51
|
Li XQ, Hua ZL, Zhang JY, Gu L. Interactions between dissolved organic matter and perfluoroalkyl acids in natural rivers and lakes: A case study of the northwest of Taihu Lake Basin, China. WATER RESEARCH 2022; 216:118324. [PMID: 35339055 DOI: 10.1016/j.watres.2022.118324] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Understanding the interactions between dissolved organic matter (DOM) and perfluoroalkyl acids (PFAAs) is essential for predicting the distribution, transport, and fate of PFAAs in aquatic environments. Based on field investigations in the northwest of Taihu Lake Basin combined with laboratory experiments, we obtained DOM and PFAA concentrations as well as compositions and investigated key factors of DOM affecting PFAA variability and capture of PFAAs by DOM. Results indicated that the total concentrations of PFAAs were 73.4-689 ng/L in surface water and that PFAAs were dominated by C3-7 perfluoroalkyl carboxylic acids and perfluorooctane sulfonic acid. The main components of DOM included tyrosine-, fulvic-, and tryptophan-like substances. The Mantel test revealed a significant positive correlation between DOM and PFAAs (P = 0.0001). Fulvic-like substances were identified as the most crucial factors affecting PFAA variability. The laboratory experiments revealed that DOM can spontaneously aggregate into a microgel. Furthermore, 19.1-50.9% of PFAAs, DOM characteristic peaks, and several metals (Ca, Mg, Cu, and Fe) can be removed during aggregation, indicating the capacity of DOM binding organic/inorganic substances. The fulvic-like substances were more effectively removed than the protein-like substances. The distribution coefficients of all PFAAs except perfluorohexanoic acid significantly correlated with their perfluorinated carbon numbers (r = 0.975, p<0.001). Our results provided insights into the interactions between DOM and PFAAs, improving the understanding of the distribution, transport, and fate of PFAAs in aquatic environments.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China.
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China
| |
Collapse
|
52
|
Sardana A, Weaver L, Aziz TN. Effects of dissolved organic matter characteristics on the photosensitized degradation of pharmaceuticals in wastewater treatment wetlands. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:805-824. [PMID: 35481471 DOI: 10.1039/d1em00545f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wastewater treatment wetlands are aquatic systems where diverse dissolved organic matter (DOM) compositions physically interact. Complex photochemical behaviors ensue, leading to uncertainties in the prediction of indirect photodegradation rates for organic contaminants. Here, we evaluate the photosensitization ability of whole water DOM samples from a treatment wetland and wastewater treatment plant (WWTP) in North Carolina to photodegrade target pharmaceuticals. Optical characterization using ultraviolet-visible and excitation-emission matrix spectroscopy shows that wetland DOM has higher aromaticity than WWTP DOM and that WWTP secondary treatment processes increase aromaticity, overall molecular weight, and humic character of wastewater DOM. Our application of a reversed-phase HPLC method to assess DOM polarity distinctly reveals that a subset of the wetland samples possesses an abundance of hydrophobic DOM moieties. Hydroxyl radicals (˙OH) mediate the majority (>50%) of the indirect photodegradation for amoxicillin (AMX), atenolol (ATL), and 17α-ethinylestradiol (EE2), while singlet oxygen (1O2) is presumed to be solely responsible for the photodegradation of cimetidine (CME). Our findings suggest that hydrophobic interactions and improved accessibility to photogenerated reactive intermediates lead to significant increases in photosensitization efficiencies and overall indirect photodegradation rates of AMX, ATL, and EE2 for the hydrophobic wetland samples. In contrast, CME photosensitization yields are unaffected by polarity and trend positively with optical indicators of sunlight-induced DOM photobleaching and humification, suggesting that wetland processing favors faster 1O2 photogeneration. These relationships highlight the uncertainties in photosensitization yields and effects of DOM optical properties and polarity on the photochemical fate of organic contaminants.
Collapse
Affiliation(s)
- Arpit Sardana
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 3250 Fitts-Woolard Hall, 915 Partners Way, Raleigh NC 27695, USA.
- Geosyntec Consultants Inc., 2501 Blue Ridge Road, Suite 430, Raleigh, NC, 27607, USA
| | - Leah Weaver
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 3250 Fitts-Woolard Hall, 915 Partners Way, Raleigh NC 27695, USA.
| | - Tarek N Aziz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 3250 Fitts-Woolard Hall, 915 Partners Way, Raleigh NC 27695, USA.
| |
Collapse
|
53
|
Zeng Y, Fang G, Fu Q, Peng F, Wang X, Dionysiou DD, Guo J, Gao J, Zhou D, Wang Y. Mechanistic Study of the Effects of Agricultural Amendments on Photochemical Processes in Paddy Water during Rice Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4221-4230. [PMID: 35275630 DOI: 10.1021/acs.est.2c00145] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The photochemical properties of paddy water might be affected by the commonly used amendments in rice fields owing to the associated changes in water chemistry; however, this important aspect has rarely been explored. We examined the effects of agricultural amendments on the photochemistry of paddy water during rice growth. The amendments significantly influenced the photogenerated reactive intermediates (RIs) in paddy water, such as triplet dissolved organic matter (3DOM*), singlet oxygen, and hydroxyl radicals. Compared with control experiments without amendments, the application of straw and lime increased the RI concentrations by up to 16.8 and 11.1 times, respectively, while biochar addition had limited effects on RI generation from paddy water in in situ experiments under sunlight. Fluorescence emission-excitation matrix spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry, and structural equation modeling revealed that upon the addition of straw and lime amendments, humified DOM substances contained lignins, proteins, and fulvic acids, which could produce more RIs under irradiation. Moreover, the amendments significantly accelerated the degradation rate of 2,4-dichlorophenol but led to the 3DOM*-mediated formation of more toxic and stable dimeric products. This study provides new insights into the effects of amendments on the photochemistry of paddy water and the pathways of abiotic degradation of organic contaminants in paddy fields.
Collapse
Affiliation(s)
- Yu Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Qinglong Fu
- School of Environmental Studies, China University of Geoscience, Wuhan 430074, P. R. China
| | - Fei Peng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xinghao Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221-0071, United States
| | - Jianbo Guo
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
54
|
Wan D, Kong Y, Wang X, Selvinsimpson S, Sharma VK, Zuo Y, Chen Y. Effect of permanganate oxidation on the photoreactivity of dissolved organic matter for photodegradation of typical pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152647. [PMID: 34968593 DOI: 10.1016/j.scitotenv.2021.152647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Permanganate has been widely used in the remediation of contaminated water due to its relatively strong oxidation properties and ease of use. The ubiquitous dissolved organic matter (DOM) in natural waters causes a significant sink of permanganate in treatments, which further impacts the photoformation of reactive species and the removal of trace pollutants by DOM. Significantly, the effect of permanganate oxidation on the photoreactivity of DOM remains unknown. The present paper investigated for the first time the photophysical and photochemical properties variation of DOM from different sources after permanganate oxidation. Results showed that the permanganate oxidation caused a decrease in UV absorbance, fluorescence intensity, aromaticity, and molecular weight for all tested DOM samples, as well as photoformation rate of DOM triplet states (3DOM⁎), singlet oxygen (1O2), and hydroxyl radical (OH) under simulated sunlight. Quantum yield of 1O2 showed positively linear correlations with both triplet quantum yield coefficient (fTMP) and E2/E3 (ratio of absorbance at 254 and 365 nm) for all the DOM samples before and after permanganate oxidation. The quantum yield of OH exhibited no significant correlation with fTMP or E2/E3. Permanganate oxidation inhibited the DOM-photosensitized indirect photodegradation of pollutants that do not absorb sunlight (e.g., decreased by 15-29%). For the tested pollutants that undergo direct photolysis under sunlight, their photodegradation was promoted (e.g., increased by 1-19%) in the permanganate oxidized DOM solutions due to the decrease of light-screening effect by DOM. These findings suggest that permanganate oxidation affects the photoreactivity of DOM and the corresponding photochemical fate of organic pollutants in natural waters.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yaqian Kong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xing Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, United States
| | - Yuegang Zuo
- University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747-2300, United States
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
55
|
Cooper WT, Chanton JC, D'Andrilli J, Hodgkins SB, Podgorski DC, Stenson AC, Tfaily MM, Wilson RM. A History of Molecular Level Analysis of Natural Organic Matter by FTICR Mass Spectrometry and The Paradigm Shift in Organic Geochemistry. MASS SPECTROMETRY REVIEWS 2022; 41:215-239. [PMID: 33368436 DOI: 10.1002/mas.21663] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Natural organic matter (NOM) is a complex mixture of biogenic molecules resulting from the deposition and transformation of plant and animal matter. It has long been recognized that NOM plays an important role in many geological, geochemical, and environmental processes. Of particular concern is the fate of NOM in response to a warming climate in environments that have historically sequestered carbon (e.g., peatlands and swamps) but may transition to net carbon emitters. In this review, we will highlight developments in the application of high-field Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) in identifying the individual components of complex NOM mixtures, focusing primarily on the fraction that is dissolved in natural waters (dissolved organic matter or DOM). We will first provide some historical perspective on developments in FTICR technology that made molecular-level characterizations of DOM possible. A variety of applications of the technique will then be described, followed by our view of the future of high-field FTICR MS in carbon cycling research, including a particularly exciting metabolomic approach.
Collapse
Affiliation(s)
- William T Cooper
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL
| | - Jeffrey C Chanton
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL
| | | | | | | | | | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, Tucson, AZ
| | - Rachel M Wilson
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL
| |
Collapse
|
56
|
Liu Y, Wang M, Yin S, Xie L, Qu X, Fu H, Shi Q, Zhou F, Xu F, Tao S, Zhu D. Comparing Photoactivities of Dissolved Organic Matter Released from Rice Straw-Pyrolyzed Biochar and Composted Rice Straw. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2803-2815. [PMID: 35089700 DOI: 10.1021/acs.est.1c08061] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we systematically compared the photoactivity and photobleaching behavior between dissolved black carbon (DBC) from rice straw biochar and leached dissolved organic carbon (LDOC) from rice straw compost using complementary techniques. The Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis showed that DBC was dominated by polycyclic aromatic (55.1%) and tannin-like molecules (24.1%), while LDOC was dominated by lignin-like (58.9%) and tannin-like molecules (19.7%). Under simulated sunlight conditions, DBC had much higher apparent quantum yields for 3DOM* and 1O2 but much lower apparent quantum yields for •OH than LDOC. After a 168 h irradiation, the total number of LDOC formulas identified by FT-ICR MS decreased by 40.1% with concurrent increases in O/C and H/C ratios and also decreases in double bond equivalence minus oxygen (DBE - O) and average molecular weight identified by gel permeation chromatography. However, despite the large decreases in UVA254 and DOC, the total number of DBC formulas decreased only by 12.0% with nearly unchanged O/C ratio, DBE - O values, molecular weight distribution, and benzenepolycarboxylic aromatic condensation (BACon) index regardless of the decreased percentage of condensed aromatic carbon (ConAC %). Compared with LDOC, the photolysis of DBC was much less oxidative and destructive mainly via breakup of a small portion of the highly condensed aromatic rings, probably accompanied by photodecarboxylation.
