51
|
Kaminski VDL, Kulmann-Leal B, Tyska-Nunes GL, Beltrame BP, Riesgo RDS, Schüler-Faccini L, Roman T, Schuch JB, Chies JAB. Association between NKG2/KLR gene variants and epilepsy in Autism Spectrum Disorder. J Neuroimmunol 2023; 381:578132. [PMID: 37352688 DOI: 10.1016/j.jneuroim.2023.578132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders mainly characterized by repetitive, restrictive and stereotypical behaviors, and impaired communication skills. Several lines of evidence indicate that alterations of the immune system account for ASD development, including the presence of brain-reactive antibodies, abnormal T cell activation, altered cytokine levels in brain, cerebrospinal fluid and peripheral blood circulation, increased levels of circulating monocytes, and dysregulation in Natural Killer (NK) cells activity. Regarding NK cells, a lower cytotoxic activity, a higher level of activation and an increased number of these cells in individuals with ASD have been described. In 2019, a study showed that NK cells derived from patients with ASD show a characteristic pattern of NKG2C overexpression, highlighting the importance of the NK cell pathway in ASD. In fact, the study of genes related to NK cell activity has proven to be an excellent research target, both in terms of susceptibility as well as a marker for the different clinical manifestations observed in ASD individuals. Here, we evaluated the influence of KLRC2 gene deletion as well as KLRK1 rs1049174 and rs2255336 variants in a cohort of 185 children diagnosed with ASD and their respective biological parents in southern Brazil. Of note, this is the first study concerning genetic variants of the KLRC2 and KLRK1 genes in an ASD sample. The KLRC2 gene deletion (p = 0.001; pc = 0.009), KLRK1 rs1049174 (p = 0.005; pc = 0.045) and KLRK1 rs2255336 (p = 0.001; pc = 0.009) were associated with epilepsy in ASD patients. The results indicate that KLRC2 deletion, KLRK1 rs2255336, and KLRK1 rs1049174 could be involved in epilepsy manifestation in ASD patients, possibly impacting the NK dysregulation already described in ASD and epileptic patients.
Collapse
Affiliation(s)
- Valéria de Lima Kaminski
- Laboratory of Immunobiology and Immunogenetics, Graduate Program in Genetics and Molecular Biology - PPGBM, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Applied Immunology Laboratory, Graduate Program in Biotechnology, Institute of Science and Technology - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos - São Paulo, Brazil; Universidade Anhembi Morumbi, São José dos Campos - São Paulo, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Graduate Program in Genetics and Molecular Biology - PPGBM, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Guilherme Luís Tyska-Nunes
- Laboratory of Immunobiology and Immunogenetics, Graduate Program in Genetics and Molecular Biology - PPGBM, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Brenda Pedron Beltrame
- Laboratory of Immunobiology and Immunogenetics, Graduate Program in Genetics and Molecular Biology - PPGBM, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Rudimar Dos Santos Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre 90035-903, Brazil
| | - Lavinia Schüler-Faccini
- Laboratory of Immunobiology and Immunogenetics, Graduate Program in Genetics and Molecular Biology - PPGBM, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil; Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Tatiana Roman
- Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Jaqueline Bohrer Schuch
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Graduate Program in Genetics and Molecular Biology - PPGBM, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
52
|
