51
|
Wang L, Hou W, He Z, Yuan W, Yang J, Yang Y, Jia R, Zhu Z, Zhou Y, Tai F. Effects of chronic social defeat on social behaviors in adult female mandarin voles (Microtus mandarinus): Involvement of the oxytocin system in the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:278-288. [PMID: 29126982 DOI: 10.1016/j.pnpbp.2017.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023]
Abstract
Chronic social defeat affects many aspects of behavior. Most previous studies have focused on effects on males and defeat during adolescence. The extents to which chronic social defeat can impact female social behavior in adulthood and the neural mechanisms of such effects are poorly understood. Using highly social and aggressive female mandarin voles (Microtus mandarinus), the present study found that chronic social defeat reduced social preference in adult females, and that the defeated voles exhibited a high level of freeze, self-grooming and defensive behavior, as well as reduced exploration, intimacy and aggression during social interactions. Furthermore, chronic social defeat reduced levels of oxytocin (OT) and OT receptors (OTR) in the shell region of the nucleus accumbens (NACC). Intra-NACC shell OT microinjections reversed alterations in social behavior induced by chronic social defeat, whereas injections of an OTR antagonist (OTR-A) blocked the effects of OT. Taken together, our data demonstrate that chronic social defeat suppresses measures of sociability, and that these effects are mediated by the action of OT on the OTR in the NACC. NACC OT may be a promising target to treat socio-emotional disorders induced by chronic social stress.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jinfeng Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yue Zhou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
52
|
Watt MJ, Weber MA, Davies SR, Forster GL. Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79. [PMID: 28642080 PMCID: PMC5610933 DOI: 10.1016/j.pnpbp.2017.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repeated exposure to stress during childhood is associated with increased risk for neuropsychiatric illness, substance use disorders and other behavioral problems in adulthood. However, it is not clear how chronic childhood stress can lead to emergence of such a wide range of symptoms and disorders in later life. One possible explanation lies in stress-induced disruption to the development of specific brain regions associated with executive function and reward processing, deficits in which are common to the disorders promoted by childhood stress. Evidence of aberrations in prefrontal cortex and nucleus accumbens function following repeated exposure of juvenile (pre- and adolescent) organisms to a variety of different stressors would account not only for the similarity in symptoms across the wide range of childhood stress-associated mental illnesses, but also their persistence into adulthood in the absence of further stress. Therefore, the goal of this review is to evaluate the current knowledge regarding disruption to executive function and reward processing in adult animals or humans exposed to chronic stress over the juvenile period, and the underlying neurobiology, with particular emphasis on the prefrontal cortex and nucleus accumbens. First, the role of these brain regions in mediating executive function and reward processing is highlighted. Second, the neurobehavioral development of these systems is discussed to illustrate how juvenile stress may exert long-lasting effects on prefrontal cortex-accumbal activity and related behavioral functions. Finally, a critical review of current animal and human findings is presented, which strongly supports the supposition that exposure to chronic stress (particularly social aggression and isolation in animal studies) in the juvenile period produces impairments in executive function in adulthood, especially in working memory and inhibitory control. Chronic juvenile stress also results in aberrations to reward processing and seeking, with increased sensitivity to drugs of abuse particularly noted in animal models, which is in line with greater incidence of substance use disorders seen in clinical studies. These consequences are potentially mediated by monoamine and glutamatergic dysfunction in the prefrontal cortex and nucleus accumbens, providing translatable therapeutic targets. However, the predominant use of male subjects and social-based stressors in preclinical studies points to a clear need for determining how both sex differences and stressor heterogeneity may differentially contribute to stress-induced changes to substrates mediating executive function and reward processing, before the impact of chronic juvenile stress in promoting adult psychopathology can be fully understood.
Collapse
|
53
|
Tao CS, Dhamija P, Booij L, Menard JL. Adversity in early adolescence promotes an enduring anxious phenotype and increases serotonergic innervation of the infralimbic medial prefrontal cortex. Neuroscience 2017; 364:15-27. [PMID: 28893650 DOI: 10.1016/j.neuroscience.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 01/22/2023]
Abstract
Stress during early development produces lasting effects on psychopathological outcomes. We analysed the impact of prior intermittent, physical stress (IPS) during early adolescence (PD 22-33) on anxiety-like behaviour of female rats in adulthood. After behavioural testing, we used immunohistochemistry for the 5-HT transporter (SERT) to evaluate 5-HT innervation profiles in the medial prefrontal cortex (mPFC) and ventral hippocampus (VH). Administration of IPS (i.e., water immersion, elevated platform, foot shock) in early adolescence increased rats' anxiety-like behaviour in the elevated plus-maze but had no effects in the shock-probe burying test. In the social interaction test, IPS decreased social interaction, and this effect was driven by selective decreases in the frequency of playfighting with no evident changes in contact and investigative behaviours. Selective stress-induced increases in the density of SERT-ir positive fibres were found in the infralimbic (IL) subregion of the mPFC but not in the cingulate or prelimbic (PL) subregions. IPS in early adolescence did not affect 5-HT innervation profiles in any sub-fields of the VH. Our findings confirm and extend on earlier evidence that stress during early adolescence promotes the emergence of an anxious phenotype and provide novel evidence that these effects are associated with increased 5-HT innervation of the IL mPFC.
Collapse
Affiliation(s)
- Cindy S Tao
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Prateek Dhamija
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Linda Booij
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Psychology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Janet L Menard
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
54
|
Ability of palatable food consumption to buffer against the short- and long-term behavioral consequences of social defeat exposure during juvenility in rats. Physiol Behav 2017; 177:113-121. [DOI: 10.1016/j.physbeh.2017.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 03/05/2017] [Accepted: 04/04/2017] [Indexed: 01/17/2023]
|
55
|
Montagud-Romero S, Nuñez C, Blanco-Gandia MC, Martínez-Laorden E, Aguilar MA, Navarro-Zaragoza J, Almela P, Milanés MV, Laorden ML, Miñarro J, Rodríguez-Arias M. Repeated social defeat and the rewarding effects of cocaine in adult and adolescent mice: dopamine transcription factors, proBDNF signaling pathways, and the TrkB receptor in the mesolimbic system. Psychopharmacology (Berl) 2017; 234:2063-2075. [PMID: 28466092 DOI: 10.1007/s00213-017-4612-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 03/25/2017] [Indexed: 02/07/2023]
Abstract
RATIONALE Repeated social defeat (RSD) increases the rewarding effects of cocaine in adolescent and adult rodents. OBJECTIVE The aim of the present study was to compare the long-term effects of RSD on the conditioned rewarding effects of cocaine and levels of the transcription factors Pitx3 and Nurr1 in the ventral tegmental area (VTA), the dopamine transporter (DAT), the D2 dopamine receptor (D2DR) and precursor of brain-derived neurotrophic factor (proBDNF) signaling pathways, and the tropomyosin-related kinase B (TrkB) receptor in the nucleus accumbens (NAc) in adult and adolescent mice. METHODS Male adolescent and young adult OF1 mice were exposed to four episodes of social defeat and were conditioned 3 weeks later with 1 mg/kg of cocaine. In a second set of mice, the expressions of the abovementioned dopaminergic and proBDNF and TrkB receptor were measured in VTA and NAc, respectively. RESULTS Adolescent mice experienced social defeats less intensely than their adult counterparts and produced lower levels of corticosterone. However, both adult and adolescent defeated mice developed conditioned place preference for the compartment associated with this low dose of cocaine. Furthermore, only adolescent defeated mice displayed diminished levels of the transcription factors Pitx3 in the VTA, without changes in the expression of DAT and D2DR in the NAc. In addition, stressed adult mice showed a decreased expression of proBDNF and the TrkB receptor, while stressed adolescent mice exhibited increased expression of latter without changes in the former. CONCLUSION Our findings suggest that dopaminergic pathways and proBDNF signaling and TrkB receptors play different roles in social defeat-stressed mice exposed to cocaine.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Cristina Nuñez
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - M Carmen Blanco-Gandia
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Elena Martínez-Laorden
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - María A Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Javier Navarro-Zaragoza
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Pilar Almela
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Maria-Victoria Milanés
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María-Luisa Laorden
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain. .,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
56
|
Sheth C, McGlade E, Yurgelun-Todd D. Chronic Stress in Adolescents and Its Neurobiological and Psychopathological Consequences: An RDoC Perspective. ACTA ACUST UNITED AC 2017. [PMID: 29527590 PMCID: PMC5841253 DOI: 10.1177/2470547017715645] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Research Domain Criteria (RDoC) initiative provides a strategy for classifying psychopathology based on behavioral dimensions and neurobiological measures. Neurodevelopment is an orthogonal dimension in the current RDoC framework; however, it has not yet been fully incorporated into the RDoC approach. A combination of both a neurodevelopmental and RDoC approach offers a multidimensional perspective for understanding the emergence of psychopathology during development. Environmental influence (e.g., stress) has a profound impact on the risk for development of psychiatric illnesses. It has been shown that chronic stress interacts with the developing brain, producing significant changes in neural circuits that eventually increase the susceptibility for development of psychiatric disorders. This review highlights effects of chronic stress on the adolescent brain, as adolescence is a period characterized by a combination of significant brain alterations, high levels of stress, and emergence of psychopathology. The literature synthesized in this review suggests that chronic stress-induced changes in neurobiology and behavioral constructs underlie the shared vulnerability across a number of disorders in adolescence. The review particularly focuses on depression and substance use disorders; however, a similar argument can also be made for other psychopathologies, including anxiety disorders. The summarized findings underscore the need for a framework to integrate neurobiological findings from disparate psychiatric disorders and to target transdiagnostic mechanisms across disorders.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
| | - Erin McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC), Salt Lake City, UT, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC), Salt Lake City, UT, USA
| |
Collapse
|
57
|
Burke AR, McCormick CM, Pellis SM, Lukkes JL. Impact of adolescent social experiences on behavior and neural circuits implicated in mental illnesses. Neurosci Biobehav Rev 2017; 76:280-300. [DOI: 10.1016/j.neubiorev.2017.01.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
|
58
|
Moore SE, Norman RE, Suetani S, Thomas HJ, Sly PD, Scott JG. Consequences of bullying victimization in childhood and adolescence: A systematic review and meta-analysis. World J Psychiatry 2017; 7:60-76. [PMID: 28401049 PMCID: PMC5371173 DOI: 10.5498/wjp.v7.i1.60] [Citation(s) in RCA: 491] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To identify health and psychosocial problems associated with bullying victimization and conduct a meta-analysis summarizing the causal evidence.
