51
|
Weeratunga P, Moller DR, Ho LP. Immune mechanisms in fibrotic pulmonary sarcoidosis. Eur Respir Rev 2022; 31:220178. [PMID: 36543347 PMCID: PMC9879330 DOI: 10.1183/16000617.0178-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Sarcoidosis is an immune-mediated disorder. Its immunopathology has been steadily mapped out over the past few decades. Despite this, the underpinning mechanisms for progressive fibrotic sarcoidosis is an almost uncharted area. Consequently, there has been little change in the clinical management of fibrotic sarcoidosis over the decades and an unfocused search for new therapeutics. In this review, we provide a comprehensive examination of the relevant immune findings in fibrotic and/or progressive pulmonary sarcoidosis and propose a unifying mechanism for the pathobiology of fibrosis in sarcoidosis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | - David R Moller
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ling-Pei Ho
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
52
|
Huang Z, You X, Chen L, Du Y, Brodeur K, Jee H, Wang Q, Linder G, Darbousset R, Cunin P, Chang MH, Wactor A, Wauford BM, Todd MJC, Wei K, Li Y, Levescot A, Iwakura Y, Pascual V, Baldwin NE, Quartier P, Li T, Gianatasio MT, Hasserjian RP, Henderson LA, Sykes DB, Mellins ED, Canna SW, Charles JF, Nigrovic PA, Lee PY. mTORC1 links pathology in experimental models of Still's disease and macrophage activation syndrome. Nat Commun 2022; 13:6915. [PMID: 36443301 PMCID: PMC9705324 DOI: 10.1038/s41467-022-34480-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
Still's disease is a severe inflammatory syndrome characterized by fever, skin rash and arthritis affecting children and adults. Patients with Still's disease may also develop macrophage activation syndrome, a potentially fatal complication of immune dysregulation resulting in cytokine storm. Here we show that mTORC1 (mechanistic target of rapamycin complex 1) underpins the pathology of Still's disease and macrophage activation syndrome. Single-cell RNA sequencing in a murine model of Still's disease shows preferential activation of mTORC1 in monocytes; both mTOR inhibition and monocyte depletion attenuate disease severity. Transcriptomic data from patients with Still's disease suggest decreased expression of the mTORC1 inhibitors TSC1/TSC2 and an mTORC1 gene signature that strongly correlates with disease activity and treatment response. Unrestricted activation of mTORC1 by Tsc2 deletion in mice is sufficient to trigger a Still's disease-like syndrome, including both inflammatory arthritis and macrophage activation syndrome with hemophagocytosis, a cellular manifestation that is reproduced in human monocytes by CRISPR/Cas-mediated deletion of TSC2. Consistent with this observation, hemophagocytic histiocytes from patients with macrophage activation syndrome display prominent mTORC1 activity. Our study suggests a mechanistic link of mTORC1 to inflammation that connects the pathogenesis of Still's disease and macrophage activation syndrome.
Collapse
Affiliation(s)
- Zhengping Huang
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.413405.70000 0004 1808 0686Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaomeng You
- grid.38142.3c000000041936754XDepartment of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Liang Chen
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Yan Du
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.412465.0Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kailey Brodeur
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hyuk Jee
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Qiang Wang
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Grace Linder
- grid.239552.a0000 0001 0680 8770Blood Bank and Transfusion Medicine Division, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Roxane Darbousset
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Pierre Cunin
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Margaret H. Chang
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Alexandra Wactor
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Brian M. Wauford
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Marc J. C. Todd
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kevin Wei
- grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ying Li
- grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Anais Levescot
- grid.462336.6Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| | - Yoichiro Iwakura
- grid.143643.70000 0001 0660 6861Centre for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Virginia Pascual
- grid.5386.8000000041936877XDepartment of Pediatrics and Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY USA
| | - Nicole E. Baldwin
- grid.486749.00000 0004 4685 2620Baylor Scott & White Research Institute, Dallas, TX USA
| | - Pierre Quartier
- grid.5842.b0000 0001 2171 2558Pediatric Immunology, Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris, Universite de Paris, Paris, France
| | - Tianwang Li
- grid.413405.70000 0004 1808 0686Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Maria T. Gianatasio
- grid.416636.00000 0004 0460 4960Mass General Brigham Healthcare Center - Salem Hospital, Salem, MA USA
| | - Robert P. Hasserjian
- grid.38142.3c000000041936754XDepartment of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Lauren A. Henderson
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - David B. Sykes
- grid.32224.350000 0004 0386 9924Center for Regenerative Medicine, Massachusetts General Hospital, Boston, USA
| | - Elizabeth D. Mellins
- grid.168010.e0000000419368956Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA USA
| | - Scott W. Canna
- grid.239552.a0000 0001 0680 8770Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Julia F. Charles
- grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Peter A. Nigrovic
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDivision of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Pui Y. Lee
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
53
|
Chang CY, You R, Armstrong D, Bandi A, Cheng YT, Burkhardt PM, Becerra-Dominguez L, Madison MC, Tung HY, Zeng Z, Wu Y, Song L, Phillips PE, Porter P, Knight JM, Putluri N, Yuan X, Marcano DC, McHugh EA, Tour JM, Catic A, Maneix L, Burt BM, Lee HS, Corry DB, Kheradmand F. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. SCIENCE ADVANCES 2022; 8:eabq0615. [PMID: 36383649 PMCID: PMC9668323 DOI: 10.1126/sciadv.abq0615] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Chronic exposure to airborne carbon black ultrafine (nCB) particles generated from incomplete combustion of organic matter drives IL-17A-dependent emphysema. However, whether and how they alter the immune responses to lung cancer remains unknown. Here, we show that exposure to nCB particles increased PD-L1+ PD-L2+ CD206+ antigen-presenting cells (APCs), exhausted T cells, and Treg cells. Lung macrophages that harbored nCB particles showed selective mitochondrial structure damage and decreased oxidative respiration. Lung macrophages sustained the HIF1α axis that increased glycolysis and lactate production, culminating in an immunosuppressive microenvironment in multiple mouse models of non-small cell lung cancers. Adoptive transfer of lung APCs from nCB-exposed wild type to susceptible mice increased tumor incidence and caused early metastasis. Our findings show that nCB exposure metabolically rewires lung macrophages to promote immunosuppression and accelerates the development of lung cancer.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ran You
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominique Armstrong
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ashwini Bandi
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Ting Cheng
- Developmental Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philip M. Burkhardt
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luis Becerra-Dominguez
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C. Madison
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Ying Tung
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhimin Zeng
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yifan Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia E. Phillips
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston TX 77030, USA
| | - Paul Porter
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston TX 77030, USA
| | - John M. Knight
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Daniela C. Marcano
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - Emily A. McHugh
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - James M. Tour
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - Andre Catic
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bryan M. Burt
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun-Sung Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B. Corry
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
54
|
Liu X, Liu Y, Yang RX, Ding XJ, Liang ES. Loss of myeloid Tsc2 predisposes to angiotensin II-induced aortic aneurysm formation in mice. Cell Death Dis 2022; 13:972. [PMID: 36400753 PMCID: PMC9674579 DOI: 10.1038/s41419-022-05423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
RATIONALE Genetic studies have proved the involvement of Tuberous sclerosis complex subunit 2 (Tsc2) in aortic aneurysm. However, the exact role of macrophage Tsc2 in the vascular system remains unclear. Here, we examined the potential function of macrophage Tsc2 in the development of aortic remodeling and aortic aneurysms. METHODS AND RESULTS Conditional gene knockout strategy combined with histology and whole-transcriptomic analysis showed that Tsc2 deficiency in macrophages aggravated the progression of aortic aneurysms along with an upregulation of proinflammatory cytokines and matrix metallopeptidase-9 in the angiotensin II-induced mouse model. G protein-coupled receptor 68 (Gpr68), a proton-sensing receptor for detecting the extracellular acidic pH, was identified as the most up-regulated gene in Tsc2 deficient macrophages compared with control macrophages. Additionally, Tsc2 deficient macrophages displayed higher glycolysis and glycolytic inhibitor 2-deoxy-D-glucose treatment partially attenuated the level of Gpr68. We further demonstrated an Tsc2-Gpr68-CREB network in macrophages that regulates the inflammatory response, proteolytic degradation and vascular homeostasis. Gpr68 inhibition largely abrogated the progression of aortic aneurysms caused by Tsc2 deficiency in macrophages. CONCLUSIONS The findings reveal that Tsc2 deficiency in macrophages contributes to aortic aneurysm formation, at least in part, by upregulating Gpr68 expression, which subsequently drives proinflammatory processes and matrix metallopeptidase activation. The data also provide a novel therapeutic strategy to limit the progression of the aneurysm resulting from Tsc2 mutations.
Collapse
Affiliation(s)
- Xue Liu
- grid.452402.50000 0004 1808 3430The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Liu
- grid.452402.50000 0004 1808 3430The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Rui-xue Yang
- grid.452402.50000 0004 1808 3430The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang-jiu Ding
- grid.452402.50000 0004 1808 3430Department of Vascular Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Er-shun Liang
- grid.452402.50000 0004 1808 3430The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
55
|
Ascoli C, Schott CA, Huang Y, Turturice BA, Wang W, Ecanow N, Sweiss NJ, Perkins DL, Finn PW. Altered transcription factor targeting is associated with differential peripheral blood mononuclear cell proportions in sarcoidosis. Front Immunol 2022; 13:848759. [PMID: 36311769 PMCID: PMC9608777 DOI: 10.3389/fimmu.2022.848759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionIn sarcoidosis, peripheral lymphopenia and anergy have been associated with increased inflammation and maladaptive immune activity, likely promoting development of chronic and progressive disease. However, the molecular mechanisms that lead to reduced lymphocyte proportions, particularly CD4+ T-cells, have not been fully elucidated. We posit that paradoxical peripheral lymphopenia is characterized by a dysregulated transcriptomic network associated with cell function and fate that results from altered transcription factor targeting activity.MethodsMessenger RNA-sequencing (mRNA-seq) was performed on peripheral blood mononuclear cells (PBMCs) from ACCESS study subjects with sarcoidosis and matched controls and findings validated on a sarcoidosis case-control cohort and a sarcoidosis case series. Preserved PBMC transcriptomic networks between case-control cohorts were assessed to establish cellular associations with gene modules and define regulatory targeting involved in sarcoidosis immune dysregulation utilizing weighted gene co-expression network analysis and differential transcription factor involvement analysis. Network centrality measures identified master transcriptional regulators of subnetworks related to cell proliferation and death. Predictive models of differential PBMC proportions constructed from ACCESS target gene expression corroborated the relationship between aberrant transcription factor regulatory activity and imputed and clinical PBMC populations in the validation cohorts.ResultsWe identified two unique and preserved gene modules significantly associated with sarcoidosis immune dysregulation. Strikingly, increased expression of a monocyte-driven, and not a lymphocyte-driven, gene module related to innate immunity and cell death was the best predictor of peripheral CD4+ T-cell proportions. Within the gene network of this monocyte-driven module, TLE3 and CBX8 were determined to be master regulators of the cell death subnetwork. A core gene signature of differentially over-expressed target genes of TLE3 and CBX8 involved in cellular communication and immune response regulation accurately predicted imputed and clinical monocyte expansion and CD4+ T-cell depletion.ConclusionsAltered transcriptional regulation associated with aberrant gene expression of a monocyte-driven transcriptional network likely influences lymphocyte function and survival. Although further investigation is warranted, this indicates that crosstalk between hyperactive monocytes and lymphocytes may instigate peripheral lymphopenia and underlie sarcoidosis immune dysregulation and pathogenesis. Future therapies selectively targeting master regulators, or their targets, may mitigate dysregulated immune processes in sarcoidosis and disease progression.