Al-Ayadhi L, Abualnaja A, AlZarroug A, Alharbi T, Alhowikan AM, Halepoto DM, Al-Mazidi S. A Disintegrin and Metalloproteinase Protein 8 (ADAM 8) in Autism Spectrum Disorder: Links to Neuroinflammation. Neuropsychiatr Dis Treat 2023; 19:1771-1780. [PMID: 37601825 PMCID: PMC10438429 DOI: 10.2147/ndt.s408554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Background Converging lines of evidence confirmed neuroinflammation's role in autism spectrum disorder (ASD) etiological pathway. A disintegrin and metalloproteinase 8 (ADAM8) play major roles in inflammatory and allergic processes in various diseases. Aim This study aimed to investigate ADAM8 plasma levels in autistic children compared to healthy controls. Also, to discover the association between ADAM8, disease severity, and neuroinflammation in ASD. Methodology This case-control study included children with ASD (n=40) and aged-matched healthy controls (n=40). The plasma levels of the ADAM 8 were determined using enzyme-linked immunosorbent assay (ELISA). The assessment of ASD severity and social and sensory behaviors were categorized as mild, moderate and severe. Correlations among ADAM8 plasma levels and ASD severity scores [Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS) and Short Sensory Profile (SSP)] were obtained by Spearman correlation coefficient (r). Results ASD children (n=40), including severe autism (n=21) and mild-to-moderate autism (n=19), showed significantly (p ≤ 0.05) lower plasma levels of ADAM8 [4683 (2885-5229); 4663 (4060-5000); 4632 (2885-5229)], respectively, than those of healthy controls [5000 (4047-5000)] [median (IQR) pg/mL]. However, there was no significant difference between the ADAM8 levels of children with severe and mild-to-moderate autism (p = 0.71). Moreover, ADAM8 plasma levels were not significantly correlated with the severity of ASD measured by behavioral scales [CARS (r= -0.11, p=0.55), SRS (r=0.11, p= 0.95), SSP (r=-0.23, p=0.23)]. Conclusion The low ADAM8 plasma levels in children with ASD possibly indicated that ADAM8 might be implicated in the pathogenesis of ASD but not in the severity of the disease. These results should be interpreted with caution until additional studies are carried out with larger populations to decide whether the reduction in plasma ADAM8 levels is a mere consequence of ASD or if it plays a pathogenic role in the disease.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Autism Research and Treatment Centre, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Amani Abualnaja
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Abdullah AlZarroug
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Turki Alharbi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Abdulrahman M Alhowikan
- Autism Research and Treatment Centre, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Dost M Halepoto
- Autism Research and Treatment Centre, Faculty of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Sarah Al-Mazidi
- College of Medicine, Department of Physiology, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| |
Collapse
|
53
|
de la Rubia Ortí JE, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, Motos-Muñoz M, Proaño B, Benlloch M. Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children with Autism Spectrum Disorder: A Comprehensive Review. Nutrients 2023; 15:3265. [PMID: 37513683 PMCID: PMC10383799 DOI: 10.3390/nu15143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.
Collapse
Affiliation(s)
| | - Costanza Moneti
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - Gloria Castellano
- Centro de Investigación Traslacional San Alberto Magno (CITSAM), Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ana Belén Carriquí-Suárez
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Motos-Muñoz
- Department of Personality Psychology, Treatment and Methodology, Catholic University of Valencia San Vicente Mártir, 46100 Valencia, Spain
- Child Neurorehabilitation Unit, Manises Hospital, 46940 Valencia, Spain
| | - Belén Proaño
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Benlloch
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
54
|
Zhu J, Meng H, Li Y. Identification of target hub genes and construction of a novel miRNA regulatory network in autism spectrum disorder by integrated analysis. Medicine (Baltimore) 2023; 102:e34420. [PMID: 37478258 PMCID: PMC10662836 DOI: 10.1097/md.0000000000034420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023] Open
Abstract
