51
|
Munier CC, Ottmann C, Perry MWD. 14-3-3 modulation of the inflammatory response. Pharmacol Res 2020; 163:105236. [PMID: 33053447 DOI: 10.1016/j.phrs.2020.105236] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/11/2023]
Abstract
Regulation of inflammation is a central part of the maintenance of homeostasis by the immune system. One important class of regulatory protein that has been shown to have effects on the inflammatory process are the 14-3-3 proteins. Herein we describe the roles that have been identified for 14-3-3 in regulation of the inflammatory response. These roles encompass regulation of the response that affect inflammation at the genetic, molecular and cellular levels. At a genetic level 14-3-3 is involved in the regulation of multiple transcription factors and affects the transcription of key effectors of the immune response. At a molecular level many of the constituent parts of the inflammatory process, such as pattern recognition receptors, protease activated receptors and cytokines are regulated through phosphorylation and recognition by 14-3-3 whilst disruption of the recognition processes has been observed to result in clinical syndromes. 14-3-3 is also involved in the regulation of cell proliferation and differentiation, this has been shown to affect the immune system, particularly T- and B-cells. Finally, we discuss how abnormal levels of 14-3-3 contribute to undesirable immune responses and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Claire C Munier
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Matthew W D Perry
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
52
|
The Molecular Interactions of ZIKV and DENV with the Type-I IFN Response. Vaccines (Basel) 2020; 8:vaccines8030530. [PMID: 32937990 PMCID: PMC7565347 DOI: 10.3390/vaccines8030530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Zika Virus (ZIKV) and Dengue Virus (DENV) are related viruses of the Flavivirus genus that cause significant disease in humans. Existing control measures have been ineffective at curbing the increasing global incidence of infection for both viruses and they are therefore prime targets for new vaccination strategies. Type-I interferon (IFN) responses are important in clearing viral infection and for generating efficient adaptive immune responses towards infection and vaccination. However, ZIKV and DENV have evolved multiple molecular mechanisms to evade type-I IFN production. This review covers the molecular interactions, from detection to evasion, of these viruses with the type-I IFN response. Additionally, we discuss how this knowledge can be exploited to improve the design of new vaccine strategies.
Collapse
|
53
|
Cao S, Liu J, Ding G, Shao Q, Wang B, Li Y, Feng J, Zhao Y, Liu S, Xiao Y. The tail domain of PRRSV NSP2 plays a key role in aggrephagy by interacting with 14-3-3ε. Vet Res 2020; 51:104. [PMID: 32811532 PMCID: PMC7433210 DOI: 10.1186/s13567-020-00816-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/13/2020] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is one of the most severe swine diseases that affects almost all swine-breeding countries. Nonstructural protein 2 (NSP2) is one of the most important viral proteins in the PRRSV life cycle. Our previous study showed that PRRSV NSP2 could induce the formation of aggresomes. In this study we explored the effects of aggresome formation on cells and found that NSP2 could induce autophagy, which depended on aggresome formation to activate aggrephagy. The transmembrane and tail domains of NSP2 contributed to aggrephagy and the cellular protein 14-3-3ε played an important role in NSP2-induced autophagy by binding the tail domain of NSP2. These findings provide information on the function of the C-terminal domain of NSP2, which will help uncover the function of NSP2 during PRRSV infection.
Collapse
Affiliation(s)
- Shengliang Cao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jiaqi Liu
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Guofei Ding
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Qingyuan Shao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Bin Wang
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yingchao Li
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jian Feng
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yuzhong Zhao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Sidang Liu
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
54
|
Zhu Q, Yu T, Gan S, Wang Y, Pei Y, Zhao Q, Pei S, Hao S, Yuan J, Xu J, Hou F, Wu X, Peng C, Wu P, Qin J, Xiao Y. TRIM24 facilitates antiviral immunity through mediating K63-linked TRAF3 ubiquitination. J Exp Med 2020; 217:e20192083. [PMID: 32324863 PMCID: PMC7336305 DOI: 10.1084/jem.20192083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ubiquitination is an essential mechanism in the control of antiviral immunity upon virus infection. Here, we identify a series of ubiquitination-modulating enzymes that are modulated by vesicular stomatitis virus (VSV). Notably, TRIM24 is down-regulated through direct transcriptional suppression induced by VSV-activated IRF3. Reducing or ablating TRIM24 compromises type I IFN (IFN-I) induction upon RNA virus infection and thus renders mice more sensitive to VSV infection. Mechanistically, VSV infection induces abundant TRIM24 translocation to mitochondria, where TRIM24 binds with TRAF3 and directly mediates K63-linked TRAF3 ubiquitination at K429/K436. This modification of TRAF3 enables its association with MAVS and TBK1, which consequently activates downstream antiviral signaling. Together, these findings establish TRIM24 as a critical positive regulator in controlling the activation of antiviral signaling and describe a previously unknown mechanism of TRIM24 function.
Collapse
Affiliation(s)
- Qingchen Zhu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tao Yu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shucheng Gan
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yifei Pei
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qifan Zhao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Siyu Pei
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shumeng Hao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Yuan
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Xu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, China
| | - Jun Qin
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
55
|
Edwards MR, Hoad M, Tsimbalyuk S, Menicucci AR, Messaoudi I, Forwood JK, Basler CF. Henipavirus W Proteins Interact with 14-3-3 To Modulate Host Gene Expression. J Virol 2020; 94:e00373-20. [PMID: 32321809 PMCID: PMC7343215 DOI: 10.1128/jvi.00373-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/12/2020] [Indexed: 01/21/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus in the Paramyxoviridae family, are recently emerged, highly lethal zoonotic pathogens. The NiV and HeV nonsegmented, negative-sense RNA genomes encode nine proteins, including the W protein. Expressed from the P gene through mRNA editing, W shares a common N-terminus with P and V but has a unique C-terminus. Expressed alone, W modulates innate immune responses by several mechanisms, and elimination of W from NiV alters the course of infection in experimentally infected ferrets. However, the specific host interactions that allow W to modulate innate immunity are incompletely understood. This study demonstrates that the NiV and HeV W proteins interact with all seven isoforms of the 14-3-3 family, regulatory molecules that preferentially bind phosphorylated target proteins to regulate a wide range of cellular functions. The interaction is dependent on the penultimate amino acid residue in the W sequence, a conserved, phosphorylated serine. The cocrystal structure of the W C-terminal binding motif with 14-3-3 provides only the second structure of a complex containing a mode III interactor, which is defined as a 14-3-3 interaction with a phosphoserine/phosphothreonine at the C-termini of the target protein. Transcriptomic analysis of inducible cell lines infected with an RNA virus and expressing either wild-type W or W lacking 14-3-3 binding, identifies new functions for W. These include the regulation of cellular metabolic processes, extracellular matrix organization, and apoptosis.IMPORTANCE Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus, are recently emerged, highly lethal zoonotic pathogens that cause yearly outbreaks. NiV and HeV each encode a W protein that has roles in regulating host signaling pathways, including antagonism of the innate immune response. However, the mechanisms used by W to regulate these host responses are not clear. Here, characterization of the interaction of NiV and HeV W with 14-3-3 identifies modulation of 14-3-3-regulated host signaling pathways not previously associated with W, suggesting new avenues of research. The cocrystal structure of the NiV W:14-3-3 complex, as only the second structure of a 14-3-3 mode III interactor, provides further insight into this less-well-understood 14-3-3 binding motif.