Collapse
Affiliation(s)
- Yafang Liu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Minli Wang
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Shujun Yin
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Lekai Xie
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Xiaolei Qu
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Heyun Fu
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Quan Shi
- School of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Feng Zhou
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Fuliu Xu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Shu Tao
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| |
Collapse
|
57
|
Selak L, Osterholz H, Stanković I, Hanžek N, Udovič MG, Dittmar T, Orlić S. Adaptations of microbial communities and dissolved organics to seasonal pressures in a mesotrophic coastal Mediterranean lake. Environ Microbiol 2022; 24:2282-2298. [PMID: 35106913 DOI: 10.1111/1462-2920.15924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Abstract
In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion, and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Helena Osterholz
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany.,Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Igor Stanković
- Hrvatske vode, Central Water Management Laboratory, Zagreb, Croatia
| | - Nikola Hanžek
- Hrvatske vode, Central Water Management Laboratory, Zagreb, Croatia
| | - Marija Gligora Udovič
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, Zagreb, Croatia
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Sandi Orlić
- Ruđer Bošković Institute, Zagreb, Croatia.,Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| |
Collapse
|
58
|
Liao Z, Wang Y, Xie K, Xie N, Cai X, Zhou L, Yuan Y. Photochemistry of dissolved organic matter in water from the Pearl river (China): Seasonal patterns and predictive modelling. WATER RESEARCH 2022; 208:117875. [PMID: 34837813 DOI: 10.1016/j.watres.2021.117875] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Photochemical properties of dissolved organic matter (DOM) vary widely in natural and engineered water systems due to the different dominant compositions. However, seasonal patterns of DOM photochemical properties in urban rivers remain unclear. In this study, two seasons (wet and dry) of water samples were collected from eleven sites throughout the Pearl River (China) to investigate the spatiotemporal variability of DOM optical and photochemical properties. The optical properties of DOM in the Pearl River were characterized by UV-vis and fluorescence spectroscopies, which showed the substantial decrease in absorption coefficient and fluorescence intensity and increase in absorbence ratio (E2/E3) and specific absorption coefficient (SUVA) from the wet to dry season. The photochemical properties in terms of the apparent quantum yields of 3DOM*, 1O2 and ·OH from DOM (Φ3DOM*, Φ1O2 and Φ·OH, DOM) under illumination also displayed a significant decrease from the wet to the dry season. Spearman's rank correlation analysis revealed the strongest relationships between Φ3DOM*, Φ1O2 and Φ·OH, DOM and the relative abundance of microbial humic-like component (C2%) derived from parallel factor analysis (PARAFAC). Partial least squares regression (PLSR) modelling exhibited an excellent prediction strength for steady-state concentrations of 1O2 ([1O2]ss) and ·OH ([·OH]ss) with adjusted R2 values of 0.85 and 0.91, respectively, by using DOC concentration ([DOC]), optical properties, nitrate and nitrite concentrations as the response variables. In addition, the model identified that the Fmax of humic-like component C4 (Fmax-C4) was the most effective predictor amongst the used response variables. This study provides an approach to describe and predict the seasonal patterns of DOM photochemical properties in urbanized rivers, offering a good understanding of the formation mechanism of reactive species from river DOM.
Collapse
Affiliation(s)
- Zhiyang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Kunting Xie
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Nangeng Xie
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xixi Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
59
|
Zhou S, Liao Z, Zhang B, Hou R, Wang Y, Zhou S, Zhang Y, Ren ZJ, Yuan Y. Photochemical Behavior of Microbial Extracellular Polymeric Substances in the Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15090-15099. [PMID: 34521203 DOI: 10.1021/acs.est.1c02286] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbially derived extracellular polymeric substances (EPSs) occupy a large portion of dissolved organic matter (DOM) in surface waters, but the understanding of the photochemical behaviors of EPS is still very limited. In this study, the photochemical characteristics of EPS from different microbial sources (Shewanella oneidensis, Escherichia coli, and sewage sludge flocs) were investigated in terms of the production of reactive species (RS), such as triplet intermediates (3EPS*), hydroxyl radicals (•OH), and singlet oxygen (1O2). The steady-state concentrations of •OH, 3EPS*, and 1O2 varied in the ranges of 2.55-8.73 × 10-17, 3.01-4.56 × 10-15, and 2.08-2.66 × 10-13 M, respectively, which were within the range reported for DOM from other sources. The steady-state concentrations of RS varied among different EPS isolates due to the diversity of their composition. A strong photochemical degradation of the protein-like components in EPS isolates was identified by excitation emission matrix fluorescence with parallel factor analysis, but relatively, humic-like components remained stable. Fourier-transform ion cyclotron resonance mass spectrometry further revealed that the aliphatic portion of EPS was resistant to irradiation, while other portions with lower H/C ratios and higher O/C ratios were more susceptible to photolysis, leading to the phototransformation of EPS to higher saturation and lower aromaticity. With the phototransformation of EPS, the RS derived from EPS could effectively promote the degradation of antibiotic tetracycline. The findings of this study provide new insights into the photoinduced self-evolution of EPS and the interrelated photochemical fate of contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Shaofeng Zhou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou 510070, China
| | - Zhiyang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Beiping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Hou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, School of Resources and Environment, Fujian Agriculture and Forestry, Fuzhou 350000, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
60
|
Kneer ML, Lazarcik J, Ginder-Vogel M. Investigation of ICP-MS/MS for total sulfur quantification in freshwater dissolved organic matter. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1476-1485. [PMID: 34559900 DOI: 10.1002/jeq2.20291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Sulfur-containing functional groups in dissolved organic matter (DOM) interact with trace metals, which in turn affects trace metal mobility and bioavailability in aquatic environments. Typical methods for identification and quantification of sulfur in DOM are costly, complex, and time intensive. Triple quadrupole inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) is capable of part per billion-level sulfur quantification in environmental samples and is a more accessible analytical technique compared with other available methods. This study is the first published investigation of ICP-MS/MS for the direct quantification of sulfur in freshwater DOM. Sulfur (32 S) detection occurs at a mass-to-charge ratio of 48 as 32 S16 O+ after removal of interferences and reaction with oxygen gas. We compare three commonly used DOM preparation methods to assess variability among replicate samples. Preparation of freshwater DOM samples by solid phase extraction followed by evaporation overnight and dissolution in 2% nitric acid results in the most accurate quantification of sulfur. Analysis of sulfur in Suwannee River Fulvic Acid standard serves as method validation, measuring a carbon-normalized sulfur concentration that is ∼20% higher than previously reported methods. We apply the ICP-MS/MS analysis method to determine sulfur concentrations in DOM from nine lakes in the northern Midwest. Carbon-normalized sulfur concentrations in the selected lakes are in general agreement with previously reported percentages of sulfur-containing formulas in DOM found by Fourier transform-ion cyclotron resonance-mass spectroscopy.
Collapse
Affiliation(s)
- Marissa L Kneer
- Dep. of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, Univ. of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53705, USA
- Current address: U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - James Lazarcik
- Dep. of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, Univ. of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53705, USA
| | - Matthew Ginder-Vogel
- Dep. of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, Univ. of Wisconsin-Madison, 660 N. Park St., Madison, WI, 53705, USA
| |
Collapse
|
61
|
Wang M, Liu J, Peng L, Tian S, Yang C, Xu G, Wang D, Jiang T. Estimation of the biogeochemical reactivities of dissolved organic matter from modified biochars using color. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147974. [PMID: 34380277 DOI: 10.1016/j.scitotenv.2021.147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Modified biochar is widely used as a soil amendment in agricultural systems to improve crop yields and remove environmental pollutants. The water-soluble fraction of biochar, called biochar-derived dissolved organic matter (DOMBC), is the most active biochar component. However, the correlation between the optical properties of DOMBC and its biogeochemical activity remain unclear. In this study, one biochar and six modified derivatives were used to extract DOMBC and characterize its optical properties. The biogeochemical reactivities of DOMBC were determined using biodegradation, photodegradation, and electron-donating capacity assays. The results show that modification changes the biochar characteristics, leading to a variety of DOMBC properties. The DOMBC from modified biochars degrades more rapidly than the original biochar. On the other hand, modification reduces the redox functional groups in DOMBC, resulting in a lower electron-donating capacity of DOM samples. However, the modifications did not seem to affect photodegradation. Not all spectral parameters provide information about the correlations between the DOMBC properties and biogeochemical reactivity. However, two fundamental properties, that is, the specific UV absorbance at 254 nm (SUVA254, showing aromaticity) and spectral slopes over the ranges of 275-295 nm of the UV absorbance (S275-295, showing molecular weight), are the dominant factors affecting the biodegradation and electron-donating capacities of DOMBC. In this study, a rapid and straightforward method is presented, which can be used to characterize DOMBC and predict the reactivity of biochar that is used as an environmental amendment to minimize toxic organic compounds.
Collapse
Affiliation(s)
- Mingxing Wang
- State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Luo Peng
- State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Shanyi Tian
- Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Caiyun Yang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Guomin Xu
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China; Guizhou Material Industrial Technology Institute, Guiyang 550014, China
| | - Dingyong Wang
- State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Tao Jiang
- State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
62
|
O'Reilly KT, Sihota N, Mohler RE, Zemo DA, Ahn S, Magaw RI, Devine CE. Orbitrap ESI-MS evaluation of solvent extractable organics from a crude oil release site. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103855. [PMID: 34265523 DOI: 10.1016/j.jconhyd.2021.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of oxygen-containing organic compounds (OCOC), measured as dissolved organic carbon (DOC), in groundwater exceeds those of dissolved hydrocarbons, measured as total petroleum hydrocarbons (TPH), at a crude oil release site. Orbitrap mass spectrometry was used to characterize OCOC in samples of the oil, water from upgradient of the release, source area, and downgradient wells, and a local lake. Chemical characterization factors included carbon number, oxygen number, formulae similarity, double bond equivalents (DBE) and radiocarbon dating. Oil samples were dominated by formulae with less than 30 carbons, four or fewer oxygens, and a DBE of less than four. In water samples, formulae were identified with more than 30 carbons, more than 10 oxygens, and a DBE exceeding 30. These characteristics are consistent with DOC found in unimpacted water. Between 65% and 92% of the formulae found in samples collected within the elevated OCOC plume were also found in the upgradient or surface water samples. Evidence suggests that many of the OCOC are not petroleum degradation intermediates, but microbial products generated as a result of de novo synthesis by organisms growing on carbon supplied by the oil. Implications of these results for understanding the fate and managing the risk of hydrocarbons in the subsurface are discussed.