The incidence of autism spectrum disorder (ASD) is increasing year by year in children. The aim of the study was to find possible biomarkers for ASD diagnosis as well as examine MicroRNA (miRNA) signatures and crucial pathways. We conducted a two-stage study to explore potential target genes and functional miRNAs. Peripheral blood samples of children with ASD were enrolled and performed RNA sequencing analysis. The overlapped candidate genes were further screened in combination with differentially expressed genes (DEGs) of GSE77103 datasets. STRING established a protein-protein interaction network comprising DEGs. The hub genes were filtered out using the CytoHubba. Then, we set up a miRNA-mRNA regulatory network. Correlational analyses between hub genes and immune cells associated with ASD were carried out using the CIBERSORT software to assess the diversity of immune cell types in ASD. RNA-sequencing analysis was used to confirm the differential expression of 3 hub genes. Briefly, after blood samples were sequenced interrogating 867 differential genes in our internal screening dataset. After screening GEO databases, 551 DEGs obtained from GSE77103. Fourteen common genes were overlapped through DEGs of GEO datasets and internal screening dataset. Among protein-protein interaction network, 10 hub genes with high degree algorithm were screened out and 3 hub genes of them - ADIPOR1, LGALS3, and GZMB - that were thought to be most associated with the emergence of ASD. Then, we developed a network of miRNA-mRNA regulatory interactions by screening miRNAs (such as hsa-miR-20b-5p, hsa-miR-17-5p, and hsa-miR-216b-5p) that were closely associated to 3 hub genes. Additionally, we discovered 18 different immune cell types associated with ASD using the CIBERSORT algorithm, and we discovered that mononuclear macrophages differed considerably between the 2 groups. Overall, 3 hub genes (ADIPOR1, LGALS3, and GZMB) and 15 candidates miRNAs-target 3 genes regulatory pathways representing potentially novel biomarkers of ASD diseases were revealed. These findings could enhance our knowledge of ASD and offer possible therapeutic targets of ASD patients in the future.
Collapse
Affiliation(s)
- Jinyi Zhu
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Haoran Meng
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yan Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, China
| |
Collapse
|
55
|
Lombardi L, Le Clerc S, Wu CL, Bouassida J, Boukouaci W, Sugusabesan S, Richard JR, Lajnef M, Tison M, Le Corvoisier P, Barau C, Banaschewski T, Holt R, Durston S, Persico AM, Oakley B, Loth E, Buitelaar J, Murphy D, Leboyer M, Zagury JF, Tamouza R. A human leukocyte antigen imputation study uncovers possible genetic interplay between gut inflammatory processes and autism spectrum disorders. Transl Psychiatry 2023; 13:244. [PMID: 37407551 DOI: 10.1038/s41398-023-02550-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental conditions that are for subsets of individuals, underpinned by dysregulated immune processes, including inflammation, autoimmunity, and dysbiosis. Consequently, the major histocompatibility complex (MHC)-hosted human leukocyte antigen (HLA) has been implicated in ASD risk, although seldom investigated. By utilizing a GWAS performed by the EU-AIMS consortium (LEAP cohort), we compared HLA and MHC genetic variants, single nucleotide polymorphisms (SNP), and haplotypes in ASD individuals, versus typically developing controls. We uncovered six SNPs, namely rs9268528, rs9268542, rs9268556, rs14004, rs9268557, and rs8084 that crossed the Bonferroni threshold, which form the underpinnings of 3 independent genetic pathways/blocks that differentially associate with ASD. Block 1 (rs9268528-G, rs9268542-G, rs9268556-C, and rs14004-A) afforded protection against ASD development, whilst the two remaining blocks, namely rs9268557-T, and rs8084-A, associated with heightened risk. rs8084 and rs14004 mapped to the HLA-DRA gene, whilst the four other SNPs located in the BTNL2 locus. Different combinations amongst BTNL2 SNPs and HLA amino acid variants or classical alleles were found either to afford protection from or contribute to ASD risk, indicating a genetic interplay between BTNL2 and HLA. Interestingly, the detected variants had transcriptional and/or quantitative traits loci implications. As BTNL2 modulates gastrointestinal homeostasis and the identified HLA alleles regulate the gastrointestinal tract in celiac disease, it is proposed that the data on ASD risk may be linked to genetically regulated gut inflammatory processes. These findings might have implications for the prevention and treatment of ASD, via the targeting of gut-related processes.
