Pei-qing Liu
- grid.12981.330000 0001 2360 039XDepartment of Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Hai-bin Wang
- grid.411866.c0000 0000 8848 7685The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Jun-jian Wang
- grid.12981.330000 0001 2360 039XDepartment of Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
52
|
Hung C, Muñoz M, Shibli-Rahhal A. Anorexia Nervosa and Osteoporosis. Calcif Tissue Int 2022; 110:562-575. [PMID: 33666707 DOI: 10.1007/s00223-021-00826-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Patients with anorexia nervosa (AN) often experience low bone mineral density (BMD) and increased fracture risk, with low body weight and decreased gonadal function being the strongest predictors of the observed bone mineral deficit and fractures. Other metabolic disturbances have also been linked to bone loss in this group of patients, including growth hormone resistance, low insulin-like growth factor-1 (IGF-1) concentrations, low leptin concentrations, and hypercortisolemia. However, these correlations lack definitive evidence of causality. Weight restoration and resumption of menstrual function have the strongest impact on increasing BMD. Other potential treatment options include bisphosphonates and teriparatide, supported by data from small clinical trials, but these agents are not approved for the treatment of low BMD in adolescents or premenopausal women with AN.
Collapse
Affiliation(s)
- Chermaine Hung
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Marcus Muñoz
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amal Shibli-Rahhal
- Division of Endocrinology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
53
|
Belavy DL, Miller CT, Owen PJ, Rantalainen T, Connell D, Hahne AJ, Ford JJ, Trudel G. Exercise may impact on lumbar vertebrae marrow adipose tissue: Randomised controlled trial. Bone 2022; 157:116338. [PMID: 35085839 DOI: 10.1016/j.bone.2022.116338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Animal and human cross-sectional data suggest that bone marrow adipose tissue (MAT) may respond to mechanical loads and exercise. We conducted the first randomised controlled trial of exercise on MAT modulations in humans. METHODS Forty patients with chronic non-specific low back pain (NSCLBP) were enrolled in a six-month single-blinded randomised controlled trial (ACTRN12615001270505). Twenty patients loaded their spines via progressive upright aerobic and resistance exercises targeting major muscle groups (Exercise). Twenty patients performed non-weightbearing motor control training and manual therapy (Control). Testing occurred at baseline, 3-months (3mo) and 6-months (6mo). Lumbar vertebral fat fraction (VFF) was measured using magnetic resonance imaging axial mDixon sequences. RESULTS When compared to baseline (percent change), lumbar vertebral fat fraction (VFF; measured using magnetic resonance imaging axial mDixon sequences) was lower in Exercise at 3mo at L2 (-3.7[6.8]%, p = 0.033) and L4 (-2.6[4.1]%, p = 0.015), but not in Control. There were no between-group effects. The effects of Exercise on VFF were sex-specific, with VFF lower in men at L2, L3, L4 at 3mo and at L1, L2, L3 and L4 at 6mo (p all ≤ 0.05), but not in women. Leg and trunk lean mass were increased at 3mo in Exercise. Changes in VFF correlated significantly with changes in total fat (ρ = 0.40) and lean (ρ = -0.41) masses, but not with lumbar BMD (ρ = -0.10) or visceral adipose tissue volume (ρ = 0.23). CONCLUSIONS This trial provided first prospective evidence in humans that a moderate exercise intervention may modulate lumbar VFF as a surrogate measure of MAT at 3mo, yet not 6mo. The effect of exercise on MAT may be more prominent in males than females.
Collapse
Affiliation(s)
- Daniel L Belavy
- Hochschule für Gesundheit (University of Applied Sciences), Department of Applied Health Sciences, Division of Physiotherapy, Gesundheitscampus 6-8, 44801 Bochum, Germany; Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia.
| | - Clint T Miller
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia.
| | - Patrick J Owen
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia.
| | - Timo Rantalainen
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia; Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - David Connell
- Imaging@Olympic Park, Melbourne, Victoria, Australia.
| | - Andrew J Hahne
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia.
| | - Jon J Ford
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia; Advance HealthCare, Boronia, Victoria, Australia.
| | - Guy Trudel
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Bone and Joint Research Laboratory, University of Ottawa, The Ottawa Hospital Research Institute, Canada.
| |
Collapse
|
54
|
Yang X, Li J, Zhao L, Chen Y, Cui Z, Xu T, Li X, Wu S, Zhang Y. Targeting adipocytic discoidin domain receptor 2 impedes fat gain while increasing bone mass. Cell Death Differ 2022; 29:737-749. [PMID: 34645939 PMCID: PMC8990016 DOI: 10.1038/s41418-021-00887-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity is closely associated with low-bone-mass disorder. Discoidin domain receptor 2 (DDR2) plays essential roles in skeletal metabolism, and is probably involved in fat metabolism. To test the potential role of DDR2 in fat and fat-bone crosstalk, Ddr2 conditional knockout mice (Ddr2Adipo) were generated in which Ddr2 gene is exclusively deleted in adipocytes by Adipoq Cre. We found that Ddr2Adipo mice are protected from fat gain on high-fat diet, with significantly decreased adipocyte size. Ddr2Adipo mice exhibit significantly increased bone mass and mechanical properties, with enhanced osteoblastogenesis and osteoclastogenesis. Marrow adipocyte is diminished in the bone marrow of Ddr2Adipo mice, due to activation of lipolysis. Fatty acid in the bone marrow was reduced in Ddr2Adipo mice. RNA-Seq analysis identified adenylate cyclase 5 (Adcy5) as downstream molecule of Ddr2. Mechanically, adipocytic Ddr2 modulates Adcy5-cAMP-PKA signaling, and Ddr2 deficiency stimulates lipolysis and supplies fatty acid for oxidation in osteoblasts, leading to the enhanced osteoblast differentiation and bone mass. Treatment of Adcy5 specific inhibitor abolishes the increased bone mass gain in Ddr2Adipo mice. These observations establish, for the first time, that Ddr2 plays an essential role in the crosstalk between fat and bone. Targeting adipocytic Ddr2 may be a potential strategy for treating obesity and pathological bone loss simultaneously.
Collapse
Affiliation(s)
- Xiaoyu Yang
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China ,grid.452842.d0000 0004 8512 7544The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China ,grid.207374.50000 0001 2189 3846School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jing Li
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Liting Zhao
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yazhuo Chen
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Zhijun Cui
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China ,grid.47840.3f0000 0001 2181 7878Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA USA
| | - Taotao Xu
- grid.417400.60000 0004 1799 0055The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xu Li
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shufang Wu
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Zhang
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
55
|
Tozzi R, Masi D, Cipriani F, Contini S, Gangitano E, Spoltore ME, Barchetta I, Basciani S, Watanabe M, Baldini E, Ulisse S, Lubrano C, Gnessi L, Mariani S. Circulating SIRT1 and Sclerostin Correlates with Bone Status in Young Women with Different Degrees of Adiposity. Nutrients 2022; 14:nu14050983. [PMID: 35267956 PMCID: PMC8912833 DOI: 10.3390/nu14050983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Abstract
Sirtuin1 (SIRT1) and sclerostin play important roles in adipose tissue and bone metabolism. We evaluated the circulating SIRT1 and sclerostin relationship with mass and quality of bone while considering the degree of adiposity. Sixty-six premenopausal women (16 underweight, 25 normal weight and 25 with obesity), aged <50 years, were enrolled. Plasma SIRT1, sclerostin and DXA body composition (total fat mass (FM), abdominal visceral adipose tissue, lean mass, trabecular bone score (TBS) and lumbar spine and femoral neck (FN) bone mineral density (BMD)) were assessed. The patients with obesity showed the lowest SIRT1 and TBS values and the highest sclerostin concentrations; BMD increased with FM and BMI and had an inverse association with SIRT1. Sclerostin was negatively correlated with SIRT1 (ρ = −0.37, p = 0.002). When spine BMD, FN BMD and TBS were standardized for BMI, a positive correlation with SIRT1 and a negative correlation with sclerostin were seen (p < 0.005). In the regression analysis, sclerostin was the best independent, negative predictor for BMD and TBS, while SIRT1 directly predicted TBS (p < 0.05). In conclusion, blood measurement of SIRT1 and sclerostin could represent a snapshot of the bone status that, taking into account the degree of adiposity, may reduce the interference of confounding factors in the interpretation of bone health parameters.
Collapse
Affiliation(s)
- Rossella Tozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Fiammetta Cipriani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Savina Contini
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Elena Gangitano
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Maria Elena Spoltore
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Enke Baldini
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (E.B.); (S.U.)
| | - Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (E.B.); (S.U.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
- Correspondence: ; Tel.: +39-06499-70721; Fax: +39-06446-1450
| |
Collapse
|
56
|
Matsushita Y, Ono W, Ono N. Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Front Endocrinol (Lausanne) 2022; 13:882297. [PMID: 35528017 PMCID: PMC9075612 DOI: 10.3389/fendo.2022.882297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow contains precursor cells for osteoblasts and adipocytes in the stromal compartment. Bone marrow adipose tissue (BMAT) is an important constituent of the bone marrow that is particularly abundant in adults. BMAT is composed of the proximal "regulated" BMAT containing individual adipocytes interspersed within actively hematopoietic marrow, and the distal "constitutive" BMAT containing large adipocytes in the area of low hematopoiesis. Historically, bone marrow adipocytes were regarded as one of the terminal states of skeletal stem cells, which stand at the pinnacle of the lineage and possess trilineage differentiation potential into osteoblasts, chondrocytes and adipocytes. Recent single-cell RNA-sequencing studies uncover a discrete group of preadipocyte-like cells among bone marrow stromal cells (BMSCs), and recent mouse genetic lineage-tracing studies reveal that these adipocyte precursor cells possess diverse functions in homeostasis and regeneration. These adipogenic subsets of BMSCs are abundant in the central marrow space and can directly convert not only into lipid-laden adipocytes but also into skeletal stem cell-like cells and osteoblasts under regenerative conditions. It remains determined whether there are distinct adipocyte precursor cell types contributing to two types of BMATs. In this short review, we discuss the functions of the recently identified subsets of BMSCs and their trajectory toward marrow adipocytes, which is influenced by multiple modes of cell-autonomous and non-cell autonomous regulations.
Collapse
|
57
|
Gomez GA, Rundle CH, Xing W, Kesavan C, Pourteymoor S, Lewis RE, Powell DR, Mohan S. Contrasting effects of <i>Ksr2</i>, an obesity gene, on trabecular bone volume and bone marrow adiposity. eLife 2022; 11:82810. [PMID: 36342465 PMCID: PMC9640193 DOI: 10.7554/elife.82810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Pathological obesity and its complications are associated with an increased propensity for bone fractures. Humans with certain genetic polymorphisms at the kinase suppressor of ras2 (KSR2) locus develop severe early-onset obesity and type 2 diabetes. Both conditions are phenocopied in mice with <i>Ksr2</i> deleted, but whether this affects bone health remains unknown. Here we studied the bones of global <i>Ksr2</i> null mice and found that <i>Ksr2</i> negatively regulates femoral, but not vertebral, bone mass in two genetic backgrounds, while the paralogous gene, <i>Ksr1</i>, was dispensable for bone homeostasis. Mechanistically, KSR2 regulates bone formation by influencing adipocyte differentiation at the expense of osteoblasts in the bone marrow. Compared with <i>Ksr2</i>'s known role as a regulator of feeding by its function in the hypothalamus, pair-feeding and osteoblast-specific conditional deletion of <i>Ksr2</i> reveals that <i>Ksr2</i> can regulate bone formation autonomously. Despite the gains in appendicular bone mass observed in the absence of <i>Ksr2</i>, bone strength, as well as fracture healing response, remains compromised in these mice. This study highlights the interrelationship between adiposity and bone health and provides mechanistic insights into how <i>Ksr2</i>, an adiposity and diabetic gene, regulates bone metabolism.