Collapse
Affiliation(s)
- Megan R Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Mikayla Hoad
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sofiya Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Andrea R Menicucci
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
56
|
Martin MF, Nisole S. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines (Basel) 2020; 8:E256. [PMID: 32485916 PMCID: PMC7350012 DOI: 10.3390/vaccines8020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that naturally circulates between mosquitoes and birds. However, WNV has a broad host range and can be transmitted from mosquitoes to several mammalian species, including humans, through infected saliva during a blood meal. Although WNV infections are mostly asymptomatic, 20% to 30% of cases are symptomatic and can occasionally lead to severe symptoms, including fatal meningitis or encephalitis. Over the past decades, WNV-carrying mosquitoes have become increasingly widespread across new regions, including North America and Europe, which constitutes a public health concern. Nevertheless, mosquito and human innate immune defenses can detect WNV infection and induce the expression of antiviral effectors, so-called viral restriction factors, to control viral propagation. Conversely, WNV has developed countermeasures to escape these host defenses, thus establishing a constant arms race between the virus and its hosts. Our review intends to cover most of the current knowledge on viral restriction factors as well as WNV evasion strategies in mosquito and human cells in order to bring an updated overview on WNV-host interactions.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling Team, Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34090 Montpellier, France;
| |
Collapse
|
57
|
Nathan KG, Lal SK. The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses 2020; 12:E436. [PMID: 32294919 PMCID: PMC7232403 DOI: 10.3390/v12040436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The 14-3-3 proteins are a family of ubiquitous and exclusively eukaryotic proteins with an astoundingly significant number of binding partners. Their binding alters the activity, stability, localization, and phosphorylation state of a target protein. The association of 14-3-3 proteins with the regulation of a wide range of general and specific signaling pathways suggests their crucial role in health and disease. Recent studies have linked 14-3-3 to several RNA and DNA viruses that may contribute to the pathogenesis and progression of infections. Therefore, comprehensive knowledge of host-virus interactions is vital for understanding the viral life cycle and developing effective therapeutic strategies. Moreover, pharmaceutical research is already moving towards targeting host proteins in the control of virus pathogenesis. As such, targeting the right host protein to interrupt host-virus interactions could be an effective therapeutic strategy. In this review, we generated a 14-3-3 protein interactions roadmap in viruses, using the freely available Virusmentha network, an online virus-virus or virus-host interaction tool. Furthermore, we summarize the role of the 14-3-3 family in RNA and DNA viruses. The participation of 14-3-3 in viral infections underlines its significance as a key regulator for the expression of host and viral proteins.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
| | - Sunil K. Lal
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
- Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
58
|
Lee HC, Chathuranga K, Lee JS. Intracellular sensing of viral genomes and viral evasion. Exp Mol Med 2019; 51:1-13. [PMID: 31827068 PMCID: PMC6906418 DOI: 10.1038/s12276-019-0299-y] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
During viral infection, virus-derived cytosolic nucleic acids are recognized by host intracellular specific sensors. The efficacy of this recognition system is crucial for triggering innate host defenses, which then stimulate more specific adaptive immune responses against the virus. Recent studies show that signal transduction pathways activated by sensing proteins are positively or negatively regulated by many modulators to maintain host immune homeostasis. However, viruses have evolved several strategies to counteract/evade host immune reactions. These systems involve viral proteins that interact with host sensor proteins and prevent them from detecting the viral genome or from initiating immune signaling. In this review, we discuss key regulators of cytosolic sensor proteins and viral proteins based on experimental evidence.
Collapse
Affiliation(s)
- Hyun-Cheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
- Central Research Institute, Komipharm International Co., Ltd, Shiheung, 15094, Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
59
|
The role of mitochondria-associated membranes in cellular homeostasis and diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:119-196. [PMID: 32138899 DOI: 10.1016/bs.ircmb.2019.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) are fundamental in the control of cell physiology regulating several signal transduction pathways. They continuously communicate exchanging messages in their contact sites called MAMs (mitochondria-associated membranes). MAMs are specific microdomains acting as a platform for the sorting of vital and dangerous signals. In recent years increasing evidence reported that multiple scaffold proteins and regulatory factors localize to this subcellular fraction suggesting MAMs as hotspot signaling domains. In this review we describe the current knowledge about MAMs' dynamics and processes, which provided new correlations between MAMs' dysfunctions and human diseases. In fact, MAMs machinery is strictly connected with several pathologies, like neurodegeneration, diabetes and mainly cancer. These pathological events are characterized by alterations in the normal communication between ER and mitochondria, leading to deep metabolic defects that contribute to the progression of the diseases.
Collapse
|
60
|
Nelson BR, Roby JA, Dobyns WB, Rajagopal L, Gale M, Adams Waldorf KM. Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunol 2019; 33:22-37. [PMID: 31687902 PMCID: PMC6978768 DOI: 10.1089/vim.2019.0082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused a public health emergency in the Americas when an outbreak in Brazil became linked to congenital microcephaly. Understanding how ZIKV could evade the innate immune defenses of the mother, placenta, and fetus has become central to determining how the virus can traffic into the fetal brain. ZIKV, like other flaviviruses, evades host innate immune responses by leveraging viral proteins and other processes that occur during viral replication to allow spread to the placenta. Within the placenta, there are diverse cell types with coreceptors for ZIKV entry, creating an opportunity for the virus to establish a reservoir for replication and infect the fetus. The fetal brain is vulnerable to ZIKV, particularly during the first trimester, when it is beginning a dynamic process, to form highly complex and specialized regions orchestrated by neuroprogenitor cells. In this review, we provide a conceptual framework to understand the different routes for viral trafficking into the fetal brain and the eye, which are most likely to occur early and later in pregnancy. Based on the injury profile in human and nonhuman primates, ZIKV entry into the fetal brain likely occurs across both the blood/cerebrospinal fluid barrier in the choroid plexus and the blood/brain barrier. ZIKV can also enter the eye by trafficking across the blood/retinal barrier. Ultimately, the efficient escape of innate immune defenses by ZIKV is a key factor leading to viral infection. However, the host immune response against ZIKV can lead to injury and perturbations in developmental programs that drive cellular division, migration, and brain growth. The combined effect of innate immune evasion to facilitate viral propagation and the maternal/placental/fetal immune response to control the infection will determine the extent to which ZIKV can injure the fetal brain.
Collapse
Affiliation(s)
- Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Justin A. Roby
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Kristina M. Adams Waldorf
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
61
|
Evasion of Innate and Intrinsic Antiviral Pathways by the Zika Virus. Viruses 2019; 11:v11100970. [PMID: 31652496 PMCID: PMC6833475 DOI: 10.3390/v11100970] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022] Open
Abstract
The Zika virus (ZIKV) is a recently emerged mosquito-borne flavivirus that, while typically asymptomatic, can cause neurological symptoms in adults and birth defects in babies born to infected mothers. The interactions of ZIKV with many different pathways in the human host ultimately determine successful virus replication and ZIKV-induced pathogenesis; however, the molecular mechanisms of such host-ZIKV interactions have just begun to be elucidated. Here, we summarize the recent advances that defined the mechanisms by which ZIKV antagonizes antiviral innate immune signaling pathways, with a particular focus on evasion of the type I interferon response in the human host. Furthermore, we describe emerging evidence that indicated the contribution of several cell-intrinsic mechanisms to an effective restriction of ZIKV infection, such as nonsense-mediated mRNA decay, stress granule formation, and "reticulophagy", a type of selective autophagy. Finally, we summarize the recent work that identified strategies by which ZIKV modulated these intrinsic antiviral responses.
