51
|
Parks OB, Pociask DA, Hodzic Z, Kolls JK, Good M. Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease. Front Cell Dev Biol 2016; 3:85. [PMID: 26793707 PMCID: PMC4710696 DOI: 10.3389/fcell.2015.00085] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022] Open
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines that has been extensively studied since its discovery in 2000. This review article aims to describe the cellular sources and signaling pathways of this cytokine as well as the functions of IL-22 in the intestine. In addition, this article describes the roles of IL-22 in the pathogenesis of several gastrointestinal diseases, including inhibition of inflammation and barrier defense against pathogens within the intestine. Since many of the functions of IL-22 in the intestine are incompletely understood, this review is meant to assess our current understanding of the roles of IL-22 and provide new opportunities for inquiry to improve human intestinal health and disease.
Collapse
Affiliation(s)
- Olivia B Parks
- Department of Pediatrics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Derek A Pociask
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Department of Pediatrics, Richard King Mellon Foundation Institute for Pediatric Research, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Zerina Hodzic
- Department of Pediatrics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Jay K Kolls
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Department of Pediatrics, Richard King Mellon Foundation Institute for Pediatric Research, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Misty Good
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Division of Newborn Medicine, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| |
Collapse
|
52
|
Lin H, Song P, Zhao Y, Xue LJ, Liu Y, Chu CQ. Targeting Th17 Cells with Small Molecules and Small Interference RNA. Mediators Inflamm 2015; 2015:290657. [PMID: 26792955 PMCID: PMC4697089 DOI: 10.1155/2015/290657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 02/05/2023] Open
Abstract
T helper 17 (Th17) cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL-) 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA) and Crohn's disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt) which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX) technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4(+) T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage.
Collapse
Affiliation(s)
- Hui Lin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pingfang Song
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR 97239, USA
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-Jia Xue
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
53
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26878025 PMCID: PMC4750502 DOI: 10.11131/2015/101185] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
54
|
Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, Alzahrani M, Al-Muhsen S, Halwani R, Ma CS, Wong N, Soudais C, Henderson LA, Marzouqa H, Shamma J, Gonzalez M, Martinez-Barricarte R, Okada C, Avery DT, Latorre D, Deswarte C, Jabot-Hanin F, Torrado E, Fountain J, Belkadi A, Itan Y, Boisson B, Migaud M, Arlehamn CSL, Sette A, Breton S, McCluskey J, Rossjohn J, de Villartay JP, Moshous D, Hambleton S, Latour S, Arkwright PD, Picard C, Lantz O, Engelhard D, Kobayashi M, Abel L, Cooper AM, Notarangelo LD, Boisson-Dupuis S, Puel A, Sallusto F, Bustamante J, Tangye SG, Casanova JL. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 2015; 349:606-613. [PMID: 26160376 PMCID: PMC4668938 DOI: 10.1126/science.aaa4282] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 06/29/2015] [Indexed: 12/16/2022]
Abstract
Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-γ (IFN-γ) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4(+)CCR6(+)CXCR3(+) αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, RORγT, or both.
Collapse
MESH Headings
- Alleles
- Animals
- Candida albicans/immunology
- Candidiasis, Chronic Mucocutaneous/complications
- Candidiasis, Chronic Mucocutaneous/genetics
- Candidiasis, Chronic Mucocutaneous/immunology
- Cattle
- Child
- Child, Preschool
- DNA Mutational Analysis
- Exome/genetics
- Female
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Humans
- Immunity/genetics
- Interferon-gamma/immunology
- Interleukin-17/immunology
- Mice
- Mutation
- Mycobacterium bovis/immunology
- Mycobacterium bovis/isolation & purification
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/isolation & purification
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Pedigree
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Severe Combined Immunodeficiency/genetics
- T-Lymphocytes/immunology
- Thymus Gland/abnormalities
- Thymus Gland/immunology
- Tuberculosis, Bovine/genetics
- Tuberculosis, Bovine/immunology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
Collapse
Affiliation(s)
- Satoshi Okada
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Janet G. Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Elissa K. Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Federico Mele
- Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland
| | - Dina Averbuch
- Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel
| | - Macarena Lagos
- Department of Immunology, School of Medicine, Universidad de Valparaíso, Santiago, Chile
- Department of Pediatrics, Padre Hurtado Hospital and Clinica Alemana, Santiago, Chile
| | - Mohammed Alzahrani
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saleh Al-Muhsen
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Cindy S. Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Natalie Wong
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Hiyam Marzouqa
- Caritas Baby Hospital, Post Office Box 11535, Jerusalem, Israel
| | - Jamal Shamma
- Caritas Baby Hospital, Post Office Box 11535, Jerusalem, Israel
| | - Marcela Gonzalez
- Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel
- Department of Immunology, School of Medicine, Universidad de Valparaíso, Santiago, Chile
| | - Rubén Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Chizuru Okada
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Danielle T. Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniela Latorre
- Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | | | | | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Sylvain Breton
- Department of Radiology, Assistance Publique–Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jean-Pierre de Villartay
- Laboratoire Dynamique du Génome et Système Immunitaire, INSERM UMR 1163, Université Paris Descartes–Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Despina Moshous
- Laboratoire Dynamique du Génome et Système Immunitaire, INSERM UMR 1163, Université Paris Descartes–Sorbonne Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne NE4 6BE, UK
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Université Paris Descartes–Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Peter D. Arkwright
- Department of Paediatric Allergy Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK
| | - Capucine Picard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
- Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | | | - Dan Engelhard
- Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | | | - Luigi D. Notarangelo
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
- Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Federica Sallusto
- Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland
- Center of Medical Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Stuart G. Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY 10065, USA
| |
Collapse
|
55
|
Nikoopour E, Bellemore SM, Singh B. IL-22, cell regeneration and autoimmunity. Cytokine 2015; 74:35-42. [PMID: 25467639 DOI: 10.1016/j.cyto.2014.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/18/2014] [Accepted: 09/20/2014] [Indexed: 12/16/2022]
Abstract
IL-22 as a cytokine is described with opposing pro-inflammatory and anti-inflammatory functions. Cell regeneration, tissue remodelling and balance between commensal bacteria in the gut and host immune system are considered as anti-inflammatory features of IL-22, whereas production of IL-22 from Th17 cells links this cytokine to pro-inflammatory pathways. Th17 cells and group 3 innate lymphoid cells (ILC3) are two major producers of IL-22 and both cell types express ROR-γt and Aryl hydrocarbon receptor (AhR) transcription factors. Typically, the immune system cells are the main producers of IL-22. However, targets of this cytokine are mostly non-hematopoietic cells such as hepatocytes, keratinocytes, and epithelial cells of lung and intestine. Association of IL-22 with other cytokines or transcription factors in different cell types might explain its contrasting role in health and disease. In this review we discuss the regulation of IL-22 production by AhR- and IL-23-driven pathways. A clear understanding of the biology of IL-22 will provide new opportunities for its application to improve human health involving many debilitating conditions.