Collapse
Affiliation(s)
| | - Charles H Rundle
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Weirong Xing
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Chandrasekhar Kesavan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | | | | | | | - Subburaman Mohan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| |
Collapse
|
58
|
Zhang S, Lyons N, Koedam M, van de Peppel J, van Leeuwen JP, van der Eerden BCJ. Identification of small molecules as novel anti-adipogenic compounds based on Connectivity Map. Front Endocrinol (Lausanne) 2022; 13:1017832. [PMID: 36589834 PMCID: PMC9800878 DOI: 10.3389/fendo.2022.1017832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Several physiological and pathological conditions such as aging, obesity, diabetes, anorexia nervosa are associated with increased adipogenesis in the bone marrow. A lack of effective drugs hinder the improved treatment for aberrant accumulation of bone marrow adipocytes. Given the higher costs, longer duration and sometimes lack of efficacy in drug discovery, computational and experimental strategies have been used to identify previously approved drugs for the treatment of diseases, also known as drug repurposing. Here, we describe the method of small molecule-prioritization by employing adipocyte-specific genes using the connectivity map (CMap). We then generated transcriptomic profiles using human mesenchymal stromal cells under adipogenic differentiation with the treatment of prioritized compounds, and identified emetine and kinetin-riboside to have a potent inhibitory effect on adipogenesis. Overall, we demonstrated a proof-of-concept method to identify repurposable drugs capable of inhibiting adipogenesis, using the Connectivity Map.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicholas Lyons
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johannes P.T.M. van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Bram C. J. van der Eerden,
| |
Collapse
|
59
|
Zheng CS, Wen HQ, Lin WS, Luo XW, Shen LS, Zhou X, Zou FY, Li QL, Hu HJ, Guo RM. Quantification of lumbar vertebral fat deposition: Correlation with menopausal status, non-alcoholic fatty liver disease and subcutaneous adipose tissue. Front Endocrinol (Lausanne) 2022; 13:1099919. [PMID: 36714601 PMCID: PMC9878446 DOI: 10.3389/fendo.2022.1099919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To assess abdominal fat deposition and lumbar vertebra with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) and investigate their correlation with menopausal status. MATERIALS AND METHODS Two hundred forty women who underwent routine abdominal MRI and IDEAL-IQ between January 2016 and April 2021 were divided into two cohorts (first cohort: 120 pre- or postmenopausal women with severe fatty livers or without fatty livers; second cohort: 120 pre- or postmenopausal women who were obese or normal weight). The fat fraction (FF) values of the liver (FFliver) and lumbar vertebra (FFlumbar) in the first group and the FF values of subcutaneous adipose tissue (SAT) (FFSAT) and FFlumbar in the second group were measured and compared using IDEAL-IQ. RESULTS Two hundred forty women were evaluated. FFlumbar was significantly higher in both pre- and postmenopausal women with severe fatty liver than in patients without fatty livers (premenopausal women: p < 0.001, postmenopausal women: p < 0.001). No significant difference in the FFlumbar was observed between obese patients and normal-weight patients among pre- and postmenopausal women (premenopausal women: p = 0.113, postmenopausal women: p = 0.092). Significantly greater lumbar fat deposition was observed in postmenopausal women than in premenopausal women with or without fatty liver and obesity (p < 0.001 for each group). A high correlation was detected between FFliver and FFlumbar in women with severe fatty liver (premenopausal women: r=0.76, p<0.01; postmenopausal women: r=0.82, p<0.01). CONCLUSION Fat deposition in the vertebral marrow was significantly associated with liver fat deposition in postmenopausal women.
Collapse
Affiliation(s)
- Chu-Shan Zheng
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui-Quan Wen
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wu-Sheng Lin
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Wen Luo
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Shan Shen
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhou
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng-Yun Zou
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Li
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of VIP Medical Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Qing-Ling Li, ; Hui-Jun Hu, ; Ruo-Mi Guo,
| | - Hui-Jun Hu
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Qing-Ling Li, ; Hui-Jun Hu, ; Ruo-Mi Guo,
| | - Ruo-Mi Guo
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qing-Ling Li, ; Hui-Jun Hu, ; Ruo-Mi Guo,
| |
Collapse
|
60
|
Wang L, Zhang H, Wang S, Chen X, Su J. Bone Marrow Adipocytes: A Critical Player in the Bone Marrow Microenvironment. Front Cell Dev Biol 2021; 9:770705. [PMID: 34912805 PMCID: PMC8667222 DOI: 10.3389/fcell.2021.770705] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Recognized for nearly 100 years, bone marrow adipocytes (BMAs) form bone marrow niches that contain hematopoietic and bone cells, the roles of which have long been underestimated. Distinct from canonical white, brown, and beige adipocytes, BMAs derived from bone marrow mesenchymal stromal cells possess unique characteristics and functions. Recent single-cell sequencing studies have revealed the differentiation pathway, and seminal works support the tenet that BMAs are critical regulators in hematopoiesis, osteogenesis, and osteoclastogenesis. In this review, we discuss the origin and differentiation of BMAs, as well as the roles of BMAs in hematopoiesis, osteogenesis, osteoclastogenesis, and immune regulation. Overall, BMAs represent a novel target for bone marrow-related diseases, including osteoporosis and leukemia.
Collapse
Affiliation(s)
- Lipeng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hao Zhang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
61
|
Wyst KBV, Hu HH, Peña A, Olson ML, Bailey SS, Shaibi GQ. Bone marrow adipose tissue content in Latino adolescents with prediabetes and obesity. Obesity (Silver Spring) 2021; 29:2100-2107. [PMID: 34582099 PMCID: PMC8612952 DOI: 10.1002/oby.23279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study aimed to examine whether total, regional, and organ fat predicts bone marrow adipose tissue (BMAT) fat content and to explore whether BMAT fat content differs by sex among Latino youth. METHODS Latino youth (n = 86; age 13.6 [1.4] years, 62% male) with obesity (BMI percentile = 98.5% [1.2%]) underwent a dual-energy x-ray absorptiometry scan to assess body composition and a magnetic resonance imaging scan to determine abdominal adiposity, liver fat, and vertebral BMAT fat content in the thoracic (average of T8-T12) and lumbar (average of L1-L5) spine. RESULTS Male youth exhibited significantly greater thoracic (male youth = 30.8% [1.4%] vs. female youth = 24.5% [2.1%], p = 0.027) and lumbar (male youth = 36.3% [1.5%] vs. female youth = 30.2% [2.2%], p = 0.038) BMAT fat content compared with female youth. Visceral adipose tissue was a significant predictor of thoracic (β = 0.434, t[86] = 3.016, p = 0.003) and lumbar (β = 0.389, t[86] = 2.677, p = 0.009) BMAT fat content, explaining 8.9% and 6.9% of the variance, respectively. Liver fat was a significant predictor of both thoracic (β = 0.487, t[86] = 4.334, p < 0.001) and lumbar (β = 0.436, t[86] = 3.793, p < 0.001) BMAT fat content, explaining 17.6% and 13.8% of the variance, respectively. CONCLUSIONS Male youth had significantly greater thoracic and lumbar BMAT fat content than female youth. Greater BMAT fat content is associated with greater liver fat and visceral adipose tissue among youth with obesity. Further investigation of the mechanistic underpinnings of BMAT may help to differentiate its metabolic and bone-related functions.
Collapse
Affiliation(s)
- Kiley B. Vander Wyst
- College of Graduate Studies, Midwestern University, Glendale, AZ
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
| | - Houchun H. Hu
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Clinical Science, Hyperfine, Inc., Guilford, CT
| | - Armando Peña
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
| | - Micah L. Olson
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Division of Pediatric Endocrinology and Diabetes, Phoenix Children’s Hospital, Phoenix, AZ
| | - Smita S. Bailey
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Department of Radiology, Phoenix Children’s Hospital, Phoenix, AZ
| | - Gabriel Q. Shaibi
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Division of Pediatric Endocrinology and Diabetes, Phoenix Children’s Hospital, Phoenix, AZ
- Southwest Interdisciplinary Research Center, Arizona State University, Phoenix, AZ
| |
Collapse
|
62
|
Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. NPJ Microgravity 2021; 7:49. [PMID: 34836964 PMCID: PMC8626488 DOI: 10.1038/s41526-021-00178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Disuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin-LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.
Collapse
|
63
|
Bredella MA, Buckless C, Fazeli PK, Rosen CJ, Torriani M, Klibanski A, Miller KK. Bone marrow adipose tissue composition following high-caloric feeding and fasting. Bone 2021; 152:116093. [PMID: 34186250 PMCID: PMC8323345 DOI: 10.1016/j.bone.2021.116093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bone marrow adipose tissue (BMAT) plays a role in systemic energy metabolism and responds to nutritional changes. Chronic starvation as well as visceral adiposity are associated with BMAT accumulation. Two types of BMAT have been described which differ in anatomic location (proximal-regulated-rBMAT vs distal-constitutive-cBMAT) and composition (higher unsaturated lipids of cBMAT compared to rBMAT). OBJECTIVE To determine the response of BMAT composition to short-term high-caloric feeding and fasting. We hypothesized that high-feeding and caloric restriction would be associated with differences in BMAT composition according to the skeletal site. MATERIALS AND METHODS We examined 23 healthy subjects (13 m, 10 f, mean age 33 ± 7 years, BMI 26 ± 1.5 kg/m2) who were admitted for a 10-day high-caloric stay (caloric intake with goal to achieve 7% weight gain) followed by discharge home for 13-18 days to resume normal diet (stabilization period), followed by a 10-day fasting stay (no caloric intake). Subjects underwent single voxel proton MR spectroscopy (1H-MRS) at 3T of the lumbar spine (L4) (rBMAT), the femoral diaphysis and distal tibial metaphysis (cBMAT) to determine BMAT composition (unsaturation index, UI and saturation index, SI). Within group comparisons were performed by the Wilcoxon signed rank test. RESULTS After the high-calorie visit, SI of L4 increased compared to baseline (0.62 ± 0.27 to 0.70 ± 0.28, p = 0.02), and there was a trend of an increase in femoral SI and UI (p ≥ 0.07), while there was no significant change in tibial BMAT (p ≥ 0.13). During the stabilization period, SI of L4 decreased (0.70 ± 0.28 to 0.57 ± 0.21, p < 0.0001) and SI of the femoral diaphysis decreased (5.37 ± 2.27 to 5.09 ± 2.43, p = 0.03), while there was no significant change in UI or tibial BMAT (p ≥ 0.14). During the fasting period, SI of L4 increased (0.57 ± 0.21 to 0.63 ± 0.30, p = 0.03), while there was no change in UI (p = 0.7). SI and UI of femoral diaphysis decreased (5.09 ± 2.43 to 4.68 ± 2.15, p = 0.03, and 0.62 ± 0.42 to 0.47 ± 0.37, p = 0.02, respectively) and UI of the tibial metaphysis decreased (1.48 ± 0.49 to 1.24 ± 0.57, p = 0.04). CONCLUSION 1H-MRS is able to quantify BMAT composition during short-term nutritional challenges, showing a significant increase in SI of rBMAT during high caloric feeding and a differential response to fasting with an increase in SI of rBMAT and a decrease in SI and UI of femoral cBMAT and decrease in UI of tibial cBMAT.
Collapse
Affiliation(s)
- Miriam A Bredella
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America.
| | - Colleen Buckless
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
64
|
Wang J, Yi P, Huang Y, Yu Q, Mei Y, Chen J, Feng Y, Zhang X. Quantitative evaluation of bone marrow fat content and unsaturated fatty index in young male soccer players using proton magnetic resonance spectroscopy ( 1H-MRS): a preliminary study. Quant Imaging Med Surg 2021; 11:4275-4286. [PMID: 34603983 DOI: 10.21037/qims-21-64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022]
Abstract
Background Marrow fat exists as a distinct adipose tissue and plays a critical role in affecting both the quantity and quality of bone. However, the effect of soccer training on marrow fat has been rarely reported. This study aims to evaluate and characterize the marrow fat content and composition in different bone areas of soccer players and age-matched healthy subjects using proton magnetic resonance spectroscopy (1H-MRS). Methods Between May 2020 and June 2020, 20 professional soccer players (20.7±0.9 years) and 20 age-matched healthy subjects (21.2±0.8 years) were enrolled in this cross-sectional study. The 1H-MRS were acquired from the 3rd lumbar vertebrae, bilateral femoral necks, and distal tibias of all subjects using a single-voxel point-resolved spatially localized spectroscopy (PRESS) sequence. Four soccer players underwent a second magnetic resonance (MR) examination within a 30-minute interval after the initial scan to evaluate test-retest reproducibility. Inter- and intra-observer measurement reliabilities were assessed using 10 randomly selected spectra from the soccer players group. All spectra were processed using the jMRUI software package (http://www.jmrui.eu/). Quantified water and lipid signals were used to calculate fat content (FC) and the unsaturated fatty index (UI). Results Compared with healthy subjects, we found that soccer players had a lower FC in L3 and bilateral femoral necks and higher UI in the left femoral neck (P<0.05). All FC and UI values of the bilateral distal tibias showed no significant differences between the two groups (P>0.05). The UI values of the right femoral neck or distal tibia were markedly higher than the left side in both inactive subjects and soccer players (P<0.05, except for the femoral neck in players), and there were notable ΔUI differences in the lower limbs between the soccer players and the healthy subjects (P<0.05). Conclusions Soccer practice can be considered a positive sport that contributes to decreasing FC in lumbar vertebrae and femoral necks and increasing the UI in femoral necks. Quantitative MRS provides an ideal modality to predict marrow fat metabolism caused by mechanical stimulation.