Collapse
|
62
|
The Interplay between Dengue Virus and the Human Innate Immune System: A Game of Hide and Seek. Vaccines (Basel) 2019; 7:vaccines7040145. [PMID: 31658677 PMCID: PMC6963221 DOI: 10.3390/vaccines7040145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
With 40% of the world population at risk, infections with dengue virus (DENV) constitute a serious threat to public health. While there is no antiviral therapy available against this potentially lethal disease, the efficacy of the only approved vaccine is not optimal and its safety has been recently questioned. In order to develop better vaccines based on attenuated and/or chimeric viruses, one must consider how the human immune system is engaged during DENV infection. The activation of the innate immunity through the detection of viruses by cellular sensors is the first line of defence against those pathogens. This triggers a cascade of events which establishes an antiviral state at the cell level and leads to a global immunological response. However, DENV has evolved to interfere with the innate immune signalling at multiple levels, hence dampening antiviral responses and favouring viral replication and dissemination. This review elaborates on the interplay between DENV and the innate immune system. A special focus is given on the viral countermeasure mechanisms reported over the last decade which should be taken into consideration during vaccine development.
Collapse
|
63
|
Riedl W, Acharya D, Lee JH, Liu G, Serman T, Chiang C, Chan YK, Diamond MS, Gack MU. Zika Virus NS3 Mimics a Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate Immunity. Cell Host Microbe 2019; 26:493-503.e6. [PMID: 31600501 PMCID: PMC6922055 DOI: 10.1016/j.chom.2019.09.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
Abstract
14-3-3 protein family members facilitate the translocation of RIG-I-like receptors (RLRs) to organelles that mediate downstream RLR signaling, leading to interferon production. 14-3-3ϵ promotes the cytosolic-to-mitochondrial translocation of RIG-I, while 14-3-3η facilitates MDA5 translocation to mitochondria. We show that the NS3 protein of Zika virus (ZIKV) antagonizes antiviral gene induction by RIG-I and MDA5 by binding to and sequestering the scaffold proteins 14-3-3ϵ and 14-3-3η. 14-3-3-binding is mediated by a negatively charged RLDP motif in NS3 that is conserved in ZIKV strains of African and Asian lineages and is similar to the one found in dengue and West Nile viruses. ZIKV NS3 is sufficient to inhibit the RLR-14-3-3ϵ/η interaction and to suppress antiviral signaling. Mutational perturbation of 14-3-3ϵ/η binding in a recombinant ZIKV leads to enhanced innate immune responses and impaired growth kinetics. Our study provides molecular understanding of immune evasion functions of ZIKV, which may guide vaccine and anti-flaviviral therapy development.
Collapse
Affiliation(s)
- William Riedl
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Dhiraj Acharya
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Jung-Hyun Lee
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Guanqun Liu
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Taryn Serman
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Ying Kai Chan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
64
|
Lasso G, Mayer SV, Winkelmann ER, Chu T, Elliot O, Patino-Galindo JA, Park K, Rabadan R, Honig B, Shapira SD. A Structure-Informed Atlas of Human-Virus Interactions. Cell 2019; 178:1526-1541.e16. [PMID: 31474372 PMCID: PMC6736651 DOI: 10.1016/j.cell.2019.08.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/17/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022]
Abstract
While knowledge of protein-protein interactions (PPIs) is critical for understanding virus-host relationships, limitations on the scalability of high-throughput methods have hampered their identification beyond a number of well-studied viruses. Here, we implement an in silico computational framework (pathogen host interactome prediction using structure similarity [P-HIPSTer]) that employs structural information to predict ∼282,000 pan viral-human PPIs with an experimental validation rate of ∼76%. In addition to rediscovering known biology, P-HIPSTer has yielded a series of new findings: the discovery of shared and unique machinery employed across human-infecting viruses, a likely role for ZIKV-ESR1 interactions in modulating viral replication, the identification of PPIs that discriminate between human papilloma viruses (HPVs) with high and low oncogenic potential, and a structure-enabled history of evolutionary selective pressure imposed on the human proteome. Further, P-HIPSTer enables discovery of previously unappreciated cellular circuits that act on human-infecting viruses and provides insight into experimentally intractable viruses.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Sandra V Mayer
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Evandro R Winkelmann
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Tim Chu
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Oliver Elliot
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Kernyu Park
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY, USA; Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA.
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
65
|
Giovannoni F, Ladelfa MF, Monte M, Jans DA, Hemmerich P, García C. Dengue Non-structural Protein 5 Polymerase Complexes With Promyelocytic Leukemia Protein (PML) Isoforms III and IV to Disrupt PML-Nuclear Bodies in Infected Cells. Front Cell Infect Microbiol 2019; 9:284. [PMID: 31456950 PMCID: PMC6701172 DOI: 10.3389/fcimb.2019.00284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) threatens almost 70% of the world's population, with no therapeutic currently available. The severe, potentially lethal forms of DENV disease (dengue hemorrhagic fever/dengue shock syndrome) are associated with the production of high level of cytokines, elicited as part of the host antiviral response, although the molecular mechanisms have not been fully elucidated. We previously showed that infection by DENV serotype 2 (DENV2) disrupts promyelocytic leukemia (PML) gene product nuclear bodies (PML-NBs) after viral protein translation in infected cells. Apart from playing a key role as the nucleating agent in forming PML-NBs, PML has antiviral activity against various viruses, including DENV. The present study builds on this work, showing for the first time that all four DENV serotypes elicit PML-NB breakdown. Importantly, we show for the first time that of the nuclear localizing proteins of DENV, DENV non-structural protein (NS) 5 polymerase alone is sufficient to elicit PML-NB disassembly, in part through complexing with PML isoforms III and IV, but not other PML isoforms or other PML-NB components. The results raise the possibility that PML-NB disruption by nuclear localized NS5 contributes to DENV's suppression of the host antiviral response.
Collapse
Affiliation(s)
- Federico Giovannoni
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Bioológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fatima Ladelfa
- Instituto de Química Bioológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratory of Molecular Oncology, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin Monte
- Instituto de Química Bioológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratory of Molecular Oncology, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - David A. Jans
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | - Cybele García
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Bioológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
66
|
Li W, Li N, Dai S, Hou G, Guo K, Chen X, Yi C, Liu W, Deng F, Wu Y, Cao X. Zika virus circumvents host innate immunity by targeting the adaptor proteins MAVS and MITA. FASEB J 2019; 33:9929-9944. [PMID: 31180720 DOI: 10.1096/fj.201900260r] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, Zika virus (ZIKV) has generated extraordinary concern because of its severe neurotoxicity. Disturbingly, there is no vaccine or specific drug to prevent or treat the diseases caused by ZIKV infection. Thus, it is extremely urgent to characterize the pathogenesis of ZIKV. It has been documented that ZIKV can evade antiviral responses of host cells. Here, we demonstrate that ZIKV strain SZ-WIV01 down-regulates the production of type I IFN and IFN-stimulated genes along with the expression of mitochondrial antiviral signaling protein (MAVS) and mediator of IFN regulatory factor 3 activation (MITA). In the mechanism, ZIKV nonstructural (NS) 3 and NS2B3 negatively regulate IFN-related retinoic acid-inducible gene I-like receptor signaling pathway by targeting MAVS and MITA, respectively. Overexpression of ZIKV NS3 and NS2B3 dramatically inhibits expression of IFN-β. ZIKV NS3 interacts with MAVS, and NS2B3 interacts with MITA, which catalyzes K48-linked polyubiquitination of MAVS and MITA for degradation. Further investigations suggest that ZIKV NS2B3 impairs polyinosinic:polycytidylic acid-triggered K63-linked polyubiquitination of MITA, thereby subverting the activation of downstream sensors. Our study reveals an undiscovered mechanism for ZIKV to escape the innate immune response, providing new insights into clinical study of vaccines or effective drugs.-Li, W., Li, N., Dai, S., Hou, G., Guo, K., Chen, X., Yi, C., Liu, W., Deng, F., Wu, Y., Cao, X. Zika virus circumvents host innate immunity by targeting the adaptor proteins MAVS and MITA.