Collapse
|
63
|
Trainer EL, Ginder-Vogel M, Remucal CK. Selective Reactivity and Oxidation of Dissolved Organic Matter by Manganese Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12084-12094. [PMID: 34432439 DOI: 10.1021/acs.est.1c03972] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) varies widely across natural and engineered systems, but little is known about the influence of DOM composition on its reactivity with manganese oxides. Here, we investigate bulk and molecular transformations of 30 diverse DOM samples after reaction with acid birnessite (MnO2), a strong oxidant that may react with DOM in Mn-rich environments or engineered treatment systems. The reaction of DOM with acid birnessite reduces Mn and forms DOM that is generally more aliphatic and lower in apparent molecular weight. However, the extent of reaction depends on the water type (e.g., wastewater, rivers) and highly aromatic DOM undergoes greater changes. Despite the variability in reactivity due to the DOM composition, aqueous products attributable to the oxidation of phenolic precursors are identified in waters analyzed by high-resolution mass spectrometry. The number of matched product formulas correlates significantly with indicators of DOM aromaticity, such as double-bond equivalents (p = 2.43 × 10-4). At the molecular level, highly aromatic, lignin-like carbon reacts selectively with acid birnessite in all samples despite the variability in initial DOM composition, resulting in the formation of a wide range of aqueous products. These findings demonstrate that DOM oxidation occurs in diverse waters but also suggest that reactivity with acid birnessite and the composition of the resulting aqueous DOM pool are composition-dependent and linked to the DOM source and initial aromaticity.
Collapse
Affiliation(s)
- Emma L Trainer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Matthew Ginder-Vogel
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
64
|
Partanen SB, Apell JN, Lin J, McNeill K. Factors affecting the mixed-layer concentrations of singlet oxygen in sunlit lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1130-1145. [PMID: 34231605 PMCID: PMC8372756 DOI: 10.1039/d1em00062d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/16/2021] [Indexed: 06/01/2023]
Abstract
The steady-state concentration of singlet oxygen within a lake ([1O2]SS) is an important parameter that can affect the environmental half-life of pollutants and environmental fate modelling. However, values of [1O2]SS are often determined for the near-surface of a lake, and these values typically do not represent the average over the epilimnia of lakes. In this work, the environmental and physical factors that have the largest impact on [1O2]SS within lake epilimnia were identified. It was found that the depth of the epilimnion has the largest impact on depth-averaged [1O2]SS, with a factor of 8.8 decrease in [1O2]SS when epilimnion depth increases from 2 m to 20 m. The next most important factors are the wavelength-dependent singlet oxygen quantum yield relationship and the latitude of the lake, causing variations in [1O2]SS by factors of 3.2 and 2.5 respectively, over ranges of representative values. For a set of representative parameters, the depth-averaged value of [1O2]SS within an average epilimnion depth of 9.0 m was found to be 5.8 × 10-16 M and the near-surface value of [1O2]SS was found to be 1.9 × 10-14 M. We recommend a range of 6 × 10-17 to 5 × 10-15 M as being more representative of [1O2]SS values within the epilimnia of lakes globally and potentially more useful for estimating pollutant lifetimes than those calculated using [1O2]SS values that correspond to near-surface, summer midday values. This work advances our understanding of [1O2]SS inter-lake variability in the environment, and provides estimates of [1O2]SS for practitioners and researchers to assess environmental half-lives of pollutants due to reaction with singlet oxygen.
Collapse
Affiliation(s)
- Sarah B. Partanen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
| | - Jennifer N. Apell
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering6 MetroTech CenterBrooklynNY 11201USA
| | - Jianming Lin
- Firmenich IncorporatedP.O. Box 5880PrincetonNew Jersey 08543USA
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich8092 ZurichSwitzerland
| |
Collapse
|
65
|
Wan D, Wang H, Sharma VK, Selvinsimpson S, Dai H, Luo F, Wang C, Chen Y. Mechanistic Investigation of Enhanced Photoreactivity of Dissolved Organic Matter after Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8937-8946. [PMID: 34165279 DOI: 10.1021/acs.est.1c02704] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chlorine is commonly used in disinfection processes in wastewater treatment plants prior to discharge of the effluents into receiving waters. Effluent organic matter and humic substances constitute up to 90% of dissolved organic matter (DOM) in receiving water, which induces photogeneration of reactive species (RS) such as excited triplet state of DOM (3DOM*), singlet oxygen (1O2), and hydroxyl radical (•OH). The RS plays an important role in the attenuation of trace pollutants. However, the effect of chlorine disinfection on the photoreactivity of the DOM has remained unclear. Here, we investigated the physicochemical properties and subsequent RS variation after chlorination of DOM. Solid-state 13C cross-polarization/magic angle-spinning NMR and Fourier transform ion cyclotron resonance mass spectrometry verified that the aromaticity, electron-donating capacity (EDC), and average molecular weight of DOM decreased markedly after chlorination. It was found for the first time that the photoproduction of 3DOM*, 1O2, and •OH increased markedly after chlorination of DOM upon irradiation of simulated sunlight. The quantum yields of 3DOM*, 1O2, and •OH were positively correlated with E2/E3 (ratio of the absorbance at 254 to 365 nm) while negatively correlated with EDC before and after chlorination. These findings highlight the synergetic effect of chlorine disinfection on the photosensitization of DOM under irradiation of sunlight, which will promote the removal of trace pollutants in surface waters.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Haiyue Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | | | - Hongliang Dai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fan Luo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chengjun Wang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
66
|
She Z, Wang J, He C, Pan X, Li Y, Zhang S, Shi Q, Yue Z. The Stratified Distribution of Dissolved Organic Matter in an AMD Lake Revealed by Multi-sample Evaluation Procedure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8401-8409. [PMID: 34060313 DOI: 10.1021/acs.est.0c05319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a typical extreme environment, acid mine drainage (AMD) has been extensively studied for its biogeochemical cycle, but little is known about the quality of dissolved organic matter (DOM) in AMD. In this study, DOM molecules in an AMD lake were detected with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and the change of DOM molecules in the stratified water column was analyzed with a multi-sample evaluation procedure. The results demonstrate that DOM quality is highly stratified and can be linked with severe biogeochemical gradients. In the surface layer, DOM molecules can be distinguished by low quantities and intensities, as well as potential photodegradation products. Oxygen-poor and oxygen-rich molecules alternately dominate the chemocline, which can be explained by the redox-dependent adsorption/desorption of DOM on metastable secondary minerals. A rich and abundant DOM pool with a high proportion of heteroatoms exists at the bottom which can be significantly influenced by material exchange with sediments. These findings emphasize the active role of DOM in extreme AMD environments and expand the understanding of the carbon cycle in the hydrosphere.
Collapse
Affiliation(s)
- Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Changping District, Beijing 102249, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yunyun Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Changping District, Beijing 102249, China
| | - Siyu Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Changping District, Beijing 102249, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
67
|
Ding X, Xu W, Li Z, Huang M, Wen J, Jin C, Zhou M. Phosphate hinders the complexation of dissolved organic matter with copper in lake waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116739. [PMID: 33611199 DOI: 10.1016/j.envpol.2021.116739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The properties of phosphate in lakes and their ability to cause eutrophication have been well studied; however, the effects of phosphate on the environmental behavior of other substances in lakes have been ignored. Dissolved organic matter (DOM) and heavy metals may coexist with phosphate in lakes. Herein, the mechanisms underlying the influence of phosphate on heavy metals complexation with DOM were investigated using multi-spectroscopic tools. Overall, the amount of DOM-bound Cu(Ⅱ) decreased with the increasing phosphate content. Furthermore, the fluorescence excitation and emission matrix results combined with parallel factor analysis showed that when the Cu(Ⅱ) concentration increased from 0 to 5 mg/L and 50 μM phosphate to the reaction of DOM and copper, the fluorescence intensity of tyrosine (component 1), humic-like (component 2) and tryptophan (component 3) decreased by 36.46%, 57.34%, and 74.70% compared with the treatment with no phosphate addition, respectively. This finding indicates that the binding of different fluorescent components to Cu(Ⅱ) was restricted by phosphate. Furthermore, different functional groups responded differently to Cu(Ⅱ) under different phosphate concentrations. The binding sequence of different functional groups under high concentration of phosphate (phenolic hydroxyl group>amide (Ⅰ) >carbohydrates) was completely opposite to that with no phosphate. These results demonstrated that phosphate could restrict the binding affinity of heavy metals with different fluorescent substances or organic ligands of DOM, suggesting that the comigration of DOM-bound heavy metals in lakes is hindered by phosphate and the risk of heavy metal poisoning in aquatic organisms is therefore diminished.
Collapse
Affiliation(s)
- Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China.
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China; College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Changsheng Jin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Mi Zhou
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
68
|
Ding X, Li Z, Xu W, Huang M, Wen J, Jin C, Zhou M. Restriction of dissolved organic matter on the stabilization of Cu(II) by phosphate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22902-22912. [PMID: 33432411 DOI: 10.1007/s11356-021-12398-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The precipitation of Cu(II) by phosphate and the influence of dissolved organic matter (DOM) on the precipitation are essential for the fate of Cu(II) in aquatic environments. In this study, the influence of DOM on the reaction of phosphate with Cu(II) was investigated. Here, 51.61%, 29.75%, and 24.32% of the added Cu(II) (50 μM) precipitated without DOM and with the addition of fulvic acid (FA) and humic acid (HA), respectively, owing to the reaction with phosphate (50 μM). Excitation-emission matrix spectroscopy-parallel factor (PARAFAC) and two-dimensional ultraviolet-visible correlation spectroscopy analyses were conducted to characterize the influence of DOM on the precipitation of Cu(II) with phosphate. One humic-like and two protein-like fluorescent components were identified by the PARAFAC model for FA, whereas two humic-like fluorescent components and one protein-like fluorescent component were validated for HA. The humic-like components had primary roles, whereas the protein-like components had secondary roles in limiting the precipitation of Cu(II) with phosphate. Cu(II) binding to DOM chromophores initially occurred at shorter wavelengths, and then at longer wavelengths. Phenolic and carboxylic constituents had important roles, and HA exhibited more binding sites than FA. Therefore, humic-like fluorescent components and chromophores containing phenolic and carboxylic groups and functional groups with peaks at short wavelengths (200-220 nm) were primarily responsible for restricting the precipitation of Cu(II) with phosphate.
Collapse
Affiliation(s)
- Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, People's Republic of China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, People's Republic of China.