Collapse
Affiliation(s)
- Jian Wang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yaobin Huang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| | - Qinqin Yu
- Department of Medical Imaging, Shanghai General Hospital, Shanghai, China
| | - Yingjie Mei
- China International Center, Philips Healthcare, Guangzhou, China
| | - Jialing Chen
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| |
Collapse
|
65
|
Buckels EJ, Bolam SM, Tay ML, Matthews BG. The Impact of Maternal High-Fat Diet on Bone Microarchitecture in Offspring. Front Nutr 2021; 8:730037. [PMID: 34527691 PMCID: PMC8435578 DOI: 10.3389/fnut.2021.730037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
The incidence of obesity in women of reproductive age has significantly increased over the past 100 years. There is a well-established connection between maternal obesity during pregnancy and an increased risk of developing non-communicable cardiometabolic diseases in her offspring. This mini-review focuses on evidence examining the effect of maternal high-fat diet (HFD) on skeletal development and bone health in later life in offspring. The majority of rodent studies indicate that maternal HFD generally negatively affects both embryonic bone development and bone volume in adult animals. Details surrounding the mechanisms of action that drive changes in the skeleton in offspring remain unclear, although numerous studies suggest that some effects are sex-specific. Human studies in this area are limited but also suggest that HFD during pregnancy may impair bone formation and increase fracture risk during childhood. Given the consequences of low bone mass and deranged bone microarchitecture for offspring, advances in our understanding of the developmental origins of bone health is critical in the battle against osteoporosis.
Collapse
Affiliation(s)
- Emma J Buckels
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Scott M Bolam
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Mei Lin Tay
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
66
|
Chen PC, Chang SW, Hsieh CY, Liou JC, Chang JF, Wang TM. Fat-Bone Relationship in Chronic Kidney Disease-Mineral Bone Disorders: Adiponectin Is Associated with Skeletal Events among Hemodialysis Patients. Diagnostics (Basel) 2021; 11:diagnostics11071254. [PMID: 34359336 PMCID: PMC8303150 DOI: 10.3390/diagnostics11071254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The risk of skeletal events is rising in parallel with the burden of chronic kidney disease and mineral bone disorder (CKD-MBD), whilst the role of the fat-bone axis in CKD-MBD remains elusive. Adiponectin derived from adipocytes has emerged as a valid biomarker of low bone mineral density and increased marrow adiposity. We aimed to explore the association between adiponectin and bone fracture (BF) risks in patients with maintenance hemodialysis (MHD). METHODS Serum concentrations of adiponectin and bio-clinical data were determined at study entry. The Cox proportional hazard regression analyses were used to assess unadjusted and adjusted hazard ratios (aHRs) of adiponectin and various clinical predictors for BF risks. The predictive accuracy of adiponectin for BF events was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS Age and serum concentrations of adiponectin, phosphate, and intact parathyroid hormone were significantly associated with higher risks of BF. With respect to the risk of BF events, the cumulative event-free survival curves differed significantly between the high and low concentration groups of adiponectin (p = 0.02). In multivariable analysis, higher adiponectin levels were associated with an incremental risk of BF (adjusted hazard ratios (aHRs): 1.08 (95% confidence interval (CI): 1.01-1.15, p < 0.05). The ROC analysis of adiponectin cutoff point concentration (18.15 ug/mL) for prediction of BF showed 0.66 (95% CI = 0.49 to 0.84). CONCLUSION Adiponectin was associated with an incremental risk of BF that could serve as a potential predictor of BF in MHD patients. In the high-risk population with hyperphosphatemia, an elevated adiponectin level could alert clinicians to the urgent need to correct mineral dysregulation and undertake further bone survey.
Collapse
Affiliation(s)
- Po-Cheng Chen
- Department of Urology, En Chu Kong Hospital, New Taipei City 237, Taiwan;
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan;
| | - Chih-Yu Hsieh
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (J.-C.L.)
| | - Jian-Chiun Liou
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; (C.-Y.H.); (J.-C.L.)
| | - Jia-Feng Chang
- Department of Internal Medicine, Division of Nephrology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Internal Medicine, Division of Nephrology, En Chu Kong Hospital, New Taipei City 237, Taiwan
- Renal Care Joint Foundation, New Taipei City 220, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
- Correspondence:
| | - Ting-Ming Wang
- Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei 106, Taiwan;
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei 106, Taiwan
| |
Collapse
|
67
|
Abstract
Research examining bone marrow adipose tissue (BMAT) has rapidly expanded during the last two decades, leading to advances in knowledge on the role of BMAT in the pathogenesis of bone loss and endocrine disorders. Clinical imaging has played a crucial role for the in vivo assessment of BMAT, allowing non-invasive quantification and evaluation of BMAT composition. In the present work, we review different imaging methods for assessing properties of BMAT. Our aim is to review conventional magnetic resonance imaging (MRI), water-fat imaging, and single-voxel proton magnetic resonance spectroscopy (1H-MRS), as well as computed tomography (CT)-based techniques, including single energy and dual energy CT. We will also discuss the clinical applications of these methods in type 2 diabetes mellitus, obesity and anorexia nervosa.
Collapse
Affiliation(s)
- Mohamed Jarraya
- Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Miriam A Bredella
- Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
68
|
Zhang Z, Lin T, Meng Y, Hu M, Shu L, Jiang H, Gao R, Ma J, Wang C, Zhou X. FOS/GOS attenuates high-fat diet induced bone loss via reversing microbiota dysbiosis, high intestinal permeability and systemic inflammation in mice. Metabolism 2021; 119:154767. [PMID: 33753088 DOI: 10.1016/j.metabol.2021.154767] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Obesity and osteoporosis frequently coexist, and might have a causal relationship. Gut microbiota, associated with both lipid and bone metabolism, plays an important role in the pathogenesis of excessive fat accumulation and bone loss. The improvement of intestinal flora by prebiotics was a promising strategy for ameliorating obesity-related bone loss. METHODS Obesity model was established by feeding mice with high fat diet (HFD) for 16 weeks. Fructooligosaccharides (FOS) and/or galactooligosaccharides (GOS) were daily gavaged to mice. Osteoblastic, adipocytic, and osteoclastic differentiation was performed on primary cells isolated from experimental mice. The composition of gut flora was evaluated by 16s rDNA sequencing. Expression of intestinal junction proteins was assessed by qPCR and immunohistochemistry. Cytokine levels were measured by qPCR. RESULTS Long-term HFD caused decreased bone mass in mice, which was associated with decreased osteogenesis, increased osteoclastogenesis, and excessive adipogenesis. FOS/GOS treatment significantly alleviated HFD-induced bone loss and reversed the imbalanced differentiation of osteoblasts, adipocytes, and osteoclasts. In addition, our study showed that FOS/GOS administration ameliorated microbiota dysbiosis (manifested as enhanced Firmicutes:Bacteriodetes ratio and reduced biodiversity), downregulated expression of intestinal junction proteins (including Claudin1, Claudin15, ZO-1, and JAM-A), and increased inflammatory cytokines (including TNFα, IL6, and IL17) in HFD-fed mice. CONCLUSION Long-term HFD led to decreased bone mass, with microbiota dysbiosis, leaky gut, and systemic inflammation. The administration of FOS/GOS could significantly increase biodiversity and SCFA concentrations of intestinal flora in HFD fed mice, then reverse high gut permeability and inflammatory cytokines, in the end protect against HFD induced osteopenia.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China; College of basic medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Miao Hu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China; College of basic medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Lun Shu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China; College of basic medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Rui Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Ce Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| |
Collapse
|
69
|
Zhang Y, Zhang C, Wang J, Liu H, Wang M. Bone-Adipose Tissue Crosstalk: Role of Adipose Tissue Derived Extracellular Vesicles in Bone Diseases. J Cell Physiol 2021; 236:7874-7886. [PMID: 33993498 DOI: 10.1002/jcp.30414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Bone is a metabolically active organ that undergoes constant remodeling throughout life. A failure of this process leads to pathological destructive bone diseases such as osteoporosis, rheumatoid arthritis, and osteoarthritis. Studies of the interplay between adipose tissue and bone system, have revealed that adipose tissue disorders (e.g. obesity) strongly influence the development of bone diseases. Adipokines secreted by adipose tissue play important roles in the crosstalk between bone and adipose tissue. Recently, extracellular vesicles (EVs) have been identified as a novel method of communication between different organs and have attracted increased attention in the field of bone remodeling process. Adipokines carried by EVs are known to play pivotal roles in bone remodeling processes including osteogenesis and osteoclastogenesis. In this review, we highlighted the role of adipose tissue derived EVs (EVs-AT) in the context of bone remodeling events and focused on the characteristics of EVs-AT and their components in the regulation of bone diseases. Moreover, we introduced the intriguing therapeutic application of EVs-AT in different pathological destructive bone diseases and proposed future directions for research on EVs-AT in bone diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Cheng Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jiasheng Wang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Hao Liu
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Muyao Wang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
70
|
Veldhuis-Vlug AG, Woods GN, Sigurdsson S, Ewing SK, Le PT, Hue TF, Vittinghoff E, Xu K, Gudnason V, Sigurdsson G, Kado DM, Eiriksdottir G, Harris T, Schafer AL, Li X, Zaidi M, Rosen CJ, Schwartz AV. Serum FSH Is Associated With BMD, Bone Marrow Adiposity, and Body Composition in the AGES-Reykjavik Study of Older Adults. J Clin Endocrinol Metab 2021; 106:e1156-e1169. [PMID: 33326040 PMCID: PMC7947831 DOI: 10.1210/clinem/dgaa922] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Follicle-stimulating hormone (FSH) concentrations increase during the perimenopausal transition and remain high after menopause. Loss of bone mineral density (BMD) and gain of bone marrow adiposity (BMA) and body fat mass also occur during this time. In mice, blocking the action of FSH increases bone mass and decreases fat mass. OBJECTIVE To investigate the associations between endogenous FSH levels and BMD, BMA, and body composition in older adults, independent of estradiol and testosterone levels. DESIGN, SETTING, AND PARTICIPANTS Older adults from the AGES-Reykjavik Study, an observational cohort study. MAIN OUTCOME MEASURES Areal BMD, total body fat, and lean mass were measured with dual-energy x-ray absorptiometry. Lumbar vertebral BMA was measured by 1H-magnetic resonance spectroscopy. Volumetric BMD and visceral and subcutaneous adipose tissue (VAT, SAT) areas were measured with quantitative computed tomography. The least squares means procedure was used to determine sex hormone-adjusted associations between quartiles of serum FSH and BMD, BMA, and body composition. RESULTS In women (N = 238, mean age 81 years), those in the highest FSH quartile, compared with the lowest quartile, had lower adjusted mean spine integral BMD (-8.6%), lower spine compressive strength index (-34.8%), higher BMA (+8.4%), lower weight (-8.4%), lower VAT (-17.6%), lower lean mass (-6.1%), and lower fat mass (-11.9%) (all P < 0.05). In men, FSH level was not associated with any outcome. CONCLUSIONS Older postmenopausal women with higher FSH levels have higher BMA, but lower BMD and lower fat and lean mass, independent of estradiol and testosterone levels. Longitudinal studies are needed to better understand the underlying mechanisms.