Collapse
Affiliation(s)
- Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Cody A. Schott
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Yue Huang
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Wangfei Wang
- Department of Bioengineering, University of Illinois at Chicago College of Engineering and Medicine, Chicago, IL, United States
| | - Naomi Ecanow
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Nadera J. Sweiss
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - David L. Perkins
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Patricia W. Finn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Patricia W. Finn,
| |
Collapse
|
56
|
Obi ON, Saketkoo LA, Russell AM, Baughman RP. Sarcoidosis: Updates on therapeutic drug trials and novel treatment approaches. Front Med (Lausanne) 2022; 9:991783. [PMID: 36314034 PMCID: PMC9596775 DOI: 10.3389/fmed.2022.991783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Sarcoidosis is a systemic granulomatous inflammatory disease of unknown etiology. It affects the lungs in over 90% of patients yet extra-pulmonary and multi-organ involvement is common. Spontaneous remission of disease occurs commonly, nonetheless, over 50% of patients will require treatment and up to 30% of patients will develop a chronic progressive non-remitting disease with marked pulmonary fibrosis leading to significant morbidity and death. Guidelines outlining an immunosuppressive treatment approach to sarcoidosis were recently published, however, the strength of evidence behind many of the guideline recommended drugs is weak. None of the drugs currently used for the treatment of sarcoidosis have been rigorously studied and prescription of these drugs is often based on off-label” indications informed by experience with other diseases. Indeed, only two medications [prednisone and repository corticotropin (RCI) injection] currently used in the treatment of sarcoidosis are approved by the United States Food and Drug Administration. This situation results in significant reimbursement challenges especially for the more advanced (and often more effective) drugs that are favored for severe and refractory forms of disease causing an over-reliance on corticosteroids known to be associated with significant dose and duration dependent toxicities. This past decade has seen a renewed interest in developing new drugs and exploring novel therapeutic pathways for the treatment of sarcoidosis. Several of these trials are active randomized controlled trials (RCTs) designed to recruit relatively large numbers of patients with a goal to determine the safety, efficacy, and tolerability of these new molecules and therapeutic approaches. While it is an exciting time, it is also necessary to exercise caution. Resources including research dollars and most importantly, patient populations available for trials are limited and thus necessitate that several of the challenges facing drug trials and drug development in sarcoidosis are addressed. This will ensure that currently available resources are judiciously utilized. Our paper reviews the ongoing and anticipated drug trials in sarcoidosis and addresses the challenges facing these and future trials. We also review several recently completed trials and draw lessons that should be applied in future.
Collapse
Affiliation(s)
- Ogugua Ndili Obi
- Division of Pulmonary Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States,*Correspondence: Ogugua Ndili Obi,
| | - Lesley Ann Saketkoo
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, LA, United States,University Medical Center—Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, LA, United States,Section of Pulmonary Medicine, Louisiana State University School of Medicine, New Orleans, LA, United States,Department of Undergraduate Honors, Tulane University School of Medicine, New Orleans, LA, United States
| | - Anne-Marie Russell
- Exeter Respiratory Institute University of Exeter, Exeter, United Kingdom,Royal Devon and Exeter NHS Foundation Trust, Devon, United Kingdom,Faculty of Medicine, Imperial College and Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Robert P. Baughman
- Department of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
57
|
Sarcoidosis and COVID-19: At the Cross-Road between Immunopathology and Clinical Manifestation. Biomedicines 2022; 10:biomedicines10102525. [PMID: 36289785 PMCID: PMC9599235 DOI: 10.3390/biomedicines10102525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been associated with dysregulation of the immune system featuring inappropriate immune responses, exacerbation of inflammatory responses, and multiple organ dysfunction syndrome in patients with severe disease. Sarcoidosis, also known as Besnier-Boeck-Schaumann disease, is an idiopathic granulomatous multisystem disease characterized by dense epithelioid non-necrotizing lesions with varying degrees of lymphocytic inflammation. These two diseases have similar clinical manifestations and may influence each other at multiple levels, eventually affecting their clinical courses and prognosis. Notably, sarcoidosis patients are at high risk of severe COVID-19 pneumonia because of the underlying lung disease and chronic immunosuppressive treatment. In this narrative review, we will discuss interactions between sarcoidosis and COVID-19 in terms of clinical manifestations, treatment, and pathogenesis, including the role of the dysregulated renin-angiotensin system, altered immune responses involving increased cytokine levels and immune system hyperactivation, and cellular death pathways.
Collapse
|
58
|
Liu J, Ma P, Lai L, Villanueva A, Koenig A, Bean GR, Bowles DE, Glass C, Watson M, Lavine KJ, Lin CY. Transcriptional and Immune Landscape of Cardiac Sarcoidosis. Circ Res 2022; 131:654-669. [PMID: 36111531 PMCID: PMC9514756 DOI: 10.1161/circresaha.121.320449] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cardiac involvement is an important determinant of mortality among sarcoidosis patients. Although granulomatous inflammation is a hallmark finding in cardiac sarcoidosis, the precise immune cell populations that comprise the granuloma remain unresolved. Furthermore, it is unclear how the cellular and transcriptomic landscape of cardiac sarcoidosis differs from other inflammatory heart diseases. METHODS We leveraged spatial transcriptomics (GeoMx digital spatial profiler) and single-nucleus RNA sequencing to elucidate the cellular and transcriptional landscape of cardiac sarcoidosis. Using GeoMX digital spatial profiler technology, we compared the transcriptomal profile of CD68+ rich immune cell infiltrates in human cardiac sarcoidosis, giant cell myocarditis, and lymphocytic myocarditis. We performed single-nucleus RNA sequencing of human cardiac sarcoidosis to identify immune cell types and examined their transcriptomic landscape and regulation. Using multichannel immunofluorescence staining, we validated immune cell populations identified by single-nucleus RNA sequencing, determined their spatial relationship, and devised an immunostaining approach to distinguish cardiac sarcoidosis from other inflammatory heart diseases. RESULTS Despite overlapping histological features, spatial transcriptomics identified transcriptional signatures and associated pathways that robustly differentiated cardiac sarcoidosis from giant cell myocarditis and lymphocytic myocarditis. Single-nucleus RNA sequencing revealed the presence of diverse populations of myeloid cells in cardiac sarcoidosis with distinct molecular features. We identified GPNMB (transmembrane glycoprotein NMB) as a novel marker of multinucleated giant cells and predicted that the MITF (microphthalmia-associated transcription factor) family of transcription factors regulated this cell type. We also detected additional macrophage populations in cardiac sarcoidosis including HLA-DR (human leukocyte antigen-DR)+ macrophages, SYTL3 (synaptotagmin-like protein 3)+ macrophages and CD163+ resident macrophages. HLA-DR+ macrophages were found immediately adjacent to GPMMB+ giant cells, a distinct feature compared with other inflammatory cardiac diseases. SYTL3+ macrophages were located scattered throughout the granuloma and CD163+ macrophages, CD1c+ dendritic cells, nonclassical monocytes, and T cells were located at the periphery and outside of the granuloma. Finally, we demonstrate mTOR (mammalian target of rapamycin) pathway activation is associated with proliferation and is selectively found in HLA-DR+ and SYLT3+ macrophages. CONCLUSIONS In this study, we identified diverse populations of immune cells with distinct molecular signatures that comprise the sarcoid granuloma. These findings provide new insights into the pathology of cardiac sarcoidosis and highlight opportunities to improve diagnostic testing.
Collapse
Affiliation(s)
- Jing Liu
- Cardiovascular Division, Department of Medicine (J.L., P.M., A.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, China (J.L.)
| | - Pan Ma
- Cardiovascular Division, Department of Medicine (J.L., P.M., A.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Lulu Lai
- Department of Pathology and Immunology (A.V., L.L., C.-Y.L.), Washington University School of Medicine, St. Louis, MO
| | - Ana Villanueva
- Department of Pathology and Immunology (A.V., L.L., C.-Y.L.), Washington University School of Medicine, St. Louis, MO
| | - Andrew Koenig
- Cardiovascular Division, Department of Medicine (J.L., P.M., A.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Gregory R. Bean
- Department of Pathology, Stanford University School of Medicine, CA (G.R.B.)
| | - Dawn E. Bowles
- Department of Surgery (D.E.B., M.W.), Duke University, Durham, NC
| | - Carolyn Glass
- Department of Pathology (C.G.), Duke University, Durham, NC
| | - Michael Watson
- Department of Surgery (D.E.B., M.W.), Duke University, Durham, NC
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine (J.L., P.M., A.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Chieh-Yu Lin
- Department of Pathology and Immunology (A.V., L.L., C.-Y.L.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
59
|
Baker MC, Vágó E, Liu Y, Lu R, Tamang S, Horváth-Puhó E, Sørensen HT. Sarcoidosis incidence after mTOR inhibitor treatment. Semin Arthritis Rheum 2022; 57:152102. [PMID: 36182721 DOI: 10.1016/j.semarthrit.2022.152102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Mechanistic target of rapamycin (mTOR) inhibitors are effective in animal models of granulomatous disease, but their benefit in sarcoidosis patients is unknown. We evaluated the incidence of sarcoidosis in patients treated with mTOR inhibitors versus calcineurin inhibitors. METHODS This was a cohort study using the Optum Clinformatics® Data Mart (CDM) Database (2003-2019), IBM® MarketScan® Research Database (2006-2016), and Danish health and administrative registries (1996-2018). Patients aged ≥18 years with ≥1 year continuous enrollment before and after kidney, liver, heart, or lung transplant treated with an mTOR inhibitor or calcineurin inhibitor were included. Patients diagnosed with sarcoidosis before, or up to 90 days after, transplant were excluded. The incidence of sarcoidosis by treatment group was calculated. RESULTS In the Optum CDM/IBM MarketScan cohort, 1,898 patients were treated with an mTOR inhibitor (mean age 49 years; 34% female) and 9,894 patients were treated with a calcineurin inhibitor (mean age 50 years; 37% female). The mean follow-up in the mTOR inhibitor group was 1.1 years, with no incident sarcoidosis diagnosed. In the calcineurin inhibitor group, the mean follow-up was 2.2 years, with 12 incident sarcoidosis cases diagnosed. In the Danish cohort, 230 patients were treated with an mTOR inhibitor (mean age 49; 45% female), with no incident sarcoidosis diagnosed. There were 3,411 patients treated with a calcineurin inhibitor (mean age 45; 40% female), with 10 incident cases of sarcoidosis diagnosed. CONCLUSIONS This study indicates a potential protective effect of mTOR inhibitor treatment compared with calcineurin inhibitor treatment against the development of sarcoidosis.
Collapse
Affiliation(s)
- Matthew C Baker
- The Division of Immunology and Rheumatology, Department of Medicine, Stanford University,1000 Welch Rd, Suite 203, Palo Alto, Stanford, CA 94304, USA.
| | - Emese Vágó
- The Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yuhan Liu
- The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rong Lu
- The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Suzanne Tamang
- The Division of Immunology and Rheumatology, Department of Medicine, Stanford University,1000 Welch Rd, Suite 203, Palo Alto, Stanford, CA 94304, USA
| | - Erzsébet Horváth-Puhó
- The Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henrik Toft Sørensen
- The Department of Clinical Epidemiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; The Clinical Excellence Science Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
60
|
Malkova A, Zinchenko Y, Starshinova A, Kudlay D, Kudryavtsev I, Glushkova A, Yablonskiy P, Shoenfeld Y. Sarcoidosis: Progression to the chronic stage and pathogenic based treatment (narrative review). Front Med (Lausanne) 2022; 9:963435. [PMID: 36148463 PMCID: PMC9486475 DOI: 10.3389/fmed.2022.963435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many factors confirm the autoimmune nature of sarcoidosis and help in determining the strategy of patient management and treatment initiation. However, the causes and the mechanisms of disease progression that result in fibrosis and insufficiency of the affected organ remain unclear. This narrative review aims to analyse the mechanisms and biomarkers of sarcoidosis progression, as well as the pathogenetic basis of sarcoidosis therapy. The following characteristics of progressive chronic sarcoidosis were revealed: the disease develops in patients with a genetic predisposition (SNP in genes GREM1, CARD15, TGF-β3, HLA-DQB1*06:02, HLA-DRB1*07/14/15), which contributes either the decreased ability of antigen elimination or autoimmune inflammation. Various prognostic biomarkers of disease progression (decreased levels of neopterin, elastase, sIL-2R, chitotriosidase, glycoprotein Krebs von den Lungen, Th17 cell count, reduced quantity of TNF-α in peripheral blood or bronchoalveolar lavage fluid) have been described and can potentially be used to determine the group of patients who will benefit from the use of corticosteroids/cytostatic drugs/biologics.