Collapse
Affiliation(s)
- Wenjiao Li
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- The Institute of Cancer Molecular Mechanisms and Drug Targets, School of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shiyu Dai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Guoqing Hou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kanglin Guo
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuanzuo Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhua Yi
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiyong Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaosong Wu
- The Institute of Cancer Molecular Mechanisms and Drug Targets, School of Basic Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xuan Cao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
67
|
Cao S, Cong F, Tan M, Ding G, Liu J, Li L, Zhao Y, Liu S, Xiao Y. 14-3-3ε acts as a proviral factor in highly pathogenic porcine reproductive and respiratory syndrome virus infection. Vet Res 2019; 50:16. [PMID: 30819256 PMCID: PMC6394020 DOI: 10.1186/s13567-019-0636-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) emerged in 2006 in China and caused great economic losses for the swine industry because of the lack of an effective vaccine. 14-3-3 proteins are generating significant interest as potential drug targets by allowing the targeting of specific pathways to elicit therapeutic effects in human diseases. In a previous study, 14-3-3s were identified to interact with non-structural protein 2 (NSP2) of PRRSV. In the present study, the specific subtype 14-3-3ε was confirmed to interact with NSP2 and play a role in the replication of the HP-PRRSV TA-12 strain. Knockdown of 14-3-3ε in Marc-145 cells and porcine alveolar macrophages (PAMs) caused a significant decrease in TA-12 replication, while stable overexpression of 14-3-3ε caused a significant increase in the replication of TA-12 and low pathogenic PRRSV (LP-PRRSV) CH-1R. The 14-3-3 inhibitor difopein also decreased TA-12 and CH-1R replication in Marc-145 cells and PAMs. These findings are consistent with 14-3-3ε acting as a proviral factor and suggest that 14-3-3ε siRNA and difopein are therapeutic candidates against PRRSV infection.
Collapse
Affiliation(s)
- Shengliang Cao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Fangyuan Cong
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Min Tan
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Guofei Ding
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jiaqi Liu
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Li Li
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yuzhong Zhao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Sidang Liu
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
68
|
Lin JP, Fan YK, Liu HM. The 14-3-3η chaperone protein promotes antiviral innate immunity via facilitating MDA5 oligomerization and intracellular redistribution. PLoS Pathog 2019; 15:e1007582. [PMID: 30742689 PMCID: PMC6386420 DOI: 10.1371/journal.ppat.1007582] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
MDA5 belongs to the RIG-I-like receptor family and plays a non-redundant role in recognizing cytoplasmic viral RNA to induce the production of type I IFNs. Upon RNA ligand stimulation, we observed the redistribution of MDA5 from the cytosol to mitochondrial membrane fractions. However, the molecular mechanisms of MDA5 activation remain less understood. Here we show that 14-3-3η is an essential accessory protein for MDA5-dependent type I IFN induction. We found that several 14-3-3 isoforms may interact with MDA5 through the CARDs (N-MDA5), but 14-3-3η was the only isoform that could enhance MDA5-dependent IFNβ promoter activities in a dose-dependent manner. Knock-down of 14-3-3η in Huh7 cells impaired and delayed the kinetics of MDA5 oligomerization, which is a critical step for MDA5 activation. Consequently, the MDA5-dependent IFNβ promoter activities as well as IFNβ mRNA expression level were also decreased in the 14-3-3η knocked-down cells. We also demonstrated that 14-3-3η is essential in boosting the activation of MDA5-dependent antiviral innate immunity during viral infections. In conclusion, our results uncover a novel function of 14-3-3η to promote the MDA5-dependent IFNβ induction pathway by reducing the immunostimulatory potential of viral dsRNA within MDA5 activation signaling pathway. In this study, we utilized biochemistry and molecular biology approaches to defines the molecular mechanisms by which melanoma differentiation-associated protein 5 (MDA5), a cytoplasmic RNA helicase and pattern recognition receptor molecule, is regulated by 14-3-3η to govern its innate immune signaling activity. During viral infection RIG-I-like receptors (RLRs), including MDA5, play essential roles in initiating type I interferon signaling pathway and preventing virus infection or replication in host cells. Besides, the establishment of well functional adaptive immune response to viruses is depending on the timely activation of innate immune antiviral signaling pathway. Our results suggested that the activation of MDA5 is promoted by the chaperone protein 14-3-3η. The lack of 14-3-3η in host cells leads to the kinetically-delayed oligomerization of MDA5, which is a key steps of the activation of MDA5-mediated anti-viral signaling pathway. These findings reveal a novel component which participating in the control system of MDA5-dependent signaling pathway. Viral proteins which antagonize 14-3-3η to impair MDA5-dependent antiviral signaling may be suitable targets for antiviral therapy or be modified to generate potential vaccine strains.
Collapse
Affiliation(s)
- Jhih-Pu Lin
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yu-Kuan Fan
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Helene Minyi Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
69
|
Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J Cell Commun Signal 2019; 13:303-318. [PMID: 30719617 DOI: 10.1007/s12079-019-00507-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/24/2019] [Indexed: 01/20/2023] Open
Abstract
Mitochondria, the dynamic organelles and power house of eukaryotic cells function as metabolic hubs of cells undergoing continuous cycles of fusion and fission. Recent findings have made it increasingly apparent that mitochondria essentially involved in energy production have evolved as principal intracellular signaling platforms regulating not only innate immunity but also inflammatory responses. Perturbations in mitochondrial dynamics, including fusion/fission, electron transport chain (ETC) architecture and cristae organization have now been actively correlated to modulate metabolic activity and immune function of innate and adaptive immune cells. Several newly identified mitochondrial proteins in mitochondrial outer membrane such as mitochondrial antiviral signaling protein (MAVS) and with mitochondrial DNA acting as danger-associated molecular pattern (DAMP) and mitochondrial ROS generated from mitochondrial sources have potentially established mitochondria as key signaling platforms in antiviral immunity in vertebrates and thereby orchestrating adaptive immune cell activations respectively. A thorough understanding of emerging and intervening role of mitochondria in toll-like receptor-mediated innate immune responses and NLRP3 inflammasome complex activation has gained lucidity in recent years that advocates the imposing functions of mitochondria in innate immunity. Fascinatingly, also how the signals stemming from the endoplasmic reticulum co-operate with the mitochondria to activate the NLRP3 inflammasome is now looked ahead as a stage to unravel as to how different mitochondrial and associated organelle stress responses co-operate to bring about inflammatory consequences. This has also opened avenues of research for revealing mitochondrial targets that could be exploited for development of novel therapeutics to treat various infectious, inflammatory, and autoimmune disorders. Thus, this review explores our current understanding of intricate interplay between mitochondria and other cellular processes like autophagy in controlling mitochondrial homeostasis and regulation of innate immunity and inflammatory responses.