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, People's Republic of China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, People's Republic of China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, People's Republic of China
| | - Changsheng Jin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, People's Republic of China
| | - Mi Zhou
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| |
Collapse
|
69
|
Qiao W, Guo H, He C, Shi Q, Zhao B. Unraveling roles of dissolved organic matter in high arsenic groundwater based on molecular and optical signatures. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124702. [PMID: 33296763 DOI: 10.1016/j.jhazmat.2020.124702] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is a crucial controlling factor in mobilizing arsenic. However, direct delineations of DOM regarding both optical properties and molecular signatures were rarely conducted in high-arsenic groundwater. Here, both groundwater and surface water were taken from the Hetao Basin, China, to decipher DOM properties with both optical spectrophotometer and Fourier transform ion cyclotron resonance mass spectrometry. The tryptophan-like component (C4) was averagely less than 30% in groundwater DOM, being positively associated with high H/C-ratio molecules (H/C > 1.2) and mainly grouped as highly unsaturated and phenolic compounds and aliphatic compounds. Other three humic-like components (C1, C2, C3) had positive associations with low H/C-ratio molecules (H/C < 1.2), which mainly consisted of highly unsaturated and phenolic compounds, polyphenols, and polycyclic aromatics. Groundwater arsenic concentrations were positively correlated with humic-like, low H/C-ratio, and recalcitrant organic compounds, which may be the consequence of labile organic matter degradation. The degradation caused Fe(III) oxide reduction and mobilized the solid arsenic. In addition, high abundances of these recalcitrant organic compounds in high-arsenic groundwater may contribute to arsenic enrichment via electron shuttling, competition for surface sites, and complexation process. It suggested that groundwater proxies would be either the result or the cause of biogeochemical processes in aquifers.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Bo Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
70
|
Ossola R, Jönsson OM, Moor K, McNeill K. Singlet Oxygen Quantum Yields in Environmental Waters. Chem Rev 2021; 121:4100-4146. [PMID: 33683861 DOI: 10.1021/acs.chemrev.0c00781] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Singlet oxygen (1O2) is a reactive oxygen species produced in sunlit waters via energy transfer from the triplet states of natural sensitizers. There has been an increasing interest in measuring apparent 1O2 quantum yields (ΦΔ) of aquatic and atmospheric organic matter samples, driven in part by the fact that this parameter can be used for environmental fate modeling of organic contaminants and to advance our understanding of dissolved organic matter photophysics. However, the lack of reproducibility across research groups and publications remains a challenge that significantly limits the usability of literature data. In the first part of this review, we critically evaluate the experimental techniques that have been used to determine ΦΔ values of natural organic matter, we identify and quantify sources of errors that potentially explain the large variability in the literature, and we provide general experimental recommendations for future studies. In the second part, we provide a qualitative overview of known ΦΔ trends as a function of organic matter type, isolation and extraction procedures, bulk water chemistry parameters, molecular and spectroscopic organic matter features, chemical treatments, wavelength, season, and location. This review is supplemented with a comprehensive database of ΦΔ values of environmental samples.
Collapse
Affiliation(s)
- Rachele Ossola
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Oskar Martin Jönsson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Kyle Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, 84322 Logan, Utah, United States
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
71
|
Wang Y, Gao Y, Ye T, Hu Y, Yang C. Dynamic variations of dissolved organic matter from treated wastewater effluent in the receiving water: Photo- and bio-degradation kinetics and its environmental implications. ENVIRONMENTAL RESEARCH 2021; 194:110709. [PMID: 33434606 DOI: 10.1016/j.envres.2021.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Dissolved effluent organic matter (dEfOM) from wastewater treatment plants (WWTPs) is bound to encounter photo- and bio-degradation as discharged into the receiving water body. However, the comprehensive variations of dEfOM by photo- and bio-degradation are not well unveiled because of its compositional heterogeneity. In this work, dissolved organic carbon (DOC) concentrations, UV-Vis and fluorescent spectra combined with fluorescence regional integration (FRI) analysis were used to investigate the changes in bulk dEfOM and its fluorescent components during photo- and bio-degradation processes in the receiving water body. Results showed that 48.49%-69.62% of the discharged dEfOM was decomposed by ultra violet (UV)-irradiation and indigenous microbes, while the others (33%-45%) were recalcitrant and stable in the receiving water body. Specifically, the photo- and bio-degradation of chromophoric, fluorescent dEfOM and its components were found to follow the single or double exponential kinetic model, and the differences in photo- and bio-degradability of each components shifted its composition. Furthermore, results of bio-degradation after UV-irradiated dEfOM indicated that there was overlapping of photo- and bio-degradable fractions in dEfOM, and photoreactions could improve the self-production of natural organic matter in the receiving water body. These results could improve the understanding the fate of discharged dEfOM in the receiving water body, and we proposed some cost-effective strategies for discharging WWTPs effluent.
Collapse
Affiliation(s)
- Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan City, 243002, China
| | - Yue Gao
- School of Energy and Environment, Anhui University of Technology, Maanshan City, 243002, China
| | - Tianran Ye
- School of Energy and Environment, Anhui University of Technology, Maanshan City, 243002, China
| | - Yunyun Hu
- School of Energy and Environment, Anhui University of Technology, Maanshan City, 243002, China
| | - Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
72
|
Liu S, Tan M, Ge L, Zhu F, Wu S, Chen N, Zhu C, Zhou D. Photooxidation mechanism of As(III) by straw-derived dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:144049. [PMID: 33316532 DOI: 10.1016/j.scitotenv.2020.144049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Straw return-to-field is a common agronomic practice that would affect the physicochemical characteristics of the paddy soil and overlying water, but few studies have focused on the possible impacts of straw return on the conversion of pollutants. In this study, the photooxidation of As(III) in aqueous solution by straw-derived dissolved organic matter (S-DOM) was investigated. The results showed that dissolved organic matter derived from wheat straw (DOMws) and rape straw (DOMrs) exhibited good spectroscopic features and could efficiently oxidize As(III) under irradiation at pH 5.0, with the kobs values of As(III) oxidation being 0.15 h-1 and 0.17 h-1 for DOMws and DOMrs, respectively. Quenching studies indicated that hydroxyl radical (OH) dominated the oxidation of As(III) for both types of dissolved organic matter (DOM), though singlet oxygen (1O2) also played a role in the DOMrs system. Since acidic conditions are favorable for the formation of OH, As(III) oxidation decreased with an increase of pH value. Additionally, the oxidation efficiency of As(III) was inhibited in the presence of NO3- (0.2-2 mM) while enhanced in the presence of Fe(III) (5-50 μM). This study is of great significance for understanding the removal/transformation behavior of pollutants in paddy fields that receive straw return.
Collapse
Affiliation(s)
- Shaochong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mengxi Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liqiang Ge
- Geological Survey of Jiangsu Province, Nanjing 210018, PR China
| | - Fengxiao Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
73
|
Wang Z, Lv J, Zhang S, Christie P, Zhang S. Interfacial Molecular Fractionation on Ferrihydrite Reduces the Photochemical Reactivity of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1769-1778. [PMID: 33494598 DOI: 10.1021/acs.est.0c07132] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The selective sorption of dissolved organic matter (DOM) on minerals is a widespread geochemical process in the natural environment. Recent studies have explored the influence of this process on the molecular fractionation of DOM at water-mineral interfaces. However, it remains unclear how molecular fractionation affects the photochemistry of DOM. Here, we demonstrate that the adsorptive fractionation of DOM on ferrihydrite greatly reduces its photoproduction of reactive oxygen species (ROS) including 1O2, O2•-, and •OH normalized to organic carbon (ROSOC). The ROSOC for 1O2, O2•-, and •OH were positively correlated with the abundances of polyphenols and oxygenated polycyclic aromatics, which were also observed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis to be preferentially sequestered by ferrihydrite. The molecules that preferentially remained in the solution after adsorption displayed low levels of ROSOC. The molecular fractionation of DOM induced by adsorption on ferrihydrite therefore influenced the molecular components and also significantly reduced the photoreactive fractions of DOM in waters. These results are very important in promoting our understanding of the effects of molecular fractionation on the biogeochemical features, behaviors, and implications of DOM in the environment.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of the Chinese the Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Suhuan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of the Chinese the Academy of Sciences, Beijing 100049, China
| | - Peter Christie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of the Chinese the Academy of Sciences, Beijing 100049, China
| |
Collapse
|
74
|
Liu H, Pu Y, Qiu X, Li Z, Sun B, Zhu X, Liu K. Humic Acid Extracts Leading to the Photochemical Bromination of Phenol in Aqueous Bromide Solutions: Influences of Aromatic Components, Polarity and Photochemical Activity. Molecules 2021; 26:molecules26030608. [PMID: 33503850 PMCID: PMC7926322 DOI: 10.3390/molecules26030608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/18/2022] Open
Abstract
Dissolved organic matter (DOM) is considered to play an important role in the abiotic transformation of organobromine compounds in marine environment, for it produces reactive intermediates photochemically and is recognized as a significant source of reactive halogen species in seawater. However, due to the complex composition of DOM, the relationship between the natural properties of DOM and its ability to produce organobromine compounds is less understood. Here, humic acid (HA) was extracted and fractionated based on the polarity and hydrophobicity using silica gel, and the influences of different fractions (FA, FB and FC) on the photochemical bromination of phenol was investigated. The structural properties of HA fractions were characterized by UV-vis absorption, Fourier transform infrared spectroscopy and fluorescence spectroscopy, and the photochemical reactivity of HA fractions was assessed by probing triplet dissolved organic matter (3DOM*), singlet oxygen (1O2) and hydroxyl radical (•OH). The influences of HA fractions on the photo-bromination of phenol were investigated in aqueous bromide solutions under simulated solar light irradiation. FA and FB with more aromatic and polar contents enhanced the photo-bromination of phenol more than the weaker polar and aromatic FC. This could be attributed to the different composition and chemical properties of the three HAs’ fractions and their production ability of •OH and 3DOM*. Separating and investigating the components with different chemical properties in DOM is of great significance for the assessment of their environmental impacts on the geochemical cycle of organic halogen.
Collapse
Affiliation(s)
- Hui Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
- Correspondence: ; Tel.: +86-411-8472-3303
| | - Yingying Pu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Xiaojun Qiu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Zhi Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Bing Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Xiaomei Zhu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Y.P.); (X.Q.); (Z.L.); (B.S.); (X.Z.)
| | - Kaiying Liu
- School of Science, Dalian Maritime University, Dalian 116026, China;
| |
Collapse
|
75
|
Xing J, Xu G, Li G. Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111756. [PMID: 33396079 DOI: 10.1016/j.ecoenv.2020.111756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
To deeply assess the feasibility of sewage sludge-based biochars for use in soil applications, this review compared sewage sludge-based biochars (SSBBs) with lignocellulose-based biochars (LCBBs) in terms of their pyrolysis processes, various fractions and potential soil applications. Based on the reviewed literature, significant differences between the components of SSBB and LCBB result in different pyrolysis behavior. In terms of the fractions of biochars, obvious differences were confirmed to exist in the carbon content, surface functional groups, types of ash fractions and contents of potential toxic elements (PTEs). However, a clear influence of the feedstock on labile carbon and polycyclic aromatic hydrocarbons (PAHs) was not observed in the current research. These differences determined subsequent discrepancies in the soil application potential and corresponding mechanisms. The major challenges facing biochar application in soils and corresponding recommendations for future research were also addressed. LCBBs promote carbon sequestration, heavy metal retention and organic matter immobilization. The application of SSBBs is a promising approach to improve soil phosphorus fertility, immobilize heavy metals and provide available carbon sources for soil microbes to stimulate microbial biomass. The present review provides guidance information for selecting appropriate types of biochars to address targeted soil issues.