METHODS A systematic review was conducted using PubMed, EMBASE, ERIC and PsycINFO electronic databases up to 28 February 2015. The study included published longitudinal and cross-sectional articles that examined health and psychosocial consequences of bullying victimization. All meta-analyses were based on quality-effects models. Evidence for causality was assessed using Bradford Hill criteria and the grading system developed by the World Cancer Research Fund.
RESULTS Out of 317 articles assessed for eligibility, 165 satisfied the predetermined inclusion criteria for meta-analysis. Statistically significant associations were observed between bullying victimization and a wide range of adverse health and psychosocial problems. The evidence was strongest for causal associations between bullying victimization and mental health problems such as depression, anxiety, poor general health and suicidal ideation and behaviours. Probable causal associations existed between bullying victimization and tobacco and illicit drug use.
CONCLUSION Strong evidence exists for a causal relationship between bullying victimization, mental health problems and substance use. Evidence also exists for associations between bullying victimization and other adverse health and psychosocial problems, however, there is insufficient evidence to conclude causality. The strong evidence that bullying victimization is causative of mental illness highlights the need for schools to implement effective interventions to address bullying behaviours.
Collapse
|
59
|
Duque A, Vinader-Caerols C, Monleón S. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice. PLoS One 2017; 12:e0173182. [PMID: 28278165 PMCID: PMC5344348 DOI: 10.1371/journal.pone.0173182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10–12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.
Collapse
Affiliation(s)
- Aránzazu Duque
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | | | - Santiago Monleón
- Department of Psychobiology, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
60
|
Cavalcante GIT, Chaves Filho AJM, Linhares MI, de Carvalho Lima CN, Venâncio ET, Rios ERV, de Souza FCF, Vasconcelos SMM, Macêdo D, de França Fonteles MM. HIV antiretroviral drug Efavirenz induces anxiety-like and depression-like behavior in rats: evaluation of neurotransmitter alterations in the striatum. Eur J Pharmacol 2017; 799:7-15. [DOI: 10.1016/j.ejphar.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 01/11/2023]
|
61
|
Adolescent vulnerability to cardiovascular consequences of chronic emotional stress: Review and perspectives for future research. Neurosci Biobehav Rev 2017; 74:466-475. [DOI: 10.1016/j.neubiorev.2016.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/26/2022]
|
62
|
Harris RBS. Repeated restraint stress lowers the threshold for response to third ventricle CRF administration. Horm Behav 2017; 89:64-68. [PMID: 28017597 PMCID: PMC5942218 DOI: 10.1016/j.yhbeh.2016.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/04/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
Abstract
Rats and mice exposed to repeated stress or a single severe stress exhibit a sustained increase in energetic, endocrine, and behavioral response to subsequent novel mild stress. This study tested whether the hyper-responsiveness was due to a lowered threshold of response to corticotropin releasing factor (CRF) or an exaggerated response to a standard dose of CRF. Male Sprague-Dawley rats were subjected to 3h of restraint on each of 3 consecutive days (RRS) or were non-restrained controls. RRS caused a temporary hypophagia but a sustained reduction in body weight. Eight days after the end of restraint, rats received increasing third ventricle doses of CRF (0-3.0μg). The lowest dose of CRF (0.25μg) increased corticosterone release in RRS, but not control rats. Higher doses caused the same stimulation of corticosterone in the two groups of rats. Fifteen days after the end of restraint, rats were food deprived during the light period and received increasing third ventricle doses of CRF at the start of the dark period. The lowest dose of CRF inhibited food intake during the first hour following infusion in RRS, but not control rats. All other doses of CRF inhibited food intake to the same degree in both RRS and control rats. The lowered threshold of response to central CRF is consistent with the chronic hyper-responsiveness to CRF and mild stress in RRS rats during the post-restraint period.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
63
|
McCormick CM, Green MR, Simone JJ. Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence. Neurobiol Stress 2017; 6:31-43. [PMID: 28229107 PMCID: PMC5314422 DOI: 10.1016/j.ynstr.2016.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Elevations in glucocorticoids that result from environmental stressors can have programming effects on brain structure and function when the exposure occurs during sensitive periods that involve heightened neural development. In recent years, adolescence has gained increasing attention as another sensitive period of development, a period in which pubertal transitions may increase the vulnerability to stressors. There are similarities in physical and behavioural development between humans and rats, and rats have been used effectively as an animal model of adolescence and the unique plasticity of this period of ontogeny. This review focuses on benefits and challenges of rats as a model for translational research on hypothalamic-pituitary-adrenal (HPA) function and stressors in adolescence, highlighting important parallels and contrasts between adolescent rats and humans, and we review the main stress procedures that are used in investigating HPA stress responses and their consequences in adolescence in rats. We conclude that a greater focus on timing of puberty as a factor in research in adolescent rats may increase the translational relevance of the findings.
Collapse
Affiliation(s)
- Cheryl M. McCormick
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Matthew R. Green
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
64
|
Piekarski DJ, Johnson CM, Boivin JR, Thomas AW, Lin WC, Delevich K, M Galarce E, Wilbrecht L. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res 2017; 1654:123-144. [PMID: 27590721 PMCID: PMC5283387 DOI: 10.1016/j.brainres.2016.08.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023]
Abstract
Postnatal brain development is studded with sensitive periods during which experience dependent plasticity is enhanced. This enables rapid learning from environmental inputs and reorganization of cortical circuits that matches behavior with environmental contingencies. Significant headway has been achieved in characterizing and understanding sensitive period biology in primary sensory cortices, but relatively little is known about sensitive period biology in associative neocortex. One possible mediator is the onset of puberty, which marks the transition to adolescence, when animals shift their behavior toward gaining independence and exploring their social world. Puberty onset correlates with reduced behavioral plasticity in some domains and enhanced plasticity in others, and therefore may drive the transition from juvenile to adolescent brain function. Pubertal onset is also occurring earlier in developed nations, particularly in unserved populations, and earlier puberty is associated with vulnerability for substance use, depression and anxiety. In the present article we review the evidence that supports a causal role for puberty in developmental changes in the function and neurobiology of the associative neocortex. We also propose a model for how pubertal hormones may regulate sensitive period plasticity in associative neocortex. We conclude that the evidence suggests puberty onset may play a causal role in some aspects of associative neocortical development, but that further research that manipulates puberty and measures gonadal hormones is required. We argue that further work of this kind is urgently needed to determine how earlier puberty may negatively impact human health and learning potential. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- David J Piekarski
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Carolyn M Johnson
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Josiah R Boivin
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
| | - A Wren Thomas
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Kristen Delevich
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Ezequiel M Galarce
- School of Public Health, University of California, Berkeley, Berkeley CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA.
| |
Collapse
|
65
|
Chen C, Nakagawa S, An Y, Ito K, Kitaichi Y, Kusumi I. The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front Neuroendocrinol 2017; 44:83-102. [PMID: 27956050 DOI: 10.1016/j.yfrne.2016.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022]
Abstract
Exercise is known to have beneficial effects on cognition, mood, and the brain. However, exercise also activates the hypothalamic-pituitary-adrenal axis and increases levels of the glucocorticoid cortisol (CORT). CORT, also known as the "stress hormone," is considered a mediator between chronic stress and depression and to link various cognitive deficits. Here, we review the evidence that shows that while both chronic stress and exercise elevate basal CORT levels leading to increased secretion of CORT, the former is detrimental to cognition/memory, mood/stress coping, and brain plasticity, while the latter is beneficial. We propose three preliminary answers to the exercise-CORT paradox. Importantly, the elevated CORT, through glucocorticoid receptors, functions to elevate dopamine in the medial prefrontal cortex under chronic exercise but not chronic stress, and the medial prefrontal dopamine is essential for active coping. Future inquiries may provide further insights to promote our understanding of this paradox.
Collapse
Affiliation(s)
- Chong Chen
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Yan An
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Koki Ito
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yuji Kitaichi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
66
|
Rodríguez-Arias M, Montagud-Romero S, Rubio-Araiz A, Aguilar MA, Martín-García E, Cabrera R, Maldonado R, Porcu F, Colado MI, Miñarro J. Effects of repeated social defeat on adolescent mice on cocaine-induced CPP and self-administration in adulthood: integrity of the blood-brain barrier. Addict Biol 2017; 22:129-141. [PMID: 26374627 DOI: 10.1111/adb.12301] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 12/27/2022]
Abstract
Social stress in adulthood enhances cocaine self-administration, an effect that has been related with an increase in extracellular signal-regulated kinase and p38α mitogen-activated protein kinase phosphorylation. A detrimental effect of cocaine on blood-brain barrier (BBB) integrity has also been reported. This study evaluates the effects of repeated social defeat (RSD) during adolescence on the reinforcing and motivational effects of cocaine in adult mice and the changes induced by RSD on BBB permeability. Cocaine self-administration, conditioned place preference and quantitative analysis of claudin-5, laminin, collagen-IV and IgG immunoreactivity took place 3 weeks after RSD. Mice socially defeated during adolescence developed conditioned place preference and exhibited reinstated preference with a non-effective dose of cocaine (1 mg/kg). RSD mice needed significantly more sessions than control animals for the preference induced by 25 mg/kg of cocaine to be extinguished. However, acquisition of cocaine self-administration (0.5 mg/kg per injection) was delayed in the RSD group. Mice exposed to RSD displayed significant changes in BBB structure in adulthood, with a marked reduction in expression of the tight junction protein claudin-5 and an increase in basal laminin degradation (reflected by a decrease in laminin and collagen-IV expression) in the nucleus accumbens and hippocampus. The detrimental effect induced by cocaine (25 mg/kg) on collagen-IV expression in the hippocampus was more pronounced in RSD mice. In summary, our findings suggest that stress and cocaine can increase the long-term vulnerability of the brain to subsequent environmental insults as a consequence of a sustained disruption of the BBB.