Collapse
Affiliation(s)
- Enayat Nikoopour
- Centre for Human Immunology, Department of Microbiology and Immunology, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Stacey M Bellemore
- Centre for Human Immunology, Department of Microbiology and Immunology, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Bhagirath Singh
- Centre for Human Immunology, Department of Microbiology and Immunology, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
56
|
Noort AR, van Zoest KPM, van Baarsen LG, Maracle CX, Helder B, Papazian N, Romera-Hernandez M, Tak PP, Cupedo T, Tas SW. Tertiary Lymphoid Structures in Rheumatoid Arthritis: NF-κB-Inducing Kinase-Positive Endothelial Cells as Central Players. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1935-43. [PMID: 25963989 DOI: 10.1016/j.ajpath.2015.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022]
Abstract
Tertiary lymphoid structures (TLSs) in chronic inflammation, including rheumatoid arthritis (RA) synovial tissue (ST), often contain high endothelial venules and follicular dendritic cells (FDCs). Endothelial cell (EC)-specific lymphotoxin β (LTβ) receptor signaling is critical for the formation of lymph nodes and high endothelial venules. FDCs arise from perivascular platelet-derived growth factor receptor β(+) precursor cells (preFDCs) that require specific group 3 innate lymphoid cells (ILC3s) and LTβ for their expansion. Previously, we showed that RA ST contains ECs that express NF-κB-inducing kinase (NIK), which is pivotal in LTβ-induced noncanonical NF-κB signaling. We studied the relation between NIK(+) ECs, (pre)FDCs, and ILC3s with respect to TLSs in RA ST. TLS(+) tissues exhibited a significantly increased expression of genes involved in noncanonical NF-κB signaling, including NIK, and immunohistochemical analysis revealed that NIK was almost exclusively expressed by ECs. ILC3s were present in human RA ST in very low numbers, but not differentially in TLS(+) tissues. In contrast, TLS(+) tissues contained significantly more NIK(+) ECs and perivascular platelet-derived growth factor receptor β(+) preFDCs, which correlated significantly with the quantity of FDCs. We established a strong link between NIK(+) ECs, (pre)FDCs, and the presence of TLSs, indicating that NIK(+) ECs may not only be important orchestrators of lymph node development but also contribute to the formation of TLSs in chronic inflammation.
Collapse
Affiliation(s)
- Ae R Noort
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katinka P M van Zoest
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lisa G van Baarsen
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Chrissta X Maracle
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Boy Helder
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Monica Romera-Hernandez
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Paul P Tak
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sander W Tas
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
57
|
How Can We Manipulate the IL-23/IL-17 Axis? CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2015. [DOI: 10.1007/s40674-015-0017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
58
|
Guo X, Liang Y, Zhang Y, Lasorella A, Kee BL, Fu YX. Innate Lymphoid Cells Control Early Colonization Resistance against Intestinal Pathogens through ID2-Dependent Regulation of the Microbiota. Immunity 2015; 42:731-43. [PMID: 25902484 PMCID: PMC4725053 DOI: 10.1016/j.immuni.2015.03.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/21/2014] [Accepted: 02/25/2015] [Indexed: 12/12/2022]
Abstract
Microbiota-mediated effects on the host immune response facilitate colonization resistance against pathogens. However, it is unclear whether and how the host immune response can regulate the microbiota to mediate colonization resistance. ID2, an essential transcriptional regulator for the development of innate lymphoid cell (ILC) progenitors, remains highly expressed in differentiated ILCs with unknown function. Using conditionally deficient mice in which ID2 is deleted from differentiated ILC3s, we observed that these mutant mice exhibited greatly impaired gut colonization resistance against Citrobacter rodentium. Utilizing gnotobiotic hosts, we showed that the ID2-dependent early colonization resistance was mediated by interleukin-22 (IL-22) regulation of the microbiota. In addition to regulating development, ID2 maintained homeostasis of ILC3s and controlled IL-22 production through an aryl hydrocarbon receptor (AhR) and IL-23 receptor pathway. Thus, ILC3s can mediate immune surveillance, which constantly maintains a proper microbiota, to facilitate early colonization resistance through an ID2-dependent regulation of IL-22.
Collapse
Affiliation(s)
- Xiaohuan Guo
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; Tsinghua University School of Medicine, Beijing 100084, China.
| | - Yong Liang
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; Institute of Biophysics and The University of Chicago joint Group for Immunotherapy, Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yuan Zhang
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Anna Lasorella
- Institute for Cancer Genetics, Departments of Neurology and Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | - Barbara L Kee
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Yang-Xin Fu
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; Institute of Biophysics and The University of Chicago joint Group for Immunotherapy, Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
59
|
Steinke FC, Xue HH. From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol Res 2015; 59:45-55. [PMID: 24847765 DOI: 10.1007/s12026-014-8545-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription factors have recurring roles during T cell development and activation. Tcf1 and Lef1 are known to be essential for early stages of thymocyte maturation. Recent research has revealed several novel aspects of their functionality. Tcf1 is induced at the very earliest step of specifying hematopoietic progenitors to the T cell lineage as a key target gene downstream of Notch activation. In addition to promoting maturation of T-lineage-committed thymocytes, Tcf1 functions as a tumor suppressor in developing thymocytes, and this is mediated, paradoxically, by restraining Lef1 expression. After positive selection, Tcf1 and Lef1 act together to direct CD4(+)CD8(+) double positive thymocytes to a CD4(+) T cell fate. Although not required for CD8(+) T cell differentiation, Tcf1 and Lef1 cooperate with Runx factors to achieve stable silencing of the Cd4 gene in CD8(+) T cells. Tcf1 is also found to have versatile roles in innate immune cells, which partly mirror its functions in mature T helper cells. Discrepancy in requirements of Tcf1/Lef1 and β-catenin in T cells has been a long-standing enigma. We will review other protein factors interacting with Tcf1 and Lef1 and discuss their regulatory roles independent of β-catenin.
Collapse
Affiliation(s)
- Farrah C Steinke
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
60
|
Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine 2015; 75:249-55. [PMID: 25796985 DOI: 10.1016/j.cyto.2015.01.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
Cytokines play crucial roles in coordinating the activities of innate and adaptive immune systems. In response to pathogen recognition, innate immune cells secrete cytokines that inform the adaptive immune system about the nature of the pathogen and instruct naïve T cells to differentiate into the appropriate T cell subtypes required to clear the infection. These include Interleukins, Interferons and other immune-regulatory cytokines that exhibit remarkable functional redundancy and pleiotropic effects. The focus of this review, however, is on the enigmatic Interleukin 12 (IL-12) family of cytokines. This family of cytokines plays crucial roles in shaping immune responses during antigen presentation and influence cell-fate decisions of differentiating naïve T cells. They also play essential roles in regulating functions of a variety of effector cells, making IL-12 family cytokines important therapeutic targets or agents in a number of inflammatory diseases, such as the CNS autoimmune diseases, uveitis and multiple sclerosis.
Collapse
|
61
|
Abstract
Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.