Collapse
|
70
|
Full F, van Gent M, Sparrer KMJ, Chiang C, Zurenski MA, Scherer M, Brockmeyer NH, Heinzerling L, Stürzl M, Korn K, Stamminger T, Ensser A, Gack MU. Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nat Microbiol 2019; 4:164-176. [PMID: 30420784 PMCID: PMC6294671 DOI: 10.1038/s41564-018-0285-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Tripartite motif (TRIM) proteins mediate antiviral host defences by either directly targeting viral components or modulating innate immune responses. Here we identify a mechanism of antiviral restriction in which a TRIM E3 ligase controls viral replication by regulating the structure of host cell centrosomes and thereby nuclear lamina integrity. Through RNAi screening we identified several TRIM proteins, including TRIM43, that control the reactivation of Kaposi's sarcoma-associated herpesvirus. TRIM43 was distinguished by its ability to restrict a broad range of herpesviruses and its profound upregulation during herpesvirus infection as part of a germline-specific transcriptional program mediated by the transcription factor DUX4. TRIM43 ubiquitinates the centrosomal protein pericentrin, thereby targeting it for proteasomal degradation, which subsequently leads to alterations of the nuclear lamina that repress active viral chromatin states. Our study identifies a role of the TRIM43-pericentrin-lamin axis in intrinsic immunity, which may be targeted for therapeutic intervention against herpesviral infections.
Collapse
Affiliation(s)
- Florian Full
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Konstantin M J Sparrer
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | | | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Norbert H Brockmeyer
- Department of Dermatology, Venerology, and Allergology, Center for Sexual Health and Medicine, Ruhr University Bochum, Bochum, Germany
| | - Lucie Heinzerling
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Klaus Korn
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
71
|
Unterholzner L, Almine JF. Camouflage and interception: how pathogens evade detection by intracellular nucleic acid sensors. Immunology 2018; 156:217-227. [PMID: 30499584 PMCID: PMC6376273 DOI: 10.1111/imm.13030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Intracellular DNA and RNA sensors play a vital part in the innate immune response to viruses and other intracellular pathogens, causing the secretion of type I interferons, cytokines and chemokines from infected cells. Pathogen RNA can be detected by retinoic-acid inducible gene I-like receptors in the cytosol, whereas cytosolic DNA is recognized by DNA sensors such as cyclic GMP-AMP synthase (cGAS). The resulting local immune response, which is initiated within hours of infection, is able to eliminate many pathogens before they are able to establish an infection in the host. For this reason, all viruses, and some intracellular bacteria and protozoa, need to evade detection by nucleic acid sensors. Immune evasion strategies include the sequestration and modification of nucleic acids, and the inhibition or degradation of host factors involved in innate immune signalling. Large DNA viruses, such as herpesviruses, often use multiple viral proteins to inhibit signalling cascades at several different points; for instance herpes simplex virus 1 targets both DNA sensors cGAS and interferon-γ-inducible protein 16, as well as the adaptor protein STING (stimulator of interferon genes) and other signalling factors in the pathway. Viruses with a small genome encode only a few immunomodulatory proteins, but these are often multifunctional, such as the NS1 protein from influenza A virus, which inhibits RNA sensing in multiple ways. Intracellular bacteria and protozoa can also be detected by nucleic acid sensors. However, as the type I interferon response is not always beneficial for the host under these circumstances, some bacteria subvert, rather than evade, these signalling cascades for their own gain.
Collapse
Affiliation(s)
- Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jessica F Almine
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
72
|
Suppression of Type I Interferon Signaling by Flavivirus NS5. Viruses 2018; 10:v10120712. [PMID: 30558110 PMCID: PMC6316265 DOI: 10.3390/v10120712] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 01/02/2023] Open
Abstract
Type I interferon (IFN-I) is the first line of mammalian host defense against viral infection. To counteract this, the flaviviruses, like other viruses, have encoded a variety of antagonists, and use a multi-layered molecular defense strategy to establish their infections. Among the most potent antagonists is non-structural protein 5 (NS5), which has been shown for all disease-causing flaviviruses to target different steps and players of the type I IFN signaling pathway. Here, we summarize the type I IFN antagonist mechanisms used by flaviviruses with a focus on the role of NS5 in regulating one key regulator of type I IFN, signal transducer and activator of transcription 2 (STAT2).
Collapse
|
73
|
Sanchez JG, Sparrer KMJ, Chiang C, Reis RA, Chiang JJ, Zurenski MA, Wan Y, Gack MU, Pornillos O. TRIM25 Binds RNA to Modulate Cellular Anti-viral Defense. J Mol Biol 2018; 430:5280-5293. [PMID: 30342007 PMCID: PMC6289755 DOI: 10.1016/j.jmb.2018.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023]
Abstract
TRIM25 is a multi-domain, RING-type E3 ubiquitin ligase of the tripartite motif family that has important roles in multiple RNA-dependent processes. In particular, TRIM25 functions as an effector of RIG-I and ZAP, which are innate immune sensors that recognize viral RNA and induce ubiquitin-dependent anti-viral response mechanisms. TRIM25 is reported to also bind RNA, but the molecular details of this interaction or its relevance to anti-viral defense have not been elucidated. Here, we characterize the RNA-binding activity of TRIM25 and find that the protein binds both single-stranded and double-stranded RNA. Multiple regions of TRIM25 contribute to this functionality, including the C-terminal SPRY domain and a lysine-rich motif in the linker segment connecting the SPRY and coiled-coil domains. RNA binding modulates TRIM25's ubiquitination activity in vitro, its localization in cells, and its anti-viral activity. Taken together with other studies, our results indicate that RNA binding by TRIM25 has at least three important functional consequences: by enhancing ubiquitination activity, either through allosteric effects or through clustering of multiple TRIM25 molecules; by modulating the multi-domain structure of the TRIM25 dimer, and thereby structural coupling of the SPRY and RBCC elements during the ubiquitination reaction; and by facilitating subcellular localization of the E3 ligase during virus infection.
Collapse
Affiliation(s)
- Jacint G Sanchez
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | | - Cindy Chiang
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Rebecca A Reis
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Jessica J Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | | | - Yueping Wan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Michaela U Gack
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
74
|
Kao YT, Lai MMC, Yu CY. How Dengue Virus Circumvents Innate Immunity. Front Immunol 2018; 9:2860. [PMID: 30564245 PMCID: PMC6288372 DOI: 10.3389/fimmu.2018.02860] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
In the battle between a virus and its host, innate immunity serves as the first line of defense protecting the host against pathogens. The antiviral actions start with the recognition of pathogen-associated molecular patterns derived from the virus, then ultimately turning on particular transcription factors to generate antiviral interferons (IFNs) or proinflammatory cytokines via fine-tuned signaling cascades. With dengue virus (DENV) infection, its viral RNA is recognized by the host RNA sensors, mainly retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and toll-like receptors. DENV infection also activates the cyclic GMP-AMP synthase–stimulator of interferon genes (cGAS–STING)-mediated DNA-sensing pathway despite the absence of a DNA stage in the DENV lifecycle. In the last decade, DENV has been considered a weak IFN-inducing pathogen with the evidence that DENV has evolved multiple strategies antagonizing the host IFN system. DENV passively escapes from innate immunity surveillance and also actively subverts the innate immune system at multiple steps. DENV targets both RNA-triggered RLR–mitochondrial antiviral signaling protein (RLR–MAVS) and DNA-triggered cGAS–STING signaling to reduce IFN production in infected cells. It also blocks IFN action by inhibiting IFN regulatory factor- and signal transducer and activator of transcription-mediated signaling. This review explores the current understanding of how DENV escapes the control of the innate immune system by modifying viral RNA and viral protein and by post-translational modification of cellular factors. The roles of the DNA-sensing pathway in DENV infection, and how mitochondrial dynamics participates in innate immunity are also discussed.