Collapse
Affiliation(s)
- Jia Xing
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Guibai Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
76
|
Zhang B, Shan C, Wang S, Fang Z, Pan B. Unveiling the transformation of dissolved organic matter during ozonation of municipal secondary effluent based on FT-ICR-MS and spectral analysis. WATER RESEARCH 2021; 188:116484. [PMID: 33045637 DOI: 10.1016/j.watres.2020.116484] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Ozonation is a well-recognized process in advanced treatment of municipal secondary effluent for water reclamation. However, the transformation of dissolved effluent organic matter (dEfOM) during ozonation of real effluents, particularly at molecular level, has been scarcely reported. In this study, we performed ozonation treatments on real secondary effluents from two municipal wastewater treatment plants, and used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and various spectroscopic techniques to probe the transformation of dEfOM at four ozone dosage levels (0.28, 0.61, 0.89, and 1.21 mg O3/mg DOC). Most of the precursors were unsaturated and reduced compounds (positive double bond equivalent minus oxygen per carbon ((DBE-O)/C) and negative nominal oxidation state of carbon (NOSC)), whereas the products were mainly the saturated and oxidized ones (negative (DBE-O)/C and positive NOSC). As the ozone dosage increased, the relative abundance of O8-19 species gradually increased in the ozonated samples, whereas an opposite trend was observed for O5-7S1 species. Further, we employed 18 types of reactions to represent the ozonation process, and found that the oxygenation reaction (+3O) possessed the largest number of possible precursor-product pairs, and CHON compounds possessed the highest reactivity. Besides the dominant oxygenation reactions, decyclopropyl (-C3H4) was relatively common reaction for CHON compounds, while it was oxidative desulfonation (-SH2) for CHOS ones. In addition, the transformation of precursors to products accompanied with the drop of (DBE-O)/C, and the increase of NOSC and the O/C ratio. The precursors with aromaticity and fluorescence were mainly correlated with the compounds featuring higher (DBE-O)/C and lower NOSC values. This study is believed to help better understand and improve the application of ozonation process in advanced treatment of real wastewater.
Collapse
Affiliation(s)
- Bingliang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhuoyao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
77
|
Herzsprung P, Wentzky V, Kamjunke N, von Tümpling W, Wilske C, Friese K, Boehrer B, Reemtsma T, Rinke K, Lechtenfeld OJ. Improved Understanding of Dissolved Organic Matter Processing in Freshwater Using Complementary Experimental and Machine Learning Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13556-13565. [PMID: 32966053 DOI: 10.1021/acs.est.0c02383] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter plays an important role in aquatic ecosystems and poses a major problem for drinking water production. However, our understanding of DOM reactivity in natural systems is hampered by its complex molecular composition. Here, we used Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and data from two independent studies to disentangle DOM reactivity based on photochemical and microbial-induced transformations. Robust correlations of FT-ICR-MS peak intensities with chlorophyll a and solar irradiation were used to define 9 reactivity classes for 1277 common molecular formulas. Germany's largest drinking water reservoir was sampled for 1 year, and DOM processing in stratified surface waters could be attributed to photochemical transformations during summer months. Microbial DOM alterations could be distinguished based on correlation coefficients with chlorophyll a and often shared molecular features (elemental ratios and mass) with photoreactive compounds. In particular, many photoproducts and some microbial products were identified as potential precursors of disinfection byproducts. Molecular DOM features were used to further predict molecular reactivity for the remaining compounds in the data set based on a random forest model. Our method offers an expandable classification approach to integrate the reactivity of DOM from specific environments and link it to molecular properties and chemistry.
Collapse
Affiliation(s)
- Peter Herzsprung
- Department Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, D-39114 Magdeburg, Germany
| | - Valerie Wentzky
- Department Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, D-39114 Magdeburg, Germany
| | - Norbert Kamjunke
- Department River Ecology, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, D-39114 Magdeburg, Germany
| | - Wolf von Tümpling
- Department River Ecology, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, D-39114 Magdeburg, Germany
| | - Christin Wilske
- Department River Ecology, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, D-39114 Magdeburg, Germany
| | - Kurt Friese
- Department Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, D-39114 Magdeburg, Germany
| | - Bertram Boehrer
- Department Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, D-39114 Magdeburg, Germany
| | - Thorsten Reemtsma
- Department Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, D-04103, Leipzig, Germany
| | - Karsten Rinke
- Department Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, D-39114 Magdeburg, Germany
| | - Oliver J Lechtenfeld
- Department Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany
- ProVIS - Centre for Chemical Microscopy, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, D-04318 Leipzig, Germany
| |
Collapse
|
78
|
Structural Characterization of Dissolved Organic Matter in Permafrost Peatland Lakes. WATER 2020. [DOI: 10.3390/w12113059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thermokarst lakes result from the thawing of ice-rich permafrost and are widespread across northern landscapes. These waters are strong emitters of methane, especially in permafrost peatland regions, where they are stained black by high concentrations of dissolved organic matter (DOM). In the present study, we aimed to structurally characterize the DOM from a set of peatland thermokarst lakes that are known to be intense sites of microbial decomposition and methane emission. Samples were collected at different depths from three thermokarst lakes in the Sasapimakwananisikw (SAS) River valley near the eastern Hudson Bay community of Kuujjuarapik–Whapmagoostui (Nunavik, Canada). Samples were analyzed by spectrofluorometry, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and elemental analysis. Fluorescence analyses indicated considerable amounts of autochthonous DOM in the surface waters of one of SAS 1A, indicating a strong bioavailability of labile DOM, and consequently a greater methanogenic potential. The three lakes differed in their chemical composition and diversity, suggesting various DOM transformations phenomena. The usefulness of complementary analytical approaches to characterize the complex mixture of DOM in permafrost peatland waters cannot be overlooked, representing a first step towards greater comprehension of the organic geochemical properties of these permafrost-derived systems.
Collapse
|
79
|
Wan D, Kong Y, Selvinsimpson S, Luo F, Chen Y. Effect of UV 254 disinfection on the photoformation of reactive species from effluent organic matter of wastewater treatment plant. WATER RESEARCH 2020; 185:116301. [PMID: 32818737 DOI: 10.1016/j.watres.2020.116301] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
UV254 is one of the main disinfection methods used in wastewater treatment plants (WWTPs) for the inactivation of pathogens in the effluents before being discharged into the receiving waters. The effluent organic matters (EfOM) are well-known photosensitizers for the generation of reactive species, mainly including the triplet states of EfOM (3EfOM*), singlet oxygen (1O2) and hydroxyl radical (•OH), which contribute to the removal of trace pollutants in water. However, the effect of UV254 disinfection on the photoreactivity of EfOM remains unclear. Here we investigated the photophysical and photochemical properties variation of EfOM after UV254 disinfection, along with humic substances (HS) as comparison. The UV254 disinfection caused a decrease of aromaticity, fluorescence intensity and molecular weight for all samples, while a reduction formation of triplet state of these dissolved organic matters (3DOM*), 1O2, hydrogen peroxide (H2O2), and superoxide anions (O2•-) under simulated sunlight was observed. In contrast, the generation of •OH was increased after UV254 disinfection. The quantum yield of 1O2 was positively correlated with triplet quantum yield coefficient (fTMP) in all cases. However, the quantum yield of •OH exhibited positive and negative correlations with fTMP for EfOM and HS, respectively. The quantum yields showed positive correlations with E2/E3 (ratio of the absorbance at 254 to 365 nm) for untreated DOM samples, while for the first time we found the trends differ distinctly after UV254 disinfection. These findings indicate that UV254 disinfection in WWTPs significantly increases the potential of •OH photoproduction from effluents and the cost-effective solar irradiation after UV254 disinfection is expected to be a novel technique for further removal of pathogen and trace organic pollutants in wastewater effluents and receiving waters.
Collapse
Affiliation(s)
- Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yaqian Kong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | | | - Fan Luo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Advanced Technology Institute of Suzhou, Suzhou, 215123, PR China.
| |
Collapse
|
80
|
Huang M, Li Z, Chen M, Wen J, Luo N, Xu W, Ding X, Xing W. Dissolved organic matter released from rice straw and straw biochar: Contrasting molecular composition and lead binding behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140378. [PMID: 32758977 DOI: 10.1016/j.scitotenv.2020.140378] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
It remains debatable whether carbonized straw reapplying is a better solution than direct straw reapplying. Comparison of the characteristics and complexation behaviors of dissolved organic matter (DOM) derived from straw (ST) and biochar (BC) may offer new insights, but little current information exists. Herein, DOM samples were characterized by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), revealing that the molecular weight and condensed aromatic components of BCDOM (457.70 Da and 71.16%, respectively) were higher than those of STDOM (433.48 Da and 3.13%, respectively). In particular, the N-containing compounds of BCDOM was more aromatic than STDOM. By combining spectroscopic techniques, complexation modeling, and chemometric analysis, BCDOM was shown to exhibit higher binding parameters (log KM) and more binding sites for Pb than STDOM. Noteworthily, the two binding sites, aromatic NO and aromatic NO2, existed only in the interaction of BCDOM with Pb. Furthermore, while phenol-OH displayed the fastest response to Pb in both STDOM and BCDOM, the binding sequences were not exactly the same. These differences may be related to the variations in the aromaticity and N-containing structures of DOM detected by FTICR-MS. These findings have implications on the stewardship of straw- and biochar-amended soil.
Collapse
Affiliation(s)
- Mei Huang
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
81
|
Wasswa J, Driscoll CT, Zeng T. Photochemical Characterization of Surface Waters from Lakes in the Adirondack Region of New York. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10654-10667. [PMID: 32786602 DOI: 10.1021/acs.est.0c02811] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Adirondack Mountain region of New York, a historical hotspot for atmospheric sulfur and nitrogen deposition, features abundant lakes that are experiencing browning associated with recovery from acidification. Yet, much remains unknown about the photoreactivity of Adirondack lake waters. We quantified the apparent quantum yields (Φapp,RI) of photochemically produced reactive intermediates (RIs), such as excited triplet states of dissolved organic matter (3DOM*), singlet oxygen (1O2), and hydroxyl radicals (•OH), for surface waters collected from 16 representative Adirondack lakes. Φapp,3DOM* and Φapp,1O2 for native Adirondack lake waters fell within ranges reported for whole waters and DOM isolates from various sources, while Φapp,•OH were substantially lower than those measured for other aquatic samples. Orthogonal partial least squares and multiple linear regression analyses identified the spectral slope coefficient from 290 to 400 nm (S290-400) as the most effective predictor of Φapp,RI among measured water chemistry parameters and bulk DOM properties. Φapp,RI also exhibited divergent responses to controlled pH adjustment and aluminum or iron addition simulating hypothetical scenarios relevant to past and future water chemistry conditions of Adirondack lakes. This study highlights the need for continued research on changes in photoreactivity of acid-impacted aquatic ecosystems in response to browning and subsequent impacts on photochemical processes.
Collapse
Affiliation(s)
- Joseph Wasswa
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
82
|
Remucal CK, Salhi E, Walpen N, von Gunten U. Molecular-Level Transformation of Dissolved Organic Matter during Oxidation by Ozone and Hydroxyl Radical. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10351-10360. [PMID: 32697081 DOI: 10.1021/acs.est.0c03052] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ozonation of drinking and wastewater relies on ozone (O3) and hydroxyl radical (•OH) as oxidants. Both oxidants react with dissolved organic matter (DOM) and alter its composition, but the selectivity of the two oxidants and mechanisms of reactivity with DOM moieties are largely unknown. The reactions of O3 and •OH with two DOM isolates were studied by varying specific ozone doses (0.1-1.3 mg-O3/mg-C) at pH 7. Additionally, conditions that favor O3 (i.e., addition of an •OH scavenger) or •OH (i.e., pH 11) were investigated. Ozonation decreases aromaticity, apparent molecular weight, and electron donating capacity (EDC) of DOM with large changes observed when O3 is the main oxidant (e.g., EDC decreases 63-77% for 1.3 mg-O3/mg-C). Both O3 and •OH react with highly aromatic, reduced formulas detected using high-resolution mass spectrometry (O:C = 0.48 ± 0.12; H:C = 1.06 ± 0.23), while •OH also oxidizes more saturated formulas (H:C = 1.64 ± 0.26). Established reactions between model compounds and O3 (e.g., addition of one to two oxygen atoms) or •OH (e.g., addition of one oxygen atom and decarboxylation) are observed and produce highly oxidized DOM (O:C > 1.0). This study provides molecular-level evidence for the selectivity of O3 as an oxidant within DOM.