Collapse
Affiliation(s)
- Anna Malkova
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, Saint Petersburg, Russia
| | - Yulia Zinchenko
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- *Correspondence: Anna Starshinova ;
| | - Dmitriy Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Personalized Medicine and Molecular Immunology, NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Anzhela Glushkova
- V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology, Saint Petersburg, Russia
| | - Piotr Yablonskiy
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, Saint Petersburg, Russia
- Phthisiopulmonology Department, St. Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
| | - Yehuda Shoenfeld
- Laboratory of the Mosaic of Autoimmunity, St. Petersburg State University, Saint Petersburg, Russia
- Sackler Faculty of Medicine, Ariel University, Ariel, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW In chronic pulmonary sarcoidosis, the transition from the inflammatory to the fibrotic stage of the lungs occurs in about 10-20% of cases, eventually causing end-stage fibrotic disease. To date, pathogenetic mechanisms and clinical management remain challenging; thus, we highlight the recent evidence in pulmonary fibrotic processes, clinical signs for an early detection and the potential role of the current investigated antifibrotic agents and promising targeted therapies. RECENT FINDINGS Recent findings of relevant key cellular pathways can be considered as a glimmer of light in the complexity of sarcoidosis. In some patients, granulomas persist and serve as a nidus for fibrosis growth, sustained by several fibrosis-stimulating cytokines. Preclinical studies have detected profibrotic, antifibrotic and pleiotropic T cells as promoters of fibrosis. Epigenetics, genetics and transcriptomics research can lead to new target therapies. Antifibrotic drug nintedanib has shown a positive effect on non-idiopathic pulmonary fibrosis fibrotic lung diseases including fibrotic sarcoidosis; other antifibrotic drugs are under investigation. SUMMARY Pulmonary fibrosis strongly impacts the outcome of sarcoidosis, and a better understanding of the underlying pathogenic mechanisms can facilitate the development of novel treatments, improving clinical care and life expectancy of these patients. The greatest challenge is to investigate effective antifibrotic therapies once fibrosis develops. The role of these findings in fibrotic sarcoidosis can be translated into other interstitial lung diseases characterized by the coexistence of inflammatory and fibrotic processes.
Collapse
Affiliation(s)
- Alessia Comes
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | |
Collapse
|
62
|
Taskaynatan H, Gunenc D, Ön S, Mizrak A, Samancilar O, Karaca B. Immunotherapy-induced granulomatous reaction in patients with melanoma. Melanoma Res 2022; 32:286-290. [PMID: 35752875 DOI: 10.1097/cmr.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immune checkpoint inhibitors (ICIs) represent a new era in stage IV melanoma treatment. These agents are generally well tolerated but have specific side effects. The granulomatous reaction is one of such ICI-related adverse events. In this report, we present the cases of three patients with stage IV melanoma who all developed mediastinal and hilar lymphadenopathy during ICI treatment. While a complete response was observed in one patient, near complete responses were observed in the other two patients. Amid these favorable outcomes, all patients developed mediastinal and hilar lymphadenopathy approximately 6 months after the initiation of immunotherapy. Biopsies were performed to explore the underlying pathology of the lymph nodes, which revealed granulomatous reactions rather than metastases. Hence, immunotherapy was continued in all patients. The development of granulomatous lymphadenitis associated with ICIs may mimic disease recurrence/progression clinically and radiographically. Awareness of such type of adverse event is crucial to decide whether to continue therapy or not.
Collapse
Affiliation(s)
| | - Damla Gunenc
- Department of Medical Oncology, Tulay Aktas Oncology Hospital
| | - Sercan Ön
- Department of Medical Oncology, Tulay Aktas Oncology Hospital
| | - Ali Mizrak
- Department of Medical Pathology, School of Medicine, Ege University
| | - Ozgur Samancilar
- Clinic of Thoracic Surgery, Medicana International Hospital, Izmir, Turkey
| | - Burcak Karaca
- Department of Medical Oncology, Tulay Aktas Oncology Hospital
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW This review aims to describe how the clinical manifestations of sarcoidosis may be shaped by the effects of sex hormones and by age dependent changes in immune functions and physiology This review is intended to highlight the need to consider the effects of sex and sex in future studies of sarcoidosis. RECENT FINDINGS The clinical manifestations of sarcoidosis differ based on sex and gender There is emerging evidence that female and male hormones and X-linked genes are important determinants of immune responses to environmental antigens, which has important implications for granuloma formation in the context of sarcoidosis Furthermore, sex hormone levels predictably change throughout adolescence and adulthood, and this occurs in parallel with the onset immune senescence and changes in physiology with advanced age. SUMMARY Recent studies indicate that sex and age are important variables shaping the immune response of humans to environmental antigens We posit herein that sex and age are important determinants of sarcoidosis clinical phenotypes Many gaps in our understanding of the roles played by sex and gender in sarcoidosis, and these need to be considered in future studies.
Collapse
Affiliation(s)
- Arindam Singha
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Marina Kirkland
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Wonder Drake
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Elliott D Crouser
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
64
|
Melin A, Routier É, Roy S, Pradere P, Le Pavec J, Pierre T, Chanson N, Scoazec JY, Lambotte O, Robert C. Sarcoid-like Granulomatosis Associated with Immune Checkpoint Inhibitors in Melanoma. Cancers (Basel) 2022; 14:cancers14122937. [PMID: 35740604 PMCID: PMC9221061 DOI: 10.3390/cancers14122937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
We aimed to review the clinical and biological presentation of granulomatosis associated with immune-checkpoint inhibitors (ICI) in patients with melanoma and to explore its association with classical sarcoidosis as well as with cancer response to ICI. To this end, a retrospective study on 18 melanoma patients with histologically proven ICI-induced granulomatosis over a 12-year period in a single center, as well as on 67 similar cases reported in the literature, was conducted. Results indicate ICI-induced granulomatosis is an early side effect (median time to onset: 2 months). Its clinical presentation, with predominant (90%) thoracic involvement, histopathological appearance and supposed underlying biology (involving the mTOR pathway in immune cells, Th17 polarization and TReg dysfunction) are indistinguishable from those of sarcoidosis. Moreover, it appears to be associated with ICI benefit (>65% objective response rate). Evolution is generally favorable, and symptomatic steroid treatment and/or ICI discontinuation are rarely necessary. ICI-associated granulomatosis is critical to explore for several reasons. Practically, it is essential to differentiate it from cancer progression. Secondly, this “experimental” sarcoidosis brings new elements that may help to address sarcoidosis origin and pathophysiology. Its association with ICI efficacy must be confirmed on a larger scale but could have significant impacts on patient management and biomarker definition.
Collapse
Affiliation(s)
- Audrey Melin
- Department of Dermatology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France; (É.R.); (S.R.)
- Correspondence: (A.M.); (C.R.)
| | - Émilie Routier
- Department of Dermatology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France; (É.R.); (S.R.)
| | - Séverine Roy
- Department of Dermatology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France; (É.R.); (S.R.)
| | - Pauline Pradere
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Groupe Hospitalier Paris-Saint Joseph, 133 Av. de la Résistance, 92350 Le Plessis-Robinson, France; (P.P.); (J.L.P.)
| | - Jerome Le Pavec
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Groupe Hospitalier Paris-Saint Joseph, 133 Av. de la Résistance, 92350 Le Plessis-Robinson, France; (P.P.); (J.L.P.)
| | - Thibaut Pierre
- Department of Medical Imaging, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France;
| | - Noémie Chanson
- Department of Internal Medicine, Kremlin Bicêtre Hospital, 78 rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France; (N.C.); (O.L.)
| | - Jean-Yves Scoazec
- Université Paris Saclay, AP-HP, 63 rue Gabriel Péri, 94270 Le Kremlin Bicêtre, France;
- Department of Pathology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France
| | - Olivier Lambotte
- Department of Internal Medicine, Kremlin Bicêtre Hospital, 78 rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France; (N.C.); (O.L.)
- Université Paris Saclay, AP-HP, 63 rue Gabriel Péri, 94270 Le Kremlin Bicêtre, France;
| | - Caroline Robert
- Department of Dermatology, Gustave Roussy, 114 rue Edouard-Vaillant, 94800 Villejuif, France; (É.R.); (S.R.)
- Université Paris Saclay, AP-HP, 63 rue Gabriel Péri, 94270 Le Kremlin Bicêtre, France;
- Correspondence: (A.M.); (C.R.)
| |
Collapse
|
65
|
Jamilloux Y, El Jammal T, Bert A, Sève P. [Hydroxychloroquine for non-severe extra-pulmonary sarcoidosis]. Rev Med Interne 2022; 43:406-411. [PMID: 35660263 DOI: 10.1016/j.revmed.2022.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023]
Abstract
Sarcoidosis can develop into a chronic disease in about 30% of cases. When general treatment is indicated, corticosteroids are the first-line treatment. More than one third of patients treated with corticosteroids receive a steroid-sparing agent. Although methotrexate is the most commonly used sparing agent, synthetic antimalarials have been used for more than fifty years on the basis of small, randomised, therapeutic trials. Despite this low level of evidence, chloroquine or more often hydroxychloroquine are used in daily practice, particularly to treat skin, bone and joint sarcoidosis, as well as hypercalcemia and certain types of uveitis. This review summarises the state of knowledge on steroid-sparing therapy in sarcoidosis, particularly in its extra-pulmonary form. These data support the need for good quality therapeutic trials to validate the use of hydroxychloroquine in this specific indication.
Collapse
Affiliation(s)
- Y Jamilloux
- Service de médecine interne, hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, 103, grande rue de la Croix Rousse, 69004 Lyon, France; Lyon Immunopathology FEderation (LIFE), Université Claude Bernard-Lyon 1, Lyon, France.
| | - T El Jammal
- Service de médecine interne, hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, 103, grande rue de la Croix Rousse, 69004 Lyon, France
| | - A Bert
- Service de médecine interne, hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, 103, grande rue de la Croix Rousse, 69004 Lyon, France
| | - P Sève
- Service de médecine interne, hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard-Lyon 1, 103, grande rue de la Croix Rousse, 69004 Lyon, France; Université Claude Bernard-Lyon 1, Research on Healthcare Performance (RESHAPE), Inserm U1290, Lyon, France
| |
Collapse
|
66
|
Wu JH, Imadojemu S, Caplan AS. The Evolving Landscape of Cutaneous Sarcoidosis: Pathogenic Insight, Clinical Challenges, and New Frontiers in Therapy. Am J Clin Dermatol 2022; 23:499-514. [PMID: 35583850 DOI: 10.1007/s40257-022-00693-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Sarcoidosis is a multisystem disorder of unknown etiology characterized by accumulation of granulomas in affected tissue. Cutaneous manifestations are among the most common extrapulmonary manifestations in sarcoidosis and can lead to disfiguring disease requiring chronic therapy. In many patients, skin disease may be the first recognized manifestation of sarcoidosis, necessitating a thorough evaluation for systemic involvement. Although the precise etiology of sarcoidosis and the pathogenic mechanisms leading to granuloma formation, persistence, or resolution remain unclear, recent research has led to significant advances in our understanding of this disease. This article reviews recent advances in epidemiology, sarcoidosis clinical assessment with a focus on the dermatologist's role, disease pathogenesis, and new therapies in use and under investigation for cutaneous and systemic sarcoidosis.
Collapse
Affiliation(s)
- Julie H Wu
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, 240 East 38th Street, 11th Floor, New York, NY, 10016, USA
| | - Sotonye Imadojemu
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Avrom S Caplan
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, 240 East 38th Street, 11th Floor, New York, NY, 10016, USA.