Collapse
Affiliation(s)
- Yu-Ting Kao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Michael M C Lai
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| |
Collapse
|
75
|
Uno N, Ross TM. Dengue virus and the host innate immune response. Emerg Microbes Infect 2018; 7:167. [PMID: 30301880 PMCID: PMC6177401 DOI: 10.1038/s41426-018-0168-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 02/05/2023]
Abstract
Dengue virus (DENV) is a mosquito-borne Flavivirus that is endemic in many tropical and sub-tropical countries where the transmission vectors Aedes spp. mosquitoes resides. There are four serotypes of the virus. Each serotype is antigenically different, meaning they elicit heterologous antibodies. Infection with one serotype will create neutralizing antibodies to the serotype. Cross-protection from other serotypes is not long term, instead heterotypic infection can cause severe disease. This review will focus on the innate immune response to DENV infection and the virus evasion of the innate immune system by escaping recognition or inhibiting the production of an antiviral state. Activated innate immune pathways includes type I interferon, complement, apoptosis, and autophagy, which the virus can evade or exploit to exacerbate disease. It is important to understand out how the immune system reacts to infection and how the virus evades immune response in order to develop effective antivirals and vaccines.
Collapse
Affiliation(s)
- Naoko Uno
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA. .,Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
76
|
Chen B, Li C, Wang Y, Lu Y, Wang F, Liu X. 14-3-3β/α-A interacts with glycoprotein of spring viremia of carp virus and positively affects viral entry. FISH & SHELLFISH IMMUNOLOGY 2018; 81:438-444. [PMID: 29680490 DOI: 10.1016/j.fsi.2018.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Spring viremia of carp virus (SVCV) is a fierce pathogen causing high mortality in the common carp. The glycoprotein (G protein) of SVCV is a pivotal component of the viral structure, located in the surface of the virion, and plays a key role in viral endocytosis. In this study, tandem affinity purification (TAP) followed by mass spectrometry analysis (LC-MS/MS) was carried out to search for novel host molecules that interact with SVCV G protein and a 14-3-3β/α-A protein was identified. The level of 14-3-3β/α-A mRNA expression was dramatically down regulated by SVCV infection. Furthermore, over expression of 14-3-3β/α-A results in a significantly increased SVCV attachment and entry in FHM cells. This study reveals an important role of 14-3-3 protein in regulating the early stage of SVCV infection, which offers a potential target for development of anti-SVCV therapies.
Collapse
Affiliation(s)
- Buxin Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yeda Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
77
|
Herrera-Uribe J, Jiménez-Marín Á, Lacasta A, Monteagudo PL, Pina-Pedrero S, Rodríguez F, Moreno Á, Garrido JJ. Comparative proteomic analysis reveals different responses in porcine lymph nodes to virulent and attenuated homologous African swine fever virus strains. Vet Res 2018; 49:90. [PMID: 30208957 PMCID: PMC6134756 DOI: 10.1186/s13567-018-0585-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/05/2018] [Indexed: 01/07/2023] Open
Abstract
African swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1. Our results show a progressive loss of proteins by day 7 post-infection (pi) with E75, reflecting tissue destruction. Many signal pathways were affected by both infections but in different ways and extensions. Cytoskeletal remodelling and clathrin-endocytosis were affected by both isolates, while a greater number of proteins involved on inflammatory and immunological pathways were altered by E75CV1. 14-3-3 mediated signalling, related to immunity and apoptosis, was inhibited by both isolates. The implication of the Rho GTPases by E75CV1 throughout infection is also evident. Early events reflected the lack of E75 recognition by the immune system, an evasion strategy acquired by the virulent strains, and significant changes at 7 days post-infection (dpi), coinciding with the peak of infection and the time of death. The protein signature at day 31 pi with E75CV1 seems to reflect events observed at 1 dpi, including the upregulation of proteosomal subunits and molecules described as autoantigens (vimentin, HSPB1, enolase and lymphocyte cytosolic protein 1), which allow the speculation that auto-antibodies could contribute to chronic ASFV infections. Therefore, the use of proteomics could help understand ASFV pathogenesis and immune protection, opening new avenues for future research.
Collapse
Affiliation(s)
- Júber Herrera-Uribe
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Anna Lacasta
- International Livestock Research Intitute (ILRI), Nairobi, 00100, Kenya.,Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Paula L Monteagudo
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Sonia Pina-Pedrero
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Fernando Rodríguez
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Ángela Moreno
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Instituto de Agricultura Sostenible, Campus Alameda del Obispo, 14080 CSIC, Córdoba, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
78
|
Sundell GN, Arnold R, Ali M, Naksukpaiboon P, Orts J, Güntert P, Chi CN, Ivarsson Y. Proteome-wide analysis of phospho-regulated PDZ domain interactions. Mol Syst Biol 2018; 14:e8129. [PMID: 30126976 PMCID: PMC6100724 DOI: 10.15252/msb.20178129] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
A key function of reversible protein phosphorylation is to regulate protein-protein interactions, many of which involve short linear motifs (3-12 amino acids). Motif-based interactions are difficult to capture because of their often low-to-moderate affinities. Here, we describe phosphomimetic proteomic peptide-phage display, a powerful method for simultaneously finding motif-based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C-terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD-95/Dlg/ZO-1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR We uncover site-specific phospho-regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho-regulation of motif-based interactions on a large scale.
Collapse
Affiliation(s)
- Gustav N Sundell
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Piangfan Naksukpaiboon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Julien Orts
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
79
|
Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis 2018; 9:329. [PMID: 29491386 PMCID: PMC5832426 DOI: 10.1038/s41419-017-0027-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are tightly associated with very dynamic platforms termed mitochondria-associated membranes (MAMs). MAMs provide an excellent scaffold for crosstalk between the ER and mitochondria and play a pivotal role in different signaling pathways that allow rapid exchange of biological molecules to maintain cellular health. However, dysfunctions in the ER–mitochondria architecture are associated with pathological conditions and human diseases. Inflammation has emerged as one of the various pathways that MAMs control. Inflammasome components and other inflammatory factors promote the release of pro-inflammatory cytokines that sustain pathological conditions. In this review, we summarize the critical role of MAMs in initiating inflammation in the cellular defense against pathogenic infections and the association of MAMs with inflammation-mediated diseases.
Collapse
|
80
|
Abstract
Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.
Collapse
Affiliation(s)
- Annie Elong Ngono
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;
| | - Sujan Shresta
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;
| |
Collapse
|
81
|
Interplay between dengue virus and Toll-like receptors, RIG-I/MDA5 and microRNAs: Implications for pathogenesis. Antiviral Res 2017; 147:47-57. [DOI: 10.1016/j.antiviral.2017.09.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
|
82
|
Miorin L, Maestre AM, Fernandez-Sesma A, García-Sastre A. Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 2017; 492:587-596. [PMID: 28576494 PMCID: PMC5626595 DOI: 10.1016/j.bbrc.2017.05.146] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the host's immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
83
|
Villalba M, Pérez V, Herrera L, Stepke C, Maldonado N, Fredericksen F, Yáñez A, Olavarría VH. Infectious pancreatic necrosis virus infection of fish cell lines: Preliminary analysis of gene expressions related to extracellular matrix remodeling and immunity. Vet Immunol Immunopathol 2017; 193-194:10-17. [PMID: 29129223 DOI: 10.1016/j.vetimm.2017.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/30/2022]
Abstract
The pathogenic infectious pancreatic necrosis virus (IPNV) causes high economic losses in fish farming. This virus can modulate several cellular processes during infection, but little is known about the infection mechanism. To investigate gene activation in response to IPNV, CHSE/F and SHK-1 cell line were infected with a cytopathic Sp field isolate of IPNV, and the expression profiles of proinflammatory, antiviral cytokine, and extracellular matrix markers were analyzed. IPNV induced the production of perlecan, fibulin-1, matrix metalloproteinase-2, 14-3-3β, interleukin-1β, Mx1, and interferon regulatory factors-1, -3, and -9. Interestingly, IPNV-mediated activity was blocked by pharmacological inhibitors of the NF-κB signaling pathway. These results, together with in silico analyses showing the presence of several regulatory consensus-target motifs, suggest that IPNV regulates gene expressions in fish through the activation of several key transcription factors. Collectively, these data indicate that IPNV is a viral regulator of expression for extracellular-matrix and immune markers, even during early infection. Finally, this is the first report in fish to find IPNV modulating the activation of interleukin-1β production primarily through the NF-κB pathway.