Collapse
|
62
|
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
63
|
Yang Y, Winger RC, Lee PW, Nuro-Gyina PK, Minc A, Larson M, Liu Y, Pei W, Rieser E, Racke MK, Lovett-Racke AE. Impact of suppressing retinoic acid-related orphan receptor gamma t (ROR)γt in ameliorating central nervous system autoimmunity. Clin Exp Immunol 2015; 179:108-18. [PMID: 25142403 DOI: 10.1111/cei.12441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2014] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated chronic central nervous system (CNS) disease affecting more than 400 000 people in the United States. Myelin-reactive CD4 T cells play critical roles in the formation of acute inflammatory lesions and disease progression in MS and experimental autoimmune encephalomyelitis (EAE), a well-defined mouse model for MS. Current MS therapies are only partially effective, making it necessary to develop more effective therapies that specifically target pathogenic myelin-specific CD4 T cells for MS treatment. While suppressing T-bet, the key transcription factor in T helper type 1 (Th1) cells, has been demonstrated to be beneficial in prevention and treatment of EAE, the therapeutic potential of retinoic acid-related orphan receptor gamma t (ROR)γt, the key transcription factor for Th17 cells, has not been well-characterized. In this study, we characterized the correlation between RORγt expression and other factors affecting T cell encephalitogenicity and evaluated the therapeutic potential of targeting RORγt by siRNA inhibition of RORγt. Our data showed that RORγt expression correlates with interleukin (IL)-17 production, but not with the encephalitogenicity of myelin-specific CD4 T cells. IL-23, a cytokine that enhances encephalitogenicity, does not enhance RORγt expression significantly. Additionally, granulocyte-macrophage colony-stimulating factor (GM-CSF) levels, which correlate with the encephalitogenicity of different myelin-specific CD4 T cell populations, do not correlate with RORγt. More importantly, inhibiting RORγt expression in myelin-specific CD4 T cells with an siRNA does not reduce disease severity significantly in adoptively transferred EAE. Thus, RORγt is unlikely to be a more effective therapeutic target for ameliorating pathogenicity of encephalitogenic CD4 T cells.
Collapse
Affiliation(s)
- Y Yang
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
CCR7-dependent trafficking of RORγ⁺ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun 2015; 6:5862. [PMID: 25575242 PMCID: PMC4354100 DOI: 10.1038/ncomms6862] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/14/2014] [Indexed: 12/17/2022] Open
Abstract
Presentation of peptide:MHCII by RORγ-expressing group 3 innate lymphoid cells (ILC3s), which are enriched within gut tissue, is required for control of CD4 T-cell responses to commensal bacteria. It is not known whether ILC populations migrate from their mucosal and peripheral sites to local draining secondary lymphoid tissues. Here we demonstrate that ILC3s reside within the interfollicular areas of mucosal draining lymph nodes, forming a distinct microenvironment not observed in peripheral lymph nodes. By photoconverting intestinal cells in Kaede mice we reveal constitutive trafficking of ILCs from the intestine to the draining mesenteric lymph nodes, which specifically for the LTi-like ILC3s was CCR7-dependent. Thus, ILC populations traffic to draining lymph nodes using different mechanisms. Innate lymphoid cells have an important role in mucosal immunity and present peptide:MHCII to CD4 T cells. Here the authors show that innate lymphoid cell subsets migrate from the gut mucosa to the draining lymph nodes via different mechanisms, where they form distinct microenvironments.
Collapse
|
65
|
Colonna M, Fuchs A, Cella M. Innate Lymphoid Cells in Mucosal Homeostasis, Infections, Autoimmune Disorders, and Tumors. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00052-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
66
|
Moro K, Koyasu S. Innate lymphoid cells, possible interaction with microbiota. Semin Immunopathol 2014; 37:27-37. [PMID: 25502370 PMCID: PMC4281376 DOI: 10.1007/s00281-014-0470-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/13/2014] [Indexed: 01/08/2023]
Abstract
Recent studies have identified novel lymphocyte subsets named innate lymphoid cells (ILCs) lacking antigen-specific receptors. ILCs are present in a wide variety of epithelial compartments and occupy an intermediate position between acquired immune cells and myeloid cells. ILCs are now classified into three groups: group 1 ILC, group 2 ILC, and group 3 ILC based on their cytokine production patterns that correspond to the helper T cell subsets Th1, Th2, and Th17, respectively. ILCs play important roles in protection against various invading microbes including multicellular parasites, and in the maintenance of homeostasis and repair of epithelial layers. Excessive activation of ILCs, however, leads to various inflammatory disease conditions. ILCs have thus attracted interests of many researchers in the fields of infectious immunity, inflammatory diseases, and allergic diseases. Because epithelial cells sense alterations in environmental cues, it is important to understand the functional interaction between epithelial cells, ILCs, and environmental factors such as commensal microbiota. We discuss in this review developmental pathways of ILCs, their functions, and contribution of commensal microbiota to the differentiation and function of ILCs.
Collapse
Affiliation(s)
- Kazuyo Moro
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, , Tsurumi-ku, , Yokohama, 230-0045, Japan,
| | | |
Collapse
|
67
|
Yu X, Wang Y, Deng M, Li Y, Ruhn KA, Zhang CC, Hooper LV. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 2014; 3. [PMID: 25310240 PMCID: PMC4356142 DOI: 10.7554/elife.04406] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are recently identified lymphocytes that limit infection and promote tissue repair at mucosal surfaces. However, the pathways underlying ILC development remain unclear. Here we show that the transcription factor NFIL3 directs the development of a committed bone marrow precursor that differentiates into all known ILC lineages. NFIL3 was required in the common lymphoid progenitor (CLP), and was essential for the differentiation of αLP, a bone marrow cell population that gives rise to all known ILC lineages. Clonal differentiation studies revealed that CXCR6(+) cells within the αLP population differentiate into all ILC lineages but not T- and B-cells. We further show that NFIL3 governs ILC development by directly regulating expression of the transcription factor TOX. These findings establish that NFIL3 directs the differentiation of a committed ILC precursor that gives rise to all ILC lineages and provide insight into the defining role of NFIL3 in ILC development.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yuhao Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yun Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
68
|
Cella M, Miller H, Song C. Beyond NK cells: the expanding universe of innate lymphoid cells. Front Immunol 2014; 5:282. [PMID: 24982658 PMCID: PMC4058828 DOI: 10.3389/fimmu.2014.00282] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022] Open
Abstract
For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.