Collapse
Affiliation(s)
- Laura Lombardi
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Ching-Lien Wu
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Jihène Bouassida
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Wahid Boukouaci
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Sobika Sugusabesan
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Jean-Romain Richard
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Mohamed Lajnef
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Maxime Tison
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Philippe Le Corvoisier
- Université Paris Est Créteil, Inserm, Centre Investigation Clinique, CIC 1430, Henri Mondor, Créteil, F94010, France
| | - Caroline Barau
- Plateforme de Ressources Biologiques, HU Henri Mondor, Créteil, F94010, France
| | - Tobias Banaschewski
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sarah Durston
- Education Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry Program at Modena University Hospital, & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Bethany Oakley
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Declan Murphy
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT) and Fondation FondaMental, Créteil, F-94010, France
| | - Jean-François Zagury
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT) and Fondation FondaMental, Créteil, F-94010, France.
| |
Collapse
|
56
|
Zhang L, Xu Y, Sun S, Liang C, Li W, Li H, Zhang X, Pang D, Li M, Li H, Lang Y, Liu J, Jiang S, Shi X, Li B, Yang Y, Wang Y, Li Z, Song C, Duan G, Leavenworth JW, Wang X, Zhu C. Integrative analysis of γδT cells and dietary factors reveals predictive values for autism spectrum disorder in children. Brain Behav Immun 2023; 111:76-89. [PMID: 37011865 DOI: 10.1016/j.bbi.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) includes a range of multifactorial neurodevelopmental disabilities characterized by a variable set of neuropsychiatric symptoms. Immunological abnormalities have been considered to play important roles in the pathogenesis of ASD, but it is still unknown which abnormalities are more prominent. METHODS A total of 105 children with ASD and 105 age and gender-matched typically developing (TD) children were recruited. An eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated. The immune cell profiles in peripheral blood were analyzed by flow cytometry, and cytokines (IFN-γ, IL-8, IL-10, IL-17A, and TNF-α) in plasma were examined by Luminex assay. The obtained results were further validated using an external validation cohort including 82 children with ASD and 51 TD children. RESULTS Compared to TD children, children with ASD had significant eating and mealtime behavioral changes and gastrointestinal symptoms characterized by increased food fussiness and emotional eating, decreased fruit and vegetable consumption, and increased stool astriction. The proportion of γδT cells was significantly higher in children with ASD than TD children (β: 0.156; 95% CI: 0.888 ∼ 2.135, p < 0.001) even after adjusting for gender, eating and mealtime behaviors, and dietary habits. In addition, the increased γδT cells were evident in all age groups (age < 48 months: β: 0.288; 95% CI: 0.420 ∼ 4.899, p = 0.020; age ≥ 48 months: β: 0.458; 95% CI: 0.694 ∼ 9.352, p = 0.024), as well as in boys (β: 0.174; 95% CI: 0.834 ∼ 2.625, p < 0.001) but not in girls. These findings were also confirmed by an external validation cohort. Furthermore, IL-17, but not IFN-γ, secretion by the circulating γδT cells was increased in ASD children. Machine learning revealed that the area under the curve in nomogram plots for increased γδT cells combined with eating behavior/dietary factors was 0.905, which held true in both boys and girls and in all the age groups of ASD children. The decision curves showed that children can receive significantly higher diagnostic benefit within the threshold probability range from 0 to 1.0 in the nomogram model. CONCLUSIONS Children with ASD present with divergent eating and mealtime behaviors and dietary habits as well as gastrointestinal symptoms. In peripheral blood, γδT cells but not αβT cells are associated with ASD. The increased γδT cells combined with eating and mealtime behavior/dietary factors have a high value for assisting in the diagnosis of ASD.
Collapse
Affiliation(s)
- Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Sun
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cailing Liang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengyue Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huihui Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yongbin Lang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiatian Liu
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuqin Jiang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyi Shi
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingbing Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Yang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yazhe Wang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenghua Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunlan Song
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guiqin Duan
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianmei W Leavenworth
- Department of Neurosurgery and Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg 40530, Sweden.