Collapse
Affiliation(s)
- Annegreet G Veldhuis-Vlug
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
- Center for Bone Quality, Department of Endocrinology, Leiden University Medical Center, ZA Leiden, The Netherlands
- Correspondence: A.G. Veldhuis-Vlug, MD, PhD, Center for Bone Quality, department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands. ; G.N. Woods, MD, Department of Medicine, UC San Diego, VA San Diego Healthcare System, 3350 La Jolla Village Drive, 111G San Diego, CA 92116.
| | - Gina N Woods
- Department of Medicine, UC San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- Correspondence: A.G. Veldhuis-Vlug, MD, PhD, Center for Bone Quality, department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands. ; G.N. Woods, MD, Department of Medicine, UC San Diego, VA San Diego Healthcare System, 3350 La Jolla Village Drive, 111G San Diego, CA 92116.
| | | | - Susan K Ewing
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Phuong T Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Trisha F Hue
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Kaipin Xu
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Deborah M Kado
- Department of Medicine, UC San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, UC San Diego, La Jolla, CA, USA
| | | | - Tamara Harris
- National Institute on Aging, National Institutes of Health (NIA, NIH), Bethesda, MD, USA
| | - Anne L Schafer
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
71
|
Li L, Qiu X, Zhang N, Sun Y, Wang Y, Wang L. Crosstalk between adipocytes and M2 macrophages compensates for osteopenic phenotype in the Lrp5-deficient mice. Exp Biol Med (Maywood) 2021; 246:572-583. [PMID: 33197324 PMCID: PMC7934148 DOI: 10.1177/1535370220972320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
A loss-of-function mutation in the Lrp5 gene in mice leads to a low bone mass disorder due to the inhibition of the canonical Wnt signaling pathway; however, the role of bone marrow microenvironment in mice with this mutation remains unclear. In this study, we evaluated proliferation and osteogenic potential of mouse osteoblasts using the MTT assay and Alizarin red staining. The levels of alkaline phosphatase, tartrate-resistant acid phosphatase, and adiponectin in culture supernatants were measured using the enzyme-linked immunosorbent assay. Osteoclast bone resorbing activity was evaluated by toluidine staining and the number and area of bone resorption pits were determined. We observed increased osteogenesis in osteoblasts co-cultured with the BM-derived myeloid cells compared to the osteoblasts cultured alone. Mice with global Lrp5 deletion had a relatively higher bone density compared to the mice carrying osteoblast/osteocyte-specific Lrp5 deletion. An increased frequency of M2 macrophages and reduced expression of inflammatory cytokines were detected in the myeloid cells derived from the bone marrow of mice with global Lrp5 deletion. Higher adipogenic potential and elevated levels of adiponectin in the global Lrp5 deletion mice contributed to the preferential M2 macrophage polarization. Here, we identified a novel systemic regulatory mechanism of bone formation and degradation in mice with global Lrp5 deletion. This mechanism depends on a crosstalk between the adipocytes and M2 macrophages in the bone marrow and is responsible for partly rescuing osteopenia developed as a result of decreased Wnt signaling.
Collapse
Affiliation(s)
- Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Na Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Yan Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Yan Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
72
|
Whitney DG, Alford AI, Devlin MJ, Li Y, Caird MS. Intersite reliability of vertebral bone marrow lipidomics-derived lipid composition among children with varying degrees of bone fragility undergoing routine orthopedic surgery. Bone 2021; 143:115633. [PMID: 32927104 PMCID: PMC7770023 DOI: 10.1016/j.bone.2020.115633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Lipidomics, a branch of metabolomics, is an attractive technique to characterize bone marrow lipid composition, which may be associated with skeletal acquisition and homeostasis. However, the reliability of lipidomics-derived lipid composition of the bone marrow is unknown, especially for pediatric populations with bone fragility. The purpose of this study was to evaluate the intersite reliability and standard error of measurement (SEM) of vertebral bone marrow lipid composition at the thoracic (T11/T12) and lumbar (L1/L2) spine determined by targeted lipidomics among children with varying degrees of bone fragility undergoing routine orthopedic surgery. METHODS Children aged between 12 and 19 years of age, with a confirmed diagnosis of adolescent idiopathic scoliosis or neuromuscular scoliosis and cerebral palsy, and undergoing routine posterior spinal fusion surgery at our institution were initially included in this study. Transpedicular vertebral body bone marrow samples were taken from thoracic (T) or lumbar (L) vertebrae. Further inclusion criteria involved having bone marrow extracted from both T11 and T12 (n = 24) or L1 and L2 (n = 19). Lipid composition was measured using a targeted lipidomics technique and examined as the saturated, monounsaturated, and polyunsaturated index and as individual fatty acids. Relative and absolute test-retest reliability was assessed using the intraclass correlation coefficient (ICC) and SEM. RESULTS For the T11/T12 analysis: the ICC and SEM were 0.59 and 1.7% for the saturated index, 0.31 and 6.2% for the monounsaturated index, and 0.44 and 6.1% for the polyunsaturated index; the ICC showed a considerable range for individual fatty acids from 0.07 (fatty acid 20:2) to 0.82 (15:0) with 62.1% of the fatty acids having poor reliability (i.e., ICC < 0.50). For the L1/L2 analysis: the ICC and SEM were 0.50 and 2.4% for the saturated index, -0.12 and 6.0% for the monounsaturated index, and 0.00 and 4.9% for the polyunsaturated index; the ICC showed a considerable range for individual fatty acids from -0.34 (18:1_n-9) to 0.88 (15:0 and 18:3_n-3) with 79.3% of the fatty acids having poor reliability. CONCLUSIONS The intersite test-retest reliability was poor-to-moderate for index measures and generally poor for individual fatty acids for the thoracic and lumbar spine. At this time, it is not recommended to pool bone marrow adipose tissue across vertebral sites for bone marrow adiposity research or clinical monitoring for pediatric populations with bone fragility.
Collapse
Affiliation(s)
- Daniel G Whitney
- Department of Physical Medicine and Rehabilitation, University of Michigan, 325 E. Eisenhower, Ann Arbor, MI 48108, United States of America; Institute for Healthcare Policy and Innovation, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, United States of America.
| | - Andrea I Alford
- Department of Orthopaedic Surgery, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States of America
| | - Maureen J Devlin
- Department of Anthropology, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109, United States of America
| | - Ying Li
- Department of Orthopaedic Surgery, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States of America
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
73
|
Merlotti D, Cosso R, Eller-Vainicher C, Vescini F, Chiodini I, Gennari L, Falchetti A. Energy Metabolism and Ketogenic Diets: What about the Skeletal Health? A Narrative Review and a Prospective Vision for Planning Clinical Trials on this Issue. Int J Mol Sci 2021; 22:ijms22010435. [PMID: 33406758 PMCID: PMC7796307 DOI: 10.3390/ijms22010435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The existence of a common mesenchymal cell progenitor shared by bone, skeletal muscle, and adipocytes cell progenitors, makes the role of the skeleton in energy metabolism no longer surprising. Thus, bone fragility could also be seen as a consequence of a “poor” quality in nutrition. Ketogenic diet was originally proven to be effective in epilepsy, and long-term follow-up studies on epileptic children undergoing a ketogenic diet reported an increased incidence of bone fractures and decreased bone mineral density. However, the causes of such negative impacts on bone health have to be better defined. In these subjects, the concomitant use of antiepileptic drugs and the reduced mobilization may partly explain the negative effects on bone health, but little is known about the effects of diet itself, and/or generic alterations in vitamin D and/or impaired growth factor production. Despite these remarks, clinical studies were adequately designed to investigate bone health are scarce and bone health related aspects are not included among the various metabolic pathologies positively influenced by ketogenic diets. Here, we provide not only a narrative review on this issue, but also practical advice to design and implement clinical studies on ketogenic nutritional regimens and bone health outcomes. Perspectives on ketogenic regimens, microbiota, microRNAs, and bone health are also included.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Roberta Cosso
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
| | - Cristina Eller-Vainicher
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy;
| | - Fabio Vescini
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia of Udine, 33100 Udine, Italy;
| | - Iacopo Chiodini
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milano, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Alberto Falchetti
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Correspondence:
| |
Collapse
|
74
|
Whitney DG, Devlin MJ, Alford AI, Caird MS. Pattern of bone marrow lipid composition measures along the vertebral column: A descriptive study of adolescents with idiopathic scoliosis. Bone 2021; 142:115702. [PMID: 33099030 PMCID: PMC9426858 DOI: 10.1016/j.bone.2020.115702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is evidence that the extent of vertebral bone marrow adiposity increases caudally along the vertebral column in children and adolescents. However, no studies have examined the lipid composition of bone marrow along the vertebral column, which may uniquely influence bone acquisition and metabolism during growth independent of the amount of bone marrow adipose tissue. The goal of this study was to characterize the pattern of lipid composition index measures from the thoracic to lumbar spine (T11-L4) among a sample of adolescents with idiopathic scoliosis (AIS) undergoing routine orthopedic surgical care for scoliosis correction. METHODS Adolescents between 14 and 18 years of age, with a confirmed diagnosis of AIS, and undergoing routine posterior spinal fusion surgery at our institution were initially included for this descriptive study. The surgery yielded transpedicular vertebral body marrow samples from T11 through L4; 11 participants had bone marrow samples from T11 through L2 and 4 of the 11 participants had marrow samples from T11 through L4. Lipid composition index measures, including the saturated, monounsaturated, and polyunsaturated index, were measured using a targeted lipidomics technique. Linear regression equation for the slope (m) and Pearson correlation coefficient (r) was computed to assess the pattern of lipid composition index measures along the vertebral column from T11 to L2 (n = 11) and extended analysis to L4. Exploratory analyses were performed to examine the association between the pattern of lipid composition measures (individual slopes) and physical characteristics for T11-L2. RESULTS For T11-L2, the slope of the saturated index was near 0 (r = 0.08; P = 0.92), whereas the slopes of the unsaturated indices were approximately opposite of one another: the monounsaturated index exhibited a -0.55 change (r = 0.58; P = 0.42) per vertebra and the polyunsaturated index exhibited a 0.52 change (r = 0.72; P = 0.28) per vertebra in the caudal direction from T11-L2. For T11-L4, there were modest changes in slope for the saturated (m = 0.12; r = 0.30; P = 0.57) and monounsaturated (m = -0.68; r = 0.74; P = 0.09) indices, while the polyunsaturated index slope remained similar (m = 0.56; r = 0.89; P = 0.02). Age, sex, height, body mass, and BMI were not associated with the pattern of any of the lipid composition index measures. CONCLUSIONS Study findings in this small sample of individuals with AIS suggest that the bone marrow saturated index may be relatively stable across T11-L4, while the monounsaturated index may decrease by 0.55-0.68% per vertebra and the polyunsaturated index may increase by 0.52-0.56% per vertebra in the caudal direction.
Collapse
Affiliation(s)
- Daniel G Whitney
- Department of Physical Medicine and Rehabilitation, University of Michigan, 325 E. Eisenhower, Ann Arbor, MI 48108, United States of America; Institute for Healthcare Policy and Innovation, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, United States of America.
| | - Maureen J Devlin
- Department of Anthropology, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109, United States of America
| | - Andrea I Alford
- Department of Orthopaedic Surgery, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States of America
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, Room 2009, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
75
|
Bredella MA, Singhal V, Hazhir Karzar N, Animashaun A, Bose A, Stanford FC, Carmine B, Misra M. Racial differences in lumbar marrow adipose tissue and volumetric bone mineral density in adolescents and young adults with obesity. Bone Rep 2020; 13:100726. [PMID: 33392365 PMCID: PMC7772680 DOI: 10.1016/j.bonr.2020.100726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Areal bone mineral density (BMD) of the lumbar spine by DXA is greater in Black compared to White adolescents. Bone strength is determined not only by BMD but also its microenvironment, and marrow adipose tissue (MAT) has been shown to be an important determinant of skeletal integrity, independent of BMD. Racial differences in volumetric BMD (vBMD) and MAT in adolescents and young adults with obesity are unknown. OBJECTIVE To assess racial differences in lumbar vBMD and MAT in Black and White adolescents and young adults with obesity and to assess body composition determinants of bone parameters. We hypothesized that Blacks will have higher vBMD and lower MAT of the lumbar spine compared to Whites. METHODS The study group comprised 77 adolescents/young adults, 25 Black and 52 White, (mean age 18.2 ± 2.5 years, range 13 to 24 years) with moderate to severe obesity (mean body mass index (BMI) 46.2 ± 7.3 kg/m2, range 35.5 to 69.7 kg/m2). Groups were similar in age, BMI, and sex distribution (p > 0.84). Subjects underwent QCT of the lumbar spine (L1-L2) for assessment of vBMD with the use of a calibration phantom and 1H-MRS/MRI for quantification of lumbar MAT content (L1-L2) and abdominal fat and thigh muscle mass. Groups were compared by Student's t-test or Wilcoxon test. Correlation analysis was performed to assess associations between bone parameters and body composition. RESULTS Black adolescents/young adults with obesity had higher vBMD compared to Whites (p < 0.0001), while there was no significant difference in lumbar MAT (p = 0.64). There were also no significant differences in body composition measures between groups (p ≥ 0.28). An inverse association between MAT and vBMD was observed in Whites (r = -0.47, P = 0.001) but not in Blacks (p = 0.6). There were no significant associations between body composition measures and bone parameters (p > 0.1). CONCLUSION There are racial differences in lumbar vBMD in adolescents and young adults with moderate to severe obesity, with Blacks having higher vBMD than Whites, while there were no differences in MAT content. The known inverse association between BMD and MAT was only observed in Whites but not in Blacks, suggesting possible racial differences in stem cell differentiation into the bone and fat lineages.