Collapse
Affiliation(s)
- Christina K Remucal
- Environmental Chemistry and Technology Program,University of Wisconsin-Madison,Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering,University of Wisconsin-Madison,Madison, Wisconsin 53706, United States
| | - Elisabeth Salhi
- Swiss Federal Institute of Aquatic Science and Technology (Eawag),8600 Dübendorf, Switzerland
| | - Nicolas Walpen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag),8600 Dübendorf, Switzerland
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology (Eawag),8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
83
|
Bulman DM, Remucal CK. Role of Reactive Halogen Species in Disinfection Byproduct Formation during Chlorine Photolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9629-9639. [PMID: 32598837 DOI: 10.1021/acs.est.0c02039] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The multiple reactive oxidants produced during chlorine photolysis effectively degrade organic contaminants during water treatment, but their role in disinfection byproduct (DBP) formation is unclear. The impact of chlorine photolysis on dissolved organic matter (DOM) composition and DBP formation is investigated using lake water collected after coagulation, flocculation, and filtration at pH 6.5 and pH 8.5 with irradiation at three wavelengths (254, 311, and 365 nm). The steady-state concentrations of hydroxyl radical and chlorine radical decrease by 38-100% in drinking water compared to ultrapure water, which is primarily attributed to radical scavenging by natural water constituents. Chlorine photolysis transforms DOM through multiple mechanisms to produce DOM that is more aliphatic in nature and contains novel high molecular weight chlorinated DBPs that are detected via high-resolution mass spectrometry. Quenching experiments demonstrate that reactive chlorine species are partially responsible for the formation of halogenated DOM, haloacetic acids, and haloacetonitriles, whereas trihalomethane formation decreases during chlorine photolysis. Furthermore, DOM transformation primarily due to direct photolysis alters DOM such that it is more reactive with chlorine, which also contributes to enhanced formation of novel DBPs during chlorine photolysis.
Collapse
Affiliation(s)
- Devon Manley Bulman
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
| |
Collapse
|
84
|
Qiao W, Guo H, He C, Shi Q, Xiu W, Zhao B. Molecular Evidence of Arsenic Mobility Linked to Biodegradable Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7280-7290. [PMID: 32407084 DOI: 10.1021/acs.est.0c00737] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular characteristics of natural organic matter (NOM) and their potential connections to arsenic enrichment processes remain poorly understood. Here, we examine dissolved organic matter (DOM) in groundwater and water-soluble organic matter (WSOM) in aquifer sediments being depth-matched with groundwater samples from a typical arid-semiarid basin (Hetao Basin, China) hosting high arsenic groundwater. We used Fourier transform ion cyclotron resonance mass spectrometry to determine molecular characteristics of DOM and WSOM and evaluate potential roles of biodegradable compounds in microbially mediated arsenic mobility at the molecular level. High-arsenic groundwater DOM was generally enriched in recalcitrant molecules (including lignins and aromatic structures). Although potential contribution of recalcitrant compounds to arsenic enrichment cannot be ruled out, preferential degradation of the labile molecules coupled with reduction of Fe(III) (oxyhydr)oxides seemed to dominate arsenic mobilization. Both the number and the intensity of biodegradable compounds (including aliphatic/proteins and carbohydrates) were higher in WSOM than those in DOM in depth-matched high-arsenic groundwater (arsenic >0.67 μmol/L or 50 μg/L). Groundwater arsenic concentration generally increased with the increase in the number and the intensity of unique biodegradable compounds (especially N-containing compounds) in WSOM at matched depths. Anoxic incubations of sediments and deionized water show that more arsenic and Fe(II) were released from aquifer sediments with greater numbers and intensities of consumed biodegradable compounds in WSOM (especially N-containing compounds), with a higher proportion of microbially derived compounds produced. These observations indicate that the biodegradation of aliphatic/proteins and carbohydrates (especially CHON formulas) in WSOM fueling the reductive dissolution of Fe(III) (oxyhydr)oxides predominantly promotes arsenic release from aquifer solids. Our unique data present a better understanding of arsenic mobilization shaped by microbial degradation of labile organic compounds in anoxic aquifers at the molecular level.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Bo Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
85
|
Jiang J, Zhao H, Xia D, Li X, Qu B. Formation of free radicals by direct photolysis of halogenated phenols (HPs) and effects of DOM: A case study on monobromophenols. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122220. [PMID: 32050140 DOI: 10.1016/j.jhazmat.2020.122220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The free radicals play an important role to understand direct/indirect transformation mechanisms of organic pollutants. However, very few efforts have been made to elucidate the radicals produced by direct photolysis. In this study, the short-lived radicals generated under simulated sunlight irradiation from representative halogenated phenols (HPs), monobromophenols, were investigated by electron paramagnetic resonance (EPR). The results showed that three radicals, carbon-centered radical (C), hydrogen radical (H) and hydroxyl radical (OH), were generated from the direct irradiation of HPs. Compared to other substitutions, halogenated atom at para-position led to the highest production of these radicals which is in accordance with the energies calculated by density functional theory. Based on the analyses of the reactive species and corresponding intermediate adducts, the possible reaction pathways for these radicals were tentatively proposed. Dissolved organic matters (DOM) could enhance the photodegradation of HPs by directly affecting the radicals' formation, mainly due to generation of excited triplet DOM (3DOM*). A positive correlation was found between the concentrations of hydrated electron and the steady state 3DOM* from different DOM. Our findings provided insights into environmental photochemical fate of HPs through their direct photolysis and will help more accurately understand their phototransformation mechanisms in the environment.
Collapse
Affiliation(s)
- Jingqiu Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China.
| | - Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116024, China.
| |
Collapse
|
86
|
Ding Y, Shi Z, Ye Q, Liang Y, Liu M, Dang Z, Wang Y, Liu C. Chemodiversity of Soil Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6174-6184. [PMID: 32298089 DOI: 10.1021/acs.est.0c01136] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) plays a key role in many biogeochemical processes, but the drivers controlling the diversity of chemical composition and properties of DOM molecules (chemodiversity) in soils are poorly understood. It has also been debated whether environmental conditions or intrinsic molecular properties control the accumulation and persistence of DOM due to the complexity of both molecular composition of DOM and interactions between DOM and surrounding environments. In this study, soil DOM samples were extracted from 33 soils collected from different regions of China, and we investigated the effects of climate and soil properties on the chemodiversity of DOM across different regions of China, employing a combination of Fourier transform ion cyclotron resonance mass spectrometry, optical spectroscopy, and statistical analyses. Our results indicated that, despite the heterogeneity of soil samples and complex influencing factors, aridity and clay can account for the majority of the variations of DOM chemical composition. The finding implied that DOM chemodiversity is an ecosystem property closely related to the environment, and can be used in developing large-scale soil biogeochemistry models for predicting C cycling in soils.
Collapse
Affiliation(s)
- Yang Ding
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhenqing Shi
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Qianting Ye
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuzhen Liang
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Minqin Liu
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhi Dang
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
87
|
Wang H, Zhou H, Ma J, Nie J, Yan S, Song W. Triplet Photochemistry of Dissolved Black Carbon and Its Effects on the Photochemical Formation of Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4903-4911. [PMID: 32227921 DOI: 10.1021/acs.est.0c00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dissolved black carbon (DBC) is an important component of dissolved organic matter pool; however, its photochemical properties are not fully understood. In this study, we determined the excited triplet-state quantum yields of DBC (3DBC*) and 1O2 quantum yields (Φ1O2) of six diverse DBCs using sorbic alcohol, 2,4,6-trimethylphenol (TMP), and furfuryl alcohol and compared the results with quantum yields of reference natural organic matters (NOMs). The average Φ1O2 of six DBCs (4.2 ± 1.5%) was greater than that of terrestrial NOM (2.4 ± 0.3%) and comparable to autochthonous NOM (5.3 ± 0.2%). Using TMP as a probe for oxidizing triplets, DBC presented significantly higher apparent quantum yield coefficients for degrading TMP (fTMP) than the reference NOM, reflecting that the fTMP values of low-energy 3DBC* were approximately 12-fold greater than those of low-energy 3NOM*. The differences in the fTMP and Φ1O2 trends among the DBCs indicated that the 3DBC* responsible for these reactions may be from different sources. In addition, DBC was much more effective than NOM, on a carbon-normalized basis, during photodegradation of pharmaceutically active compounds. This result confirms that the presence of DBC can accelerate the photodegradation of contaminants that are susceptible to one-electron oxidation by triplets.
Collapse
Affiliation(s)
- Hui Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Huaxi Zhou
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Jianzhong Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Jianxin Nie
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
88
|
Carena L, Terrenzio D, Mosley LM, Toldo M, Minella M, Vione D. Photochemical consequences of prolonged hydrological drought: A model assessment of the Lower Lakes of the Murray-Darling Basin (Southern Australia). CHEMOSPHERE 2019; 236:124356. [PMID: 31330437 DOI: 10.1016/j.chemosphere.2019.124356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The prolonged "Millennium" drought affecting Australia in the 2000s had important consequences on surface-water bodies, including the Lower Lakes (Lake Alexandrina and Lake Albert) located at the terminal end of the River Murray system. Shallower water depths, limited solute dilution and altered geochemical processes ensured that the concentration values of several water constituents increased considerably during drought, including the water parameters of photochemical significance (nitrate, bicarbonate, carbonate and the dissolved organic carbon, DOC). The aim of this study was to model the photochemical processes in the Lower Lakes during the drought and post-drought periods, to provide insight into the changes that photoinduced reactions can undergo in periods of water scarcity. Among the photochemical processes involved in the light-assisted transformation of dissolved compounds, an important role is played by indirect photochemistry where degradation is triggered by photogenerated transient species such as hydroxyl (OH) and carbonate (CO3-) radicals, and the triplet states of chromophoric dissolved organic matter (3CDOM*). Results of photochemical modelling suggest that the reactions induced by 3CDOM* would be enhanced during drought, while the processes triggered by OH and CO3- would be less modified. For compounds undergoing efficient degradation with 3CDOM*, enhanced photochemistry during drought could offset the higher concentration values resulting from lower dilution. In contrast, for compounds mainly degraded by OH or CO3- the drought period could produce a concentration increase not balanced by an increment in the photochemical reactivity of the water body.