- New York University Sarcoidosis Program, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
67
|
Wang W, Wang H, Liu Y, Yang L. Identification of miRNA-mRNA-TF regulatory networks in peripheral blood mononuclear cells of type 1 diabetes. BMC Endocr Disord 2022; 22:119. [PMID: 35534828 PMCID: PMC9087960 DOI: 10.1186/s12902-022-01038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a T lymphocyte-mediated and B lymphocyte-assisted autoimmune disease. We aimed to identify abnormally expressed genes in peripheral blood mononuclear cells (PBMCs) of T1D and explore their possible molecular regulatory network. METHODS Expression datasets were downloaded from the Gene Expression Omnibus (GEO) database. Then, the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRNAs) were identified, and functional enrichment and immune cell infiltration analysis were performed. The starBase, miRTarBase, TarBase, JASPAR, ENCODE, and TRRUST databases constructed the miRNA-mRNA-TF regulatory network. The ROC curves were plotted to evaluate the sensitivity and specificity of miRNAs and mRNAs. RESULT A total of 216 DEGs directly or indirectly related to type I diabetes mellitus, natural killer cell-mediated cytotoxicity, Th1, and Th2 cell differentiation, and the IL-17 and TNF signaling pathways were obtained. The miRNA-mRNA-TF network indicates that miR-320a and SOX5 are the only miRNAs and TFs that both target ADM and RRAGD. The ROC curves showed that ADM (0.9375), RRAGD (0.8958), and hsa-mir-320a (0.9417) had high accuracy in T1D diagnosis. CONCLUSION The constructed regulatory networks, including miR-320a/ADM/SOX5 and miR-320a/RRAGD/SOX5, may provide new insight into the mechanisms of development and progression in T1D.
Collapse
Affiliation(s)
- Wanqiu Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Huan Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yuhong Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liu Yang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
68
|
Zhao M, Tian C, Cong S, Di X, Wang K. From COVID-19 to Sarcoidosis: How Similar Are These Two Diseases? Front Immunol 2022; 13:877303. [PMID: 35615369 PMCID: PMC9124764 DOI: 10.3389/fimmu.2022.877303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leads to the dysregulation of the immune system, exacerbates inflammatory responses, and even causes multiple organ dysfunction syndrome in patients with severe disease. Sarcoidosis is an idiopathic granulomatous multisystem disease characterized by dense epithelioid non-necrotizing lesions with varying degrees of lymphocytic inflammation. These two diseases have similar clinical manifestations and may also influence each other and affect their clinical courses. In this study, we analyzed some possible connections between sarcoidosis and COVID-19, including the role of the renin–angiotensin system in the respiratory system, immune response, and cell death pathways, to understand the underlying mechanisms of SARS-CoV-2 infection, predisposing patients to severe forms of COVID-19. This review will provide a new prospect for the treatment of COVID-19 and an opportunity to explore the pathogenesis and development of sarcoidosis.
Collapse
|
69
|
Rama Esendagli D, Ntiamoah P, Kupeli E, Bhardwaj A, Ghosh S, Mukhopadhyay S, Mehta AC. Recurrence of primary disease following lung transplantation. ERJ Open Res 2022; 8:00038-2022. [PMID: 35651363 PMCID: PMC9149385 DOI: 10.1183/23120541.00038-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Lung transplant has become definitive treatment for patients with several end-stage lung diseases. Since the first attempted lung transplantation in 1963, survival has significantly improved due to advancement in immunosuppression, organ procurement, ex vivo lung perfusion, surgical techniques, prevention of chronic lung allograft dysfunction and bridging to transplant using extracorporeal membrane oxygenation. Despite a steady increase in number of lung transplantations each year, there is still a huge gap between demand and supply of organs available, and work continues to select recipients with potential for best outcomes. According to review of the literature, there are some rare primary diseases that may recur following transplantation. As the number of lung transplants increase, we continue to identify disease processes at highest risk for recurrence, thus shaping our future approaches. While the aim of lung transplantation is improving survival and quality of life, choosing the best recipients is crucial due to a shortage of donated organs. Here we discuss the common disease processes that recur and highlight its impact on overall outcome following lung transplantation. This article reviews the underlying conditions leading to lung transplant with potential for recurrence and the impact of such recurrences on the overall outcome following transplanthttps://bit.ly/3v3gSvJ
Collapse
|
70
|
McKee AS, Atif SM, Falta MT, Fontenot AP. Innate and Adaptive Immunity in Noninfectious Granulomatous Lung Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1835-1843. [PMID: 35418504 PMCID: PMC9106315 DOI: 10.4049/jimmunol.2101159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/19/2022]
Abstract
Sarcoidosis and chronic beryllium disease are noninfectious lung diseases that are characterized by the presence of noncaseating granulomatous inflammation. Chronic beryllium disease is caused by occupational exposure to beryllium containing particles, whereas the etiology of sarcoidosis is not known. Genetic susceptibility for both diseases is associated with particular MHC class II alleles, and CD4+ T cells are implicated in their pathogenesis. The innate immune system plays a critical role in the initiation of pathogenic CD4+ T cell responses as well as the transition to active lung disease and disease progression. In this review, we highlight recent insights into Ag recognition in chronic beryllium disease and sarcoidosis. In addition, we discuss the current understanding of the dynamic interactions between the innate and adaptive immune systems and their impact on disease pathogenesis.
Collapse
Affiliation(s)
- Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
71
|
Bagavant H, Cizio K, Araszkiewicz AM, Papinska JA, Garman L, Li C, Pezant N, Drake WP, Montgomery CG, Deshmukh US. Systemic immune response to vimentin and granuloma formation in a model of pulmonary sarcoidosis. J Transl Autoimmun 2022; 5:100153. [PMID: 35434591 PMCID: PMC9006845 DOI: 10.1016/j.jtauto.2022.100153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
A characteristic feature of sarcoidosis is a dysregulated immune response to persistent stimuli, often leading to the formation of non-necrotizing granulomas in various organs. Although genetic susceptibility is an essential factor in disease development, the etiology of sarcoidosis is not fully understood. Specifically, whether autoimmunity contributes to the initiation or progression of the disease is uncertain. In this study, we investigated systemic autoimmunity to vimentin in sarcoidosis. IgG antibodies to human vimentin were measured in sera from sarcoidosis patients and healthy controls. Mice immunized with recombinant murine vimentin were challenged intravenously with vimentin-coated beads to mimic pulmonary sarcoidosis. Lungs from treated mice were studied for cellular infiltration, granuloma formation, and gene expression. Immune cells in the bronchoalveolar lavage fluid were evaluated by flow cytometry. Compared to healthy controls, sarcoidosis patients had a higher frequency and levels of circulating anti-vimentin IgG. Vimentin-immunized mice developed lung granulomas following intravenous challenge with vimentin-coated beads. These sarcoidosis-like granulomas showed the presence of Langhans and foreign body multinucleated giant cells, CD4 T cells, and a heterogeneous collection of MHC II positive and arginase 1-expressing macrophages. The lungs showed upregulated pro-inflammatory gene expression, including Ifng, Il17, and Tnfa, reflecting TH1/TH17 responses typical of sarcoidosis. In addition, genes in the TH2 canonical pathway were also upregulated, congruent with increased numbers of ILC2 in the bronchoalveolar lavage. Overall, these results further validate vimentin as an autoantigen in sarcoidosis and provide evidence for an anti-vimentin immune response in disease pathogenesis. Our study also highlights the possible role of ILC2-driven TH2-like responses in the formation of lung granulomas in sarcoidosis.
Collapse
Affiliation(s)
- Harini Bagavant
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Katarzyna Cizio
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Antonina M. Araszkiewicz
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Joanna A. Papinska
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK, USA
| | - Lori Garman
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chuang Li
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Nathan Pezant
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wonder P. Drake
- Division of Infectious Diseases, Department of Medicine, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Courtney G. Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Umesh S. Deshmukh
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
72
|
Liu A, Sharma L, Yan X, Dela Cruz CS, Herzog EL, Ryu C. Emerging insights in sarcoidosis: moving forward through reverse translational research. Am J Physiol Lung Cell Mol Physiol 2022; 322:L518-L525. [PMID: 35196896 PMCID: PMC8957321 DOI: 10.1152/ajplung.00266.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Sarcoidosis is a chronic granulomatous disease of unknown etiology that primarily affects the lungs. The development of stage IV or fibrotic lung disease accounts for a significant proportion of the morbidity and mortality attributable to sarcoidosis. Further investigation into the active mechanisms of disease pathogenesis and fibrogenesis might illuminate fundamental mediators of injury and repair while providing new opportunities for clinical intervention. However, progress in sarcoidosis research has been hampered by the heterogeneity of clinical phenotypes and the lack of a consensus modeling system. Recently, reverse translational research, wherein observations made at the patient level catalyze hypothesis-driven research at the laboratory bench, has generated new discoveries regarding the immunopathogenic mechanisms of pulmonary granuloma formation, fibrogenesis, and disease model development. The purpose of this review is to highlight the promise and possibility of these novel investigative efforts.
Collapse
Affiliation(s)
- Angela Liu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Xiting Yan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Erica L Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Changwan Ryu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
73
|
Peng Q, Sha K, Liu Y, Chen M, Xu S, Xie H, Deng Z, Li J. mTORC1-Mediated Angiogenesis is Required for the Development of Rosacea. Front Cell Dev Biol 2022; 9:751785. [PMID: 34993194 PMCID: PMC8724421 DOI: 10.3389/fcell.2021.751785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Although multiple evidences suggest that angiogenesis is associated with the pathophysiology of rosacea, its role is still in debate. Here, we showed that angiogenesis was enhanced in skin lesions of both rosacea patients and LL37-induced rosacea-like mice. Inhibition of angiogenesis alleviated LL37-induced rosacea-like features in mice. Mechanistically, we showed that mTORC1 was activated in the endothelial cells of the lesional skin from rosacea patients and LL37-induced rosacea-like mouse model. Inhibition of mTORC1 decreased angiogenesis and blocked the development of rosacea in mice. On the contrary, hyperactivation of mTORC1 increased angiogenesis and exacerbated rosacea-like phenotypes. Our in vitro results further demonstrated that inhibition of mTORC1 signaling significantly declined LL37-induced tube formation of human endothelial cells. Taken together, our findings revealed that mTORC1-mediated angiogenesis responding to LL37 might be essential for the development of rosacea and targeting angiogenesis might be a novel potential therapy.
Collapse
Affiliation(s)
- Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - Ke Sha
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - Yingzi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
74
|
Nienhuis WA, Grutters JC. Potential therapeutic targets to prevent organ damage in chronic pulmonary sarcoidosis. Expert Opin Ther Targets 2021; 26:41-55. [PMID: 34949145 DOI: 10.1080/14728222.2022.2022123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sarcoidosis is a granulomatous inflammatory disease with high chances of reduced quality of life, irreversible organ damage, and reduced life expectancy when vital organs are involved. Any organ system can be affected, and the lungs are most often affected. There is no preventive strategy as the exact etiology is unknown, and complex immunogenetic and environmental factors determine disease susceptibility and phenotype. Present-day treatment options originated from clinical practice and are effective in many patients. However, a substantial percentage of patients suffer from unacceptable side effects or still develop refractory, threatening pulmonary or extrapulmonary disease. AREAS COVERED As non-caseating granulomas, the pathological hallmark of disease, are assigned to divergent activation and regulation of the immune system, targets in relation to the possible triggers of granuloma formation and their sequelae were searched and reviewed. EXPERT OPINION :The immunopathogenesis underlying sarcoidosis has been a dynamic field of study. Several recent new insights give way to promising new therapeutic targets, such as certain antigenic triggers (e.g. from Aspergillus nidulans), mTOR, JAK-STAT and PPARγ pathways, the NRP2 receptor and MMP-12, which await further exploration. Clinical and trigger related phenotyping, and molecular endotyping in sarcoidosis will likely hold the key for precision medicine in the future.