Collapse
Affiliation(s)
- Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA
| | - Hannah Miller
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA
| | - Christina Song
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
69
|
Takeda Y, Kang HS, Freudenberg J, DeGraff LM, Jothi R, Jetten AM. Retinoic acid-related orphan receptor γ (RORγ): a novel participant in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. PLoS Genet 2014; 10:e1004331. [PMID: 24831725 PMCID: PMC4022472 DOI: 10.1371/journal.pgen.1004331] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/07/2014] [Indexed: 11/22/2022] Open
Abstract
The hepatic circadian clock plays a key role in the daily regulation of glucose metabolism, but the precise molecular mechanisms that coordinate these two biological processes are not fully understood. In this study, we identify a novel connection between the regulation of RORγ by the clock machinery and the diurnal regulation of glucose metabolic networks. We demonstrate that particularly at daytime, mice deficient in RORγ exhibit improved insulin sensitivity and glucose tolerance due to reduced hepatic gluconeogenesis. This is associated with a reduced peak expression of several glucose metabolic genes critical in the control of gluconeogenesis and glycolysis. Genome-wide cistromic profiling, promoter and mutation analysis support the concept that RORγ regulates the transcription of several glucose metabolic genes directly by binding ROREs in their promoter regulatory region. Similar observations were made in liver-specific RORγ-deficient mice suggesting that the changes in glucose homeostasis were directly related to the loss of hepatic RORγ expression. Altogether, our study shows that RORγ regulates several glucose metabolic genes downstream of the hepatic clock and identifies a novel metabolic function for RORγ in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. The inhibition of the activation of several metabolic gene promoters by an RORγ antagonist suggests that antagonists may provide a novel strategy in the management of metabolic diseases, including type 2 diabetes. The circadian clock plays a critical role in the regulation of many physiological processes, including metabolism and energy homeostasis. The retinoic acid-related orphan receptor γ (RORγ) functions as a ligand-dependent transcription factor that regulates transcription by binding as a monomer to ROR-responsive elements. In liver, RORγ exhibits a robust circadian pattern of expression that is under direct control of the hepatic circadian clock. However, the connection between the circadian regulation of RORγ and its control of downstream metabolic processes is not well understood. In this study, by using ubiquitous and liver-specific RORγ-deficient mice as models, we demonstrate that hepatic RORγ modulates daily insulin sensitivity and glucose tolerance by regulating hepatic gluconeogenesis. Genome-wide cistromic profiling, gene expression, and promoter analysis revealed that RORγ is targeting and regulating a number of novel metabolic genes critical in the control of glycolysis and gluconeogenesis pathways. We provide evidence for a model in which RORγ regulates the circadian expression of glucose metabolic genes in the liver downstream of the hepatic circadian clock, thereby enhancing gluconeogenesis and decreasing insulin sensitivity and glucose tolerance. This study suggests that attenuating RORγ activity by antagonists might be beneficial for the management of glucose metabolic diseases including type 2 diabetes.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Hong Soon Kang
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Johannes Freudenberg
- Systems Biology Group, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Laura M. DeGraff
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Raja Jothi
- Systems Biology Group, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
70
|
Liang J, Zhang B, Shen RW, Liu JB, Gao MH, Geng X, Li Y, Li YY, Zhang W. The effect of antifibrotic drug halofugine on Th17 cells in concanavalin A-induced liver fibrosis. Scand J Immunol 2014; 79:163-72. [PMID: 24383550 DOI: 10.1111/sji.12144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
Anti-inflammation strategy is one of the proposed therapeutic approaches to hepatic fibrosis. T helper (Th) 17 cells, which play a detrimental role in experimental murine models of inflammatory diseases, have been demonstrated to participate in the pathogenesis of liver damage. The inhibitory effect of halofuginone (HF), an active component of extracts derived from the plant alkaloid febrifugine, on collagen synthesis has been shown in animal models of the fibrotic disease. The aim of this study was to clarify the in vivo effect of HF on Th17 cells in concanavalin A-induced fibrosis rats. Haematoxylin-eosin (HE) staining and Masson staining were performed to observe collagen deposition. The presence of INF-gamma, TNF-alpha, IL-6, IL-17, IL-1beta, IL-33 and IL-10 in serum and the presence of ROR-γt, IL-17, TGF-β1 and α-SMA in liver tissue were detected. Flow cytometry was performed to analyse the percentage of Th17 cells. We observed significantly lower levels of INF-gamma, TNF-alpha, IL-6, IL-17, IL-1beta, TGF-β1 and α-SMA in HF-treated group of rats, and the percentage of Th17 cells in splenic lymphocyte was decreased well. Histological examination demonstrated that HF significantly reduced the severity of liver fibrosis in HF-treated rats. We concluded that HF (10 mg/kg) exerts an antifibrotic impact on Th17 cells and its relative cytokines in rats with ConA-induced fibrosis.
Collapse
Affiliation(s)
- J Liang
- Department of Immunology, Medical College of Qingdao University, QingDao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tian Y, Wu Y, Ni B. Signaling Pathways and Epigenetic Regulations in the Control ofRORγtExpression in T Helper 17 Cells. Int Rev Immunol 2014; 34:305-17. [DOI: 10.3109/08830185.2014.911858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
72
|
Isono F, Fujita-Sato S, Ito S. Inhibiting RORγt/Th17 axis for autoimmune disorders. Drug Discov Today 2014; 19:1205-11. [PMID: 24792721 DOI: 10.1016/j.drudis.2014.04.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/22/2014] [Indexed: 11/24/2022]
Abstract
The recent success reported in late-stage clinical trials for the treatment of psoriasis by antibodies directed against interleukin (IL)-17 or its receptor has validated and strongly supports the development of inhibitors of the IL-17 pathway as a new therapeutic modality in chronic inflammation and autoimmunity. These results also encourage the drug discovery of orally available small molecules that can modulate down the production of IL-17 by Th17 cells (the major IL-17 producers) or the downstream signaling of the IL-17 receptor. Here, we review these strategies with an emphasis on inhibiting the retinoic-acid-related orphan nuclear receptor RORγt, which is the master regulator of Th17 cells and a promising therapeutic target for the treatment of multiple autoimmune disorders.
Collapse
Affiliation(s)
- Fujio Isono
- Frontier Research Laboratories, Daiichi Sankyo Co., Shinagawa-ku, Tokyo 140-3710, Japan.
| | - Saori Fujita-Sato
- Oncology Research Laboratories, Daiichi Sankyo Co., Shinagawa-ku, Tokyo 140-3710, Japan
| | - Shuichiro Ito
- Drug Discovery and Biomedical Technology Unit, Daiichi Sankyo RD Novare Co., Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
73
|
Killig M, Glatzer T, Romagnani C. Recognition strategies of group 3 innate lymphoid cells. Front Immunol 2014; 5:142. [PMID: 24744763 PMCID: PMC3978353 DOI: 10.3389/fimmu.2014.00142] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/19/2014] [Indexed: 12/30/2022] Open
Abstract
During the early phase of an inflammatory response, innate cells can use different strategies to sense environmental danger. These include the direct interaction of specific activating receptors with pathogen-encoded/danger molecules or the engagement of cytokine receptors by pro-inflammatory mediators produced by antigen presenting cells in the course of the infection. These general recognition strategies, which have been extensively described for innate myeloid cells, are shared by innate lymphoid cells (ILC), such as Natural Killer (NK) cells. The family of ILC has recently expanded with the discovery of group 2 (ILC2) and group 3 ILC (ILC3), which play an important role in the defense against extracellular pathogens. Although ILC3 and NK cells share some phenotypic characteristics, the recognition strategies employed by the various ILC3 subsets have been only partially characterized. In this review, we will describe and comparatively discuss how ILC3 sense environmental cues and how the triggering of different receptors may regulate their functional behavior during an immune response.