Collapse
Affiliation(s)
- Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología; Universitat de València; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| | - Sandra Montagud-Romero
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología; Universitat de València; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| | - Ana Rubio-Araiz
- Departamento de Farmacología, Facultad de Medicina; Universidad Complutense, Instituto de Investigación Sanitaria Hospital; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| | - María A. Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología; Universitat de València; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology, Departament de Ciencies Experimentals i de la Salut; Universitat Pompeu Fabra; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| | - Roberto Cabrera
- Laboratory of Neuropharmacology, Departament de Ciencies Experimentals i de la Salut; Universitat Pompeu Fabra; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Departament de Ciencies Experimentals i de la Salut; Universitat Pompeu Fabra; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| | - Francesca Porcu
- Departamento de Farmacología, Facultad de Medicina; Universidad Complutense, Instituto de Investigación Sanitaria Hospital; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| | - María Isabel Colado
- Departamento de Farmacología, Facultad de Medicina; Universidad Complutense, Instituto de Investigación Sanitaria Hospital; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología; Universitat de València; Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III; Spain
| |
Collapse
|
67
|
Iñiguez SD, Aubry A, Riggs LM, Alipio JB, Zanca RM, Flores-Ramirez FJ, Hernandez MA, Nieto SJ, Musheyev D, Serrano PA. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice. Neurobiol Stress 2016; 5:54-64. [PMID: 27981196 PMCID: PMC5154707 DOI: 10.1016/j.ynstr.2016.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes for 10 consecutive days. Twenty-four h later, separate groups of mice were tested on the social interaction and tail suspension tests. Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ), protein kinase C zeta (PKCζ), the dopamine-1 (D1) receptor, tyrosine hydroxylase (TH), and the dopamine transporter (DAT). Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95) protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom) using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile social stress induces GluA2- and dopamine-associated dysregulation in the hippocampus - a neurobiological mechanism potentially underlying the development of mood-related syndromes as a consequence of adolescent bullying.
Collapse
Affiliation(s)
- Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Antonio Aubry
- Department of Psychology, Hunter College, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, USA
| | - Lace M. Riggs
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Jason B. Alipio
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | | | - Francisco J. Flores-Ramirez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
| | - Mirella A. Hernandez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Steven J. Nieto
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - David Musheyev
- Department of Psychology, Hunter College, New York, NY, 10065, USA
| | - Peter A. Serrano
- Department of Psychology, Hunter College, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, USA
| |
Collapse
|
68
|
Ishida Y, Ebihara K, Tabuchi M, Imamura S, Sekiguchi K, Mizoguchi K, Kase Y, Koganemaru G, Abe H, Ikarashi Y. Yokukansan, a Traditional Japanese Medicine, Enhances the L-DOPA-Induced Rotational Response in 6-Hydroxydopamine-Lesioned Rats: Possible Inhibition of COMT. Biol Pharm Bull 2016; 39:104-13. [PMID: 26725433 DOI: 10.1248/bpb.b15-00691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to investigate the effects of the traditional Japanese medicine yokukansan (YKS) on the function of dopamine (DA) in the rat nigrostriatal system. Unilateral 6-hydroxydopamine lesions were produced in the rat nigrostriatal system. Despite a marked loss in the striatal immunoreactivity of tyrosine hydroxylase on the lesion side, striatal serotonin (5-HT) immunoreactivity was not affected. Treatment using L-3,4-dihydroxyphenylalanine (L-DOPA) in conjunction with benserazide for 15 d induced abnormal involuntary movements (AIMs) such as locomotive (rotational response), axial, forelimb, and orolingual movements in the lesioned rats. The L-DOPA-induced locomotive and axial, but not forelimb and orolingual, AIMs were significantly increased and prolonged by the pre-administration of YKS. We next investigated the effects of YKS on the production of DA from L-DOPA in 5-HT synthetic RIN 14B cells. RIN 14B cells produced DA and its metabolite, 3-methoxytyramine (3-MT), following L-DOPA treatment. YKS significantly augmented DA production and inhibited its metabolism to 3-MT in a manner similar to the catechol-O-methyltransferase (COMT) inhibitor entacapone. YKS and some alkaloids (corynoxeine: CX, geissoschizine methyl ether: GM) in Uncaria hook, a constituent herb of YKS, also inhibited COMT activity, indicating that the augmenting effect of YKS on L-DOPA-induced DA production in 5-HT synthetic cells was due to the inhibition of COMT by CX and GM. Our results suggest that YKS facilitates the DA supplemental effect of L-DOPA, and that COMT inhibition by CX and GM contributes, at least in part, to the effects of YKS.
Collapse
Affiliation(s)
- Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kang S, Wu MM, Galvez R, Gulley JM. Timing of amphetamine exposure in relation to puberty onset determines its effects on anhedonia, exploratory behavior, and dopamine D 1 receptor expression in young adulthood. Neuroscience 2016; 339:72-84. [PMID: 27702645 DOI: 10.1016/j.neuroscience.2016.09.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Non-medical use of amphetamine (AMPH) among adolescents is prevalent, which is problematic given the potential consequences of developmental drug exposure on brain function and behavior. Previously we found in adult male rats that AMPH exposure starting before puberty induces a persistent decrease in dopamine D1 receptor (D1R) function in the medial prefrontal cortex (mPFC). Here we investigated if this dysfunction was associated with changes in D1R expression in the mPFC and nucleus accumbens (NAc). We also determined if starting drug exposure well before or near the onset of puberty would influence AMPH-induced changes in D1R expression and behavior. Male and female Sprague-Dawley rats were treated once every other day (10 injections total) with saline or 3mg/kg AMPH (i.p.) from either postnatal day (P) 27 to 45 (pre-puberty groups; Pre-P) or P37 to 55 (peri-puberty groups; Peri-P). After 1, 7 and 21days of withdrawal, sucrose preference tests were performed to assess anhedonia. Exploratory behavior was studied in an open-field arena and on an elevated plus maze (EPM). Rats were then sacrificed for Western blot analysis of D1R expression. We found that AMPH withdrawal induced decreases in sucrose preference that persisted in rats with Peri-P onset treatment. Pre-P onset AMPH exposure led to increased open-arm exploration in the EPM test, as well as a decreased D1R level in the mPFC but not NAc. Our results demonstrated that AMPH exposure starting at different developmental stages resulted in distinct neurobehavioral abnormalities, suggesting an important role of exposure timing in drug-induced plasticity.
Collapse
Affiliation(s)
- Shuo Kang
- Neuroscience Program, University of Illinois at Urbana-Champaign, IL, USA; Beckman Institute for Advanced Science, University of Illinois at Urbana-Champaign, IL, USA
| | - Mariah M Wu
- Department of Psychology, University of Illinois at Urbana-Champaign, IL, USA
| | - Roberto Galvez
- Department of Psychology, University of Illinois at Urbana-Champaign, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, IL, USA; Beckman Institute for Advanced Science, University of Illinois at Urbana-Champaign, IL, USA
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, IL, USA; Beckman Institute for Advanced Science, University of Illinois at Urbana-Champaign, IL, USA.
| |
Collapse
|
70
|
Long-lasting monoaminergic and behavioral dysfunctions in a mice model of socio-environmental stress during adolescence. Behav Brain Res 2016; 317:132-140. [PMID: 27641324 DOI: 10.1016/j.bbr.2016.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 11/22/2022]
Abstract
Adolescence is one of the critical periods of development and has great importance to health for an individual as an adult. Stressors or traumatic events during this period are associated with several psychiatric disorders as related to anxiety or depression and cognitive impairments, but whether negative experiences continue to hinder individuals as they age is not as well understood. We determined how stress during adolescence affects behavior and neurochemistry in adulthood. Using an unpredictable paradigm (2 stressors per day for 10days) in Balb/c mice, behavioral, hormonal, and neurochemical changes were identified 20days after the cessation of treatment. Adolescent stress increased motor activity, emotional arousal and vigilance, together with a reduction in anxiety, and also affected recognition memory. Furthermore, decreased serotonergic activity on hippocampus, hypothalamus and cortex, decreased noradrenergic activity on hippocampus and hypothalamus, and increased the turnover of dopamine in cortex. These data suggest behavioral phenotypes associated with emotional arousal, but not depression, emerge after cessation of stress and remain in adulthood. Social-environmental stress can induce marked and long-lasting changes in HPA resulting from monoaminergic neurotransmission, mainly 5-HT activity.