| |
Collapse
|
57
|
Gevezova M, Sbirkov Y, Sarafian V, Plaimas K, Suratanee A, Maes M. Autistic spectrum disorder (ASD) - Gene, molecular and pathway signatures linking systemic inflammation, mitochondrial dysfunction, transsynaptic signalling, and neurodevelopment. Brain Behav Immun Health 2023; 30:100646. [PMID: 37334258 PMCID: PMC10275703 DOI: 10.1016/j.bbih.2023.100646] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023] Open
Abstract
Background Despite advances in autism spectrum disorder (ASD) research and the vast genomic, transcriptomic, and proteomic data available, there are still controversies regarding the pathways and molecular signatures underlying the neurodevelopmental disorders leading to ASD. Purpose To delineate these underpinning signatures, we examined the two largest gene expression meta-analysis datasets obtained from the brain and peripheral blood mononuclear cells (PBMCs) of 1355 ASD patients and 1110 controls. Methods We performed network, enrichment, and annotation analyses using the differentially expressed genes, transcripts, and proteins identified in ASD patients. Results Transcription factor network analyses in up- and down-regulated genes in brain tissue and PBMCs in ASD showed eight main transcription factors, namely: BCL3, CEBPB, IRF1, IRF8, KAT2A, NELFE, RELA, and TRIM28. The upregulated gene networks in PBMCs of ASD patients are strongly associated with activated immune-inflammatory pathways, including interferon-α signaling, and cellular responses to DNA repair. Enrichment analyses of the upregulated CNS gene networks indicate involvement of immune-inflammatory pathways, cytokine production, Toll-Like Receptor signalling, with a major involvement of the PI3K-Akt pathway. Analyses of the downregulated CNS genes suggest electron transport chain dysfunctions at multiple levels. Network topological analyses revealed that the consequent aberrations in axonogenesis, neurogenesis, synaptic transmission, and regulation of transsynaptic signalling affect neurodevelopment with subsequent impairments in social behaviours and neurocognition. The results suggest a defense response against viral infection. Conclusions Peripheral activation of immune-inflammatory pathways, most likely induced by viral infections, may result in CNS neuroinflammation and mitochondrial dysfunction, leading to abnormalities in transsynaptic transmission, and brain neurodevelopment.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Michael Maes
- Research Institute at MU-Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
58
|
Zhan N, Sham PC, So HC, Lui SSY. The genetic basis of onset age in schizophrenia: evidence and models. Front Genet 2023; 14:1163361. [PMID: 37441552 PMCID: PMC10333597 DOI: 10.3389/fgene.2023.1163361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Schizophrenia is a heritable neurocognitive disorder affecting about 1% of the population, and usually has an onset age at around 21-25 in males and 25-30 in females. Recent advances in genetics have helped to identify many common and rare variants for the liability to schizophrenia. Earlier evidence appeared to suggest that younger onset age is associated with higher genetic liability to schizophrenia. Clinical longitudinal research also found that early and very-early onset schizophrenia are associated with poor clinical, neurocognitive, and functional profiles. A recent study reported a heritability of 0.33 for schizophrenia onset age, but the genetic basis of this trait in schizophrenia remains elusive. In the pre-Genome-Wide Association Study (GWAS) era, genetic loci found to be associated with onset age were seldom replicated. In the post-Genome-Wide Association Study era, new conceptual frameworks are needed to clarify the role of onset age in genetic research in schizophrenia, and to identify its genetic basis. In this review, we first discussed the potential of onset age as a characterizing/subtyping feature for psychosis, and as an important phenotypic dimension of schizophrenia. Second, we reviewed the methods, samples, findings and limitations of previous genetic research on onset age in schizophrenia. Third, we discussed a potential conceptual framework for studying the genetic basis of onset age, as well as the concepts of susceptibility, modifier, and "mixed" genes. Fourth, we discussed the limitations of this review. Lastly, we discussed the potential clinical implications for genetic research of onset age of schizophrenia, and how future research can unveil the potential mechanisms for this trait.