Collapse
Affiliation(s)
- Monica Killig
- Innate Immunity, Leibniz Institute, German Rheumatism Research Center , Berlin , Germany
| | - Timor Glatzer
- Innate Immunity, Leibniz Institute, German Rheumatism Research Center , Berlin , Germany
| | - Chiara Romagnani
- Innate Immunity, Leibniz Institute, German Rheumatism Research Center , Berlin , Germany
| |
Collapse
|
74
|
Toyama H, Nakamura M, Nakamura M, Matsumoto Y, Nakagomi M, Hashimoto Y. Development of novel silicon-containing inverse agonists of retinoic acid receptor-related orphan receptors. Bioorg Med Chem 2014; 22:1948-59. [DOI: 10.1016/j.bmc.2014.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 12/21/2022]
|
75
|
Fauber BP, Magnuson S. Modulators of the Nuclear Receptor Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc). J Med Chem 2014; 57:5871-92. [DOI: 10.1021/jm401901d] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Benjamin P. Fauber
- Discovery
Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven Magnuson
- Discovery
Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
76
|
Taylor PR, Roy S, Leal SM, Sun Y, Howell SJ, Cobb BA, Li X, Pearlman E. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat Immunol 2014; 15:143-51. [PMID: 24362892 PMCID: PMC3972892 DOI: 10.1038/ni.2797] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/25/2013] [Indexed: 01/12/2023]
Abstract
Here we identified a population of bone marrow neutrophils that constitutively expressed the transcription factor RORγt and produced and responded to interleukin 17A (IL-17A (IL-17)). IL-6, IL-23 and RORγt, but not T cells or natural killer (NK) cells, were required for IL-17 production in neutrophils. IL-6 and IL-23 induced expression of the receptors IL-17RC and dectin-2 on neutrophils, and IL-17RC expression was augmented by activation of dectin-2. Autocrine activity of IL-17A and its receptor induced the production of reactive oxygen species (ROS), and increased fungal killing in vitro and in a model of Aspergillus-induced keratitis. Human neutrophils also expressed RORγt and induced the expression of IL-17A, IL-17RC and dectin-2 following stimulation with IL-6 and IL-23. Our findings identify a population of human and mouse neutrophils with autocrine IL-17 activity that probably contribute to the etiology of microbial and inflammatory diseases.
Collapse
MESH Headings
- Animals
- Aspergillosis/complications
- Aspergillosis/immunology
- Aspergillus/immunology
- Autocrine Communication
- Bone Marrow Cells/immunology
- Cell Degranulation
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Disease Models, Animal
- Humans
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-23/immunology
- Interleukin-6/immunology
- Keratitis/etiology
- Keratitis/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Interleukin/metabolism
Collapse
Affiliation(s)
- Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University
| | - Sanhita Roy
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University
| | - Sixto M. Leal
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University
| | - Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University
| | - Scott J. Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University
| |
Collapse
|
77
|
Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr Opin Gastroenterol 2013; 29:581-7. [PMID: 24100718 DOI: 10.1097/mog.0b013e328365d339] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW To highlight the functions of a recently discovered group of immune cells known as innate lymphoid cells (ILCs) during homeostasis and infections of the gastrointestinal tract. RECENT FINDINGS ILCs are lymphocytes that lack specific antigen receptors. They are found in the mucosae and mucosal-associated lymphoid tissues, where they promptly initiate cytokine responses to pathogens upon initial exposure. ILCs have been classified into distinct groups based on their cytokine secretion: ILC1 produce IFN-γ, ILC2 secrete IL-5 and IL-13, and ILC3 produce IL-22 and IL-17. Recent studies have discovered the heterogeneity of ILC1 and ILC3 in the gastrointestinal tract. ILC1 subsets may contribute to the inflammatory bowel disease. ILC3 subsets may be beneficial in the defense against gastrointestinal infections, but their sustained activation may lead to cancer. SUMMARY ILCs may provide a target for new avenues of therapeutic intervention in inflammatory bowel disease and gastrointestinal cancer.
Collapse
|
78
|
Qiu J, Zhou L. Aryl hydrocarbon receptor promotes RORγt⁺ group 3 ILCs and controls intestinal immunity and inflammation. Semin Immunopathol 2013; 35:657-70. [PMID: 23975386 DOI: 10.1007/s00281-013-0393-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022]
Abstract
Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptor (RORγt)⁺ group 3 ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt⁺ group 3 ILCs (e.g., lymphoid tissue inducer cells) are required for lymphoid organogenesis. In adult mice, RORγt⁺ group 3 ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt⁺ group 3 ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt⁺ group 3 ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells. In this review, we will focus on the development and function of RORγt⁺ group 3 ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. A better understanding of the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Ju Qiu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Street, Chicago, IL, 60611, USA
| | | |
Collapse
|
79
|
|
80
|
Matsumoto A, Kanai T, Mikami Y, Chu P, Nakamoto N, Ebinuma H, Saito H, Sato T, Yagita H, Hibi T. IL-22-producing RORγt-dependent innate lymphoid cells play a novel protective role in murine acute hepatitis. PLoS One 2013; 8:e62853. [PMID: 23626860 PMCID: PMC3633830 DOI: 10.1371/journal.pone.0062853] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/26/2013] [Indexed: 12/17/2022] Open
Abstract
Retinoid-related orphan receptor (ROR) γt is known to be related to the development and function of various immunological compartments in the liver, such as Th17 cells, natural killer T (NKT) cells, and innate lymphoid cells (ILCs). We evaluated the roles of RORγt-expressing cells in mouse acute hepatitis model using RORγt deficient (RORγt(-/-)) mice and RAG-2 and RORγt double deficient (RAG-2(-/-) × RORγt(-/-)) mice. Acute hepatitis was induced in mice by injection with carbon tetrachloride (CCl4), to investigate the regulation of liver inflammation by RORγt-expressing cells. We detected RORC expression in three compartments, CD4(+) T cells, NKT cells, and lineage marker-negative SCA-1(+)Thy1(high) ILCs, of the liver of wild type (WT) mice. CCl4-treated RORγt(-/-) mice developed liver damage in spite of lack of RORγt-dependent cells, but with reduced infiltration of macrophages compared with WT mice. In this regard, ILCs were significantly decreased in RAG-2(-/-) × RORγt(-/-) mice that lacked T and NKT cells. Surprisingly, RAG-2(-/-) × RORγt(-/-) mice developed significantly severer CCl4-induced hepatitis compared with RAG-2(-/-) mice, in accordance with the fact that hepatic ILCs failed to produce IL-22. Lastly, anti-Thy1 monoclonal antibody (mAb), but not anti-NK1.1 mAb or anti-asialo GM1 Ab administration exacerbated liver damage in RAG-2(-/-) mice with the depletion of liver ILCs. Collectively, hepatic RORγt-dependent ILCs play a part of protective roles in hepatic immune response in mice.
Collapse
Affiliation(s)
- Atsuhiro Matsumoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Po–Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidetsugu Saito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshifumi Hibi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
81
|
Rankin L, Groom J, Mielke LA, Seillet C, Belz GT. Diversity, function, and transcriptional regulation of gut innate lymphocytes. Front Immunol 2013; 4:22. [PMID: 23508190 PMCID: PMC3600536 DOI: 10.3389/fimmu.2013.00022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/16/2013] [Indexed: 12/19/2022] Open
Abstract
The innate immune system plays a critical early role in host defense against viruses, bacteria, and tumor cells. Until recently, natural killer (NK) cells and lymphoid tissue inducer (LTi) cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.