Collapse
|
71
|
Burke AR, DeBold JF, Miczek KA. CRF type 1 receptor antagonism in ventral tegmental area of adolescent rats during social defeat: prevention of escalated cocaine self-administration in adulthood and behavioral adaptations during adolescence. Psychopharmacology (Berl) 2016; 233:2727-36. [PMID: 27251131 PMCID: PMC4919183 DOI: 10.1007/s00213-016-4336-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Activation of corticotropin-releasing factor type 1 receptors (CRF-R1) in the ventral tegmental area (VTA) represents a critical mechanism for social defeat to escalate cocaine self-administration in adult rats. OBJECTIVE We determined the acute effect of a CRF-R1 antagonist (CP376395) microinfusion into the VTA prior to each episode of social defeat in adolescent rats and determined whether this drug treatment could prevent later escalation of cocaine taking in early adulthood. METHODS Rats were implanted with bilateral cannulae aimed at the VTA 5 days before the first social defeat. Bilateral microinfusion of CP376395 (500 ng/side) or vehicle occurred 20 min before each episode of social defeat on postnatal days (P) 35, 38, 41, and 44. Behavior was quantified on P35 and P44. On P57, rats were implanted with intra-jugular catheters, and subsequent cocaine self-administration was analyzed. RESULTS CP376395-treated adolescent rats walked less and were attacked more slowly but were socially investigated more than vehicle-treated adolescents. Vehicle-treated rats showed increased social and decreased non-social exploration from P35 to P44, while CP376395-treated rats did not. Socially defeated, vehicle-treated adolescents took more cocaine during a 24-h unlimited access binge during adulthood. The latency to supine posture on P44 was inversely correlated with later cocaine self-administration during fixed and progressive ratio schedules of reinforcement and during the binge. CONCLUSIONS CP376395 treatment in adolescence blocked escalation of cocaine taking in adulthood. Episodes of social defeat stress engender neuroadaptation in CRF-R1s in the VTA that alter coping with social stress and that persist into adulthood.
Collapse
Affiliation(s)
- Andrew R Burke
- Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA, 02155, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Joseph F DeBold
- Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA, 02155, USA
| | - Klaus A Miczek
- Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA, 02155, USA.
- Department of Neuroscience, Tufts University, Boston, MA, 02111, USA.
- Department of Pharmacology, Tufts University, Boston, MA, 02111, USA.
- Department of Psychiatry, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
72
|
Ng E, Browne CJ, Samsom JN, Wong AHC. Depression and substance use comorbidity: What we have learned from animal studies. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:456-474. [PMID: 27315335 DOI: 10.1080/00952990.2016.1183020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Depression and substance use disorders are often comorbid, but the reasons for this are unclear. In human studies, it is difficult to determine how one disorder may affect predisposition to the other and what the underlying mechanisms might be. Instead, animal studies allow experimental induction of behaviors relevant to depression and drug-taking, and permit direct interrogation of changes to neural circuits and molecular pathways. While this field is still new, here we review animal studies that investigate whether depression-like states increase vulnerability to drug-taking behaviors. Since chronic psychosocial stress can precipitate or predispose to depression in humans, we review studies that use psychosocial stressors to produce depression-like phenotypes in animals. Specifically, we describe how postweaning isolation stress, repeated social defeat stress, and chronic mild (or unpredictable) stress affect behaviors relevant to substance abuse, especially operant self-administration. Potential brain changes mediating these effects are also discussed where available, with an emphasis on mesocorticolimbic dopamine circuits. Postweaning isolation stress and repeated social defeat generally increase acquisition or maintenance of drug self-administration, and alter dopamine sensitivity in various brain regions. However, the effects of chronic mild stress on drug-taking have been much less studied. Future studies should consider standardizing stress-induction protocols, including female subjects, and using multi-hit models (e.g. genetic vulnerabilities and environmental stress).
Collapse
Affiliation(s)
- Enoch Ng
- a Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital , Toronto , Canada.,b Institute of Medical Science, University of Toronto , Toronto , Canada
| | - Caleb J Browne
- c Department of Psychology , University of Toronto , Toronto , Canada.,d Campbell Family Health Institute , Centre for Addiction and Mental Health , Toronto , Canada
| | - James N Samsom
- d Campbell Family Health Institute , Centre for Addiction and Mental Health , Toronto , Canada.,e Department of Pharmacology , University of Toronto , Toronto , Canada
| | - Albert H C Wong
- b Institute of Medical Science, University of Toronto , Toronto , Canada.,d Campbell Family Health Institute , Centre for Addiction and Mental Health , Toronto , Canada.,e Department of Pharmacology , University of Toronto , Toronto , Canada.,f Department of Psychiatry , University of Toronto , Toronto , Canada
| |
Collapse
|
73
|
Yu WC, Liu CY, Lai WS. Repeated, Intermittent Social Defeat across the Entire Juvenile Period Resulted in Behavioral, Physiological, Hormonal, Immunological, and Neurochemical Alterations in Young Adult Male Golden Hamsters. Front Behav Neurosci 2016; 10:110. [PMID: 27375450 PMCID: PMC4901039 DOI: 10.3389/fnbeh.2016.00110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
The developing brain is vulnerable to social defeat during the juvenile period. As complements of human studies, animal models of social defeat provide a straightforward approach to investigating the functional and neurobiological consequences of social defeats. Taking advantage of agonist behavior and social defeat in male golden hamster, a set of 6 experiments was conducted to investigate the consequences at multiple levels in young adulthood resulting from repeated, intermittent social defeats or “social threats” across the entire juvenile period. Male hamsters at postnatal day 28 (P28) were randomly assigned to either the social defeat, “social threat”, or arena control group, and they correspondingly received a series of nine social interaction trials (i.e., either social defeat, “social threat”, or arena control conditions) from P33 to P66. At the behavioral level (Experiment 1), we found that repeated social defeats (but not “social threats”) significantly impacted locomotor activity in the familiar context and social interaction in the familiar/unfamiliar social contexts. At the physiological and hormonal levels (Experiments 2 and 3), repeated social defeat significantly enhanced the cortisol and norepinephrine concentrations in blood. Enlargement of the spleen was also found in the social defeat and “social threat” groups. At the immunological level (Experiment 4), the social defeat group showed lower levels of pro-inflammatory cytokines in the hypothalamus and hippocampus but higher concentration of IL-6 in the striatum compared to the other two groups. At the neurochemical level (Experiment 5), the socially defeated hamsters mainly displayed reductions of dopamine, dopamine metabolites, and 5-HT levels in the striatum and decreased level of 5-HT in the hippocampus. In Experiment 6, an increase in the spine density of hippocampal CA1 pyramidal neurons was specifically observed in the “social threat” group. Collectively, our findings indicate that repeated, intermittent social defeats throughout entire adolescence in hamsters impact their adult responses at multiple levels. Our results also suggest that the “social threat” group may serve as an appropriate control. This study further suggest that the alterations of behavioral responses and neurobiological functions in the body and brain might provide potential markers to measure the negative consequences of chronic social defeats.
Collapse
Affiliation(s)
- Wei-Chun Yu
- Department of Psychology, National Taiwan University Taipei, Taiwan
| | - Ching-Yi Liu
- Department of Psychology, National Taiwan University Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan UniversityTaipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan UniversityTaipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
74
|
Zhang H, Yan G, Xu H, Fang Z, Zhang J, Zhang J, Wu R, Kong J, Huang Q. The recovery trajectory of adolescent social defeat stress-induced behavioral, (1)H-MRS metabolites and myelin changes in Balb/c mice. Sci Rep 2016; 6:27906. [PMID: 27283029 PMCID: PMC4901266 DOI: 10.1038/srep27906] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Adolescent exposure to social stress precipitates emotion-related disorders and affects the development and function of medial prefrontal cortex (mPFC). However, this adversity-induced behavioral and neurological changes remain not fully explored. Adolescent Balb/c mice were subjected to intermittent social defeat stress during postnatal days 28 to 42. Proton magnetic resonance spectroscopy (1H-MRS) measurements, behavioral tests and immunohistochemistry were performed one day or 3 weeks after the last stress episode. Defeated mice exhibited hypoactivity and social avoidance with the latter lasting into the early adulthood, while the anxiety level was unchanged. Social defeat experience lead to temporary decreases in the levels of total creatines (Cr + pCr) and Glx (Glu + Gln), but a delayed increase of N- acetylaspartate (NAA) levels. These alternations were accompanied with a persistent reduction of myelin basic protein expression although the number of mature oligodendrocyte did not change. These findings provide evidence that adolescent adverse social experience permanently impairs the emotion-related behavioral performance and induces biochemical and molecular changes in the brain which at least lasts into early adulthood, thus enhancing our understanding of the neurobiology of social defeat stress. Our finding also implicates that NAA signals on MRS may reflect myelin status.
Collapse
Affiliation(s)
- Handi Zhang
- Mental Health Center Shantou University, Shantou, China
| | - Gen Yan
- Affiliated Hospital, Jiangnan University, Wuxi, China
| | - Haiyun Xu
- Mental Health Center Shantou University, Shantou, China
| | - Zeman Fang
- Mental Health Center Shantou University, Shantou, China
| | - Jinling Zhang
- Mental Health Center Shantou University, Shantou, China
| | - Jie Zhang
- Mental Health Center Shantou University, Shantou, China
| | - Renhua Wu
- The 2nd affiliated Hospital, Shantou University, Shantou, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Qingjun Huang
- Mental Health Center Shantou University, Shantou, China
| |
Collapse
|
75
|
Novick AM, Mears M, Forster GL, Lei Y, Tejani-Butt SM, Watt MJ. Adolescent social defeat alters N-methyl-D-aspartic acid receptor expression and impairs fear learning in adulthood. Behav Brain Res 2016; 304:51-9. [PMID: 26876136 PMCID: PMC4795455 DOI: 10.1016/j.bbr.2016.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
Abstract
Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat. Quantitative autoradiography was used to measure 3H-MK-801 binding to NMDA receptors in regions of the medial prefrontal cortex, caudate putamen, nucleus accumbens, amygdala and hippocampus. Assessment of fear learning was achieved using an auditory fear conditioning paradigm, with freezing toward the auditory tone used as a measure of conditioned fear. Compared to controls, adolescent social defeat decreased adult NMDA receptor expression in the infralimbic region of the prefrontal cortex and central amygdala, while increasing expression in the CA3 region of the hippocampus. Previously defeated rats also displayed decreased conditioned freezing during the recall and first extinction periods, which may be related to the observed decreases and increases in NMDA receptors within the central amygdala and CA3, respectively. The alteration in NMDA receptors seen following adolescent social defeat suggests that dysfunction of glutamatergic systems, combined with mesocortical dopamine deficits, likely plays a role in the some of the long-term behavioral consequences of social stressors in adolescence seen in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Andrew M Novick
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA.