Collapse
Affiliation(s)
- Miriam A. Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- MGH Weight Center, Boston, MA, United States of America
| | - Nazanin Hazhir Karzar
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Abisayo Animashaun
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Amita Bose
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Fatima Cody Stanford
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- MGH Weight Center, Boston, MA, United States of America
| | - Brian Carmine
- Department of Surgery, Boston University Medical Center, Boston, MA, United States of America
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
76
|
Li L, Chen Y, Wei Z, Cai Z, Jerban S, Zha Y, Ma YJ. 3D UTE bicomponent imaging of cortical bone using a soft-hard composite pulse for excitation. Magn Reson Med 2020; 85:1581-1589. [PMID: 32989787 DOI: 10.1002/mrm.28528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE To evaluate 3D UTE bicomponent imaging of cortical bone ex vivo and in vivo using a newly designed soft-hard composite pulse for excitation. METHODS Chemical shift artifacts, presenting as fat-water oscillation or combination-induced signal oscillation, significantly reduce the accuracy of quantitative UTE bicomponent analysis of cortical bone. To achieve fat suppression for more reliable bicomponent analysis, a newly developed soft-hard excitation pulse was used with UTE imaging and compared with a single rectangular pulse excitation without and with a conventional fat saturation (FatSat) module. These 3 sequences were applied to 8 bovine bone samples without marrow fat, 3 bovine bone samples with marrow fat, and tibial midshafts of 5 healthy human volunteers. Bicomponent analyses were performed in both ex vivo and in vivo studies. RESULTS The soft-hard pulse provided comparable fat suppression, but much reduced bone signal attenuation compared with the FatSat module. Better bicomponent T 2 ∗ fitting was also achieved with the soft-hard excitation pulse because it greatly reduced chemical shift artifacts and outperformed the single rectangular pulse without or with FatSat. Although the FatSat module reduced fat signals and related fat-water oscillation, the water signals were significantly attenuated with more than 40% reduction due to direction saturation. For the inner layer of tibial midshaft in healthy volunteers, fitting errors increased from 3.78% for the soft-hard pulse to 11.43% and 5.16%, respectively, for the single rectangular pulse without and with the FatSat module. CONCLUSION The 3D UTE sequence with a new soft-hard excitation pulse allows more reliable bicomponent imaging of cortical bone.
Collapse
Affiliation(s)
- Liang Li
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Yanjun Chen
- Department of Radiology, University of California San Diego, San Diego, California, USA.,Department of Medical Imaging Center, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhao Wei
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Zhenyu Cai
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
77
|
Wysokowski M, Zaslansky P, Ehrlich H. Macrobiomineralogy: Insights and Enigmas in Giant Whale Bones and Perspectives for Bioinspired Materials Science. ACS Biomater Sci Eng 2020; 6:5357-5367. [PMID: 33320547 DOI: 10.1021/acsbiomaterials.0c00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The giant bones of whales (Cetacea) are the largest extant biomineral-based constructs known. The fact that such mammalian bones can grow up to 7 m long raises questions about differences and similarities to other smaller bones. Size and exposure to environmental stress are good reasons to suppose that an unexplored level of hierarchical organization may be present that is not needed in smaller bones. The existence of such a macroscopic naturally grown structure with poorly described mechanisms for biomineralization is an example of the many yet unexplored phenomena in living organisms. In this article, we describe key observations in macrobiomineralization and suggest that the large scale of biomineralization taking place in selected whale bones implies they may teach us fundamental principles of the chemistry, biology, and biomaterials science governing bone formation, from atomistic to the macrolevel. They are also associated with a very lipid rich environment on those bones. This has implications for bone development and damage sensing that has not yet been fully addressed. We propose that whale bone construction poses extreme requirements for inorganic material storage, mediated by biomacromolecules. Unlike extinct large mammals, cetaceans still live deep in large terrestrial water bodies following eons of adaptation. The nanocomposites from which the bones are made, comprising biomacromolecules and apatite nanocrystals, must therefore be well adapted to create the macroporous hierarchically structured architectures of the bones, with mechanical properties that match the loads imposed in vivo. This massive skeleton directly contributes to the survival of these largest mammals in the aquatic environments of Earth, with structural refinements being the result of 60 million years of evolution. We also believe that the concepts presented in this article highlight the beneficial uses of multidisciplinary and multiscale approaches to study the structural peculiarities of both organic and inorganic phases as well as mechanisms of biomineralization in highly specialized and evolutionarily conserved hard tissues.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.,Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Strasse 3, Freiberg 09599, Germany
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Strasse 3, Freiberg 09599, Germany
| |
Collapse
|
78
|
Whitney DG, Devlin MJ, Alford AI, Modlesky CM, Peterson MD, Li Y, Caird MS. Test-Retest Reliability and Correlates of Vertebral Bone Marrow Lipid Composition by Lipidomics Among Children With Varying Degrees of Bone Fragility. JBMR Plus 2020; 4:e10400. [PMID: 33103029 PMCID: PMC7574707 DOI: 10.1002/jbm4.10400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The reliability of lipidomics, an approach to identify the presence and interactions of lipids, to analyze the bone marrow lipid composition among pediatric populations with bone fragility is unknown. The objective of this study was to assess the test–retest reliability, standard error of measurement (SEM), and the minimal detectable change (MDC) of vertebral bone marrow lipid composition determined by targeted lipidomics among children with varying degrees of bone fragility undergoing routine orthopedic surgery. Children aged 10 to 19 years, with a confirmed diagnosis of adolescent idiopathic scoliosis (n = 13) or neuromuscular scoliosis and cerebral palsy (n = 3), undergoing posterior spinal fusion surgery at our institution were included in this study. Transpedicular vertebral body bone marrow samples were taken from thoracic vertebrae (T11, 12) or lumbar vertebrae (L1 to L4). Lipid composition was assessed via targeted lipidomics and all samples were analyzed in the same batch. Lipid composition measures were examined as the saturated, monounsaturated, and polyunsaturated index and as individual fatty acids. Relative and absolute test–retest reliability was assessed using the intraclass correlation coefficient (ICC), SEM, and MDC. Associations between demographics and index measures were explored. The ICC, SEM, and MDC were 0.81 (95% CI, 0.55–0.93), 1.6%, and 4.3%, respectively, for the saturated index, 0.66 (95% CI, 0.25–0.87), 3.5%, and 9.7%, respectively, for the monounsaturated index, and 0.60 (95% CI, 0.17–0.84), 3.6%, and 9.9%, respectively, for the polyunsaturated index. For the individual fatty acids, the ICC showed a considerable range from 0.04 (22:2n‐6) to 0.97 (18:3n‐3). Age was positively correlated with the saturated index (r2 = 0.36; p = 0.014) and negatively correlated with the polyunsaturated index (r2 = 0.26; p = 0.043); there was no difference in index measures by sex (p > 0.58). The test–retest reliability was moderate‐to‐good for index measures and poor to excellent for individual fatty acids; this information can be used to power research studies and identify measures for clinical or research monitoring. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel G Whitney
- Department of Physical Medicine and Rehabilitation University of Michigan Ann Arbor MI USA.,Institute for Healthcare Policy and Innovation University of Michigan Ann Arbor MI USA
| | - Maureen J Devlin
- Department of Anthropology University of Michigan Ann Arbor MI USA
| | - Andrea I Alford
- Department of Orthopaedic Surgery University of Michigan Ann Arbor MI USA
| | | | - Mark D Peterson
- Department of Physical Medicine and Rehabilitation University of Michigan Ann Arbor MI USA.,Institute for Healthcare Policy and Innovation University of Michigan Ann Arbor MI USA
| | - Ying Li
- Department of Orthopaedic Surgery University of Michigan Ann Arbor MI USA
| | - Michelle S Caird
- Department of Orthopaedic Surgery University of Michigan Ann Arbor MI USA
| |
Collapse
|
79
|
Syväri J, Ruschke S, Dieckmeyer M, Hauner HH, Junker D, Makowski MR, Baum T, Karampinos DC. Estimating vertebral bone marrow fat unsaturation based on short-TE STEAM MRS. Magn Reson Med 2020; 85:615-626. [PMID: 32783232 DOI: 10.1002/mrm.28453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE To define a metric for the separability between water and olefinic fat peaks that defines a threshold beyond which the extraction of the olefinic fat peak from vertebral bone marrow short-echo time-stimulated echo acquisition mode MRS at 3T is feasible when using a constrained peak fitting based on the triglyceride fat model. METHODS The water and olefinic peak height difference was defined as a metric for quantifying the separability of water and olefinic fat peaks. Fat unsaturation was determined using an unconstrained olefinic peak fitting and a constrained fitting of all fat peaks to the triglyceride model. The agreement between the two peak-fitting methods was used to define a threshold on water and olefinic peak height difference separating two groups (A and B), based on L5 short-echo time-stimulated echo acquisition mode (TE = 11 ms) spectra from 252 subjects measured at 3T. RESULTS A threshold on water and olefinic peak height difference was defined. Group A with a good agreement of the olefinic fat peak between the two peak-fitting methods showed a mean number of double bounds = 2.95 ± 0.21, a mean number of methylene-interrupted double bounds = 0.94 ± 0.16 and also a significantly lower coefficient of variation for all fatty acid composition parameters compared to group B (p < .001). The water and olefinic peak height difference value showed an inverse association with fat fraction. CONCLUSION A threshold of a metric quantifying the separability of the water peak and the olefinic fat peaks was defined for the estimation of the vertebral bone marrow fat unsaturation from short-echo time-stimulated echo acquisition mode MRS. The proposed methodology shows that the assessment of vertebral bone marrow unsaturation is feasible with a short-echo time-stimulated echo acquisition mode MRS in subjects with a higher fat fraction.
Collapse
Affiliation(s)
- Jan Syväri
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Bavaria, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Bavaria, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Bavaria, Germany
| | - Hans H Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Bavaria, Germany
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Bavaria, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Bavaria, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Bavaria, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Bavaria, Germany
| |
Collapse
|
80
|
Chen P, Song M, Wang Y, Deng S, Hong W, Zhang X, Yu B. Identification of key genes of human bone marrow stromal cells adipogenesis at an early stage. PeerJ 2020; 8:e9484. [PMID: 32742785 PMCID: PMC7380279 DOI: 10.7717/peerj.9484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022] Open
Abstract
Background Bone marrow adipocyte (BMA), closely associated with bone degeneration, shares common progenitors with osteoblastic lineage. However, the intrinsic mechanism of cells fate commitment between BMA and osteogenic lineage remains unclear. Methods Gene Expression Omnibus (GEO) dataset GSE107789 publicly available was downloaded and analyzed. Differentially expressed genes (DEGs) were analyzed using GEO2R. Functional and pathway enrichment analyses of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were conducted by The Database for Annotation, Visualization and Integrated Discovery and Gene set enrichment analysis software. Protein-protein interactions (PPI) network was obtained using STRING database, visualized and clustered by Cytoscape software. Transcriptional levels of key genes were verified by real-time quantitative PCR in vitro in Bone marrow stromal cells (BMSCs) undergoing adipogenic differentiation at day 7 and in vivo in ovariectomized mice model. Results A total of 2,869 DEGs, including 1,357 up-regulated and 1,512 down-regulated ones, were screened out from transcriptional profile of human BMSCs undergoing adipogenic induction at day 7 vs. day 0. Functional and pathway enrichment analysis, combined with modules analysis of PPI network, highlighted ACSL1, sphingosine 1-phosphate receptors 3 (S1PR3), ZBTB16 and glypican 3 as key genes up-regulated at the early stage of BMSCs adipogenic differentiation. Furthermore, up-regulated mRNA expression levels of ACSL1, S1PR3 and ZBTB16 were confirmed both in vitro and in vivo. Conclusion ACSL1, S1PR3 and ZBTB16 may play crucial roles in early regulation of BMSCs adipogenic differentiation.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingrui Song
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yutian Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Songyun Deng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weisheng Hong
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianrong Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
81
|
Jerban S, Ma Y, Wei Z, Jang H, Chang EY, Du J. Quantitative Magnetic Resonance Imaging of Cortical and Trabecular Bone. Semin Musculoskelet Radiol 2020; 24:386-401. [PMID: 32992367 DOI: 10.1055/s-0040-1710355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone is a composite material consisting of mineral, organic matrix, and water. Water in bone can be categorized as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Bone is generally classified into two types: cortical bone and trabecular bone. Cortical bone is much denser than trabecular bone that is surrounded by marrow and fat. Magnetic resonance (MR) imaging has been increasingly used for noninvasive assessment of both cortical bone and trabecular bone. Bone typically appears as a signal void with conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times 100 to 1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. This article summarizes several quantitative MR techniques recently developed for bone evaluation. Specifically, we discuss the use of UTE and adiabatic inversion recovery prepared UTE sequences to quantify BW and PW, UTE magnetization transfer sequences to quantify collagen backbone protons, UTE quantitative susceptibility mapping sequences to assess bone mineral, and conventional sequences for high-resolution imaging of PW as well as the evaluation of trabecular bone architecture.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
82
|
Al Saedi A, Chen L, Phu S, Vogrin S, Miao D, Ferland G, Gaudreau P, Duque G. Age-Related Increases in Marrow Fat Volumes have Regional Impacts on Bone Cell Numbers and Structure. Calcif Tissue Int 2020; 107:126-134. [PMID: 32356017 DOI: 10.1007/s00223-020-00700-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
Abstract
The increasing levels of bone marrow fat evident in aging and osteoporosis are associated with low bone mass and attributed to reduced osteoblastogenesis. Local lipotoxicity has been proposed as the primary mechanism driving this reduction in bone formation. However, no studies have examined the correlation between high levels of marrow fat volumes and changes in local cellularity. In this study, we hypothesize that areas of bone marrow with high fat volumes are associated with significant changes in cell number within a similar region of interest (ROI). Inbred albino Louvain (LOU) rats, originating from the Wistar strain, have been described as a model of healthy aging with the absence of obesity but expressing the typical features of age-related bone loss. We compared local changes in distal femur cellularity and structure in specific ROI of undecalcified bone sections from 4- and 20-month-old male and female LOU rats and Wistar controls. Our results confirmed that older LOU rats exhibited significantly higher fat volumes than Wistar rats (p < 0.001). These higher fat volume/total volume were associated with lower trabecular number (p < 0.05) and thickness (p < 0.05) and higher trabecular separation (p < 0.05). In addition, osteoblast and osteocyte numbers were reduced in the similar ROI containing high levels of adiposity, while osteoclast number was higher compared to control (p < 0.03). In summary, marrow ROIs with a high level of adiposity were associated with a lower bone mass and changes in cellularity explaining associated bone loss. Further studies assessing the levels of lipotoxicity in areas of high local marrow adiposity and identifying molecular actors involved in this phenomenon are still required.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Lulu Chen
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Steven Phu
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Sara Vogrin
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Dengshun Miao
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Guylaine Ferland
- Département de Nutrition, Faculté de médecine de l'université de Montréal (UdeM) and Centre de Recherche de L'Institut de Cardiologie de Montréal, Montréal, QC, Canada
| | - Pierrette Gaudreau
- Département de médecine, UdeM and Laboratoire de Neuroendocrinologie du Vieillissement, Centre de Recherche du Centre Hospitalier de l'université de Montreal (UdeM), 900 rue Saint-Denis, Pavillon R, Montréal, QC, Canada
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, 176 Furlong Road, St. Albans, VIC, 3021, Australia.