Collapse
Affiliation(s)
- Na Zhan
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pak C. Sham
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre of PanorOmic Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Simon S. Y. Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
59
|
Al-Beltagi M, Saeed NK, Elbeltagi R, Bediwy AS, Aftab SAS, Alhawamdeh R. Viruses and autism: A Bi-mutual cause and effect. World J Virol 2023; 12:172-192. [PMID: 37396705 PMCID: PMC10311578 DOI: 10.5501/wjv.v12.i3.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 06/21/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous, multi-factorial, neurodevelopmental disorders resulting from genetic and environmental factors interplay. Infection is a significant trigger of autism, especially during the critical developmental period. There is a strong interplay between the viral infection as a trigger and a result of ASD. We aim to highlight the mutual relationship between autism and viruses. We performed a thorough literature review and included 158 research in this review. Most of the literature agreed on the possible effects of the viral infection during the critical period of development on the risk of developing autism, especially for specific viral infections such as Rubella, Cytomegalovirus, Herpes Simplex virus, Varicella Zoster Virus, Influenza virus, Zika virus, and severe acute respiratory syndrome coronavirus 2. Viral infection directly infects the brain, triggers immune activation, induces epigenetic changes, and raises the risks of having a child with autism. At the same time, there is some evidence of increased risk of infection, including viral infections in children with autism, due to lots of factors. There is an increased risk of developing autism with a specific viral infection during the early developmental period and an increased risk of viral infections in children with autism. In addition, children with autism are at increased risk of infection, including viruses. Every effort should be made to prevent maternal and early-life infections and reduce the risk of autism. Immune modulation of children with autism should be considered to reduce the risk of infection.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Pathology Department, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Microbiology Section, Pathology Department, Irish Royal College of Surgeon, Busaiteen 15503, Muharraq, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonolgy, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Syed A Saboor Aftab
- Endocrinology and DM, William Harvey Hospital (Paula Carr Centre), Ashford TN24 0LZ, Kent, United Kingdom
| | - Rawan Alhawamdeh
- Pediatrics Research and Development, Genomics Creativity and Play Center, Manama 0000, Bahrain
| |
Collapse
|
60
|
Inge Schytz Andersen-Civil A, Anjan Sawale R, Claude Vanwalleghem G. Zebrafish (Danio rerio) as a translational model for neuro-immune interactions in the enteric nervous system in autism spectrum disorders. Brain Behav Immun 2023:S0889-1591(23)00142-3. [PMID: 37301234 DOI: 10.1016/j.bbi.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorders (ASD) affect about 1% of the population and are strongly associated with gastrointestinal diseases creating shortcomings in quality of life. Multiple factors contribute to the development of ASD and although neurodevelopmental deficits are central, the pathogenesis of the condition is complex and the high prevalence of intestinal disorders is poorly understood. In agreement with the prominent research establishing clear bidirectional interactions between the gut and the brain, several studies have made it evident that such a relation also exists in ASD. Thus, dysregulation of the gut microbiota and gut barrier integrity may play an important role in ASD. However, only limited research has investigated how the enteric nervous system (ENS) and intestinal mucosal immune factors may impact on the development of ASD-related intestinal disorders. This review focuses on the mechanistic studies that elucidate the regulation and interactions between enteric immune cells, residing gut microbiota and the ENS in models of ASD. Especially the multifaceted properties and applicability of zebrafish (Danio rerio) for the study of ASD pathogenesis are assessed in comparison to studies conducted in rodent models and humans. Advances in molecular techniques and in vivo imaging, combined with genetic manipulation and generation of germ-free animals in a controlled environment, appear to make zebrafish an underestimated model of choice for the study of ASD. Finally, we establish the research gaps that remain to be explored to further our understanding of the complexity of ASD pathogenesis and associated mechanisms that may lead to intestinal disorders.