Collapse
Affiliation(s)
- Lucille Rankin
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Joanna Groom
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Lisa A. Mielke
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Cyril Seillet
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Gabrielle T. Belz
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
82
|
Abstract
Rheumatoid arthritis exhibits diurnal variation in symptoms, with patients suffering with increased painful joint stiffness in the early morning. This correlates with an early morning rise in circulating levels of pro-inflammatory cytokines, such as interleukin-6. This temporal variation in disease pathology is directed by the circadian clock, both at a systemic level, through signalling pathways derived in the central clock, and at a local level by autonomous clocks found within inflammatory organs and cells. Indeed, many cellular components of the immune system, which are involved in the pathogenesis of rheumatoid arthritis, possess independent clocks that facilitate temporal gating of their functions. Furthermore, the circadian clock regulates the expression and activity of several genes and proteins that have demonstrated roles in progression of this autoimmune disease. These include a number of nuclear receptors and also fat-derived adipokines. Employing the knowledge we have about how the inflammatory response is regulated by the clock will facilitate the development of chronotherapy regimens to improve the efficacy of current treatment strategies. Furthermore, a full understanding of the mechanisms by which the clock couples to the immune system may provide novel therapeutic targets for the treatment of this debilitating disease.
Collapse
|
83
|
Wu Q, Sun X, Chi R, Xu L, Li X, Feng J, Chen H. RORγt modulates macrophage recruitment during a hydrocarbon oil-induced inflammation. PLoS One 2013; 8:e79497. [PMID: 24260235 PMCID: PMC3829825 DOI: 10.1371/journal.pone.0079497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/01/2013] [Indexed: 02/05/2023] Open
Abstract
Hydrocarbon oils are often utilized as adjuvants in vaccines. In response to naturally occurring hydrocarbon oils, inflammation is initiated and persists with the continuous recruitment of immune cells such as macrophages and neutrophils. However, the mechanism underlying the chronic inflammation in response to hydrocarbon oils is not fully defined. In this study, we revealed an essential role of retinoid-related orphan receptor gamma t (RORγt) in sustaining the recruitment of macrophages following pristane treatment. RORγt absence resulted in the incompetent formation of mesenteric oil granulomas which may associate to a reduction in the migration of macrophages into the mesentery during pristane-induced inflammation. This is at least partially dependent on the expression of the monocyte chemoattractant protein-1 (MCP-1) in the mesentery and the decrease in the macrophage reservoir in the spleen. However, the absence of RORγt had no impact on the recruitment of neutrophils to the mesentery after pristane treatment. Our data uncovered an important role of RORγt in the recruitment of macrophages during hydrocarbon oil-induced chronic inflammation.
Collapse
Affiliation(s)
- Qi Wu
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Xin Sun
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Ruo Chi
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Long Xu
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Xue Li
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Jing Feng
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, China
- * E-mail: (HC); (JF)
| | - Huaiyong Chen
- Tianjin Haihe Hospital, Tianjin Institute of Respiratory Diseases, Tianjin, China
- * E-mail: (HC); (JF)
| |
Collapse
|
84
|
Innate Lymphoid Cells in Immunity and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 785:9-26. [DOI: 10.1007/978-1-4614-6217-0_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
85
|
Sciumé G, Hirahara K, Takahashi H, Laurence A, Villarino AV, Singleton KL, Spencer SP, Wilhelm C, Poholek AC, Vahedi G, Kanno Y, Belkaid Y, O'Shea JJ. Distinct requirements for T-bet in gut innate lymphoid cells. J Exp Med 2012; 209:2331-8. [PMID: 23209316 PMCID: PMC3526352 DOI: 10.1084/jem.20122097] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/05/2012] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-22-producing innate lymphoid cells (ILCs; ILC22) comprise a heterogeneous population of cells that are dependent on the transcription factor retinoid-related orphan γt (RORγt) and are critical for barrier function of the intestinal mucosa. A distinct ILC22 subset expresses the natural cytotoxicity receptor NKp46 (NKp46+ ILC22); however, the factors that contribute to the generation of this population versus other subsets are largely unknown. Herein, we show that T-bet (encoded by Tbx21) was highly expressed in NKp46+ ILC22, a feature shared by all NKp46+ cells present in the intestine but not by other IL-22-producing populations. Accordingly, the absence of T-bet resulted in loss of NKp46+ ILC22 in the intestinal lamina propria. The residual NKp46+ ILC22 present in Tbx21(-/-) mice showed a marked reduction of Rorγt expression and impairment in IL-22 production. Generation and functions of gut NK1.1+ cells were also altered. Bone marrow chimera experiments revealed a cell-intrinsic requirement for T-bet in these subsets and competitive reconstitution experiments revealed roles for T-bet in multiple ILC subsets. Thus, T-bet has a general importance for ILC in the gut and plays a selective and critical role in the generation of NKp46+ ILC22.
Collapse
Affiliation(s)
- Giuseppe Sciumé
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Brendolan A, Caamaño JH. Mesenchymal cell differentiation during lymph node organogenesis. Front Immunol 2012; 3:381. [PMID: 23248630 PMCID: PMC3522075 DOI: 10.3389/fimmu.2012.00381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/29/2012] [Indexed: 12/31/2022] Open
Abstract
Secondary lymphoid tissues such as lymph nodes are essential for the interactions between antigen presenting cells and lymphocytes that result in adaptive immune responses that protect the host against invading pathogens. The specialized architecture of these organs facilitates the cognate interactions between antigen-loaded dendritic cells and lymphocytes expressing their specific receptor as well as B-T cell interactions that are at the core of long lasting adaptive immune responses. Lymph nodes develop during embryogenesis as a result of a series of cross-talk interactions between a hematopoietically derived cell lineage called lymphoid tissue inducer cells and stromal cells of mesenchymal origin to form the anlagen of these organs. This review will present an overview of the different signaling pathways and maturation steps that mesenchymal cells undergo during the process of lymph node formation such as cell specification, priming, and maturation to become lymphoid tissue stromal organizer cells.