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
83
|
Li L, Wang B, Li Y, Li L, Dai Y, Lv G, Wu P, Li P. Celastrol regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing PGC-1α signaling. Aging (Albany NY) 2020; 12:16887-16898. [PMID: 32723973 PMCID: PMC7521495 DOI: 10.18632/aging.103590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 06/13/2020] [Indexed: 01/24/2023]
Abstract
Celastrol has recently been identified as a prospective new treatment for obesity and several metabolic complications. However, the effect of Celastrol in osteoporosis (OP) remains unknown. In this study, we demonstrated that Celastrol promotes osteoblast differentiation and prevents adipocyte differentiation in bone marrow mesenchymal stem cells (BM-MSCs) in vitro. Mechanistically, Celastrol was able to control the differentiation of BM-MSCs by stimulating PGC-1α signaling. Moreover, administration of Celastrol could alleviate bone loss and bone marrow adipose tissue (MAT) accumulation in ovariectomized (OVX) mice and aged mice. Together, these results recommended that Celastrol could regulate BM-MSCs fate and bone-fat balance in OP and skeletal aging by stimulating PGC-1α, which might act as a possible therapeutic target for OP and for the prevention of skeletal aging.
Collapse
Affiliation(s)
- Li Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yawei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuliang Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410011, Hunan, China
| | - Pengzhi Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
84
|
Sjövall D, Staffas A. The origin of leukemia: Genetic alterations and inflammatory factors in the development of premalignant clonal hematopoiesis. Semin Hematol 2020; 57:7-12. [PMID: 32690142 DOI: 10.1053/j.seminhematol.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
Clonal hematopoiesis of indetermined potential (CHIP) is increasingly common with age and identified in more than 1 in 10 healthy individuals at the age of 70. Mutations in epigenetic and splicing factors are recurrent genetic events in CHIP, and experimental data suggest that microbial and inflammatory factors may contribute to the selective expansion of hematopoietic stem cells carrying these mutations. In parallel, CHIP is associated with an increased incidence of cardiovascular disease and studies in mice support a causal relationship where mutated hematopoietic cells contribute to inflammation and atherosclerotic plaque formation. Collectively, current clinical and experimental data suggest a complex network where genetic alterations and inflammatory factors contribute to the development of the early stages of hematological malignancy.
Collapse
Affiliation(s)
- Daniel Sjövall
- Sahlgrenska Cancer Center, University of Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Anna Staffas
- Sahlgrenska Cancer Center, University of Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
85
|
Ogino S, Sakamoto M, Lee S, Yamanaka H, Tsuge I, Arata J, Sakamoto Y, Kambe Y, Yamaoka T, Morimoto N. De novo adipogenesis using a bioabsorbable implant without additional cells or growth factors. J Tissue Eng Regen Med 2020; 14:920-930. [PMID: 32293793 DOI: 10.1002/term.3041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/09/2022]
Abstract
Adipose tissue regeneration in breast cancer patients without additional growth factors or adipose-tissue-derived stromal cells is desirable because of the possibility of recurrence and metastasis. We report that a poly-L-lactic acid (PLLA) mesh implant containing a collagen sponge (CS) maintained the internal space in vivo for up to 12 months and substituted for adipose tissue. We developed a PLLA capsule that maintained the internal space longer than that of PLLA mesh and compared adipose tissue formation at 12 and 24 months after implantation between the PLLA mesh with CS implant and the PLLA capsule implant with or without CS in a rabbit model. After 12 months, all implants maintained the internal space, and the adipose tissue that formed in all implant groups was larger than that in the control group. At 24 months, PLLA mesh maintained the internal space just as well as that at 12 months, while the PLLA capsule collapsed and accumulated a large number of macrophages. The formed adipose tissue in the PLLA mesh group was maintained up to 24 months; however, those in two PLLA capsule groups decreased and showed no difference from the control group. In conclusion, the internal space of the PLLA mesh implant with CS was substituted for adipose tissue at 12 months and sustained the formed adipose tissue after 24 months. The PLLA mesh implant containing CS is a desirable bioabsorbable implant that can be replaced by autologous adipose tissue after implantation in vivo without using any growth factors or cells.
Collapse
Affiliation(s)
- Shuichi Ogino
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto, Japan
| | - Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto, Japan
| | - Sunghee Lee
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto, Japan
| | - Hiroki Yamanaka
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto, Japan
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto, Japan
| | - Jun Arata
- Department of Plastic and Reconstructive Surgery, National Hospital Organization Kyoto Medical Center, Fushimiku, Kyoto, Japan
| | - Yuki Sakamoto
- Gunze QOL Research Center Laboratory, Ayabe, Kyoto, Japan
| | - Yusuke Kambe
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Sakyou-ku, Kyoto, Japan
| |
Collapse
|
86
|
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to describe the in vitro and in vivo methods that researchers use to model and investigate bone marrow adipocytes (BMAds). RECENT FINDINGS The bone marrow (BM) niche is one of the most interesting and dynamic tissues of the human body. Relatively little is understood about BMAds, perhaps in part because these cells do not easily survive flow cytometry and histology processing and hence have been overlooked. Recently, researchers have developed in vitro and in vivo models to study normal function and dysfunction in the BM niche. Using these models, scientists and clinicians have noticed that BMAds, which form bone marrow adipose tissue (BMAT), are able to respond to numerous signals and stimuli, and communicate with local cells and distant tissues in the body. This review provides an overview of how BMAds are modeled and studied in vitro and in vivo.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine and Center for Translational Research, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA.
- School of Medicine and Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
87
|
Jerban S, Lu X, Dorthe EW, Alenezi S, Ma Y, Kakos L, Jang H, Sah RL, Chang EY, D’Lima D, Du J. Correlations of cortical bone microstructural and mechanical properties with water proton fractions obtained from ultrashort echo time (UTE) MRI tricomponent T2* model. NMR IN BIOMEDICINE 2020; 33:e4233. [PMID: 31820518 PMCID: PMC7161421 DOI: 10.1002/nbm.4233] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 05/12/2023]
Abstract
Mechanical and microstructural evaluations of cortical bone using ultrashort echo time magnetic resonance imaging (UTE-MRI) have been performed increasingly in recent years. UTE-MRI acquires considerable signal from cortical bone and enables quantitative bone evaluations. Fitting bone apparent transverse magnetization (T2*) decay using a bicomponent model has been regularly performed to estimate bound water (BW) and pore water (PW) in the quantification of bone matrix and porosity, respectively. Human cortical bone possesses a considerable amount of fat, which appears as MRI T2* signal oscillation and can subsequently lead to BW overestimation when using a bicomponent model. Tricomponent T2* fitting model has been developed to improve BW and PW estimations by accounting for fat contribution in the MRI signal. This study aimed to investigate the correlations of microstructural and mechanical properties of human cortical bone with water pool fractions obtained from a tricomponent T2* model. 135 cortical bone strips (~4 × 2 × 40 mm3 ) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using ten sets of dual-echo 3D-UTE-Cones sequences (TE = 0.032-24.0 ms) on a 3 T MRI scanner for T2* fitting analyses. Average bone porosity and pore size were measured using microcomputed tomography (μCT) at 9 μm voxel size. Bone mechanical properties were measured using 4-point bending tests. Using a tricomponent model, bound water fraction (FracBW ) showed significant strong (R = 0.70, P < 0.01) and moderate (R = 0.58-0.62, P < 0.01) correlations with porosity and mechanical properties, respectively. Correlations of bone microstructural and mechanical properties with water pool fractions were higher for tricomponent model results compared with the bicomponent model. The tricomponent T2* fitting model is suggested as a useful technique for cortical bone evaluation where the MRI contribution of bone fat is accounted for.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Corresponding authors: • Jiang Du, Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA, , Phone: +1 858 246 2248, Fax: +1 888 960 5922, • Saeed Jerban, Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA, , Phone: +1 858 246 3158, Fax: +1 888 960 5922
| | - Xing Lu
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- 12Sigma Technologies, San Diego, CA, USA
| | - Erik W. Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, KSA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Lena Kakos
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Darryl D’Lima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Corresponding authors: • Jiang Du, Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA, , Phone: +1 858 246 2248, Fax: +1 888 960 5922, • Saeed Jerban, Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA, , Phone: +1 858 246 3158, Fax: +1 888 960 5922
| |
Collapse
|
88
|
Li Y, Wang J, Huang C, Shen M, Zhan H, Xu K. RNA N6-methyladenosine: a promising molecular target in metabolic diseases. Cell Biosci 2020; 10:19. [PMID: 32110378 PMCID: PMC7035649 DOI: 10.1186/s13578-020-00385-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine is a prevalent and abundant transcriptome modification, and its methylation regulates the various aspects of RNAs, including transcription, translation, processing and metabolism. The methylation of N6-methyladenosine is highly associated with numerous cellular processes, which plays important roles in the development of physiological process and diseases. The high prevalence of metabolic diseases poses a serious threat to human health, but its pathological mechanisms remain poorly understood. Recent studies have reported that the progression of metabolic diseases is closely related to the expression of RNA N6-methyladenosine modification. In this review, we aim to summarize the biological and clinical significance of RNA N6-methyladenosine modification in metabolic diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular diseases, osteoporosis and immune-related metabolic diseases.