| | - Mackenzie Mears
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Yanlin Lei
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 S 43rd St., Philadelphia, PA 19104, USA
| | - Shanaz M Tejani-Butt
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 S 43rd St., Philadelphia, PA 19104, USA
| | - Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| |
Collapse
|
76
|
Davies DR, Olson D, Meyer DL, Scholl JL, Watt MJ, Manzerra P, Renner KJ, Forster GL. Mild Traumatic Brain Injury with Social Defeat Stress Alters Anxiety, Contextual Fear Extinction, and Limbic Monoamines in Adult Rats. Front Behav Neurosci 2016; 10:71. [PMID: 27147992 PMCID: PMC4835499 DOI: 10.3389/fnbeh.2016.00071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
Mild traumatic brain injury (mTBI) produces symptoms similar to those typifying posttraumatic stress disorder (PTSD) in humans. We sought to determine whether a rodent model of stress concurrent with mTBI produces characteristics of PTSD such as impaired contextual fear extinction, while also examining concurrent alterations to limbic monoamine activity in brain regions relevant to fear and anxiety states. Male rats were exposed to social stress or control conditions immediately prior to mTBI induction, and 6 days later were tested either for anxiety-like behavior using the elevated plus maze (EPM), or for contextual fear conditioning and extinction. Brains were collected 24 h after EPM testing, and tissue from various limbic regions analyzed for content of monoamines, their precursors and metabolites using HPLC with electrochemical detection. Either social defeat or mTBI alone decreased time spent in open arms of the EPM, indicating greater anxiety-like behavior. However, this effect was enhanced by the combination of treatments. Further, rats exposed to both social defeat and mTBI exhibited greater freezing within extinction sessions compared to all other groups, suggesting impaired contextual fear extinction. Social defeat combined with mTBI also had greater effects on limbic monoamines than either insult alone, particularly with respect to serotonergic effects associated with anxiety and fear learning. The results suggest social stress concurrent with mTBI produces provides a relevant animal model for studying the prevention and treatment of post-concussive psychobiological outcomes.
Collapse
Affiliation(s)
- Daniel R Davies
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Dawne Olson
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Danielle L Meyer
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Jamie L Scholl
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Pasquale Manzerra
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| | - Kenneth J Renner
- Center for Brain and Behavior Research, Department of Biology, University of South Dakota Vermillion, SD, USA
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD, USA
| |
Collapse
|
77
|
Yin YQ, Zhang C, Wang JX, Hou J, Yang X, Qin J. Chronic caffeine treatment enhances the resilience to social defeat stress in mice. Food Funct 2016; 6:479-91. [PMID: 25474697 DOI: 10.1039/c4fo00702f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strong evidence has shown that caffeine exerts antidepressant-like effects in chronic stress situations by increasing dopamine levels. However, whether caffeine mediates the dopaminergic system and interferes with the resilience to social defeat stress in mice is unknown. The aim of this study is to investigate the role of caffeine in the behavioral responses to social defeat stress and the possible regulatory role of the dopaminergic system. Mice experienced chronic social defeat stress for 10 days. Caffeine was administered intraperitoneally before, during and after social defeat stress. The time spent in interaction zone, social interaction ratio and sucrose preference test was used to measure the social avoidance and anhedonia in mice. The results showed that chronic pretreatment with caffeine for 14 days and for 10 days during stress reversed the avoidance of social behavior and anhedonia induced by social defeat stress in mice, suggesting the enhancement of the resilience to social defeat stress induced by caffeine. However, neither the treatment with caffeine only during the social defeat stress for 10 days nor the treatment with acute caffeine after defeat stress altered the resilience to stress. Furthermore, chronic caffeine treatment did not affect the normal locomotor activity and the desperate behavior in naïve mice. Moreover, the antagonism of dopamine D1 receptor and not D2 receptor reversed the effect of caffeine on the social avoidance and depressive-like behavior. Finally, pretreatment with higher doses of caffeine did not affect the behavioral response to social defeat stress. Taken together, our findings provide new insight into the effects of caffeine on social avoidance and anhedonia in mice. In addition, our results illustrated the value of measuring changes in depressive-like behavior before and after social defeat stress to determine the potential treatment of caffeine on depression through the regulation of dopaminergic system.
Collapse
Affiliation(s)
- Yong-Qin Yin
- Department of Traditional Chinese Medicinal Chemistry, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | | | | | | | | | | |
Collapse
|
78
|
Jarcho MR, Massner KJ, Eggert AR, Wichelt EL. Behavioral and physiological response to onset and termination of social instability in female mice. Horm Behav 2016; 78:135-40. [PMID: 26597994 DOI: 10.1016/j.yhbeh.2015.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/05/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022]
Abstract
Chronic stress has been associated with several negative health outcomes and psychopathological conditions. One source of chronic stress might be from ones social environment (e.g., being excluded from a group, losing a loved one, etc.). Specifically, social instability, or frequent changes in the social environment, can result in both physiological and behavioral stress responses. Corticosterone is the primary stress-responsive biomarker in rodents, and it reflects the activity of the hypothalamic-pituitary-adrenal (HPA) axis. Historically, research on the effects of stress has relied on collection of blood, saliva, or other bodily fluids that yield information about moment-to-moment changes in stress physiology. Recently, new sampling techniques involving quantification of glucocorticoids in hair has allowed researchers to view patterns of stress physiology over extended periods of time. This study assessed the effects of chronic social instability on corticosterone levels in female mice. Mice that were subjected to social instability showed elevated hair corticosterone compared to baseline levels and as compared to controls. Additionally, when mice were returned to stable social environments, corticosterone levels returned to levels comparable to baseline and to control animals. This suggests that the corticosterone in hair from female mice can serve as a useful biomarker of chronic stress, and that social instability is a sufficient stressor to elicit an extended HPA response.
Collapse
Affiliation(s)
- M R Jarcho
- Neuroscience Program, Loras College, Dubuque, IA 52001, United States.
| | - K J Massner
- Neuroscience Program, Loras College, Dubuque, IA 52001, United States
| | - A R Eggert
- Neuroscience Program, Loras College, Dubuque, IA 52001, United States
| | - E L Wichelt
- Neuroscience Program, Loras College, Dubuque, IA 52001, United States
| |
Collapse
|
79
|
Marshall AD. Developmental Timing of Trauma Exposure Relative to Puberty and the Nature of Psychopathology Among Adolescent Girls. J Am Acad Child Adolesc Psychiatry 2016; 55:25-32.e1. [PMID: 26703906 PMCID: PMC4691280 DOI: 10.1016/j.jaac.2015.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Increased neuroplasticity and neural development during puberty provide a context for which stress and trauma can have dramatic and long-lasting effects on psychological systems; therefore, this study was designed to determine whether exposure to potentially traumatic events during puberty uniquely predicts adolescent girls' psychopathology. Because neural substrates associated with different forms of psychopathology seemingly develop at different rates, the possibility that the developmental timing of trauma relative to puberty predicts the nature of psychopathology (posttraumatic stress disorder [PTSD], depressive, and anxiety disorders) was examined. METHOD A subset of 2,899 adolescent girls from the National Comorbidity Survey Replication-Adolescent Supplement who completed the study 2+ years postmenarche was selected. Past-year psychiatric disorders and reports of age of trauma exposure were assessed using the Composite International Diagnostic Interview. Developmental stages were defined as the 2 years after the year of menarche ("postpuberty"), 3 years before and year of menarche ("puberty"), 2 to 6 years before the puberty period ("grade school"), and 4 to 5 years after birth ("infancy-preschool"). RESULTS Compared to other developmental periods, trauma during puberty conferred significantly more risk (50.47% of model R(2)) for girls' past-year anxiety disorder diagnoses (primarily social phobia), whereas trauma during the grade school period conferred significantly more risk (47.24% of model R(2)) for past-year depressive disorder diagnoses. Recency of trauma best predicted past-year PTSD diagnoses. CONCLUSION Supporting rodent models, puberty may be a sensitive period for the impact of trauma on girls' development of an anxiety disorder. Trauma prepuberty or postpuberty distinctly predicts depression or PTSD, suggesting differential etiological processes.
Collapse
|
80
|
Rodriguez-Arias M, Navarrete F, Blanco-Gandia MC, Arenas MC, Bartoll-Andrés A, Aguilar MA, Rubio G, Miñarro J, Manzanares J. Social defeat in adolescent mice increases vulnerability to alcohol consumption. Addict Biol 2016; 21:87-97. [PMID: 25219790 DOI: 10.1111/adb.12184] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study employs an oral operant conditioning paradigm to evaluate the effects of repeated social defeat during adolescence on the reinforcing and motivational actions of ethanol in adult OF1 mice. Social interaction, emotional and cognitive behavioral aspects were also analyzed, and real-time polymerase chain reaction (PCR) experiments were performed to study gene expression changes in the mesocorticolimbic and hypothalamus-hypophysis-adrenal (HHA) axis. Social defeat did not alter anxiety-like behavior in the elevated plus maze or cognitive performance in the passive avoidance and Hebb-Williams tests. A social interaction test revealed depression-like symptoms and social subordination behavior in defeated OF1 mice. Interestingly, social defeat in adolescence significantly increased the number of effective responses, ethanol consumption values and motivation to drink. Finally, real-time PCR analyses revealed that social defeat significantly increased tyrosine hydroxylase and corticotropin-releasing hormone in the ventral tegmental area and paraventricular nucleus, respectively. In contrast, mu-opioid receptor gene expression was decreased in the nucleus accumbens of socially defeated mice. In summary, these findings suggest that exposure to social defeat during adolescence increases vulnerability to the rewarding effects of ethanol without affecting emotional or cognitive performance. The gene expression alterations we have observed in the mesocorticolimbic and HHA axis systems of defeated mice could be related with their increased ethanol consumption. These results endorse future research into pharmacological strategies that modulate these systems for the treatment of social stress-related alcohol consumption problems.