Collapse
Affiliation(s)
- Andrea Brendolan
- Division of Molecular Oncology, San Raffaele Scientific Institute Milan, Italy
| | | |
Collapse
|
87
|
Abstract
Interest in vitamin A as a regulator of immune function goes back to the early 1900s. Recently, several lines of evidence have converged to show that retinoic acid (RA), a major oxidative metabolite of vitamin A, plays a key role in the differentiation of T cell subsets, the migration of T cells into tissues, and the proper development of T cell-dependent antibody responses. This review discusses evidence from experimental studies that RA promotes the differentiation of regulatory T cells, which help to suppress inflammatory reactions, and plays a significant role in normal mucosal immunity by modulating T cell activation and regulating cell trafficking. RA also promotes antibody responses to T cell-dependent antigens. Conversely, in a state of vitamin A deficiency, inflammatory T cell reactions may be inadequately opposed and therefore become dominant. Although data from human studies are still needed, the framework now developed from studies in mice and rat models suggests that adequate vitamin A status, whether derived from ingestion of preformed retinol or β-carotene, is important for maintaining a proper balance of well-regulated T cell functions and for preventing excessive or prolonged inflammatory reactions.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
88
|
Ngalamika O, Zhang Y, Yin H, Zhao M, Gershwin ME, Lu Q. Epigenetics, autoimmunity and hematologic malignancies: a comprehensive review. J Autoimmun 2012; 39:451-65. [PMID: 23084980 DOI: 10.1016/j.jaut.2012.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/24/2012] [Indexed: 12/17/2022]
Abstract
The relationships between immunological dysfunction, loss of tolerance and hematologic malignancies have been a focus of attention in attempts to understand the appearance of a higher degree of autoimmune disease and lymphoma in children with congenital immunodeficiency. Although multiple hypotheses have been offered, it is clear that stochastic processes play an important role in the immunopathology of these issues. In particular, accumulating evidence is defining a role of epigenetic mechanisms as being critical in this continuous spectrum between autoimmunity and lymphoma. In this review, we focus attention predominantly on the relationships between T helper 17 (Th17) and T regulatory populations that alter local microenvironments and ultimately the expression or transcription factors involved in cell activation and differentiation. Abnormal expression in any of the molecules involved in Th17 and/or Treg development alter immune homeostasis and in genetically susceptible hosts may lead to the appearance of autoimmunity and/or lymphoma. These observations have clinical significance in explaining the discordance of autoimmunity in identical twins. They are also particularly important in the relationships between primary immune deficiency syndromes, immune dysregulation and an increased risk of lymphoma. Indeed, defining the factors that determine epigenetic alterations and their relationships to immune homeostasis will be a challenge greater or even equal to the human genome project.
Collapse
Affiliation(s)
- Owen Ngalamika
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, #139 Renmin Middle Rd, Changsha, Hunan 410011, PR China
| | | | | | | | | | | |
Collapse
|
89
|
Buettner M, Bode U. Lymph node dissection--understanding the immunological function of lymph nodes. Clin Exp Immunol 2012; 169:205-12. [PMID: 22861359 DOI: 10.1111/j.1365-2249.2012.04602.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lymph nodes (LN) are one of the important sites in the body where immune responses to pathogenic antigens are initiated. This immunological function induced by cells within the LN is an extensive area of research. To clarify the general function of LN, to identify cell populations within the lymphatic system and to describe the regeneration of the lymph vessels, the experimental surgical technique of LN dissection has been established in various animal models. In this review different research areas in which LN dissection is used as an experimental tool will be highlighted. These include regeneration studies, immunological analysis and studies with clinical questions. LN were dissected in order to analyse the different cell subsets of the incoming lymph in detail. Furthermore, LN were identified as the place where the induction of an antigen-specific response occurs and, more significantly, where this immune response is regulated. During bacterial infection LN, as a filter of the lymph system, play a life-saving role. In addition, LN are essential for the induction of tolerance against harmless antigens, because tolerance could not be induced in LN-resected animals. Thus, the technique of LN dissection is an excellent and simple method to identify the important role of LN in immune responses, tolerance and infection.
Collapse
Affiliation(s)
- M Buettner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
90
|
Veldhoen M, Brucklacher-Waldert V. Dietary influences on intestinal immunity. Nat Rev Immunol 2012; 12:696-708. [DOI: 10.1038/nri3299] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
91
|
Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D, Schwarz P, Armulik A, Browning JL, Tallquist M, Buch T, Oliveira-Martins JB, Zhu C, Hermann M, Wagner U, Brink R, Heikenwalder M, Aguzzi A. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 2012; 150:194-206. [PMID: 22770220 DOI: 10.1016/j.cell.2012.05.032] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/16/2012] [Accepted: 05/11/2012] [Indexed: 12/25/2022]
Abstract
The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ(+)-derived cells abolished FDC, indicating that FDC originate from PDGFRβ(+) cells. Lymphotoxin-α-overexpressing prion protein (PrP)(+) kidneys developed PrP(+) FDC after transplantation into PrP(-) mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRβ(+) stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin β receptor (LTβR)(-) kidney capsules, differentiated into Mfge8(+)CD21/35(+)FcγRIIβ(+)PrP(+) FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRβ(+) FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation.
Collapse
Affiliation(s)
- Nike Julia Krautler
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Park Y, Hong S, Lee M, Jung H, Cho WJ, Kim EJ, Son HY, Lee MO, Park HG. N-methylthioureas as new agonists of retinoic acid receptor-related orphan receptor. Arch Pharm Res 2012; 35:1393-401. [PMID: 22941482 DOI: 10.1007/s12272-012-0809-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
Abstract
Thirty two thiourea derivatives were prepared and their agonistic activities on the retinoic acid receptor-related orphan receptor α (RORα) were evaluated. The replacement of the 3-allyl-2-imino-thiazolidin-4-one moiety of the lead compound CGP52608 (1) with various functional group substituted aromatic rings, improved the agonistic activity of RORα. Among the prepared derivatives, 1-methyl-3-(4-phenoxy-benzyl)-thiourea (32) showed 2.6-fold higher agonistic activity than CGP52608 in the RORα-activation assay.
Collapse
Affiliation(s)
- Yohan Park
- College of Pharmacy, Inje University, 607 Obang-dong, Gimhae, Gyeongnam, 621-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Bi Y, Yang R. Direct and indirect regulatory mechanisms in TH17 cell differentiation and functions. Scand J Immunol 2012; 75:543-52. [PMID: 22260240 DOI: 10.1111/j.1365-3083.2012.02686.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
T helper 17 (TH17) cells have well-described roles in autoimmune diseases. The immune modulations of development and function of TH17 have become a key issue. In this review, we summarize the recent findings regarding the direct and indirect signalling regulatory mechanisms of TH17 cells in the general mouse model of autoimmune diseases and other human diseases.
Collapse
Affiliation(s)
- Y Bi
- National Center for Biomedical Analysis, Army Center for Microbial Detection and Research, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences-AMMS, Beijing, China
| | | |
Collapse
|
94
|
Pearson C, Uhlig HH, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol 2012; 33:289-96. [PMID: 22578693 DOI: 10.1016/j.it.2012.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 02/08/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is a sensor region for luminal content and plays an important role in lymphoid maturation, activation and differentiation. It comprises isolated and aggregated lymphoid follicles, cryptopatches (CPs) and tertiary lymphoid tissue. Innate lymphoid cells (ILCs) play a central role within GALT. Prenatal GALT development is dependent on ILC lymphoid-inducer function. Postnatally, these cells rapidly respond to commensal and pathogenic intestinal bacteria, parasites and food components by polarized cytokine production [such as interleukin (IL)-22, IL-17 or IL-13] and further contribute to GALT formation and function. Here, we discuss how ILCs shape lymphoid intestinal microenvironments and act as amplifier cells for innate and adaptive immune responses.