Collapse
Affiliation(s)
- Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Valeria Pérez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Laura Herrera
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Cristopher Stepke
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Nicolas Maldonado
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Fernanda Fredericksen
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Alejandro Yáñez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
84
|
Okamoto M, Tsukamoto H, Kouwaki T, Seya T, Oshiumi H. Recognition of Viral RNA by Pattern Recognition Receptors in the Induction of Innate Immunity and Excessive Inflammation During Respiratory Viral Infections. Viral Immunol 2017; 30:408-420. [PMID: 28609250 DOI: 10.1089/vim.2016.0178] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The innate immune system is the first line of defense against virus infection that triggers the expression of type I interferon (IFN) and proinflammatory cytokines. Pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns, resulting in the induction of innate immune responses. Viral RNA in endosomes is recognized by Toll-like receptors, and cytoplasmic viral RNA is recognized by RIG-I-like receptors. The host innate immune response is critical for protection against virus infection. However, it has been postulated that an excessive inflammatory response in the lung caused by the innate immune response is harmful to the host and is a cause of lethality during influenza A virus infection. Although the deletion of genes encoding PRRs or proinflammatory cytokines does not improve the mortality of mice infected with influenza A virus, a partial block of the innate immune response is successful in decreasing the mortality rate of mice without a loss of protection against virus infection. In addition, morbidity and mortality rates are influenced by other factors. For example, secondary bacterial infection increases the mortality rate in patients with influenza A virus and in animal models of the disease, and environmental factors, such as cigarette smoke and fine particles, also affect the innate immune response. In this review, we summarize recent findings related to the role of PRRs in innate immune response during respiratory viral infection.
Collapse
Affiliation(s)
- Masaaki Okamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Hirotake Tsukamoto
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Takahisa Kouwaki
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Tsukasa Seya
- 2 Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Sapporo, Japan
| | - Hiroyuki Oshiumi
- 1 Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan .,3 PRESTO JST, Kumamoto, Japan
| |
Collapse
|
85
|
Jin HS, Suh HW, Kim SJ, Jo EK. Mitochondrial Control of Innate Immunity and Inflammation. Immune Netw 2017; 17:77-88. [PMID: 28458619 PMCID: PMC5407986 DOI: 10.4110/in.2017.17.2.77] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/02/2017] [Accepted: 02/19/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are key organelles involved in energy production, functioning as the metabolic hubs of cells. Recent findings emphasize the emerging role of the mitochondrion as a key intracellular signaling platform regulating innate immune and inflammatory responses. Several mitochondrial proteins and mitochondrial reactive oxygen species have emerged as central players orchestrating the innate immune responses to pathogens and damaging ligands. This review explores our current understanding of the roles played by mitochondria in regulation of innate immunity and inflammatory responses. Recent advances in our understanding of the relationship between autophagy, mitochondria, and inflammasome activation are also briefly discussed. A comprehensive understanding of mitochondrial role in toll-like receptor-mediated innate immune responses and NLRP3 inflammasome complex activation, will facilitate development of novel therapeutics to treat various infectious, inflammatory, and autoimmune disorders.
Collapse
Affiliation(s)
- Hyo Sun Jin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Hyun-Woo Suh
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
86
|
Selective dysfunction of subsets of peripheral blood mononuclear cells during pediatric dengue and its relationship with clinical outcome. Virology 2017; 507:11-19. [PMID: 28395181 DOI: 10.1016/j.virol.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/11/2022]
Abstract
During dengue virus (DENV) infection, a blockage of secretion of cytokines such as tumor necrosis factor (TNF)-α and members of the interferon (IFN) family has been described in vitro. We evaluated the functionality of monocytes as well as dendritic, B and T cells isolated from children with mild and severe dengue. Compared with those of healthy children, stimulated monocytes, CD4+ T cells and dendritic cells from children with dengue had lower production of proinflammatory cytokines. The interferon axis was dramatically modulated by infection as plasmacytoid dendritic cells (pDCs) and CD4+ T cells had low production of IFN-α and IFN-γ, respectively; plasma levels of IFN-α and IFN-γ were lower in severely ill children, suggesting a protective role. Patients with antigenemia had the highest levels of IFN-α in plasma but the lowest frequency of IFN-α-producing pDCs, suggesting that DENV infection stimulates a systemic type I IFN response but affects the pDCs function.
Collapse
|
87
|
Odendall C, Kagan JC. Activation and pathogenic manipulation of the sensors of the innate immune system. Microbes Infect 2017; 19:229-237. [PMID: 28093320 PMCID: PMC6697111 DOI: 10.1016/j.micinf.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Abstract
The innate immune system detects the presence of microbes through different families of pattern-recognition receptors (PRRs). PRRs detect pathogens of all origins and trigger signaling events that activate innate and adaptive immunity. These events need to be tightly regulated in order to ensure optimal activation when required, and minimal signaling in the absence of microbial encounters. This regulation is achieved, at least in part, through the precise subcellular positioning of receptors and downstream signaling proteins. Consequently, mislocalization of these proteins inhibits innate immune pathways, and pathogens have evolved to alter host protein localization as a strategy to evade immune detection. This review describes the importance of subcellular localization of various PRR families and their adaptors, and highlights pathogenic immune evasion strategies that operate by altering immune protein localization.
Collapse
Affiliation(s)
- Charlotte Odendall
- Department of Infectious Diseases, King's College London, London SE1 9RT, UK
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
88
|
Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J, Lamothe F, Fredericks AC, Tripathi S, Zhu T, Pintado-Silva J, Webb LG, Bernal-Rubio D, Solovyov A, Greenbaum B, Simon V, Basler CF, Mulder LCF, García-Sastre A, Fernandez-Sesma A. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol 2017; 2:17037. [PMID: 28346446 DOI: 10.1038/nmicrobiol.2017.37] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 02/17/2017] [Indexed: 12/19/2022]
Abstract
During the last few decades, the global incidence of dengue virus (DENV) has increased dramatically, and it is now endemic in more than 100 countries. To establish a productive infection in humans, DENV uses different strategies to inhibit or avoid the host innate immune system. Several DENV proteins have been shown to strategically target crucial components of the type I interferon system. Here, we report that the DENV NS2B protease cofactor targets the DNA sensor cyclic GMP-AMP synthase (cGAS) for lysosomal degradation to avoid the detection of mitochondrial DNA during infection. Such degradation subsequently results in the inhibition of type I interferon production in the infected cell. Our data demonstrate a mechanism by which cGAS senses cellular damage upon DENV infection.