Collapse
Affiliation(s)
- Marta Rodriguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Francisco Navarrete
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Spain
| | - Maria Carmen Blanco-Gandia
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Maria Carmen Arenas
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | | | - Maria A. Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
- Unidad de Psiquiatría; Hospital Universitario ‘12 de Octubre’; Spain
- Instituto de Investigación ‘12 de Octubre’; Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Jorge Manzanares
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Spain
| |
Collapse
|
81
|
Monleón S, Duque A, Vinader-Caerols C. Effects of several degrees of chronic social defeat stress on emotional and spatial memory in CD1 mice. Behav Processes 2015; 124:23-31. [PMID: 26679824 DOI: 10.1016/j.beproc.2015.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
Abstract
In the present study, the effects of several degrees of CSDS (Chronic Social Defeat Stress) on emotional and spatial memory in mice were evaluated in separate experiments. Male CD1 mice were randomly assigned to four experimental groups (n=10-12) for each experiment: NS (non-stressed), S5, S10 and S20 (5, 10 and 20 sessions of CSDS, respectively). The S groups underwent the corresponding number of agonistic encounters (10min each) over a 20-day period. 24h after the last session of CSDS, mice performed the inhibitory avoidance (Experiment 1) or the Morris water maze test (Experiment 2). In both experiments, animals were also evaluated in the elevated plus maze for 5min to obtain complementary measures of locomotor activity and emotionality. The results showed that the highest degree of CSDS had impairing effects on inhibitory avoidance, while there were no significant differences between groups in the water maze. The S20 group exhibited higher anxiety levels in the elevated plus maze. No variations in locomotor activity were observed in any experiment. In conclusion, CSDS has a greater impact on emotional memory than on spatial memory. These negative effects of CSDS on memory do not seem to be secondary to the motor or emotional effects of stress.
Collapse
Affiliation(s)
- Santiago Monleón
- Department of Psychobiology, University of Valencia, Valencia, Spain.
| | - Aranzazu Duque
- Department of Psychobiology, University of Valencia, Valencia, Spain.
| | | |
Collapse
|
82
|
García-Pardo MP, Blanco-Gandía MC, Valiente-Lluch M, Rodríguez-Arias M, Miñarro J, Aguilar MA. Long-term effects of repeated social stress on the conditioned place preference induced by MDMA in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:98-109. [PMID: 26093344 DOI: 10.1016/j.pnpbp.2015.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated that social defeat stress increases the rewarding effects of psychostimulant drugs such as cocaine and amphetamine. In the present study we evaluated the long-term effects of repeated social defeat (RSD) on the rewarding effects of ±3,4-methylenedioxymethamphetamine (MDMA) hydrochloride in the conditioned place preference (CPP) paradigm. Adolescent and young adult mice were exposed to four episodes of social defeat (on PND 29-40 and PND 47-56, respectively) and were conditioned three weeks later with 1.25 or 10mg/kg i.p. of MDMA (experiment 1). The long-term effects of RSD on anxiety, social behavior and cognitive processes were also evaluated in adult mice (experiment 2). RSD during adolescence enhanced vulnerability to priming-induced reinstatement in animals conditioned with 1.25mg/kg of MDMA and increased the duration of the CPP induced by the 10mg/kg of MDMA. The latter effect was also observed after RSD in young adult mice, as well as an increase in anxiety-like behavior, an alteration in social interaction (reduction in attack and increase in avoidance/flee and defensive/submissive behaviors) and an impairment of maze learning. These results support the idea that RSD stress increases the rewarding effects of MDMA and induces long-term alterations in anxiety, learning and social behavior in adult mice. Thus, exposure to stress may increase the vulnerability of individuals to developing MDMA dependence, which is a factor to be taken into account in relation to the prevention and treatment of this disorder.
Collapse
Affiliation(s)
- M P García-Pardo
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M C Blanco-Gandía
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M Valiente-Lluch
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M A Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain.
| |
Collapse
|
83
|
Defeat stress in rodents: From behavior to molecules. Neurosci Biobehav Rev 2015; 59:111-40. [DOI: 10.1016/j.neubiorev.2015.10.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
|
84
|
Proliferating cells in the adolescent rat amygdala: Characterization and response to stress. Neuroscience 2015; 311:105-17. [PMID: 26476262 DOI: 10.1016/j.neuroscience.2015.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/24/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022]
Abstract
The amygdala is a heterogeneous group of nuclei that plays a role in emotional and social learning. As such, there has been increased interest in its development in adolescent animals, a period in which emotional/social learning increases dramatically. While many mechanisms of amygdala development have been studied, the role of cell proliferation during adolescence has received less attention. Using bromodeoxyuridine (BrdU) injections in adolescent and adult rats, we previously found an almost fivefold increase in BrdU-positive cells in the amygdala of adolescents compared to adults. Approximately one third of BrdU-labeled cells in the amygdala contained the putative neural marker doublecortin (DCX), suggesting a potential for neurogenesis. To further investigate this possibility in adolescents, we examined the proliferative dynamics of DCX/BrdU-labeled cells. Surprisingly, DCX/BrdU-positive cells were found to comprise a stable subpopulation of BrdU-containing cells across survivals up to 56 days, and there was no evidence of neural maturation by 28 days after BrdU injection. Additionally, we found that approximately 50% of BrdU+ cells within the adolescent amygdala contain neural-glial antigen (NG2) and are therefore presumptive oligodendrocyte precursors (OPCs). We next characterized the response to a short-lived stressor (3-day repeated variable stress, RVS). The total BrdU-labeled cell number decreased by ∼30% by 13 days following RVS (10 days post-BrdU injection) as assessed by stereologic counting methods, but the DCX/BrdU-labeled subpopulation was relatively resistant to RVS effects. In contrast, NG2/BrdU-labeled cells were strongly influenced by RVS. We conclude that typical neurogenesis is not a feature of the adolescent amygdala. These findings point to several possibilities, including the possibility that DCX/BrdU cells are late-developing neural precursors, or a unique subtype of NG2 cell that is relatively resistant to stress. In contrast, many proliferating OPCs are significantly impacted by a short-lived stressor, suggesting consequences for myelination in the developing amygdala.
Collapse
|
85
|
Baskak B, Baran Z, Devrimci-Özgüven H, Münir K, Öner Ö, Özel-Kızıl T. Effect of a socıal defeat experıence on prefrontal actıvıty ın schızophrenıa. Psychiatry Res 2015. [PMID: 26208745 PMCID: PMC4816220 DOI: 10.1016/j.pscychresns.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The social defeat (SD) hypothesis of schizophrenia posits that repeated experiences of SD may lead to sensitization of the mesolimbic dopaminergic system and to precipitation of psychosis. Based on previous definitions adapted to a human experimental paradigm, we prepared a computer simulation of SD to mimic this subjective experience. We measured prefrontal cortex (PFC) activity in subjects with schizophrenia and healthy controls during exposure to a single SD experience with functional near infrared spectroscopy. PFC activity declined in both groups. Compared with the control condition, SD exposure was associated with a broader decline in left ventromedial, right medial and right lateral PFC activity in healthy controls (n=25), and a sharper decline in right ventrolateral PFC activity in subjects with schizophrenia (n=25). The activity in the right ventrolateral PFC, was significantly lower in patients compared with controls. This may be due to a deficiency in emotion regulation or self-control, or it may be related to impaired empathy in schizophrenia. Different patterns of brain activity during the SD experience in subjects with schizophrenia versus healthy controls may provide indirect evidence regarding the SD hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Bora Baskak
- Ankara University, School of Medicine, Psychiatry Department, AUBAUM-Brain Research Center, Ankara, Turkey.
| | - Zeynel Baran
- Hacettepe University, Department of Psychology, Division of Experimental Psychology, Ankara, Turkey
| | - Halise Devrimci-Özgüven
- Ankara University, School of Medicine, Psychiatry Department, AUBAUM-Brain Research Center, Ankara, Turkey
| | - Kerim Münir
- Harvard Medical School, Boston Children’s Hospital, Developmental Medicine Center, Boston, MA, USA
| | - Özgür Öner
- Ankara University Child Psychiatry Department, Ankara, Turkey
| | - Tuğba Özel-Kızıl
- Ankara University, School of Medicine, Psychiatry Department, AUBAUM-Brain Research Center, Ankara, Turkey
| |
Collapse
|
86
|
Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: role of social experience and adaptive coping behavior. Psychopharmacology (Berl) 2015; 232:3067-79. [PMID: 25943168 PMCID: PMC4515153 DOI: 10.1007/s00213-015-3947-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/19/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND The link between adolescent social stress and substance abuse is modeled in social defeat of adolescent male rats, at an age when social experiences are essential for neurobehavioral maturation. OBJECTIVE We investigated the role of social experience and social defeat stress during adolescence on social behavior and cocaine self-administration (CocSelfAd) in early adulthood. METHODS We manipulated social experience by housing male rats in pairs (PH) or singly (SH) on postnatal day (P) 21. In addition, rats were subjected to social defeat from P35-44. Social behavior was measured during the first and last social defeat in PH and SH adolescents and PH adults. After assessing the behavioral response to novelty and cocaine (P57-61), intrajugular catheters were implanted and CocSelfAd was analyzed. RESULTS Residents were less aggressive toward PH adolescent intruders compared to PH adult intruders. Adults were submissive and defensive when attacked, whereas PH adolescents froze. In the course of repeated defeats, adolescent PH rats increased freezing, while SH rats decreased freezing. Longer attack-induced freezing after repeated defeats predicted escalated CocSelfAd in adulthood. PH controls acquired CocSelfAd more slowly than PH defeated and SH rats. Defeated PH rats increased CocSelfAd during progressive ratio schedules of reinforcement and during a 24-h continuous access binge compared to PH controls and SH defeated rats. CONCLUSIONS Social defeat in adolescence of PH rats caused persistent increases in adult CocSelfAd. Adolescent PH rats coped with attacks adaptively by increasing freezing behavior after repeated social defeats, a measure that predicted CocSelfAd in adulthood.