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Dario Terrenzio
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Luke M Mosley
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Marco Toldo
- iMpronta48, Loc., Ciocchini 18, 12060, Novello, CN, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy.
| |
Collapse
|
89
|
Berg SM, Whiting QT, Herrli JA, Winkels R, Wammer KH, Remucal CK. The Role of Dissolved Organic Matter Composition in Determining Photochemical Reactivity at the Molecular Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11725-11734. [PMID: 31509695 DOI: 10.1021/acs.est.9b03007] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dissolved organic matter (DOM) composition influences its ability to form photochemically produced reactive intermediates (PPRI). While relationships have been established between bulk DOM properties and triplet DOM (3DOM) and singlet oxygen (1O2) quantum yields, contradictory evidence exists for hydroxyl radical (•OH) and hydroxylating species. Furthermore, little is known about these relationships at the molecular level. We evaluated DOM composition and photochemical reactivity of water samples from a wastewater treatment plant and the St. Louis River in Minnesota and Wisconsin, U.S.A. Bulk characterization using ultraviolet-visible spectroscopy demonstrates that color and apparent size of DOM decrease downstream, while molecular composition analysis using Fourier-transform ion cyclotron resonance mass spectrometry reveals that saturation and chemodiversity is highest near Lake Superior. 3DOM quantum yield coefficients and 1O2 quantum yields increase downstream and correlate strongly with saturated formulas. Similar results are observed for carbon-normalized photodegradation rate constants of atorvastatin, carbamazepine, and venlafaxine, which react primarily with 3DOM and 1O2. In contrast, •OH quantum yields are lowest downstream and correlate with less saturated, more oxygenated DOM, suggesting that 3DOM is not its major precursor. Mixed relationships are observed for DEET, which reacts with multiple PPRI. Molecular-level compositional data reveal insights into the differing formation pathways of individual PPRI, but information about specific contaminants is needed to predict their photochemical fate.
Collapse
Affiliation(s)
- Stephanie M Berg
- Environmental Chemistry and Technology Program University of Wisconsin - Madison , Madison , Wisconsin 53706 , United States
| | - Quinn T Whiting
- Department of Chemistry University of St. Thomas , St. Paul , Minnesota 55105 , United States
| | - Joseph A Herrli
- Department of Chemistry University of St. Thomas , St. Paul , Minnesota 55105 , United States
| | - Ronan Winkels
- Department of Chemistry University of St. Thomas , St. Paul , Minnesota 55105 , United States
| | - Kristine H Wammer
- Department of Chemistry University of St. Thomas , St. Paul , Minnesota 55105 , United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program University of Wisconsin - Madison , Madison , Wisconsin 53706 , United States
- Department of Civil and Environmental Engineering University of Wisconsin - Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
90
|
Vione D, Scozzaro A. Photochemistry of Surface Fresh Waters in the Framework of Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7945-7963. [PMID: 31241909 DOI: 10.1021/acs.est.9b00968] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photochemical processes taking place in surface fresh waters play an important role in the transformation of biorecalcitrant pollutants and some natural compounds and in the inactivation of microorganisms. Such processes are divided into direct photolysis, where a molecule is transformed following sunlight absorption, and indirect photochemistry, where naturally occurring photosensitizers absorb sunlight and produce a range of transient species that can transform dissolved molecules (or inactivate microorganisms). Photochemistry is usually favored in thoroughly illuminated shallow waters, while the dissolved organic carbon (DOC) acts as a switch between different photochemical pathways (direct photolysis, and indirect photochemistry triggered by different transient species). Various phenomena connected with climate change (water browning, changing precipitations) may affect water DOC and water depth, with implications for the kinetics of photoreactions and the associated transformation pathways. The latter are important because they often produce peculiar intermediates, with particular health and environmental impacts. Further climate-induced effects with photochemical implications are shorter ice-cover seasons and enhanced duration of summer stratification in lakes, as well as changes in the flow velocity of rivers that affect the photodegradation time scale. This contribution aims at showing how the different climate-related phenomena can affect photoreactions and which approaches can be followed to quantitatively describe these variations.
Collapse
Affiliation(s)
- Davide Vione
- Department of Chemistry , University of Torino , Via P. Giuria 5 , 10125 Torino , Italy
| | - Andrea Scozzaro
- Department of Chemistry , University of Torino , Via P. Giuria 5 , 10125 Torino , Italy
| |
Collapse
|
91
|
Zhang B, Shan C, Hao Z, Liu J, Wu B, Pan B. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity. WATER RESEARCH 2019; 157:472-482. [PMID: 30981978 DOI: 10.1016/j.watres.2019.04.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 05/21/2023]
Abstract
As one of the key economic modes in China, chemical industry park (CIP) has made great contribution to the Chinese rapid economic growth. Concomitantly, how to effectively and safely dispose of the CIP wastewater (CIPWW) has been an unavoidable issue. Molecular transformation of dissolved organic matter (DOM) in CIPWW treatment is essential to optimize the employed process and to provide solid basis for risk evaluation of the discharged effluent as well. In this study, electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) was used to characterize the molecular transformation of DOM during full-scale treatment of integrated chemical wastewater in a centralized wastewater treatment plant (CWWTP), where the combined process follows hydrolysis/acidification (HA)-flocculation/precipitation (FP)-A2/O-membrane bioreactor (MBR)-ultrafiltration (UF)-reverse osmosis (RO). Compared to municipal wastewater, DOM in CIPWW exhibited higher unsaturation degree, lower molecular weight, and higher toxicity. In FP unit, DOM of C<24 and higher nominal oxidation state of carbon (NOSC) values was preferentially removed. The HA and anaerobic units are capable of significantly degrading DOM, resulting in great changes in molecular composition of DOM. However, the anoxic, oxic, and MBR units only lead to a slight change of the molecular formulae. The terminal units of UF and RO can remove most DOM, with the concentration of dissolved organic carbon (DOC) declining by 19.2% and 94.6% respectively. The correlation between spectral indexes and acute toxicity with the molecular formulae of DOM suggested that polyphenols and highly unsaturated phenols were positively correlated with the specific UV absorbance at 254 nm (SUVA254). In addition, both compounds (0.32 < O/C < 0.63) as well as the aliphatic ones (0.22 < O/C < 0.56) presented positive correlation with acute toxicity. Further, the pairwise correlation analysis illustrated that SUVA254, O/Cwa, double bond equivalence (DBEwa), and NOSCwa were positively correlated with each other, whereas the acute toxicity was positively correlated with humification index (HIX), O/Cwa, and DBEwa.
Collapse
Affiliation(s)
- Bingliang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
92
|
Schendorf TM, Del Vecchio R, Bianca M, Blough NV. Combined Effects of pH and Borohydride Reduction on Optical Properties of Humic Substances (HS): A Comparison of Optical Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6310-6319. [PMID: 31063364 DOI: 10.1021/acs.est.9b01516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The combined effects of pH and borohydride reduction on the optical properties of a series of humic substances and a lignin model were examined to probe the molecular moieties and interactions that give rise to the observed optical properties of these materials. Increasing the pH from 2 to 12 produced significantly enhanced absorption across the spectra of all samples, with distinct spectral responses observed over pH ranges attributable to the deprotonation of carboxylic acids and phenols. Borohydride reduction substantially attenuated the broadband absorption enhancements with pH, clearly indicating that the loss of absorption due to ketone/aldehyde reduction is coupled with the pH-dependent increase in absorption due to deprotonation of carboxylic acids and phenols. These results cannot be easily explained by a superposition of the spectra of independently absorbing chromophores (superposition model) but are readily interpretable within a charge transfer (CT) model. Changes of fluorescence emission with pH for both untreated and borohydride reduced samples suggest that a pH-dependent structural reorganization of the HS may also be influencing the fluorescence emission. Independent of optical model, these results demonstrate that chemical tests targeted to specific moieties can identify distinct structural differences among HS sources as well as provide insight into the molecular moieties and interactions that produce the observed optical and photochemical properties.
Collapse
|
93
|
Li Z, Huang M, Luo N, Wen J, Deng C, Yang R. Spectroscopic study of the effects of dissolved organic matter compositional changes on availability of cadmium in paddy soil under different water management practices. CHEMOSPHERE 2019; 225:414-423. [PMID: 30884303 DOI: 10.1016/j.chemosphere.2019.03.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/24/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
It is well established that water management can influence the availability of Cd in paddy soil but the role of dissolved organic matter (DOM) characteristics in this process is still unclear. Here, we measured and compared the DOM quantity and quality between flooded and wetted treatments by spectroscopic and chemometric analysis and applied correlation analysis to relate DOM characteristics with availability concentrations of Cd. Ultraviolet-visible showed that aromaticity and hydrophobicity of DOM significantly decreased with time in wetted paddy soil (p < 0.05) but had no significant difference in flooded paddy soil (p > 0.05). According the results from two-dimensional correlation spectroscopy analytical method, humic- and protein-like substances had fast response during cultivation process. Two humic-like substances (C1, C2) and two protein-like substances (C3, C4) were identified from paddy soil-derived DOM by combining emission and excitation matrix spectroscopy with parallel factor. Compared to component C1, C3, and C4, component C2 has stronger aromaticity and hydrophobicity and higher molecular size (665-1000 Da). Its proportion declined markedly during the wetting periods but increased slightly during flooding. Pearson correlation analysis illustrated that flooding was more helpful in immobilizing Cd than wetting due to the aromatic, hydrophobic, and high molecular weight constituents remained in flooded treatments and the substantial decomposition of component C2 in wetted treatments. These results suggested that spectroscopic and chemometric methods are helping to further explain the impacts of DOM quality on Cd availability under different water management practices.
Collapse
Affiliation(s)
- Zhongwu Li
- College of Resource and Environment Science, Hunan Normal University, Changsha, 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Mei Huang
- College of Resource and Environment Science, Hunan Normal University, Changsha, 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Chuxiong Deng
- College of Resource and Environment Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ren Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
94
|
Leresche F, McKay G, Kurtz T, von Gunten U, Canonica S, Rosario-Ortiz FL. Effects of Ozone on the Photochemical and Photophysical Properties of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5622-5632. [PMID: 31022348 DOI: 10.1021/acs.est.8b06410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study focused on the effects of ozonation on the photochemical and photophysical properties of dissolved organic matter (DOM). Upon ozonation, a decrease in DOM absorbance was observed in parallel with an increase in singlet oxygen (1O2) and fluorescence quantum yields (Φ1O2 and ΦF). The increase in Φ1O2 was attributed to the formation of quinone-like moieties during ozonation of the phenolic moieties of DOM, while the increase in ΦF can be explained by a significant decrease in the internal conversion rate of the first excited singlet state of the DOM (1DOM*). It is a consequence of an increase in the average energy of the first electronic transition (S1 → S0) that was assessed using the wavelength of maximum fluorescence emission (λF,max). Furthermore, ozonation did not affect the ratio of the apparent steady-state concentrations of excited triplet DOM (3DOM*) and 1O2, indicating that ozonation does not affect the efficiency of 1O2 production from 3DOM*. The consequences of these changes for the phototransformation rates of micropollutants in surface waters were examined using photochemical model calculations. The decrease in DOM absorbance caused by ozonation leads to an enhancement of direct photolysis rates due to the increased transparency of the water. Rates of indirect photooxidation induced by 1O2 and 3DOM* slightly decrease after ozonation.