Collapse
Affiliation(s)
- W A Nienhuis
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - J C Grutters
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Hearth and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
75
|
Kraaijvanger R, Seldenrijk K, Beijer E, Damen J, Wilson JL, Weichhart T, Grutters JC, Veltkamp M. Activation of Downstream mTORC1 Target Ribosomal Protein S6 Kinase (S6K) Can Be Found in a Subgroup of Dutch Patients with Granulomatous Pulmonary Disease. Cells 2021; 10:3545. [PMID: 34944053 PMCID: PMC8700352 DOI: 10.3390/cells10123545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) has been linked to different diseases. The mTORC1 signaling pathway is suggested to play a role in the granuloma formation of sarcoidosis. Recent studies demonstrated conflicting data on mTORC1 activation in patients with sarcoidosis by measuring activation of its downstream target S6 kinase (S6K) with either 33% or 100% of patients. Therefore, the aim of our study was to reevaluate the percentage of S6K activation in sarcoidosis patients in a Dutch cohort. To investigate whether this activation is specific for sarcoid granulomas, we also included Dutch patients with other granulomatous diseases of the lung. The activation of the S6K signaling pathway was evaluated by immunohistochemical staining of its downstream effector phospho-S6 in tissue sections. Active S6K signaling was detected in 32 (43%) of the sarcoidosis patients. Twelve (31%) of the patients with another granulomatous disorder also showed activated S6K signaling, demonstrating that the mTORC1 pathway may be activated in a range for different granulomatous diseases (p = 0.628). Activation of S6K can only be found in a subgroup of patients with sarcoidosis, as well as in patients with other granulomatous pulmonary diseases, such as hypersensitivity pneumonitis or vasculitis. No association between different clinical phenotypes and S6K activation can be found in sarcoidosis.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (R.K.); (E.B.); (J.C.G.)
| | - Kees Seldenrijk
- Interstitial Lung Diseases Centre of Excellence, Pathology DNA, Department of Pathology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
| | - Els Beijer
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (R.K.); (E.B.); (J.C.G.)
| | - Jan Damen
- Pathology DNA, Department of Pathology, Jeroen Bosch Hospital, 5223 GZ ’s-Hertogenbosch, The Netherlands;
| | - Jayne Louise Wilson
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; (J.L.W.); (T.W.)
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; (J.L.W.); (T.W.)
| | - Jan C. Grutters
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (R.K.); (E.B.); (J.C.G.)
- Division of Hearth and Lungs, University Medical Centre, 3584 CX Utrecht, The Netherlands
| | - Marcel Veltkamp
- Interstitial Lung Diseases Centre of Excellence, Department of Pulmonology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (R.K.); (E.B.); (J.C.G.)
- Division of Hearth and Lungs, University Medical Centre, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
76
|
Vukmirovic M, Yan X, Gibson KF, Gulati M, Schupp JC, DeIuliis G, Adams TS, Hu B, Mihaljinec A, Woolard TN, Lynn H, Emeagwali N, Herzog EL, Chen ES, Morris A, Leader JK, Zhang Y, Garcia JGN, Maier LA, Collman RG, Drake WP, Becich MJ, Hochheiser H, Wisniewski SR, Benos PV, Moller DR, Prasse A, Koth LL, Kaminski N. Transcriptomics of bronchoalveolar lavage cells identifies new molecular endotypes of sarcoidosis. Eur Respir J 2021; 58:2002950. [PMID: 34083402 PMCID: PMC9759791 DOI: 10.1183/13993003.02950-2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/20/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Sarcoidosis is a multisystem granulomatous disease of unknown origin with a variable and often unpredictable course and pattern of organ involvement. In this study we sought to identify specific bronchoalveolar lavage (BAL) cell gene expression patterns indicative of distinct disease phenotypic traits. METHODS RNA sequencing by Ion Torrent Proton was performed on BAL cells obtained from 215 well-characterised patients with pulmonary sarcoidosis enrolled in the multicentre Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Weighted gene co-expression network analysis and nonparametric statistics were used to analyse genome-wide BAL transcriptome. Validation of results was performed using a microarray expression dataset of an independent sarcoidosis cohort (Freiburg, Germany; n=50). RESULTS Our supervised analysis found associations between distinct transcriptional programmes and major pulmonary phenotypic manifestations of sarcoidosis including T-helper type 1 (Th1) and Th17 pathways associated with hilar lymphadenopathy, transforming growth factor-β1 (TGFB1) and mechanistic target of rapamycin (MTOR) signalling with parenchymal involvement, and interleukin (IL)-7 and IL-2 with airway involvement. Our unsupervised analysis revealed gene modules that uncovered four potential sarcoidosis endotypes including hilar lymphadenopathy with increased acute T-cell immune response; extraocular organ involvement with PI3K activation pathways; chronic and multiorgan disease with increased immune response pathways; and multiorgan involvement, with increased IL-1 and IL-18 immune and inflammatory responses. We validated the occurrence of these endotypes using gene expression, pulmonary function tests and cell differentials from Freiburg. CONCLUSION Taken together, our results identify BAL gene expression programmes that characterise major pulmonary sarcoidosis phenotypes and suggest the presence of distinct disease molecular endotypes.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Dept of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
- Equally contributing authors
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Dept of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Equally contributing authors
| | - Kevin F Gibson
- Dept of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, US
| | - Mridu Gulati
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Buqu Hu
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Antun Mihaljinec
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tony N Woolard
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Heather Lynn
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nkiruka Emeagwali
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Alison Morris
- Dept of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, US
| | - Joseph K Leader
- Dept of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yingze Zhang
- Dept of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, US
| | | | | | | | | | - Michael J Becich
- Dept of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Harry Hochheiser
- Dept of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven R Wisniewski
- Dept of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA, US
| | - Panayiotis V Benos
- Dept of Computational and Systems Biology and Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Antje Prasse
- Hannover Medical School (MHH), Hannover, Germany
- Fraunhofer ITEM, Hannover, Germany
| | - Laura L Koth
- University of California San Francisco, San Francisco, CA, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
77
|
Braun C, Katholnig K, Kaltenecker C, Linke M, Sukhbaatar N, Hengstschläger M, Weichhart T. p38 regulates the tumor suppressor PDCD4 via the TSC-mTORC1 pathway. Cell Stress 2021; 5:176-182. [PMID: 34917890 PMCID: PMC8645265 DOI: 10.15698/cst2021.12.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Programmed cell death protein 4 (PDCD4) exerts critical functions as tumor suppressor and in immune cells to regulate inflammatory processes. The phosphoinositide 3-kinase (PI3K) promotes degradation of PDCD4 via mammalian target of rapamycin complex 1 (mTORC1). However, additional pathways that may regulate PDCD4 expression are largely ill-defined. In this study, we have found that activation of the mitogen-activated protein kinase p38 promoted degradation of PDCD4 in macrophages and fibroblasts. Mechanistically, we identified a pathway from p38 and its substrate MAP kinase-activated protein kinase 2 (MK2) to the tuberous sclerosis complex (TSC) to regulate mTORC1-dependent degradation of PDCD4. Moreover, we provide evidence that TSC1 and TSC2 regulate PDCD4 expression via an additional mechanism independent of mTORC1. These novel data extend our knowledge of how PDCD4 expression is regulated by stress- and nutrient-sensing pathways.
Collapse
Affiliation(s)
- Clarissa Braun
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karl Katholnig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Christopher Kaltenecker
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Monika Linke
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Nyamdelger Sukhbaatar
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
78
|
Ramel E, Lillo S, Daher B, Fioleau M, Daubon T, Saleh M. The Metabolic Control of Myeloid Cells in the Tumor Microenvironment. Cells 2021; 10:cells10112960. [PMID: 34831183 PMCID: PMC8616208 DOI: 10.3390/cells10112960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Myeloid cells are a key determinant of tumor progression and patient outcomes in a range of cancers and are therefore being actively pursued as targets of new immunotherapies. The recent use of high-dimensional single-cell approaches, e.g., mass cytometry and single-cell RNA-sequencing (scRNA-seq) has reinforced the predominance of myeloid cells in the tumor microenvironment and uncovered their phenotypic diversity in different cancers. The cancerous metabolic environment has emerged as a critical modulator of myeloid cell functions in anti-tumor immunity versus immune suppression and immune evasion. Here, we discuss mechanisms of immune-metabolic crosstalk in tumorigenesis, with a particular focus on the tumor-associated myeloid cell’s metabolic programs. We highlight the impact of several metabolic pathways on the pro-tumoral functions of tumor-associated macrophages and myeloid-derived suppressor cells and discuss the potential myeloid cell metabolic checkpoints for cancer immunotherapy, either as monotherapies or in combination with other immunotherapies.
Collapse
Affiliation(s)
- Eloise Ramel
- ImmunoConcEpT, CNRS, University of Bordeaux, UMR 5164, F-33000 Bordeaux, France; (E.R.); (S.L.); (M.F.)
| | - Sebastian Lillo
- ImmunoConcEpT, CNRS, University of Bordeaux, UMR 5164, F-33000 Bordeaux, France; (E.R.); (S.L.); (M.F.)
| | - Boutaina Daher
- Institut de Biochimie et Génétique Cellulaires (IBGC), CNRS, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France; (B.D.); (T.D.)
| | - Marina Fioleau
- ImmunoConcEpT, CNRS, University of Bordeaux, UMR 5164, F-33000 Bordeaux, France; (E.R.); (S.L.); (M.F.)
| | - Thomas Daubon
- Institut de Biochimie et Génétique Cellulaires (IBGC), CNRS, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France; (B.D.); (T.D.)
| | - Maya Saleh
- ImmunoConcEpT, CNRS, University of Bordeaux, UMR 5164, F-33000 Bordeaux, France; (E.R.); (S.L.); (M.F.)
- Department of Medicine, McGill University, Montreal, QC H3G 0B1, Canada
- Correspondence:
| |
Collapse
|
79
|
Braun C, Weichhart T. mTOR-dependent immunometabolism as Achilles' heel of anticancer therapy. Eur J Immunol 2021; 51:3161-3175. [PMID: 34648202 DOI: 10.1002/eji.202149270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Immune cells are important constituents of the tumor microenvironment and essential in eradicating tumor cells during conventional therapies or novel immunotherapies. The mechanistic target of rapamycin (mTOR) signaling pathway senses the intra- and extracellular nutrient status, growth factor supply, and cell stress-related changes to coordinate cellular metabolism and activation dictating effector and memory functions in mainly all hematopoietic immune cells. In addition, the mTOR complex 1 (mTORC1) and mTORC2 are frequently deregulated and become activated in cancer cells to drive cell transformation, survival, neovascularization, and invasion. In this review, we provide an overview of the influence of mTOR complexes on immune and cancer cell function and metabolism. We discuss how mTOR inhibitors aiming to target cancer cells will influence immunometabolic cell functions participating either in antitumor responses or favoring tumor cell progression in individual immune cells. We suggest immunometabolism as the weak spot of anticancer therapy and propose to evaluate patients according to their predominant immune cell subtype in the cancer tissue. Advances in metabolic drug development that hold promise for more effective treatments in different types of cancer will have to consider their effects on the immune system.
Collapse
Affiliation(s)
- Clarissa Braun
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
80
|
Abstract
Löfgren’s syndrome is an acute form of sarcoidosis that is characterized by the activation of CD4+ T helper cells. In this issue of JEM, Greaves et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210785) identified a peptide derived from an airborne mold species that stimulates T cells of Löfgren’s syndrome patients in an HLA-DR3–restricted manner. An increased serum IgG antibody response to the full-length protein was also observed in those patients, indicating that the fungus Aspergillus nidulans might be the elusive microbial agent that drives acute sarcoidosis.