Collapse
|
87
|
Lee TTY, Hill MN, Hillard CJ, Gorzalka BB. Disruption of peri-adolescent endocannabinoid signaling modulates adult neuroendocrine and behavioral responses to stress in male rats. Neuropharmacology 2015; 99:89-97. [PMID: 26192544 DOI: 10.1016/j.neuropharm.2015.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
The endocannabinoid (eCB) system is known to regulate neural, endocrine and behavioral responses to stress in adults; however there is little knowledge regarding how this system governs the development and maturation of these responses. Previous work has reported dynamic and time-specific changes in CB1 receptor expression, N-arachidonylethanolamine (AEA) content and fatty acid amide hydrolase (FAAH) activity within corticolimbic structures throughout the peri-adolescent period. To examine whether fluctuations in adolescent eCB activity contribute to the development of adult stress responsivity and emotionality, we treated male Sprague-Dawley rats daily with the CB1R antagonist, AM-251 (5 mg/kg), or vehicle between post-natal days (PND) 35-45. Following this treatment, emotional behavior, HPA axis stress reactivity and habituation to repeated restraint stress, as well as corticolimbic eCB content were examined in adulthood (PND 75). Behaviorally, AM-251-treated males exhibited more active stress-coping behavior in the forced swim test, greater risk assessment behavior in the elevated plus maze and no significant differences in general motor activity. Peri-adolescent AM-251 treatment modified corticosterone habituation to repeated restraint exposure compared to vehicle. Peri-adolescent CB1R antagonism induced moderate changes in adult corticolimbic eCB signaling, with a significant decrease in amygdalar AEA, an increase in hypothalamic AEA and an increase in prefrontal cortical CB1R expression. Together, these data indicate that peri-adolescent endocannabinoid signaling contributes to the maturation of adult neurobehavioral responses to stress.
Collapse
Affiliation(s)
- Tiffany T-Y Lee
- Dept. of Psychology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Dept. of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Cecilia J Hillard
- Dept. of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Boris B Gorzalka
- Dept. of Psychology, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| |
Collapse
|
88
|
Novick AM, Forster GL, Hassell JE, Davies DR, Scholl JL, Renner KJ, Watt MJ. Increased dopamine transporter function as a mechanism for dopamine hypoactivity in the adult infralimbic medial prefrontal cortex following adolescent social stress. Neuropharmacology 2015; 97:194-200. [PMID: 26056032 DOI: 10.1016/j.neuropharm.2015.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 01/11/2023]
Abstract
Being bullied during adolescence is associated with later mental illnesses characterized by deficits in cognitive tasks mediated by prefrontal cortex (PFC) dopamine (DA). Social defeat of adolescent male rats, as a model of teenage bullying victimization, results in medial PFC (mPFC) dopamine (DA) hypofunction in adulthood that is associated with increased drug seeking and working memory deficits. Increased expression of the DA transporter (DAT) is also seen in the adult infralimbic mPFC following adolescent defeat. We propose the functional consequence of this increased DAT expression is enhanced DA clearance and subsequently decreased infralimbic mPFC DA availability. To test this, in vivo chronoamperometry was used to measure changes in accumulation of the DA signal following DAT blockade, with increased DAT-mediated clearance being reflected by lower DA signal accumulation. Previously defeated rats and controls were pre-treated with the norepinephrine transporter (NET) inhibitor desipramine (20 mg/kg, ip.) to isolate infralimbic mPFC DA clearance to DAT, then administered the selective DAT inhibitor GBR-12909 (20 or 40 mg/kg, sc.). Sole NET inhibition with desipramine produced no differences in DA signal accumulation between defeated rats and controls. However, rats exposed to adolescent social defeat demonstrated decreased DA signal accumulation compared to controls in response to both doses of GBR-12909, indicating greater DAT-mediated clearance of infralimbic mPFC DA. These results suggest that protracted increases in infralimbic mPFC DAT function represent a mechanism by which adolescent social defeat stress produces deficits in adult mPFC DA activity and corresponding behavioral and cognitive dysfunction.
Collapse
Affiliation(s)
- Andrew M Novick
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - James E Hassell
- Center for Brain and Behavior Research, Biology Department, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Daniel R Davies
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Jamie L Scholl
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Center for Brain and Behavior Research, Biology Department, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - Michael J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA.
| |
Collapse
|
89
|
Monleón S, Duque A, Vinader-Caerols C. Inhibitory avoidance learning in CD1 mice: Effects of chronic social defeat stress. Behav Processes 2015; 115:64-9. [DOI: 10.1016/j.beproc.2015.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
|
90
|
5-HT receptor-mediated modulation of granule cell inhibition after juvenile stress recovers after a second exposure to adult stress. Neuroscience 2015; 293:67-79. [DOI: 10.1016/j.neuroscience.2015.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
|
91
|
Furuta M, Ninomiya-Baba M, Chiba S, Funabashi T, Akema T, Kunugi H. Exposure to social defeat stress in adolescence improves the working memory and anxiety-like behavior of adult female rats with intrauterine growth restriction, independently of hippocampal neurogenesis. Horm Behav 2015; 70:30-7. [PMID: 25725425 DOI: 10.1016/j.yhbeh.2015.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Intrauterine growth restriction (IUGR) is a risk factor for memory impairment and emotional disturbance during growth and adulthood. However, this risk might be modulated by environmental factors during development. Here we examined whether exposing adolescent male and female rats with thromboxane A2-induced IUGR to social defeat stress (SDS) affected their working memory and anxiety-like behavior in adulthood. We also used BrdU staining to investigate hippocampal cellular proliferation and BrdU and NeuN double staining to investigate neural differentiation in female IUGR rats. In the absence of adolescent stress, IUGR female rats, but not male rats, scored significantly lower in the T-maze test of working memory and exhibited higher anxiety-like behavior in the elevated-plus maze test compared with controls. Adolescent exposure to SDS abolished these behavioral impairments in IUGR females. In the absence of adolescent stress, hippocampal cellular proliferation was significantly higher in IUGR females than in non-IUGR female controls and was not influenced by adolescent exposure to SDS. Hippocampal neural differentiation was equivalent in non-stressed control and IUGR females. Neural differentiation was significantly increased by adolescent exposure to SDS in controls but not in IUGR females. There was no significant difference in the serum corticosterone concentrations between non-stressed control and IUGR females; however, adolescent exposure to SDS significantly increased serum corticosterone concentration in control females but not in IUGR females. These results demonstrate that adolescent exposure to SDS improves behavioral impairment independent of hippocampal neurogenesis in adult rats with IUGR.
Collapse
Affiliation(s)
- Miyako Furuta
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan; Department of Mental Disorder, National Center of Psychiatry and Neuroscience, Tokyo, Japan.
| | - Midori Ninomiya-Baba
- Department of Mental Disorder, National Center of Psychiatry and Neuroscience, Tokyo, Japan
| | - Shuichi Chiba
- Department of Mental Disorder, National Center of Psychiatry and Neuroscience, Tokyo, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder, National Center of Psychiatry and Neuroscience, Tokyo, Japan
| |
Collapse
|
92
|
Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease. Neuropharmacology 2015; 95:181-91. [PMID: 25797491 DOI: 10.1016/j.neuropharm.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 11/21/2022]
Abstract
Although the medial subdivision of the central nucleus of the amygdala (CeM) and serotonin-1A (5-HT1A) receptors are involved in the regulation of anxiety, their roles in Parkinson's disease (PD)-associated anxiety are still unknown. Here we assessed the importance of CeM 5-HT1A receptors for anxiety in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle (MFB). The lesion induced anxiety-like behaviors, increased the firing rate and burst-firing pattern of CeM γ-aminobutyric acid (GABA) neurons, as well as decreased dopamine (DA) levels in the striatum, medial prefrontal cortex (mPFC), amygdala and ventral part of hippocampus (vHip). Intra-CeM injection of the selective 5-HT1A receptor agonist 8-OH-DPAT produced anxiolytic effects in the lesioned rats, and decreased the firing rate of CeM GABAergic neurons in two groups of rats. Compared to sham-operated rats, the duration of the inhibitory effect on the firing rate of GABAergic neurons was shortened in the lesioned rats. The injection increased DA levels in the mPFC and amygdala in two groups of rats and the vHip in the lesioned rats, and increased 5-HT level in the lesioned rats, whereas it decreased NA levels in the mPFC in two groups of rats and the vHip in the lesioned rats. Moreover, the mean density of 5-HT1A receptor and GABA double-labeled neurons in the CeM was reduced after the lesioning. These results suggest that activation of CeM 5-HT1A receptor produces anxiolytic effects in the 6-OHDA-lesioned rats, which involves decreased firing rate of the GABAergic neurons, and changed monoamine levels in the limbic and limbic-related brain regions.