Collapse
Affiliation(s)
- Audrey Inge Schytz Andersen-Civil
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.
| | - Rajlakshmi Anjan Sawale
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Gilles Claude Vanwalleghem
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
61
|
Paudel R, Singh S. Selection of Young Animal Models of Autism over Adult: Benefits and Limitations. Integr Psychol Behav Sci 2023; 57:697-712. [PMID: 33447895 DOI: 10.1007/s12124-020-09595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Autism is a complex neurodevelopmental broad-spectrum disorder characterized by social interaction, and aberrant restrictive and repetitive behavior. The complex pathophysiology and unexplored drug targets make it difficult to standardize and validate the animal models of autism. The review was purposed for determining the benefits of younger animal models over adult models of autism. Similarly, animal models with respect to age, sex, body weight, number of animals used, along with autism inducing agents have been reviewed in this article. The differentiation of behavioral parameters has shown the benefits in the selection of younger animal models. Thus, we conclude that young and adolescence animal models of autism will be supporting for early detection and interventions with significant results.
Collapse
Affiliation(s)
- Raju Paudel
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
62
|
Carbonell AU, Freire-Cobo C, Deyneko IV, Dobariya S, Erdjument-Bromage H, Clipperton-Allen AE, Page DT, Neubert TA, Jordan BA. Comparing synaptic proteomes across five mouse models for autism reveals converging molecular similarities including deficits in oxidative phosphorylation and Rho GTPase signaling. Front Aging Neurosci 2023; 15:1152562. [PMID: 37255534 PMCID: PMC10225639 DOI: 10.3389/fnagi.2023.1152562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes. Comparative analyses of mouse models for Fragile X syndrome (Fmr1 knockout), cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), ANKS1B syndrome (Anks1b haploinsufficiency), and idiopathic autism (BTBR+) revealed several common altered cellular and molecular pathways at the synapse, including changes in oxidative phosphorylation, and Rho family small GTPase signaling. Functional validation of one of these aberrant pathways, Rac1 signaling, confirms that the ANKS1B model displays altered Rac1 activity counter to that observed in other models, as predicted by the bioinformatic analyses. Overall similarity analyses reveal clusters of synaptic profiles, which may form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Our results suggest that ASD-linked susceptibility genes ultimately converge on common signaling pathways regulating synaptic function and propose that these points of convergence are key to understanding the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Abigail U. Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen Freire-Cobo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ilana V. Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saunil Dobariya
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy E. Clipperton-Allen
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Thomas A. Neubert
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
63
|
Freedman AN, Clark J, Eaves LA, Roell K, Oran A, Koval L, Rager J, Santos HP, Kuban K, Joseph RM, Frazier J, Marsit CJ, Burt AA, O’Shea TM, Fry RC. A multi-omic approach identifies an autism spectrum disorder (ASD) regulatory complex of functional epimutations in placentas from children born preterm. Autism Res 2023; 16:918-934. [PMID: 36938998 PMCID: PMC10192070 DOI: 10.1002/aur.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Children born preterm are at heightened risk of neurodevelopmental impairments, including Autism Spectrum Disorder (ASD). The placenta is a key regulator of neurodevelopmental processes, though the precise underlying molecular mechanisms remain unclear. Here, we employed a multi-omic approach to identify placental transcriptomic and epigenetic modifications related to ASD diagnosis at age 10, among children born preterm. Working with the extremely low gestational age (ELGAN) cohort, we hypothesized that a pro-inflammatory placental environment would be predictive of ASD diagnosis at age 10. Placental messenger RNA (mRNA) expression, CpG methylation, and microRNA (miRNA) expression were compared among 368 ELGANs (28 children diagnosed with ASD and 340 children without ASD). A total of 111 genes displayed expression levels in the placenta that were associated with ASD. Within these ASD-associated genes is an ASD regulatory complex comprising key genes that predicted ASD case status. Genes with expression that predicted ASD case status included Ewing Sarcoma Breakpoint Region 1 (EWSR1) (OR: 6.57 (95% CI: 2.34, 23.58)) and Bromodomain Adjacent To Zinc Finger Domain 2A (BAZ2A) (OR: 0.12 (95% CI: 0.03, 0.35)). Moreover, of the 111 ASD-associated genes, nine (8.1%) displayed associations with CpG methylation levels, while 14 (12.6%) displayed associations with miRNA expression levels. Among these, LRR Binding FLII Interacting Protein 1 (LRRFIP1) was identified as being under the control of both CpG methylation and miRNAs, displaying an OR of 0.42 (95% CI: 0.17, 0.95). This gene, as well as others identified as having functional epimutations, plays a critical role in immune system regulation and inflammatory response. In summary, a multi-omic approach was used to identify functional epimutations in the placenta that are associated with the development of ASD in children born preterm, highlighting future avenues for intervention.