Collapse
Affiliation(s)
- Yan Li
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Jiawen Wang
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Chunyan Huang
- Houjie Hospital of Dongguan, Dongguan, 523945 Guangdong China
| | - Meng Shen
- Chengdu Tumor Hospital, Chengdu, 610041 Sichuan China
| | - Huakui Zhan
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Keyang Xu
- 4Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310023 Zhejiang China
| |
Collapse
|
89
|
E Hassan N, A El-Masry S, A El Banna R, Al-Tohamy M, El-Lebedy D, Adel Abdelhalim D, Amin D, Megahed S, Khalil A. Bone Health and its Relation to Energy Intake, Fat Mass and its Distribution. Pak J Biol Sci 2020; 23:1075-1085. [PMID: 32700859 DOI: 10.3923/pjbs.2020.1075.1085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Osteoporosis and obesity are two of the most important inter-related diseases worldwide. This study aimed to investigate impact of fat mass and its distribution on bone health in relation to energy intake among sample of Egyptian women. MATERIALS AND METHODS A cross-sectional study included 116 Egyptian women with age range 25-65 years old. They were classified according to the menopause into 2 groups: Pre-menopausal (n = 51) and post menopausal (n = 65). All participants have undergone anthropometric measurements, body composition, DEXA and laboratory investigations. RESULTS Among overweight/obese women, pre-menopausal women had significant higher values of BMR and BMD at both lumbar spines, neck of femur and significant lower values of central obesity (waist/hip ratio, waist/height ratio, visceral fat) and C-terminal peptides than postmenopausal ones. Among pre and post-menopausal women, BMD at both sites had significant positive correlations with obesity markers (BMI, waist and hip circumferences), fat mass, BMR, in addition to fat distribution, visceral fat, leptin among pre-menopausal women and C-terminal peptide among postmenopausal women. Among pre-menopausal women, BMR significantly explained 56% of the variations in BMD at neck of femur, while at lumbar spines the best model was BMI, BMR and waist circumference, which significantly explain 33% of the variations in BMD. CONCLUSION Bone health positively correlated with BMI, fat mass and its distribution and BMR, particularly at femur neck, among pre and post-menopausal Egyptian women. Overweight/obesity can be considered as a protective factor for bone health.
Collapse
|
90
|
Eller-Vainicher C, Cairoli E, Grassi G, Grassi F, Catalano A, Merlotti D, Falchetti A, Gaudio A, Chiodini I, Gennari L. Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility. J Diabetes Res 2020; 2020:7608964. [PMID: 32566682 PMCID: PMC7262667 DOI: 10.1155/2020/7608964] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of bone fragility fractures compared to nondiabetic subjects. This increased fracture risk may occur despite normal or even increased values of bone mineral density (BMD), and poor bone quality is suggested to contribute to skeletal fragility in this population. These concepts explain why the only evaluation of BMD could not be considered an adequate tool for evaluating the risk of fracture in the individual T2DM patient. Unfortunately, nowadays, the bone quality could not be reliably evaluated in the routine clinical practice. On the other hand, getting further insight on the pathogenesis of T2DM-related bone fragility could consent to ameliorate both the detection of the patients at risk for fracture and their appropriate treatment. The pathophysiological mechanisms underlying the increased risk of fragility fractures in a T2DM population are complex. Indeed, in T2DM, bone health is negatively affected by several factors, such as inflammatory cytokines, muscle-derived hormones, incretins, hydrogen sulfide (H2S) production and cortisol secretion, peripheral activation, and sensitivity. All these factors may alter bone formation and resorption, collagen formation, and bone marrow adiposity, ultimately leading to reduced bone strength. Additional factors such as hypoglycemia and the consequent increased propensity for falls and the direct effects on bone and mineral metabolism of certain antidiabetic medications may contribute to the increased fracture risk in this population. The purpose of this review is to summarize the literature evidence that faces the pathophysiological mechanisms underlying bone fragility in T2DM patients.
Collapse
Affiliation(s)
- C. Eller-Vainicher
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - E. Cairoli
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Italy
- Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - G. Grassi
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - F. Grassi
- Ramses Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A. Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - D. Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - A. Falchetti
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Italy
| | - A. Gaudio
- Department of Clinical and Experimental Medicine, University of Catania, University Hospital ‘G. Rodolico', Catania, Italy
| | - I. Chiodini
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Italy
- Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - L. Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| |
Collapse
|
91
|
Dieckmeyer M, Junker D, Ruschke S, Mookiah MRK, Subburaj K, Burian E, Sollmann N, Kirschke JS, Karampinos DC, Baum T. Vertebral Bone Marrow Heterogeneity Using Texture Analysis of Chemical Shift Encoding-Based MRI: Variations in Age, Sex, and Anatomical Location. Front Endocrinol (Lausanne) 2020; 11:555931. [PMID: 33178134 PMCID: PMC7593641 DOI: 10.3389/fendo.2020.555931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Objective: Vertebral bone marrow composition has been extensively studied in the past and shown potential as imaging biomarker for osteoporosis, hematopoietic, and metabolic disorders. However, beyond quantitative assessment of bone marrow fat, little is known about its heterogeneity. Therefore, we investigated bone marrow heterogeneity of the lumbar spine using texture analysis of chemical-shift-encoding (CSE-MRI) based proton density fat fraction (PDFF) maps and its association with age, sex, and anatomical location. Methods: One hundred and fifty-six healthy subjects were scanned (age range: 20-29 years, 12/30 males/females; 30-39, 15/9; 40-49, 5/13; 50-59, 9/27; ≥60: 9/27). A sagittal 8-echo 3D spoiled-gradient-echo sequence at 3T was used for CSE-MRI-based water-fat separation at the lumbar spine. Manual segmentation of vertebral bodies L1-4 was performed. Mean PDFF and texture features (global: variance, skewness, kurtosis; second-order: energy, entropy, contrast, homogeneity, correlation, sum-average, variance, dissimilarity) were extracted at each vertebral level and compared between age groups, sex, and anatomical location. Results: Mean PDFF significantly increased from L1 to L4 (35.89 ± 11.66 to 39.52 ± 11.18%, p = 0.017) and with age (females: 27.19 ± 6.01 to 49.34 ± 7.75%, p < 0.001; males: 31.97 ± 7.96 to 41.83 ± 7.03 %, p = 0.025), but showed no difference between females and males after adjustment for age and BMI (37.13 ± 11.63 vs. 37.17 ± 8.67%; p = 0.199). Bone marrow heterogeneity assessed by texture analysis, in contrast to PDFF, was significantly higher in females compared to males after adjustment for age and BMI (namely contrast and dissimilarity; p < 0.031), demonstrated age-dependent differences, in particular in females (p < 0.05), but showed no statistically significant dependence on vertebral location. Conclusion: Vertebral bone marrow heterogeneity, assessed by texture analysis of PDFF maps, is primarily dependent on sex and age but not on anatomical location. Future studies are needed to investigate bone marrow heterogeneity with regard to aging and disease.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Michael Dieckmeyer
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Muthu Rama Krishnan Mookiah
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Karupppasamy Subburaj
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
92
|
Sharma AK, Shi X, Isales CM, McGee-Lawrence ME. Endogenous Glucocorticoid Signaling in the Regulation of Bone and Marrow Adiposity: Lessons from Metabolism and Cross Talk in Other Tissues. Curr Osteoporos Rep 2019; 17:438-445. [PMID: 31749087 DOI: 10.1007/s11914-019-00554-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW The development of adiposity in the bone marrow, known as marrow adipose tissue (MAT), is often associated with musculoskeletal frailty. Glucocorticoids, which are a key component of the biological response to stress, affect both bone and MAT. These molecules signal through receptors such as the glucocorticoid receptor (GR), but the role of the GR in regulation of MAT is not yet clear from previous studies. The purpose of this review is to establish and determine the role of GR-mediated signaling in marrow adiposity by comparing and contrasting what is known against other energy-storing tissues like adipose tissue, liver, and muscle, to provide better insight into the regulation of MAT during times of metabolic stress (e.g., dietary challenges, aging). RECENT FINDINGS GR-mediated glucocorticoid signaling is critical for proper storage and utilization of lipids in cells such as adipocytes and hepatocytes and proteolysis in muscle, impacting whole-body composition, energy utilization, and homeostasis through a complex network of tissue cross talk between these systems. Loss of GR signaling in bone promotes increased MAT and decreased bone mass. GR-mediated signaling in the liver, adipose tissue, and muscle is critical for whole-body energy and metabolic homeostasis, and both similarities and differences in GR-mediated GC signaling in MAT as compared with these tissues are readily apparent. It is clear that GC-induced pathways work together through these tissues to affect systemic biology, and understanding the role of bone in these patterns of tissue cross talk may lead to a better understanding of MAT-bone biology that improves treatment strategies for frailty-associated diseases.
Collapse
Affiliation(s)
- Anuj K Sharma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Xingming Shi
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Augusta University, Augusta, GA, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA.
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
93
|
Trudel G, Melkus G, Sheikh A, Ramsay T, Laneuville O. Marrow adipose tissue gradient is preserved through high protein diet and bed rest. A randomized crossover study. Bone Rep 2019; 11:100229. [PMID: 31799339 PMCID: PMC6883331 DOI: 10.1016/j.bonr.2019.100229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
CONTEXT Marrow adipose tissue (MAT) has a peripheral to central distribution in adults, higher in peripheral bones. Similarly, the spine has a caudal to cephalad MAT distribution, higher in lumbar vertebras. Diet and the level of physical activities are known modulators of MAT with significant impact on bone; however, whether these can modulate the MAT gradient is unknown. OBJECTIVE To measure the effect of high protein diet and bed rest interventions on the lumbar MAT gradient. DESIGN PARTICIPANTS INTERVENTION In a prospective randomized crossover trial, 10 healthy men participated in 2 consecutive campaigns of 21days head-down-tilt-bed-rest (HDTBR). They received either whey protein and potassium bicarbonate-supplemented or control diet separated by a 4-month washout period. MAIN OUTCOME MEASURES Ten serial MRI measures of lumbar vertebral fat fraction (VFF) were performed at baseline, 10days and 20days of HDTBR and 3 and 28days after HDTBR of each bed rest campaign. RESULTS The mean L5-L1 VFF difference of 4.2 ± 1.2 percentage point higher at L5 (p = 0.008) constituted a caudal to cephalad lumbar MAT gradient. High protein diet did not alter the lumbar VFF differences during both HDTBR campaigns (all time points p > 0.05). Similarly, 2 campaigns of 21days of HDTBR did not change the lumbar VFF differences (all time points p > 0.05). CONCLUSIONS This pilot study established that the lumbar vertebral MAT gradient was not altered by a high protein nor by 2 × 21days bed rest interventions. These findings demonstrated that this lack of mechanical stimulus was not an important modulator of the lumbar MAT gradient. The highly preserved MAT gradient needs to be measured in more situations of health and disease and may potentially serve to detect pathological situations.
Collapse
Key Words
- BDC, baseline data collection
- Bed rest study
- DLR, German Aerospace Center
- FOV, field of view
- HDT, head-down tilt
- HDTBR, head-down-tilt-bed-rest
- IOP, in-phase and out-phase imaging
- Lumbar vertebral fat fraction
- MAT, marrow adipose tissue
- MEP, whey protein study
- MR, magnetic resonance
- Magnetic resonance imaging
- Marrow adipose tissue
- PDFF, proton-density fat fraction
- R, recovery
- ROI, region of interest
- TR, repetition time
- VFF, vertebral fat fraction
- Whey protein
- in-phase, echo time 1 (TE1)
- out-phase, echo time 2 (TE2)
Collapse
Affiliation(s)
- Guy Trudel
- Bone and Joint Research Laboratory, Department of Physical Medicine and Rehabilitation, Department of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ontario, Canada
| | - Gerd Melkus
- The Ottawa Hospital Research Institute, Ontario, Canada
- Department of Radiology, University of Ottawa, Ontario, Canada
| | - Adnan Sheikh
- The Ottawa Hospital Research Institute, Ontario, Canada
- Department of Radiology, University of Ottawa, Ontario, Canada
| | - Tim Ramsay
- The Ottawa Hospital Research Institute, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ontario, Canada
| | - Odette Laneuville
- Bone and Joint Research Laboratory, Department of Physical Medicine and Rehabilitation, Department of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ontario, Canada
| |
Collapse
|
94
|
Singhal V, Bose A, Liang Y, Srivastava G, Goode S, Stanford FC, Misra M, Bredella MA. Marrow adipose tissue in adolescent girls with obesity. Bone 2019; 129:115103. [PMID: 31622774 PMCID: PMC6842661 DOI: 10.1016/j.bone.2019.115103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Marrow adipose tissue (MAT) is increasingly recognized as an active and dynamic endocrine organ that responds to changes in nutrition and environmental milieu. Compared to normal weight controls, adolescent girls with anorexia nervosa have higher MAT content, which is associated with impaired skeletal integrity, but data are limited regarding MAT content in adolescents with obesity and how this interacts with bone endpoints. OBJECTIVE To evaluate (i) MAT content in adolescents with obesity compared to normal-weight controls, (ii) the association of MAT with bone endpoints, and (iii) whether these associations of MAT are affected by body weight. METHODS We assessed MAT, bone endpoints, and body composition in 60 adolescent girls 14-21 years old: 45 with obesity (OB) and 15 normal-weight controls (NW-C). We used (i) DXA to assess areal bone mineral density (aBMD) at the lumbar spine and total hip, and total body fat and lean mass, (ii) proton magnetic resonance spectroscopy (1H-MRS) to assess MAT at the 4th lumbar vertebra and femur, and MRI to assess visceral (VAT) and subcutaneous adipose tissue (SAT), (iii) high resolution peripheral quantitative CT (HR-pQCT) to assess volumetric BMD (vBMD), (iv) individual trabeculae segmentation to evaluate trabecular bone (plate-rod morphology), and (v) finite element analysis to assess stiffness (a strength estimate) at the distal radius and tibia. RESULTS Groups did not differ for age or height. Weight, BMI, and areal BMD Z-scores at all sites were higher in the OB group (p<0.0001). MAT was lower in OB at the femoral diaphysis (p= <0.0001) and the lumbar spine (p=0.0039). For the whole group, MAT at the lumbar spine and femoral diaphysis was inversely associated with BMI, total fat mass, lean mass, and VAT. Even after controlling for body weight, independent inverse associations were observed of femoral diaphyseal and lumbar MAT with total tibial vBMD, and of lumbar MAT with radial trabecular vBMD. CONCLUSION Adolescent girls with obesity have lower MAT than normal-weight controls despite having an excess of total body fat. These findings confirm that MAT is regulated uniquely from other adipose depots in obesity. MAT was inversely associated with vBMD, emphasizing an inverse relationship between MAT and bone even in adolescent girls with obesity.