Collapse
|
93
|
Hodges TE, McCormick CM. Adolescent and adult male rats habituate to repeated isolation, but only adolescents sensitize to partner unfamiliarity. Horm Behav 2015; 69:16-30. [PMID: 25510393 DOI: 10.1016/j.yhbeh.2014.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/24/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022]
Abstract
We investigated whether adolescent male rats show less habituation of corticosterone release than adult male rats to acute vs repeated (16) daily one hour episodes of isolation stress, as well as the role of partner familiarity during recovery on social behavior, plasma corticosterone, and Zif268 expression in brain regions. Adolescents spent more time in social contact than did adults during the initial days of the repeated stress procedures, but both adolescents and adults that returned to an unfamiliar peer after isolation had higher social activity than rats returned to a familiar peer (p=0.002) or undisturbed control rats (p<0.001). Both ages showed evidence of habituation, with reduced corticosterone response to repeated than acute isolation (p=0.01). Adolescents, however, showed sensitized corticosterone release to repeated compared with an acute pairing with an unfamiliar peer during recovery (p=0.03), a difference not found in adults. Consistent with habituation of corticosterone release, the repeated isolation groups had lower Zif268 immunoreactive cell counts in the paraventricular nucleus (p<0.001) and in the arcuate nucleus (p=0.002) than did the acute groups, and adolescents had higher Zif268 immunoreactive cell counts in the paraventricular nucleus than did adults during the recovery period (p<0.001), irrespective of stress history and partner familiarity. Partner familiarity had only modest effects on Zif268 immunoreactivity, and experimental effects on plasma testosterone concentrations were only in adults. The results highlight social and endocrine factors that may underlie the greater vulnerability of the adolescent period of development.
Collapse
Affiliation(s)
| | - Cheryl M McCormick
- Department of Psychology, Brock University, Canada; Department of Centre for Neuroscience, Brock University, Canada.
| |
Collapse
|
94
|
McCormick CM, Hodges TE, Simone JJ. Peer pressures: social instability stress in adolescence and social deficits in adulthood in a rodent model. Dev Cogn Neurosci 2015; 11:2-11. [PMID: 24830945 PMCID: PMC6989754 DOI: 10.1016/j.dcn.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/22/2022] Open
Abstract
Studies in animal models generate and test hypotheses regarding developmental stage-specific vulnerability that might inform research questions about human development. In both rats and humans, peer relationships are qualitatively different in adolescence than at other stages of development, and social experiences in adolescence are considered important determinants of adult social function. This review describes our adolescent rat social instability stress model and the long-lasting effects social instability has on social behaviour in adulthood as well as the possible neural underpinnings. Effects of other adolescent social stress experiences in rats on social behaviours in adulthood also are reviewed. We discuss the role of hypothalamic-pituitary-adrenal (HPA) function and glucocorticoid release in conferring differential susceptibility to social experiences in adolescents compared to adults. We propose that although differential perception of social experiences rather than immature HPA function may underlie the heightened vulnerability of adolescents to social instability, the changes in the trajectory of brain development and resultant social deficits likely are mediated by the heightened glucocorticoid release in response to repeated social stressors in adolescence compared to in adulthood.
Collapse
Affiliation(s)
- Cheryl M McCormick
- Department of Psychology, Brock University, Canada; Department of Biological Sciences, Brock University, Canada.
| | | | | |
Collapse
|
95
|
Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015; 40:88-112. [PMID: 25178408 PMCID: PMC4262911 DOI: 10.1038/npp.2014.231] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.
Collapse
|
96
|
Romeo RD. Perspectives on stress resilience and adolescent neurobehavioral function. Neurobiol Stress 2015; 1:128-33. [PMID: 27589663 PMCID: PMC4721430 DOI: 10.1016/j.ynstr.2014.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/02/2014] [Indexed: 11/19/2022] Open
Abstract
Interest in adolescence as a crucial stage of neurobehavioral maturation is growing, as is the concern of how stress may perturb this critical period of development. Though it is well recognized that stress-related vulnerabilities increase during adolescence, not all adolescent individuals are uniformly affected by stress nor do stressful experiences inevitability lead to negative outcomes. Indeed, many adolescents show resilience to stress-induced dysfunctions. However, relatively little is known regarding the mechanisms that may mediate resilience to stress in adolescence. The goal of this brief review is to bring together a few separate, yet related lines of research that highlight specific variables that may influence stress resilience during adolescence, including early life programming of the hypothalamic-pituitary-adrenal (HPA) axis, stress inoculation, and genetic predisposition. Though we are far from a clear understanding of the factors that mediate resistance to stress-induced dysfunctions, it is imperative that we identify and delineate these aspects of resilience to help adolescents reach their full potential, even in the face of adversity.
Collapse
Affiliation(s)
- Russell D. Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, USA
| |
Collapse
|
97
|
Booij L, Tremblay RE, Szyf M, Benkelfat C. Genetic and early environmental influences on the serotonin system: consequences for brain development and risk for psychopathology. J Psychiatry Neurosci 2015; 40:5-18. [PMID: 25285876 PMCID: PMC4275332 DOI: 10.1503/jpn.140099] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite more than 60 years of research in the role of serotonin (5-HT) in psychopathology, many questions still remain. From a developmental perspective, studies have provided more insight into how 5-HT dysfunctions acquired in utero or early in life may modulate brain development. This paper discusses the relevance of the developmental role of 5-HT for the understanding of psychopathology. We review developmental milestones of the 5-HT system, how genetic and environmental 5-HT disturbances could affect brain development and the potential role of DNA methylation in 5-HT genes for brain development. METHODS Studies were identified using common databases (e.g., PubMed, Google Scholar) and reference lists. RESULTS Despite the widely supported view that the 5-HT system matures in early life, different 5-HT receptors, proteins and enzymes have different developmental patterns, and development is brain region-specific. A disruption in 5-HT homeostasis during development may lead to structural and functional changes in brain circuits that modulate emotional stress responses, including subcortical limbic and (pre)frontal areas. This may result in a predisposition to psychopathology. DNA methylation might be one of the underlying physiologic mechanisms. LIMITATIONS There is a need for prospective studies. The impact of stressors during adolescence on the 5-HT system is understudied. Questions regarding efficacy of drugs acting on 5-HT still remain. CONCLUSION A multidisciplinary and longitudinal approach in designing studies on the role of 5-HT in psychopathology might help to bring us closer to the understanding of the role of 5-HT in psychopathology.
Collapse
Affiliation(s)
- Linda Booij
- Correspondence to: L. Booij, Departments of Psychology and Psychiatry, Queen’s University, 62 Arch St., Kingston ON K7L 3N6; or
| | | | | | | |
Collapse
|
98
|
Haller J, Harold G, Sandi C, Neumann ID. Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. J Neuroendocrinol 2014; 26:724-38. [PMID: 25059307 DOI: 10.1111/jne.12182] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 12/12/2022]
Abstract
We review the impact of early adversities on the development of violence and antisocial behaviour in humans, and present three aetiological animal models of escalated rodent aggression, each disentangling the consequences of one particular adverse early-life factor. A review of the human data, as well as those obtained with the animal models of repeated maternal separation, post-weaning social isolation and peripubertal stress, clearly shows that adverse developmental conditions strongly affect aggressive behaviour displayed in adulthood, the emotional responses to social challenges and the neuronal mechanisms activated by conflict. Although similarities between models are evident, important differences were also noted, demonstrating that the behavioural, emotional and neuronal consequences of early adversities are to a large extent dependent on aetiological factors. These findings support recent theories on human aggression, which suggest that particular developmental trajectories lead to specific forms of aggressive behaviour and brain dysfunctions. However, dissecting the roles of particular aetiological factors in humans is difficult because these occur in various combinations; in addition, the neuroscientific tools employed in humans still lack the depth of analysis of those used in animal research. We suggest that the analytical approach of the rodent models presented here may be successfully used to complement human findings and to develop integrative models of the complex relationship between early adversity, brain development and aggressive behaviour.
Collapse
Affiliation(s)
- J Haller
- Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
99
|
Luo XM, Yuan SN, Guan XT, Xie X, Shao F, Wang WW. Juvenile stress affects anxiety-like behavior and limbic monoamines in adult rats. Physiol Behav 2014; 135:7-16. [DOI: 10.1016/j.physbeh.2014.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/25/2014] [Accepted: 05/28/2014] [Indexed: 01/07/2023]
|
100
|
Bastida CC, Puga F, Gonzalez-Lima F, Jennings KJ, Wommack JC, Delville Y. Chronic social stress in puberty alters appetitive male sexual behavior and neural metabolic activity. Horm Behav 2014; 66:220-7. [PMID: 24852486 PMCID: PMC4127097 DOI: 10.1016/j.yhbeh.2014.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 11/21/2022]
Abstract
Repeated social subjugation in early puberty lowers testosterone levels. We used hamsters to investigate the effects of social subjugation on male sexual behavior and metabolic activity within neural systems controlling social and motivational behaviors. Subjugated animals were exposed daily to aggressive adult males in early puberty for postnatal days 28 to 42, while control animals were placed in empty clean cages. On postnatal day 45, they were tested for male sexual behavior in the presence of receptive female. Alternatively, they were tested for mate choice after placement at the base of a Y-maze containing a sexually receptive female in one tip of the maze and an ovariectomized one on the other. Social subjugation did not affect the capacity to mate with receptive females. Although control animals were fast to approach females and preferred ovariectomized individuals, subjugated animals stayed away from them and showed no preference. Cytochrome oxidase activity was reduced within the preoptic area and ventral tegmental area in subjugated hamsters. In addition, the correlation of metabolic activity of these areas with the bed nucleus of the stria terminalis and anterior parietal cortex changed significantly from positive in controls to negative in subjugated animals. These data show that at mid-puberty, while male hamsters are capable of mating, their appetitive sexual behavior is not fully mature and this aspect of male sexual behavior is responsive to social subjugation. Furthermore, metabolic activity and coordination of activity in brain areas related to sexual behavior and motivation were altered by social subjugation.
Collapse
Affiliation(s)
- Christel C Bastida
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, 1 University Station, A8000, Austin, TX 78712, USA.
| | - Frank Puga
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, 1 University Station, A8000, Austin, TX 78712, USA
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, 1 University Station, A8000, Austin, TX 78712, USA
| | - Kimberly J Jennings
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, 1 University Station, A8000, Austin, TX 78712, USA
| | - Joel C Wommack
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, 1 University Station, A8000, Austin, TX 78712, USA
| | - Yvon Delville
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, 1 University Station, A8000, Austin, TX 78712, USA.
| |
Collapse
|