Collapse
Affiliation(s)
- Claire Pearson
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
95
|
Abstract
The nuclear hormone receptor retinoid-related orphan receptor γt (RORγt) induces a pro-inflammatory program in lymphoid cells, culminating in the expression of interleukin-6 (IL-6), IL-17, IL-22, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor. During ontogeny, the first type of cells expressing RORγt are lymphoid tissue inducer cells, a type of innate lymphoid cell (ILC) generated in mammalian fetuses to induce the development of lymph nodes and Peyer's patches. After birth, RORγt(+) ILCs and RORγt(+) T cells are involved in the defense of epithelial surfaces against extracellular microbes and play an important role in the intestinal homeostasis with symbiotic microbiota. The development and evolution of RORγt(+) cells is intimately associated with the construction of a stable host-microbe interface.
Collapse
Affiliation(s)
- Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France. CNRS, URA1961, Paris, France.
| |
Collapse
|
96
|
Rauen T, Juang YT, Hedrich CM, Kis-Toth K, Tsokos GC. A novel isoform of the orphan receptor RORγt suppresses IL-17 production in human T cells. Genes Immun 2012; 13:346-50. [DOI: 10.1038/gene.2011.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
97
|
Lane PJL, Gaspal FM, McConnell FM, Kim MY, Anderson G, Withers DR. Lymphoid tissue inducer cells: innate cells critical for CD4+ T cell memory responses? Ann N Y Acad Sci 2012; 1247:1-15. [PMID: 22260374 DOI: 10.1111/j.1749-6632.2011.06284.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Lymphoid tissue inducer cells (LTi) are a relatively new arrival on the immunological cellular landscape, having first been characterized properly only 15 years ago. They are members of an emerging family of innate lymphoid cells (ILCs). Elucidation of their function reveals links not only with the ancient innate immune system, but also with adaptive immune responses, in particular the development of lymph nodes and CD4(+) T cell memory immune responses, which on one hand underpin the success of vaccination strategies, and on the other hand drive many human immunologically mediated diseases. This perspective article is not an exhaustive account of the role of LTi in the development of lymphoid tissues, as there have been many excellent reviews published already. Instead, we combine current knowledge of genetic phylogeny and comparative immunology, together with classical mouse genetics, to suggest how LTi might have evolved from a primitive lymphocytic innate cell in the ancestral 500-million-year-old vertebrate immune system into a cell critical for adaptive CD4(+) T cell immune responses in mammals.
Collapse
Affiliation(s)
- Peter J L Lane
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
98
|
Lee J, Cella M, McDonald K, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry R, Colonna M. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2011; 13:144-51. [PMID: 22101730 PMCID: PMC3468413 DOI: 10.1038/ni.2187] [Citation(s) in RCA: 586] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/14/2011] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) of the ILC22 type protect the intestinal mucosa from infection by secreting interleukin 22 (IL-22). ILC22 cells include NKp46(+) and lymphoid tissue-inducer (LTi)-like subsets that express the aryl hydrocarbon receptor (AHR). Here we found that Ahr(-/-) mice had a considerable deficit in ILC22 cells that resulted in less secretion of IL-22 and inadequate protection against intestinal bacterial infection. Ahr(-/-) mice also lacked postnatally 'imprinted' cryptopatches and isolated lymphoid follicles (ILFs), but not embryonically 'imprinted' Peyer's patches. AHR induced the transcription factor Notch, which was required for NKp46(+) ILCs, whereas LTi-like ILCs, cryptopatches and ILFs were partially dependent on Notch signaling. Thus, AHR was essential for ILC22 cells and postnatal intestinal lymphoid tissues. Moreover, ILC22 subsets were heterogeneous in their requirement for Notch and their effect on the generation of intestinal lymphoid tissues.
Collapse
Affiliation(s)
- Jacob Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Keely McDonald
- Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Cecilia Garlanda
- Laboratory of Immunology and Inflammation, Istituto Clinico Humanitas, IRCCS, Milan, Italy
| | - Gregory D. Kennedy
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | - Manabu Nukaya
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | - Alberto Mantovani
- Laboratory of Immunology and Inflammation, Istituto Clinico Humanitas, IRCCS, Milan, Italy
| | - Raphael Kopan
- Developmental Biology and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christopher A. Bradfield
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | - Rodney Newberry
- Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
99
|
Abstract
CD4+ T lymphocytes play a major role in regulation of adaptive immunity. Upon activation, naïve T cells differentiate into different functional subsets. In addition to the classical Th1 and Th2 cells, several novel effector T cell subsets have been recently identified, including Th17 cells. There has been rapid progress in characterizing the development and function of Th17 cells. Here I summarize and discuss on the genetic controls of their differentiation and emerging evidence on their plasticity. This information may benefit understanding and treating immune diseases.
Collapse
Affiliation(s)
- Chen Dong
- Department of Immunology and Center for Inflammation and Cancer, M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
100
|
Satoh-Takayama N, Lesjean-Pottier S, Sawa S, Vosshenrich CAJ, Eberl G, Di Santo JP. Lymphotoxin-β receptor-independent development of intestinal IL-22-producing NKp46+ innate lymphoid cells. Eur J Immunol 2011; 41:780-6. [PMID: 21341264 DOI: 10.1002/eji.201040851] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/18/2010] [Accepted: 12/17/2010] [Indexed: 12/20/2022]
Abstract
The natural cytotoxicity receptor NKp46 is an activating receptor expressed by several distinct innate lymphoid cell (ILC) subsets, including NK cells, some γδ T cells and intestinal RORγt(+) IL-22(+) cells (NCR22 cells, IL-22-producing NKp46(+) cell). NCR22 cells may play a role in mucosal barrier function through IL-22-mediated production of anti-bacterial peptides from intestinal epithelial cells. Previous studies identified a predominant proportion of NCR22 cells in gut cryptopatches (CP), lymphoid structures that are strategically positioned to collect and integrate signals from luminal microbes; however, whether CP or other lymphoid structures condition NCR22 cell differentiation is not known. Programmed and inducible lymphoid tissue development requires cell-surface-expressed lymphotoxin (LT)α(1) β(2) heterotrimers (provided by lymphoid tissue inducer (LTi) cells) to signal lymphotoxin-β receptor (LTR)(+) stromal cells. Here, we analyzed NCR22 cells in LTβR-deficient Ncr1(GFP/+) mice that lack organized secondary lymphoid tissues. We found that NCR22 cells develop in the absence of LTβR, become functionally competent and localize to the lamina propria under steady-state conditions. Following infection of LTβR(-/-) mice with the Gram-negative pathogen Citrobacter rodentium, IL-22 production from NCR22 cells was not affected. These results indicate that organized lymphoid tissue structures are not critical for the generation of an intact and fully functional intestinal NCR22 cell compartment.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Citrobacter rodentium
- Enterobacteriaceae Infections/immunology
- Enterobacteriaceae Infections/pathology
- Immunity, Innate
- Interleukin-7 Receptor alpha Subunit/metabolism
- Interleukins/biosynthesis
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Killer Cells, Natural/classification
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphotoxin beta Receptor/deficiency
- Lymphotoxin beta Receptor/genetics
- Lymphotoxin beta Receptor/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Signal Transduction
- Interleukin-22
Collapse
|