Collapse
Affiliation(s)
- Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, United States; Massachusetts General Hospital Weight Center, United States
| | - Amita Bose
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States
| | - Yini Liang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States
| | - Gitanjali Srivastava
- Department of Medicine, Section on Endocrinology, Diabetes, Nutrition & Weight Management, Boston Medical Center, United States; Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Vanderbilt University School of Medicine, United States; Department of Pediatrics, Vanderbilt University School of Medicine, United States
| | - Susan Goode
- Division of Pediatric Gastroenterology, Massachusetts General Hospital for Children and Harvard Medical School, United States
| | - Fatima Cody Stanford
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, United States; Massachusetts General Hospital Weight Center, United States
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, United States
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
95
|
Katsiki N, Mikhailidis DP. Iron absorption, bone marrow fat and hematopoiesis in heart failure: Additional mechanisms of action for sodium-glucose co-transporter 2 inhibitors (SGLT2i)? J Diabetes Complications 2019; 33:107408. [PMID: 31522962 DOI: 10.1016/j.jdiacomp.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology and Metabolism, Diabetes Center, Medical School, AHEPA University Hospital, Thessaloniki, Greece.
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| |
Collapse
|
96
|
Li Y, Hao H, Zhong Z, Li M, Li J, Du Y, Wu X, Wang J, Zhang S. Assembly Mechanism of Highly Crystalline Selenium-Doped Hydroxyapatite Nanorods via Particle Attachment and Their Effect on the Fate of Stem Cells. ACS Biomater Sci Eng 2019; 5:6703-6714. [DOI: 10.1021/acsbiomaterials.9b01029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan Li
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Hao
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengyu Zhong
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengdie Li
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Li
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaodan Wu
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center and Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
97
|
Badr S, Legroux-Gérot I, Vignau J, Chauveau C, Ruschke S, Karampinos DC, Budzik JF, Cortet B, Cotten A. Comparison of regional bone marrow adiposity characteristics at the hip of underweight and weight-recovered women with anorexia nervosa using magnetic resonance spectroscopy. Bone 2019; 127:135-145. [PMID: 31146035 DOI: 10.1016/j.bone.2019.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Bone marrow adiposity (BMA) is an underestimated tissue, with properties that may alter bone strength especially in diseases that fragilize bone such as anorexia nervosa. In the present study, we investigated the regional characteristics of BMA at the hip of 40 underweight and 36 weight-recovered anorexic women, along with 10 healthy women, using magnetic resonance spectroscopy at multiple anatomical subregions (acetabulum, femoral neck, proximal femoral diaphysis and greater trochanter) to measure bone marrow fat fraction (BMFF) and apparent lipid unsaturation levels (aLUL). Correlations between BMFF, aLUL, body fat percentage (BF), and bone mineral density (BMD) at the femoral neck and total hip, both measured using dual-energy X-ray absorptiometry, were assessed in anorexic patients. Whereas BMFF was significantly higher and aLUL significantly lower at the femoral neck of underweight and weight-recovered patients compared to controls (BMFF: 90.1 ± 6.7% and 90.3 ± 7.5% respectively versus 81.3 ± 8.1%; aLUL: 7.6 ± 1.4% and 7.3 ± 1.3% versus 9.2 ± 1.5%), BMFF and aLUL were not significantly different between the 2 subgroups of patients. Besides, three noteworthy features were observed between BMA and the other measured parameters in anorexic patients. First, synergic alterations of BMA were observed at all sites, with an inverse relationship between BMFF and aLUL (ρ = -0.88). Second, bone mineral compartment and BMA were associated, as a negative correlation between total hip BMD and BMFF was observed at all sites except the greater trochanter (ρ = [-0.32;-0.29]), as well as a positive correlation with aLUL at all sites except the proximal femoral diaphysis (ρ = [0.25;0.37]). Finally, we found a positive correlation between BF and BMFF at the femoral neck (ρ = 0.35), and a negative correlation between BF and aLUL at this same subregion (ρ = -0.33), which suggest a complex relationship between BMA and BF. Overall, BMA possesses regional specificities which may impair bone health, even after weight recovering.
Collapse
Affiliation(s)
- Sammy Badr
- CHU Lille, Service de radiologie et imagerie musculosquelettique, F-59000 Lille, France; Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France.
| | - Isabelle Legroux-Gérot
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France; CHU Lille, Service de rhumatologie, F-59000 Lille, France
| | - Jean Vignau
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France; CHU Lille, Service d'addictologie, F-59000 Lille, France
| | - Christophe Chauveau
- Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-62200 Boulogne-sur-Mer, France
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jean-François Budzik
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France; Service d'Imagerie Médicale, Groupe Hospitalier de l'Institut Catholique de Lille / Université Catholique de Lille, F-59000 Lille, France
| | - Bernard Cortet
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France; CHU Lille, Service de rhumatologie, F-59000 Lille, France
| | - Anne Cotten
- CHU Lille, Service de radiologie et imagerie musculosquelettique, F-59000 Lille, France; Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France
| |
Collapse
|
98
|
Yang M, Arai A, Udagawa N, Zhao L, Nishida D, Murakami K, Hiraga T, Takao-Kawabata R, Matsuo K, Komori T, Kobayashi Y, Takahashi N, Isogai Y, Ishizuya T, Yamaguchi A, Mizoguchi T. Parathyroid Hormone Shifts Cell Fate of a Leptin Receptor-Marked Stromal Population from Adipogenic to Osteoblastic Lineage. J Bone Miner Res 2019; 34:1952-1963. [PMID: 31173642 DOI: 10.1002/jbmr.3811] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Intermittent parathyroid hormone (iPTH) treatment induces bone anabolic effects that result in the recovery of osteoporotic bone loss. Human PTH is usually given to osteoporotic patients because it induces osteoblastogenesis. However, the mechanism by which PTH stimulates the expansion of stromal cell populations and their maturation toward the osteoblastic cell lineage has not be elucidated. Mouse genetic lineage tracing revealed that iPTH treatment induced osteoblastic differentiation of bone marrow (BM) mesenchymal stem and progenitor cells (MSPCs), which carried the leptin receptor (LepR)-Cre. Although these findings suggested that part of the PTH-induced bone anabolic action is exerted because of osteoblastic commitment of MSPCs, little is known about the in vivo mechanistic details of these processes. Here, we showed that LepR+ MSPCs differentiated into type I collagen (Col1)+ mature osteoblasts in response to iPTH treatment. Along with osteoblastogenesis, the number of Col1+ mature osteoblasts increased around the bone surface, although most of them were characterized as quiescent cells. However, the number of LepR-Cre-marked lineage cells in a proliferative state also increased in the vicinity of bone tissue after iPTH treatment. The expression levels of SP7/osterix (Osx) and Col1, which are markers for osteoblasts, were also increased in the LepR+ MSPCs population in response to iPTH treatment. In contrast, the expression levels of Cebpb, Pparg, and Zfp467, which are adipocyte markers, decreased in this population. Consistent with these results, iPTH treatment inhibited 5-fluorouracil- or ovariectomy (OVX)-induced LepR+ MSPC-derived adipogenesis in BM and increased LepR+ MSPC-derived osteoblasts, even under the adipocyte-induced conditions. Treatment of OVX rats with iPTH significantly affected the osteoporotic bone tissue and expansion of the BM adipose tissue. These results indicated that iPTH treatment induced transient proliferation of the LepR+ MSPCs and skewed their lineage differentiation from adipocytes toward osteoblasts, resulting in an expanded, quiescent, and mature osteoblast population. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mengyu Yang
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Atsushi Arai
- Department of Orthodontics, Matsumoto Dental University, Nagano, Japan
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Lijuan Zhao
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Daisuke Nishida
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Kohei Murakami
- Department of Oral Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Nagano, Japan
| | - Ryoko Takao-Kawabata
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Yukihiro Isogai
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Toshinori Ishizuya
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Akira Yamaguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Toshihide Mizoguchi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
99
|
Coutel X, Delattre J, Marchandise P, Falgayrac G, Béhal H, Kerckhofs G, Penel G, Olejnik C. Mandibular bone is protected against microarchitectural alterations and bone marrow adipose conversion in ovariectomized rats. Bone 2019; 127:343-352. [PMID: 31276849 DOI: 10.1016/j.bone.2019.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/02/2019] [Accepted: 06/29/2019] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a disease that leads to a loss of bone mass and to alterations in the bone microarchitecture that occur in a site-specific manner; however it remains controversial in the jaw. The involvement of bone marrow adipose tissue (BMAT) in the bone metabolism has been suggested in several physiopathological contexts, such as in aging and osteoporosis. To test whether the BMAT content is related to mandibular bone loss, this study aimed to investigate the potential correlations between the trabecular bone microarchitecture on one hand and BMAT content and its spatial distribution in relation to bone surface on the other hand during aging and ovariectomy (OVX) during a long-term follow-up in a mature rat model. No age-related microarchitectural or BMAT changes were observed in the mandible. The OVX-induced bone loss was three-fold lower in the mandible than in the tibia and was observed only in the alveolar bone (not in the condyle). We also report a delayed increase in the mandibular BMAT content that remained 4-6-fold lower compared to tibia. This low BMAT content in the mandible was located at a distance from the trabecular bone surface (only 5% in contact with the bone surface versus 87% in the tibia). These findings highlight a specific mandibular response to OVX, in particular fewer microarchitectural alterations compared to that in the tibia. For the latter, the trabecular bone thickness and surface were correlated with the BMAT content. Oral functions may have a protective effect on the mandibular BMAT conversion in an OVX context.
Collapse
Affiliation(s)
- Xavier Coutel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France.
| | - Jérôme Delattre
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Pierre Marchandise
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Guillaume Falgayrac
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Hélène Béhal
- Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, Unité de Méthodologie et Biostatistiques, F-59000 Lille, France
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Woluwe, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Guillaume Penel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Cécile Olejnik
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| |
Collapse
|
100
|
Bone Marrow Fat Physiology in Relation to Skeletal Metabolism and Cardiometabolic Disease Risk in Children With Cerebral Palsy. Am J Phys Med Rehabil 2019; 97:911-919. [PMID: 29894311 DOI: 10.1097/phm.0000000000000981] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Individuals with cerebral palsy exhibit neuromuscular complications and low physical activity levels. Adults with cerebral palsy exhibit a high prevalence of chronic diseases, which is associated with musculoskeletal deficits. Children with cerebral palsy have poor musculoskeletal accretion accompanied by excess bone marrow fat, which may lead to weaker bones. Mechanistic studies to determine the role of bone marrow fat on skeletal growth and maintenance and how it relates to systemic energy metabolism among individuals with cerebral palsy are lacking. In this review, we highlight the skeletal status in children with cerebral palsy and analyze the existing literature on the interactions among bone marrow fat, skeletal health, and cardiometabolic disease risk in the general population. Clinically vital questions are proposed, including the following: (1) Is the bone marrow fat in children with cerebral palsy metabolically distinct from typically developing children in terms of its lipid and inflammatory composition? (2) Does the bone marrow fat suppress skeletal acquisition? (3) Or, does it accelerate chronic disease development in children with cerebral palsy? (4) If so, what are the mechanisms? In conclusion, although inadequate mechanical loading may initiate poor skeletal development, subsequent expansion of bone marrow fat may further impede skeletal acquisition and increase cardiometabolic disease risk in those with cerebral palsy.
Collapse
|