Collapse
Affiliation(s)
- Frank Leresche
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Garrett McKay
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Tyler Kurtz
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , CH-8600 Dübendorf , Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , CH-8600 Dübendorf , Switzerland
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
95
|
Bulman DM, Mezyk SP, Remucal CK. The Impact of pH and Irradiation Wavelength on the Production of Reactive Oxidants during Chlorine Photolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4450-4459. [PMID: 30888799 DOI: 10.1021/acs.est.8b07225] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlorine photolysis is an advanced oxidation process which relies on photolytic cleavage of free available chlorine (i.e., hypochlorous acid and hypochlorite) to generate hydroxyl radical, along with ozone and a suite of halogen radicals. Little is known about the impact of wavelength on reactive oxidant generation even though chlorine absorbs light within the solar spectrum. This study investigates the formation of reactive oxidants during chlorine photolysis as a function of pH (6-10) and irradiation wavelength (254, 311, and 365 nm) using a combination of reactive oxidant quantification with validated probe compounds and kinetic modeling. Observed chlorine loss rate constants increase with pH during irradiation at high wavelengths due to the higher molar absorptivity of hypochlorite (p Ka = 7.5), while there is no change at 254 nm. Hydroxyl radical and chlorine radical steady-state concentrations are greatest under acidic conditions for all tested wavelengths and are highest using 254 and 311 nm irradiation. Ozone generation is observed under all conditions, with maximum cumulative concentrations at pH 8 for 311 and 365 nm. A comprehensive kinetic model generally predicts the trends in chlorine loss and oxidant concentrations, but a comparison of previously published kinetic models reveals the challenges of modeling this complex system.
Collapse
Affiliation(s)
- Devon Manley Bulman
- Environmental Chemistry and Technology Program University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Stephen P Mezyk
- Department of Chemistry and Biochemistry California State University at Long Beach Long Beach , California 90840 , United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
- Department of Civil and Environmental Engineering University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
96
|
Zhou H, Yan S, Lian L, Song W. Triplet-State Photochemistry of Dissolved Organic Matter: Triplet-State Energy Distribution and Surface Electric Charge Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2482-2490. [PMID: 30758190 DOI: 10.1021/acs.est.8b06574] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excited triplet states of chromophoric dissolved organic matter (3CDOM*) are highly reactive species in sunlit surface waters and play a critical role in reactive oxygen species (ROS) formation and pollutant attenuation. In the present study, a series of chemical probes, including sorbic acid, sorbic alcohol, sorbic amine, trimethylphenol, and furfuryl alcohol, were employed to quantitatively determine 3CDOM* and 1O2 in various organic matters. Using a high concentration of sorbic alcohol as high-energy triplet states quencher, 3CDOM* can be first distinguished as high-energy triplet states (>250 kJ mol-1) and low-energy triplet states (<250 kJ mol-1). The terrestrial-origin natural organic matter (NOM) was found to mainly consist of low-energy triplet states, while high-energy triplet states were predominant in autochthonous-origin NOM and effluent/wastewater organic matter (EfOM/WWOM). The 1O2 quantum yields and electron transfer quantum yield coefficients ( fTMP) generated from low-energy triplet states remained constant in all tested organic matters. External phenolic compound showed quenching effects on triplet-state formation and tended to have a higher quenching efficiency for aromatic ketone triplet states, which are the main high-energy triplet states. In comparison with terrestrial-origin NOM, autochthonous-origin NOM and EfOM/WWOM presented lower reaction rate constants for sorbic amines and higher reaction rate constants for sorbic acid, and these differences are likely due to dissimilar surface electric charge conditions. Understanding the triplet-state photochemistry of CDOM is essential for providing useful insights into their photochemical effects in aquatic systems.
Collapse
Affiliation(s)
- Huaxi Zhou
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| | - Lushi Lian
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| |
Collapse
|
97
|
Zhang X, Yang CW, Li J, Yuan L, Sheng GP. Spectroscopic insights into photochemical transformation of effluent organic matter from biological wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1260-1268. [PMID: 30308896 DOI: 10.1016/j.scitotenv.2018.08.378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
The photodegradation of discharged effluent organic matter (EfOM) changes its composition and shifts its impacts on pollutant migration and transformation in receiving waters. However, to date, EfOM photodegradation processes are not well understood due to the complexity and heterogeneity of EfOM. Herein, the spectroscopic analysis including ultra violet-visible (UV-Vis), fluorescence and FTIR spectroscopies coupled with two-dimensional correlation analysis (2D-COS) were used to draw a comprehensive view of EfOM photodegradation and involving mechanisms. Results revealed that the photolability of each component in EfOM followed the order: tannin-like > humic-like > protein-like > carbohydrate-like and aliphatic compounds. The photolability of different components of EfOM were found to be related to the photolability of their functional groups. Specifically, the aromatic, carboxylic, phenolic and quinonoid groups associated with humic or tannin-like compounds were more prone to be photodegraded than amides in proteins or C-OH and C-O-C in carbohydrates. Furthermore, the humic-like components, dominating the light absorption of EfOM, were found to be degraded by direct photolysis. Nevertheless, the photodegradation of tannin-like and protein-like components were mainly due to the indirect photodegradation by ROS and 3OM⁎. Furthermore, results indicated that UV light, rather than visible light, was responsible for the photodegradation of EfOM. The spectroscopic techniques integrated with 2D-COS analysis could serve as a powerful tool with which to clarify complex EfOM photodegradation process as well as to improve our understanding of the fate of discharged EfOM and related environmental processes.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chuan-Wang Yang
- CAS Key Laboratory of Urban Pollutant Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jing Li
- CAS Key Laboratory of Urban Pollutant Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
98
|
Extracellular Electron Transfer May Be an Overlooked Contribution to Pelagic Respiration in Humic-Rich Freshwater Lakes. mSphere 2019; 4:4/1/e00436-18. [PMID: 30674644 PMCID: PMC6344600 DOI: 10.1128/msphere.00436-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Humic lakes and ponds receive large amounts of terrestrial carbon and are important components of the global carbon cycle, yet how their redox cycling influences the carbon budget is not fully understood. Here we compared metagenomes obtained from a humic bog and a clear-water eutrophic lake and found a much larger number of genes that might be involved in extracellular electron transfer (EET) for iron redox reactions and humic substance (HS) reduction in the bog than in the clear-water lake, consistent with the much higher iron and HS levels in the bog. Humic lakes and ponds receive large amounts of terrestrial carbon and are important components of the global carbon cycle, yet how their redox cycling influences the carbon budget is not fully understood. Here we compared metagenomes obtained from a humic bog and a clear-water eutrophic lake and found a much larger number of genes that might be involved in extracellular electron transfer (EET) for iron redox reactions and humic substance (HS) reduction in the bog than in the clear-water lake, consistent with the much higher iron and HS levels in the bog. These genes were particularly rich in the bog’s anoxic hypolimnion and were found in diverse bacterial lineages, some of which are relatives of known iron oxidizers or iron-HS reducers. We hypothesize that HS may be a previously overlooked electron acceptor and that EET-enabled redox cycling may be important in pelagic respiration and greenhouse gas budget in humic-rich freshwater lakes.
Collapse
|
99
|
Sardana A, Cottrell B, Soulsby D, Aziz TN. Dissolved organic matter processing and photoreactivity in a wastewater treatment constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:923-934. [PMID: 30144760 DOI: 10.1016/j.scitotenv.2018.08.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Constructed wetlands have the capacity to degrade a host of contaminants of emerging concern through photodegradation via sunlight produced reactive oxygen species. Dissolved organic matter (DOM) is a critical intermediary in photodegradation as it influences the production of reactive oxygen species. In this study, the photochemical behavior of DOM of wastewater treated in constructed wetlands was characterized. Whole water samples and fractionated DOM were characterized using SUVA254, spectral slope ratios, excitation emission matrix fluorescence spectroscopy (EEMs), and proton nuclear magnetic resonance (1H NMR). Photoreactivity was assessed by measuring formation rates and steady state concentrations of hydroxyl radical (•OH), singlet oxygen (1O2), and the triplet excited states of DOM (3DOM⁎). The effluent was observed to transition from a microbially sourced protein-like DOM to a terrestrial DOM with higher aromaticity. Size exclusion chromatography revealed an 18% increase in larger molecular weight fractions of vegetated wetland effluent DOM. Additionally, wetland effluent DOM was observed to have a 32% increase in the aromatic region of 1H NMR spectra as compared to untreated wastewater. 1H NMR analysis also indicated an increase in the complexity of wetland effluent DOM. Fluorescence intensity fraction of the protein-like Peak T (Ex/Em:278/342 nm) of EEMs decreased by 16% from the untreated wastewater to wetland effluent. A negative correlation between the percent fluorescence of Peak T (Ex/Em:278/342 nm) and Peaks A (Ex/Em:245/460 nm), C (Ex/Em:336/435 nm), and M (Ex/Em:312/400 nm) of the excitation emission spectra confirmed the transition from a spectrum of pure wastewater to a spectrum characteristic of terrestrially derived DOM. Microbial uptake of bio-labile DOM and leaching of humic like substances from vegetated wetland cells were the predominant processes involved in this transition. This transition coincided with an increase in the formation rates of 1O2 and 3DOM⁎ and in the steady state concentration of 1O2.
Collapse
Affiliation(s)
- Arpit Sardana
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 208 Mann Hall, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States
| | - Barbara Cottrell
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, United States
| | - David Soulsby
- Department of Chemistry, University of Redlands, Redlands CA, 92374, United States
| | - Tarek N Aziz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 208 Mann Hall, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States.
| |
Collapse
|
100
|
Huang M, Li Z, Luo N, Yang R, Wen J, Huang B, Zeng G. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:220-228. [PMID: 30053666 DOI: 10.1016/j.scitotenv.2018.07.282] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Biochar-derived dissolved organic matter (DOM) is important for determining the application potential of biochar in soil remediation. However, little is known about the degradation behavior of biochar-derived DOM and its interaction with heavy metals. Here, incubation experiments combined with quenching titration experiments, which analyzed by spectroscopic technology and chemometric method, were conducted to reveal such behaviors and mechanisms. Ultraviolet-visible (UV-Vis) spectra showed that high aromatic and hydrophobic fractions were enriched in biochar-derived DOM and enhanced during the cultivation process, thus the biochar-derived DOM may retain a high aromaticity, stability, and resistance. However, the environmental risk of Cu caused by the increase of DOM hydrophobicity cannot be overlooked while applying biochar to polluted soil. One fulvic-like (C1), one protein-like (C2) and two humic-like (C3, C4) substances were identified from biochar-derived DOM by using parallel factor analysis of excitation-emission matrix. Additionally, the fluorescence intensity variations of these components in DOM offered an additional interpretation for the observations from UV-Vis spectra. Two-dimensional correlation spectroscopy revealed that Cd binding to biochar-derived DOM first occurred in the protein- and fulvic-like fraction while protein- and humic-like substances had a stronger affinity for Cu. Furthermore, both phenolic and carboxyl groups firstly participated in the binding process of Cd with biochar-derived DOM, while polysaccharide gave the fastest response to Cu binding. These results clearly demonstrated the differences in specific heavy metal binding features of individual fluorescent substances and functional groups in biochar-derived DOM and contribute to improving the application effect of biochar in a multi-heavy metal polluted soil system.
Collapse
Affiliation(s)
- Mei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ren Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Bin Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science & Technology, Guangzhou 510650, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|