Collapse
Affiliation(s)
- Clarice X Lim
- Center for Pathobiochemistry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry & Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
81
|
Leal-Calvo T, Avanzi C, Mendes MA, Benjak A, Busso P, Pinheiro RO, Sarno EN, Cole ST, Moraes MO. A new paradigm for leprosy diagnosis based on host gene expression. PLoS Pathog 2021; 17:e1009972. [PMID: 34695167 PMCID: PMC8568100 DOI: 10.1371/journal.ppat.1009972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/04/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional profiling is a powerful tool to investigate and detect human diseases. In this study, we used bulk RNA-sequencing (RNA-Seq) to compare the transcriptomes in skin lesions of leprosy patients or controls affected by other dermal conditions such as granuloma annulare, a confounder for paucibacillary leprosy. We identified five genes capable of accurately distinguishing multibacillary and paucibacillary leprosy from other skin conditions. Indoleamine 2,3-dioxygenase 1 (IDO1) expression alone was highly discriminatory, followed by TLR10, BLK, CD38, and SLAMF7, whereas the HS3ST2 and CD40LG mRNA separated multi- and paucibacillary leprosy. Finally, from the main differentially expressed genes (DEG) and enriched pathways, we conclude that paucibacillary disease is characterized by epithelioid transformation and granuloma formation, with an exacerbated cellular immune response, while multibacillary leprosy features epithelial-mesenchymal transition with phagocytic and lipid biogenesis patterns in the skin. These findings will help catalyze the development of better diagnostic tools and potential host-based therapeutic interventions. Finally, our data may help elucidate host-pathogen interplay driving disease clinical manifestations.
Collapse
Affiliation(s)
- Thyago Leal-Calvo
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Charlotte Avanzi
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mayara Abud Mendes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrej Benjak
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Busso
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stewart Thomas Cole
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
82
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo M, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez‐Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera R, Piacentini M, Reggiori F, Rubinsztein DC, Ryan K, Sadoshima J, Santambrogio L, Scorrano L, Simon H, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J 2021; 40:e108863. [PMID: 34459017 PMCID: PMC8488577 DOI: 10.15252/embj.2021108863] [Citation(s) in RCA: 728] [Impact Index Per Article: 242.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Collapse
Affiliation(s)
| | - Giulia Petroni
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ravi K Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesSection of PediatricsFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of Medicine, and Jan and Dan Duncan Neurological Research InstituteTexas Children HospitalHoustonTXUSA
| | - Patricia Boya
- Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - José Manuel Bravo‐San Pedro
- Faculty of MedicineDepartment Section of PhysiologyComplutense University of MadridMadridSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineNew York University Langone HealthNew YorkNYUSA
| | - Francesco Cecconi
- Cell Stress and Survival UnitCenter for Autophagy, Recycling and Disease (CARD)Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Onco‐Hematology and Cell and Gene TherapyIRCCS Bambino Gesù Children's HospitalRomeItaly
- Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
| | - Mary E Choi
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
- Division of Nephrology and HypertensionJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Charleen T Chu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Patrice Codogno
- Institut Necker‐Enfants MaladesINSERM U1151‐CNRS UMR 8253ParisFrance
- Université de ParisParisFrance
| | - Maria Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia‐Instituto de Histología y Embriología (IHEM)‐Universidad Nacional de CuyoCONICET‐ Facultad de Ciencias MédicasMendozaArgentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineBronxNYUSA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism (AIMCenter of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ivan Dikic
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Zvulun Elazar
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Gian Maria Fimia
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Department of EpidemiologyPreclinical Research, and Advanced DiagnosticsNational Institute for Infectious Diseases ‘L. Spallanzani’ IRCCSRomeItaly
| | - David A Gewirtz
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Douglas R Green
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery InstituteProgram of DevelopmentAging, and RegenerationLa JollaCAUSA
| | - Marja Jäättelä
- Cell Death and MetabolismCenter for Autophagy, Recycling & DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Terje Johansen
- Department of Medical BiologyMolecular Cancer Research GroupUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Gábor Juhász
- Institute of GeneticsBiological Research CenterSzegedHungary
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Claudine Kraft
- Institute of Biochemistry and Molecular BiologyZBMZFaculty of MedicineUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Guido Kroemer
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéInserm U1138Institut Universitaire de FranceParisFrance
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Karolinska InstituteDepartment of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| | | | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSAAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Carlos Lopez‐Otin
- Departamento de Bioquímica y Biología MolecularFacultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Kay F Macleod
- The Ben May Department for Cancer ResearchThe Gordon Center for Integrative SciencesW‐338The University of ChicagoChicagoILUSA
- The University of ChicagoChicagoILUSA
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Jennifer Martinez
- Immunity, Inflammation and Disease LaboratoryNational Institute of Environmental Health SciencesNIHResearch Triangle ParkNCUSA
| | - Alicia Meléndez
- Biology Department, Queens CollegeCity University of New YorkFlushingNYUSA
- The Graduate Center Biology and Biochemistry PhD Programs of the City University of New YorkNew YorkNYUSA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Rushika M Perera
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Mauro Piacentini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Laboratory of Molecular MedicineInstitute of Cytology Russian Academy of ScienceSaint PetersburgRussia
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & SystemsMolecular Cell Biology SectionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - David C Rubinsztein
- Department of Medical GeneticsCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Kevin M Ryan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular MedicineCardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Laura Santambrogio
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
| | - Luca Scorrano
- Istituto Veneto di Medicina MolecolarePadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
- Department of Clinical Immunology and AllergologySechenov UniversityMoscowRussia
- Laboratory of Molecular ImmunologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
| | | | - Anne Simonsen
- Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Centre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University Hospital MontebelloOsloNorway
| | - Alexandra Stolz
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklion, CreteGreece
- Department of Basic SciencesSchool of MedicineUniversity of CreteHeraklion, CreteGreece
| | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Tamotsu Yoshimori
- Department of GeneticsGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Intracellular Membrane DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationDepartment of PathophysiologyShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Lorenzo Galluzzi
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
- Department of DermatologyYale School of MedicineNew HavenCTUSA
- Université de ParisParisFrance
| | | |
Collapse
|
83
|
Abstract
Sarcoidosis is a multisystem disease of unknown cause with heterogenous clinical manifestations and variable course. Spontaneous remissions occur in some patients while others have progressive disease impacting survival, organ function, and quality of life. Four high-risk sarcoidosis phenotypes associated with chronic inflammation have recently been identified as high-priority areas for research. These include treatment-refractory pulmonary disease, cardiac sarcoidosis, neurosarcoidosis and multiorgan sarcoidosis. Significant gaps currently exist in understanding of these high-risk manifestations of sarcoidosis, including their natural history, diagnostic criteria, biomarkers, and the treatment strategy such as the ideal agent, optimal dose and treatment duration. The use of registries with well-phenotyped patients is a critical first step to study high-risk sarcoidosis manifestations systematically. We review the diagnostic and treatment approach to high-risk sarcoidosis manifestations. Appropriately identifying these disease sub-groups will help enroll well-phenotyped patients in sarcoidosis registries and clinical trials, a necessary step to narrow existing gaps in understanding of this enigmatic disease.
Collapse
|
84
|
Keane L, Antignano I, Riechers SP, Zollinger R, Dumas AA, Offermann N, Bernis ME, Russ J, Graelmann F, McCormick PN, Esser J, Tejera D, Nagano A, Wang J, Chelala C, Biederbick Y, Halle A, Salomoni P, Heneka MT, Capasso M. mTOR-dependent translation amplifies microglia priming in aging mice. J Clin Invest 2021; 131:132727. [PMID: 33108356 DOI: 10.1172/jci132727] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Microglia maintain homeostasis in the brain. However, with age, they become primed and respond more strongly to inflammatory stimuli. We show here that microglia from aged mice had upregulated mTOR complex 1 signaling controlling translation, as well as protein levels of inflammatory mediators. Genetic ablation of mTOR signaling showed a dual yet contrasting effect on microglia priming: it caused an NF-κB-dependent upregulation of priming genes at the mRNA level; however, mice displayed reduced cytokine protein levels, diminished microglia activation, and milder sickness behavior. The effect on translation was dependent on reduced phosphorylation of 4EBP1, resulting in decreased binding of eIF4E to eIF4G. Similar changes were present in aged human microglia and in damage-associated microglia, indicating that upregulation of mTOR-dependent translation is an essential aspect of microglia priming in aging and neurodegeneration.
Collapse
Affiliation(s)
- Lily Keane
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Centre for Tumour Microenvironment and
| | | | | | | | | | - Nina Offermann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Maria E Bernis
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jenny Russ
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | | | - Julia Esser
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dario Tejera
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ai Nagano
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claude Chelala
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Annett Halle
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Melania Capasso
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Centre for Tumour Microenvironment and
| |
Collapse
|
85
|
Jeny F, Bernaudin JF, Valeyre D, Kambouchner M, Pretolani M, Nunes H, Planès C, Besnard V. Hypoxia Promotes a Mixed Inflammatory-Fibrotic Macrophages Phenotype in Active Sarcoidosis. Front Immunol 2021; 12:719009. [PMID: 34456926 PMCID: PMC8385772 DOI: 10.3389/fimmu.2021.719009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background Macrophages are pivotal cells in sarcoidosis. Monocytes-derived (MD) macrophages have recently been demonstrated to play a major role especially in pulmonary sarcoidosis. From inflammatory tissues to granulomas, they may be exposed to low oxygen tension environments. As hypoxia impact on sarcoidosis immune cells has never been addressed, we designed the present study to investigate MD-macrophages from sarcoidosis patients in this context. We hypothesized that hypoxia may induce functional changes on MD-macrophages which could have a potential impact on the course of sarcoidosis. Methods We studied MD-macrophages, from high active sarcoidosis (AS) (n=26), low active or inactive sarcoidosis (IS) (n=24) and healthy controls (n=34) exposed 24 hours to normoxia (21% O2) or hypoxia (1.5% O2). Different macrophage functions were explored: hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB) activation, cytokines secretion, phagocytosis, CD80/CD86/HLA-DR expression, profibrotic response. Results We observed that hypoxia, with a significantly more pronounced effect in AS compared with controls and IS, increased the HIF-1α trans-activity, promoted a proinflammatory response (TNFα, IL1ß) without activating NF-κB pathway and a profibrotic response (TGFß1, PDGF-BB) with PAI-1 secretion associated with human lung fibroblast migration inhibition. These results were confirmed by immunodetection of HIF-1α and PAI-1 in granulomas observed in pulmonary biopsies from patients with sarcoidosis. Hypoxia also decreased the expression of CD80/CD86 and HLA-DR on MD-macrophages in the three groups while it did not impair phagocytosis and the expression of CD36 expression on cells in AS and IS at variance with controls. Conclusions Hypoxia had a significant impact on MD-macrophages from sarcoidosis patients, with the strongest effect seen in patients with high active disease. Therefore, hypoxia could play a significant role in sarcoidosis pathogenesis by increasing the macrophage proinflammatory response, maintaining phagocytosis and reducing antigen presentation, leading to a deficient T cell response. In addition, hypoxia could favor fibrosis by promoting profibrotic cytokines response and by sequestering fibroblasts in the vicinity of granulomas.
Collapse
Affiliation(s)
- Florence Jeny
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Pulmonology Department, Avicenne Hospital, Bobigny, France
| | - Jean-François Bernaudin
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- Faculty of Medicine, Sorbonne University, Paris, France
| | - Dominique Valeyre
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Pulmonology Department, Avicenne Hospital, Bobigny, France
| | - Marianne Kambouchner
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Pathology Department, Avicenne Hospital, Bobigny, France
| | - Marina Pretolani
- Inserm UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France
- Faculty of Medicine, Bichat Hospital, Paris University, Paris, France
- Laboratory of Excellence, INFLAMEX, Paris University, DHU FIRE, Paris, France
| | - Hilario Nunes
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Pulmonology Department, Avicenne Hospital, Bobigny, France
| | - Carole Planès
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
- AP-HP, Physiology Department, Avicenne Hospital, Bobigny, France
| | - Valérie Besnard
- INSERM UMR 1272, Sorbonne Paris-Nord University, Bobigny, France
| |
Collapse
|
86
|
Autophagy and Mitophagy-Related Pathways at the Crossroads of Genetic Pathways Involved in Familial Sarcoidosis and Host-Pathogen Interactions Induced by Coronaviruses. Cells 2021; 10:cells10081995. [PMID: 34440765 PMCID: PMC8393644 DOI: 10.3390/cells10081995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.