Collapse
Affiliation(s)
- Sebastian Aguirre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Priya Luthra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Maria T Sanchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Jenish Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Francise Lamothe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Anthony C Fredericks
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Tongtong Zhu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Jessica Pintado-Silva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Laurence G Webb
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Dabeiba Bernal-Rubio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Alexander Solovyov
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Department of Medicine, Department of Pathology and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Benjamin Greenbaum
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Department of Medicine, Department of Pathology and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Lubbertus C F Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, USA
| |
Collapse
|
89
|
da Fonseca NJ, Lima Afonso MQ, Pedersolli NG, de Oliveira LC, Andrade DS, Bleicher L. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains. Biochem Biophys Res Commun 2017; 492:565-571. [PMID: 28087275 DOI: 10.1016/j.bbrc.2017.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Flaviviruses are responsible for serious diseases such as dengue, yellow fever, and zika fever. Their genomes encode a polyprotein which, after cleavage, results in three structural and seven non-structural proteins. Homologous proteins can be studied by conservation and coevolution analysis as detected in multiple sequence alignments, usually reporting positions which are strictly necessary for the structure and/or function of all members in a protein family or which are involved in a specific sub-class feature requiring the coevolution of residue sets. This study provides a complete conservation and coevolution analysis on all flaviviruses non-structural proteins, with results mapped on all well-annotated available sequences. A literature review on the residues found in the analysis enabled us to compile available information on their roles and distribution among different flaviviruses. Also, we provide the mapping of conserved and coevolved residues for all sequences currently in SwissProt as a supplementary material, so that particularities in different viruses can be easily analyzed.
Collapse
Affiliation(s)
- Néli José da Fonseca
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Marcelo Querino Lima Afonso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Natan Gonçalves Pedersolli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Carrijo de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Dhiego Souto Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
90
|
Schulz KS, Mossman KL. Viral Evasion Strategies in Type I IFN Signaling - A Summary of Recent Developments. Front Immunol 2016; 7:498. [PMID: 27891131 PMCID: PMC5104748 DOI: 10.3389/fimmu.2016.00498] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system protects the organism against infections and the damage associated with them. The first line of defense against pathogens is the innate immune response. In the case of a viral infection, it induces the interferon (IFN) signaling cascade and eventually the expression of type I IFN, which then causes an antiviral state in the cells. However, many viruses have developed strategies to counteract this mechanism and prevent the production of IFN. In order to modulate or inhibit the IFN signaling cascade in their favor, viruses have found ways to interfere at every single step of the cascade, for example, by inducing protein degradation or cleavage, or by mediate protein polyubiquitination. In this article, we will review examples of viruses that modulate the IFN response and describe the mechanisms they use.
Collapse
Affiliation(s)
- Katharina S Schulz
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University , Hamilton, ON , Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University , Hamilton, ON , Canada
| |
Collapse
|
91
|
Gack MU, Diamond MS. Innate immune escape by Dengue and West Nile viruses. Curr Opin Virol 2016; 20:119-128. [PMID: 27792906 DOI: 10.1016/j.coviro.2016.09.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022]
Abstract
Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells.
Collapse
Affiliation(s)
- Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
92
|
Chatel-Chaix L, Cortese M, Romero-Brey I, Bender S, Neufeldt CJ, Fischl W, Scaturro P, Schieber N, Schwab Y, Fischer B, Ruggieri A, Bartenschlager R. Dengue Virus Perturbs Mitochondrial Morphodynamics to Dampen Innate Immune Responses. Cell Host Microbe 2016; 20:342-356. [PMID: 27545046 PMCID: PMC7105029 DOI: 10.1016/j.chom.2016.07.008] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/21/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
With no antiviral drugs or widely available vaccines, Dengue virus (DENV) constitutes a public health concern. DENV replicates at ER-derived cytoplasmic structures that include substructures called convoluted membranes (CMs); however, the purpose of these membrane alterations remains unclear. We determine that DENV nonstructural protein (NS)4B, a promising drug target with unknown function, associates with mitochondrial proteins and alters mitochondria morphology to promote infection. During infection, NS4B induces elongation of mitochondria, which physically contact CMs. This restructuring compromises the integrity of mitochondria-associated membranes, sites of ER-mitochondria interface critical for innate immune signaling. The spatio-temporal parameters of CM biogenesis and mitochondria elongation are linked to loss of activation of the fission factor Dynamin-Related Protein-1. Mitochondria elongation promotes DENV replication and alleviates RIG-I-dependent activation of interferon responses. As Zika virus infection induces similar mitochondria elongation, this perturbation may protect DENV and related viruses from innate immunity and create a favorable replicative environment. DENV NS4B induces mitochondria elongation during viral infection Elongated mitochondria and virus-induced convoluted membranes are physically linked NS4B inhibits activation of the mitochondrial fission factor DRP1 Mitochondria elongation alleviates DENV-induced RIG-I-dependent innate immunity
Collapse
Affiliation(s)
- Laurent Chatel-Chaix
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany; German Centre for Infection Research, Heidelberg University, 69120 Heidelberg, Germany
| | - Silke Bender
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Christopher John Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Wolfgang Fischl
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Pietro Scaturro
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Nicole Schieber
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yannick Schwab
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernd Fischer
- Computational Genome Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany; German Centre for Infection Research, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
93
|
Beachboard DC, Horner SM. Innate immune evasion strategies of DNA and RNA viruses. Curr Opin Microbiol 2016; 32:113-119. [PMID: 27288760 PMCID: PMC4983539 DOI: 10.1016/j.mib.2016.05.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022]
Abstract
Upon infection, both DNA and RNA viruses can be sensed by pattern recognition receptors (PRRs) in the cytoplasm or the nucleus to activate antiviral innate immunity. Sensing of viral products leads to the activation of a signaling cascade that ultimately results in transcriptional activation of type I and III interferons, as well as other antiviral genes that together mediate viral clearance and inhibit viral spread. Therefore, in order for viruses to replicate and spread efficiently, they must inhibit the host signaling pathways that induce the innate antiviral immune response. In this review, we will highlight recent advances in the understanding of the mechanisms by which viruses evade PRR detection, intermediate signaling molecule activation, transcription factor activation, and the actions of antiviral proteins.
Collapse
Affiliation(s)
- Dia C Beachboard
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stacy M Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
94
|
Abstract
The co-evolution of viruses with their hosts has led to the emergence of viral pathogens that are adept at evading or actively suppressing host immunity. Pattern recognition receptors (PRRs) are key components of antiviral immunity that detect conserved molecular features of viral pathogens and initiate signalling that results in the expression of antiviral genes. In this Review, we discuss the strategies that viruses use to escape immune surveillance by key intracellular sensors of viral RNA or DNA, with a focus on RIG-I-like receptors (RLRs), cyclic GMP-AMP synthase (cGAS) and interferon-γ (IFNγ)-inducible protein 16 (IFI16). Such viral strategies include the sequestration or modification of viral nucleic acids, interference with specific post-translational modifications of PRRs or their adaptor proteins, the degradation or cleavage of PRRs or their adaptors, and the sequestration or relocalization of PRRs. An understanding of viral immune-evasion mechanisms at the molecular level may guide the development of vaccines and antivirals.
Collapse
Affiliation(s)
- Ying Kai Chan
- grid.38142.3c000000041936754XDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, 02115 Massachusetts USA
| | - Michaela U. Gack
- grid.170205.10000 0004 1936 7822Department of Microbiology, The University of Chicago, Chicago, 60637 Illinois USA
| |
Collapse
|