Collapse
|
87
|
Kolliniati O, Ieronymaki E, Vergadi E, Tsatsanis C. Metabolic Regulation of Macrophage Activation. J Innate Immun 2021; 14:51-68. [PMID: 34247159 DOI: 10.1159/000516780] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Macrophages, the central mediators of innate immune responses, being in the first-line of defense, they have to readily respond to pathogenic or tissue damage signals to initiate the inflammatory cascade. Such rapid responses require energy to support orchestrated production of pro-inflammatory mediators and activation of phagocytosis. Being a cell type that is present in diverse environments and conditions, macrophages have to adapt to different nutritional resources. Thus, macrophages have developed plasticity and are capable of utilizing energy at both normoxic and hypoxic conditions and in the presence of varying concentrations of glucose or other nutrients. Such adaptation is reflected on changes in signaling pathways that modulate responses, accounting for the different activation phenotypes observed. Macrophage metabolism has been tightly associated with distinct activation phenotypes within the range of M1-like and M2-like types. In the context of diseases, systemic changes also affect macrophage metabolism, as in diabetes and insulin resistance, which results in altered metabolism and distinct activation phenotypes in the adipose tissue or in the periphery. In the context of solid tumors, tumor-associated macrophages adapt in the hypoxic environment, which results in metabolic changes that are reflected on an activation phenotype that supports tumor growth. Coordination of environmental and pathogenic signals determines macrophage metabolism, which in turn shapes the type and magnitude of the response. Therefore, modulating macrophage metabolism provides a potential therapeutic approach for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ourania Kolliniati
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Eleftheria Ieronymaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Eleni Vergadi
- Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW Epidemiological and clinical observations as well as familial clustering support the existence of a genetic predisposition to sarcoidosis. In this article, we review the most recent findings in genetics of sarcoidosis and discuss how the identification of risk alleles may help advancing our understanding of disease etiology and development. RECENT FINDINGS Genetic studies of sarcoidosis phenotypes have identified novel and ancestry-specific associations. Gene-environment interaction studies highlighted the importance of integrating genetic information when assessing the relationship between sarcoidosis and environmental exposures. A case-control-family study revealed that the heritability of sarcoidosis is only 49%, suggesting the existence of additional important contributors to disease risk. The application of whole-exome sequencing has identified associations with disease activity and prognosis. Finally, gene expression studies of circulating immune cells have identified shared and unique pathways between sarcoidosis and other granulomatous diseases. SUMMARY Sarcoidosis genetic research has led to the identification of a number of associations with both sarcoidoses per se and disease phenotypes. Newer sequencing technologies are likely to increase the number of genetic variants associated with sarcoidosis. However, studying phenotypically and ethnically homogeneous patient subsets remains critically important regardless of the genetic approach used.
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW Sarcoidosis remains a mysterious disease that presents many challenges both in pathogenetic understanding and in the management of patients. This review presents experimental models for sarcoidosis developed since 2016 and discusses their strengths and weaknesses and how they have contributed to the understanding and therapeutic approaches in this disease. In addition, future directions are proposed to overcome the limitations of current models. RECENT FINDINGS New cellular models using infectious antigen as trigger, and transgenic models in mice have recently been developed to study signaling pathways potentially implicated in the pathogenesis of sarcoidosis. SUMMARY No model fully reproduces sarcoidosis, but most of them generate data supporting key concepts and some open up therapeutic perspectives, like mTOR inhibition or IL-1β blocking. However, there are still many limitations to these models, largely related to the complexity of sarcoidosis, which might be overcome with new technologies, such as mathematical modeling.
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW Mortality in patients with sarcoidosis has primarily been attributed to advanced pulmonary sarcoidosis. This review aims to provide an update on recent clinical studies that help to better phenotype these patients, discuss new treatment options, and suggest areas where additional research is needed. RECENT FINDINGS Diagnosis and management of advanced pulmonary sarcoidosis has changed as new technologies and treatment options have emerged. Clinical phenotypes of advanced disease have evolved to show overlap in presentation with other interstitial lung diseases. Assessment involves more advanced imaging modalities. New promising treatment options are being studied. Pulmonary rehabilitation and lung transplantation are being utilized to improve health-related quality of life and survival. SUMMARY Patients with advanced pulmonary fibrosis can have variable clinical, radiographic, histopathologic presentation. Given the poor health-related quality of life and high rates of mortality, medical therapy and pulmonary rehabilitation may benefit these patients. Lung transplantation should be considered in those with end-stage disease.
Collapse
|
91
|
Hu Y, Wen J, Zhang B, Xiao H. Precision control of mTORC1 is crucial for the maintenance and IL-13 responsiveness of alveolar macrophages. Int Immunopharmacol 2021; 95:107552. [PMID: 33743315 DOI: 10.1016/j.intimp.2021.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Alveolar macrophages (AMs) are the lung resident macrophages critically involved in pulmonary homeostasis and immune response. Recent researches have uncovered a diversity of regulators responsible for the development, maintenance, and function of AMs. Nevertheless, the molecular underpinnings that determine the developmental and functional specification of AMs remain incompletely understood. Here, we investigated the role of the TSC1-mTOR pathway in murine AMs by genetic ablating Tsc1 or mTor alleles through Cd11c-Cre or LysM-Cre. Flow cytometry analyses revealed a prominent decrease in AMs in Tsc1f/f-Cd11c-Cre and Tsc1f/f/-LysM-Cre mice. Moreover, a reduction in AMs was also noted in mTorf/f-Cd11c-Cre or Rptorf/f-Cd11c-Cre mice. Further evidence implicated that elevation in cell death, most likely aberrant apoptosis or/and necroptosis, might be attributable to disrupted AM homeostasis. Whereas a diversity of cytokines involved in AM homeostasis and function triggered mTOR activation, only the IL-13 signaling, particularly Jak1 and Stat3 activation, was affected by TSC1 in macrophages. Further, select genes induced by IL-13, including AM surface markers such as Pparg, Fabp4/5, Nfil3 and Car4, and M2 hallmarks such as Arg1, Fizz, Ym1 and Clec7a were fine-tuned by the TSC1-mTOR pathway. Therefore, our results demonstrated that the TSC1-mTOR pathway has a crucial role in the homeostasis and functional specification of AMs through integrating cytokine signaling with metabolic cues.
Collapse
Affiliation(s)
- Yanxiang Hu
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China; CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Wen
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bei Zhang
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China.
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
92
|
Barna BP, Judson MA, Thomassen MJ. Inflammatory Pathways in Sarcoidosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:39-52. [PMID: 34019262 DOI: 10.1007/978-3-030-68748-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Concepts regarding etiology and pathophysiology of sarcoidosis have changed remarkably within the past 5 years. Sarcoidosis is now viewed as a complex multi-causation disease related to a diverse collection of external environmental or infectious signals. It is generally accepted that the cause of sarcoidosis is unknown. Moreover, concepts of the inflammatory pathway have been modified by the realization that intrinsic genetic factors and innate immunity may modify adaptive immune responses to external triggers. With those potential regulatory pathways in mind, we will attempt to discuss the current understanding of the inflammatory response in sarcoidosis with emphasis on development of pulmonary granulomatous pathology. In that context, we will emphasize that both macrophages and T lymphocytes play key roles, with sometimes overlapping cytokine production (i.e., TNFα and IFN-γ) but also with unique mediators that influence the pathologic picture. Numerous studies have shown that in a sizable number of sarcoidosis patients, granulomas spontaneously resolve, usually within 3 years. Other sarcoidosis patients, however, may develop a chronic granulomatous disease which may subsequently lead to fibrosis. This chapter will outline our current understanding of inflammatory pathways in sarcoidosis which initiate and mediate granulomatous changes or onset of pulmonary fibrosis.
Collapse
Affiliation(s)
- Barbara P Barna
- Program in Lung Cell Biology and Translational Research, Division of Pulmonary and Critical Care Medicine, East Carolina University, Greenville, NC, USA
| | - Marc A Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | - Mary Jane Thomassen
- Program in Lung Cell Biology and Translational Research, Division of Pulmonary and Critical Care Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
93
|
Involvement of Dendritic Cells and Th17 Cells in Induced Tertiary Lymphoid Structures in a Chronic Beryllium Disease Mouse Model. Mediators Inflamm 2021; 2021:8845966. [PMID: 34054347 PMCID: PMC8123089 DOI: 10.1155/2021/8845966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022] Open
Abstract
Objective To study airway pathophysiology and the role of dendritic cells (DCs) and IL-17 receptor (IL-17R) signals in a mouse model for CBD. Methods Here, we present a CBD mouse model in which mice were exposed to beryllium during three weeks. We also exposed IL-17R-deficient mice and mice in which DCs were depleted. Results Eight weeks after the initial beryllium exposure, an inflammatory response was detected in the lungs. Mice displayed inflammation of the lower airways that included focal dense infiltrates, granuloma-like foci, and tertiary lymphoid structure (TLS) containing T cells, B cells, and germinal centers. Alveolar cell analysis showed significantly increased numbers of CD4+ T cells expressing IFNγ, IL-17, or both cytokines. The pathogenic role of IL-17R signals was demonstrated in IL-17R-deficient mice, which had strongly reduced lung inflammation and TLS development following beryllium exposure. In CBD mice, pulmonary DC subsets including CD103+ conventional DCs (cDCs), CD11b+ cDCs, and monocyte-derived DCs (moDCs) were also prominently increased. We used diphtheria toxin receptor-mediated targeted cell ablation to conditionally deplete DCs and found that DCs are essential for the maintenance of TLS in CBD. Furthermore, the presence of antinuclear autoantibodies in the serum of CBD mice showed that CBD had characteristics of autoimmune disease. Conclusions We generated a translational model of sarcoidosis driven by beryllium and show that DCs and IL-17R signals play a pathophysiological role in CBD development as well as in established CBD in vivo.
Collapse
|
94
|
Manansala M, Chopra A, Baughman RP, Novak R, Lower EE, Culver DA, Korsten P, Drake WP, Judson MA, Sweiss N. COVID-19 and Sarcoidosis, Readiness for Vaccination: Challenges and Opportunities. Front Med (Lausanne) 2021; 8:672028. [PMID: 33996868 PMCID: PMC8119656 DOI: 10.3389/fmed.2021.672028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcoidosis is an immune mediated chronic inflammatory disorder that is best characterized by non-caseating granulomas found in one or more affected organs. The COVID-19 pandemic poses a challenge for clinicians caring for sarcoidosis patients who may be at increased risk of infection compared to the general population. With the recent availability of COVID-19 vaccines, it is expected that clinicians raise questions regarding efficacy and safety in sarcoidosis. However, studies examining safety and efficacy of vaccines in sarcoidosis are lacking. In this review, we examine the current literature regarding vaccination in immunocompromised populations and apply them to sarcoidosis patients. The available literature suggests that vaccines are safe and effective in patients with autoimmune disorders and in those taking immunosuppressive medications. We strongly recommend the administration of COVID-19 vaccines in patients with sarcoidosis. We also present a clinical decision algorithm to provide guidance on vaccination of sarcoidosis patients against COVID-19.
Collapse
Affiliation(s)
- Michael Manansala
- Department of Medicine, Academic Internal Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Robert P Baughman
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Richard Novak
- Division of Infectious Disease, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Elyse E Lower
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Daniel A Culver
- Cleveland Clinic, Department of Pulmonary Medicine, Cleveland, OH, United States
| | - Peter Korsten
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Wonder P Drake
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Marc A Judson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Nadera Sweiss
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
95
|
Inhibiting OX40 Restores Regulatory T-Cell Function and Suppresses Inflammation in Pulmonary Sarcoidosis. Chest 2021; 160:969-982. [PMID: 33901497 DOI: 10.1016/j.chest.2021.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pulmonary sarcoidosis (PS) is a noncaseating granulomatous disease of unknown origin. Despite conflicting reports, it is considered that the regulatory T (Treg) cells are functionally impaired in PS, but the underlying mechanisms remain unclear. OX40, a pivotal costimulatory molecule, is essential for T-cell functions and memory development, but its impact on Treg cells is ambiguous. RESEARCH QUESTION Does the OX40 pathway influence the suppressive functions of Treg cells in PS? STUDY DESIGN AND METHODS Fifty treatment-naïve patients with PS and 30 healthy control participants were recruited for this study. Polychromatic flow cytometry-based immunologic assays were performed to enumerate effector T helper (Th) cells and Treg cells along with their functions. Using real-time polymerase chain reaction analysis, small interfering RNA, and pharmacologic inhibitors, the impact of OX40 on Treg cell function was investigated. RESULTS We observed enrichment of Th-9 cells perhaps for the first time along with Th-1, Th-17, and Treg cells in patients' BAL fluid (BALF) compared with peripheral blood. However, Treg cells were observed to be functionally defective at the pathological site. We observed higher expression of OX40 on both T effector (CD4+Foxp3-) and Treg (CD4+Foxp3+) cells obtained from the BALF of patients with PS. However, OX40 exerted contrasting impact on these T-cell subsets, enhancing effector T-cell functions (interferon γ, tumor necrosis factor α) while inhibiting Treg cell function (IL-10, transforming growth factor β). OX40 silencing or blocking on Treg cells resulted in restoration of their impaired functions. INTERPRETATION We propose that inhibiting the OX40 pathway may constitute a therapeutic strategy for controlling inflammatory T cells by restoring Treg cell functions in patients with PS.
Collapse
|
96
|
Crouser ED, Locke LW, Julian MW, Bicer S, Sadee W, White P, Schlesinger LS. Phagosome-regulated mTOR signalling during sarcoidosis granuloma biogenesis. Eur Respir J 2021; 57:13993003.02695-2020. [PMID: 32943400 DOI: 10.1183/13993003.02695-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Sarcoidosis and tuberculosis are granulomatous pulmonary diseases characterised by heightened immune reactivity to Mycobacterium tuberculosis antigens. We hypothesised that an unsupervised analysis comparing the molecular characteristics of granulomas formed in response to M. tuberculosis antigens in patients with sarcoidosis or latent tuberculosis infection (LTBI) would provide novel insights into the pathogenesis of sarcoidosis. METHODS A genomic analysis identified differentially expressed genes in granuloma-like cell aggregates formed by sarcoidosis (n=12) or LTBI patients (n=5) in an established in vitro human granuloma model wherein peripheral blood mononuclear cells were exposed to M. tuberculosis antigens (beads coated with purified protein derivative) and cultured for 7 days. Pathway analysis of differentially expressed genes identified canonical pathways, most notably antigen processing and presentation via phagolysosomes, as a prominent pathway in sarcoidosis granuloma formation. The phagolysosomal pathway promoted mechanistic target of rapamycin complex 1 (mTORc1)/STAT3 signal transduction. Thus, granuloma formation and related immune mediators were evaluated in the absence or presence of various pre-treatments known to prevent phagolysosome formation (chloroquine) or phagosome acidification (bafilomycin A1) or directly inhibit mTORc1 activation (rapamycin). RESULTS In keeping with genomic analyses indicating enhanced phagolysosomal activation and predicted mTORc1 signalling, it was determined that sarcoidosis granuloma formation and related inflammatory mediator release was dependent upon phagolysosome assembly and acidification and mTORc1/S6/STAT3 signal transduction. CONCLUSIONS Sarcoidosis granulomas exhibit enhanced and sustained intracellular antigen processing and presentation capacities, and related phagolysosome assembly and acidification are required to support mTORc1 signalling to promote sarcoidosis granuloma formation.
Collapse
Affiliation(s)
- Elliott D Crouser
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Landon W Locke
- Dept of Microbial Infection and Immunity, Center for Microbial Interface Biology, Columbus, OH, USA
| | - Mark W Julian
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Sabahattin Bicer
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Wolfgang Sadee
- Dept of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peter White
- The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Dept of Pediatrics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | |
Collapse
|
97
|
Wilson JL, Nägele T, Linke M, Demel F, Fritsch SD, Mayr HK, Cai Z, Katholnig K, Sun X, Fragner L, Miller A, Haschemi A, Popa A, Bergthaler A, Hengstschläger M, Weichhart T, Weckwerth W. Inverse Data-Driven Modeling and Multiomics Analysis Reveals Phgdh as a Metabolic Checkpoint of Macrophage Polarization and Proliferation. Cell Rep 2021; 30:1542-1552.e7. [PMID: 32023468 PMCID: PMC7003064 DOI: 10.1016/j.celrep.2020.01.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 07/23/2019] [Accepted: 01/02/2020] [Indexed: 01/12/2023] Open
Abstract
Mechanistic or mammalian target of rapamycin complex 1 (mTORC1) is an important regulator of effector functions, proliferation, and cellular metabolism in macrophages. The biochemical processes that are controlled by mTORC1 are still being defined. Here, we demonstrate that integrative multiomics in conjunction with a data-driven inverse modeling approach, termed COVRECON, identifies a biochemical node that influences overall metabolic profiles and reactions of mTORC1-dependent macrophage metabolism. Using a combined approach of metabolomics, proteomics, mRNA expression analysis, and enzymatic activity measurements, we demonstrate that Tsc2, a negative regulator of mTORC1 signaling, critically influences the cellular activity of macrophages by regulating the enzyme phosphoglycerate dehydrogenase (Phgdh) in an mTORC1-dependent manner. More generally, while lipopolysaccharide (LPS)-stimulated macrophages repress Phgdh activity, IL-4-stimulated macrophages increase the activity of the enzyme required for the expression of key anti-inflammatory molecules and macrophage proliferation. Thus, we identify Phgdh as a metabolic checkpoint of M2 macrophages. Metabolomics and inverse modeling reveal a Tsc2/mTORC1-dependent checkpoint in macrophages M2 macrophages have high Phgdh activity Phgdh activity promotes M2 polarization Phgdh activity supports macrophage proliferation
Collapse
Affiliation(s)
- Jayne Louise Wilson
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Nägele
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna 1090, Austria; Department Biology I, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Monika Linke
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Florian Demel
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Stephanie D Fritsch
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Hannah Katharina Mayr
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Zhengnan Cai
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria
| | - Karl Katholnig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna 1090, Austria
| | - Lena Fragner
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna 1090, Austria
| | - Anne Miller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna 1090, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna 1090, Austria
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria.
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
98
|
Herbath M, Fabry Z, Sandor M. Current concepts in granulomatous immune responses. Biol Futur 2021; 72:61-68. [PMID: 34095894 PMCID: PMC8174606 DOI: 10.1007/s42977-021-00077-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Persistent irritants that are resistant to innate and cognate immunity induce granulomas. These macrophage-dominated lesions that partially isolate the healthy tissue from the irritant and the irritant induced inflammation. Particles, toxins, autoantigens and infectious agents can induce granulomas. The corresponding lesions can be protective for the host but they can also cause damage and such damage has been associated with the pathology of more than a hundred human diseases. Recently, multiple molecular mechanisms underlying how normal macrophages transform into granuloma-inducing macrophages have been discovered and new information has been gathered, indicating how these lesions are initiated, spread and regulated. In this review, differences between the innate and cognate granuloma pathways are discussed by summarizing how the dendritic cell - T cell axis changes granulomatous immunity. Granuloma lesions are highly dynamic and depend on continuous cell replacement. This feature provides new therapeutic approaches to treat granulomatous diseases.
Collapse
Affiliation(s)
- Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| |
Collapse
|
99
|
Pizzini A, Bacher H, Aichner M, Franchi A, Watzinger K, Tancevski I, Sonnweber T, Mosheimer-Feistritzer B, Duftner C, Zelger B, Pallua J, Sprung S, Weichhart T, Zelger B, Weiss G, Löffler-Ragg J. High expression of mTOR signaling in granulomatous lesions is not predictive for the clinical course of sarcoidosis. Respir Med 2021; 177:106294. [PMID: 33485108 DOI: 10.1016/j.rmed.2020.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/31/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Sarcoidosis is a systemic granulomatous disease with a variable clinical presentation and disease course. There is still no reliable biomarker available, which assists in the diagnosis or prediction of the clinical course. According to a murine model, the expression level of the metabolic checkpoint kinase mechanistic target of Rapamycin complex 1 (mTORC1) in granulomas of sarcoidosis patients may be used as a clinical biomarker. MATERIAL AND METHODS This is a retrospective analysis of 58 patients with histologically confirmed sarcoidosis. Immunohistochemical staining of granulomas from tissue samples was evaluated for the expression of activated mTORC1 signaling, including phosphorylated mTOR, its downstream effectors S6K1, 4EBP1 and the proliferation marker Ki-67. Patients were categorized according to different clinical phenotypes, serum biomarkers, and immunomodulatory therapy. RESULTS All patients showed activated mTORC1 signaling in granulomas, which correlated with its downstream effectors S6K1 and 4EBP1 but was not related to Ki-67 expression. The mTORC1 activity revealed an association neither to disease severity nor the necessity of treatment; however, p-mTOR inversely correlated with cumulative corticosteroid dosage. CONCLUSION Our data confirm activation of the mTORC1 pathway in sarcoidosis, supporting the hypothesis that mTOR is a significant driver in granuloma formation. However, we could not find a relationship between the degree of mTOR activation and disease severity or the need for therapy.
Collapse
Affiliation(s)
- Alex Pizzini
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria
| | - Hannes Bacher
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria
| | - Magdalena Aichner
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria
| | - Alexander Franchi
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria
| | - Kathrin Watzinger
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria
| | - Ivan Tancevski
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria
| | - Thomas Sonnweber
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria
| | | | - Christina Duftner
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria
| | - Bettina Zelger
- Medical University of Innsbruck, Department of Pathology, General Pathology Division, Anichstraße 35, 6020, Innsbruck, Austria
| | - Johannes Pallua
- Medical University of Innsbruck, Department of Pathology, General Pathology Division, Anichstraße 35, 6020, Innsbruck, Austria
| | - Susanne Sprung
- Medical University of Innsbruck, Department of Pathology, General Pathology Division, Anichstraße 35, 6020, Innsbruck, Austria
| | - Thomas Weichhart
- Medical University of Vienna, Institute of Medical Genetics, Währinger Straße 10, 1090, Vienna, Austria
| | - Bernhard Zelger
- Medical University of Innsbruck, Department of Dermatology and Venereology, Anichstraße 35, 6020, Innsbruck, Austria
| | - Günter Weiss
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Judith Löffler-Ragg
- Medical University of Innsbruck, Department of Internal Medicine II, Anichstraße 35, 6020, Innsbruck, Austria.
| |
Collapse
|
100
|
Obi ON, Lower EE, Baughman RP. Biologic and advanced immunomodulating therapeutic options for sarcoidosis: a clinical update. Expert Rev Clin Pharmacol 2021; 14:179-210. [PMID: 33487042 DOI: 10.1080/17512433.2021.1878024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Sarcoidosis is a multi-organ disease with a wide range of clinical manifestations and outcomes. A quarter of sarcoidosis patients require long-term treatment for chronic disease. In this group, corticosteroids and cytotoxic agents be insufficient to control diseaseAreas covered: Several biologic agents have been studied for treatment of chronic pulmonary and extra-pulmonary disease. A review of the available literature was performed searching PubMed and an expert opinion regarding specific therapy was developed.Expert opinion: These agents have the potential of treating patients who have progressive disease. Many of these agents have different mechanisms of action, response rates, and toxicity profiles.
Collapse
Affiliation(s)
- Ogugua Ndili Obi
- Division of Pulmonary Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Elyse E Lower
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Robert P Baughman
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|