Collapse
Affiliation(s)
- Anastasia N. Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyle Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ali Oran
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julia Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA
| | - Karl Kuban
- Department of Pediatrics, Division of Child Neurology, Boston Medical Center, Boston, Massachusetts, USA
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jean Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School/University of Massachusetts Memorial Health Care, Worcester, MA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
64
|
Kaminski VDL, Michita RT, Ellwanger JH, Veit TD, Schuch JB, Riesgo RDS, Roman T, Chies JAB. Exploring potential impacts of pregnancy-related maternal immune activation and extracellular vesicles on immune alterations observed in autism spectrum disorder. Heliyon 2023; 9:e15593. [PMID: 37305482 PMCID: PMC10256833 DOI: 10.1016/j.heliyon.2023.e15593] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders usually observed in early life, with impacts on behavioral and social skills. Incidence of ASD has been dramatically increasing worldwide, possibly due to increase in awareness/diagnosis as well as to genetic and environmental triggers. Currently, it is estimated that ∼1% of the world population presents ASD symptoms. In addition to its genetic background, environmental and immune-related factors also influence the ASD etiology. In this context, maternal immune activation (MIA) has recently been suggested as a component potentially involved in ASD development. In addition, extracellular vesicles (EVs) are abundant at the maternal-fetal interface and are actively involved in the immunoregulation required for a healthy pregnancy. Considering that alterations in concentration and content of EVs have also been associated with ASD, this article raises a debate about the potential roles of EVs in the processes surrounding MIA. This represents the major differential of the present review compared to other ASD studies. To support the suggested correlations and hypotheses, findings regarding the roles of EVs during pregnancy and potential influences on ASD are discussed, along with a review and update concerning the participation of infections, cytokine unbalances, overweight and obesity, maternal anti-fetal brain antibodies, maternal fever, gestational diabetes, preeclampsia, labor type and microbiota unbalances in MIA and ASD.
Collapse
Affiliation(s)
- Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Rafael Tomoya Michita
- Laboratório de Genética Molecular Humana, Universidade Luterana do Brasil - ULBRA, Canoas, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Degani Veit
- Instituto de Ciências Básicas da Saúde, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jaqueline Bohrer Schuch
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rudimar dos Santos Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tatiana Roman
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
65
|
Pan PY, Taylor MJ, Larsson H, Almqvist C, Lichtenstein P, Lundström S, Bölte S. Genetic and environmental contributions to co-occurring physical health conditions in autism spectrum condition and attention-deficit/hyperactivity disorder. Mol Autism 2023; 14:17. [PMID: 37085910 PMCID: PMC10122407 DOI: 10.1186/s13229-023-00548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Autism spectrum condition and attention-deficit/hyperactivity disorder (ADHD) are associated with a range of physical health conditions. The aim of this study was to examine the etiological components contributing to co-occurring physical health conditions in autism and ADHD. METHODS In this nationwide Child and Adolescent Twin Study in Sweden, we analyzed data from 10,347 twin pairs aged 9 and 12. Clinical diagnoses of autism, ADHD, and physical health conditions were identified through the Swedish National Patient Register. Subclinical phenotypes of autism and ADHD were defined by symptom thresholds on a standardized parent-interview, the Autism-Tics, ADHD, and Other Comorbidities inventory. Associations between physical health conditions and autism/ADHD phenotypes were examined using generalized estimating equations. Bivariate twin models were applied to estimate the extent to which genetic and environmental risk factors accounted for physical health comorbidities. RESULTS Similar patterns of association with physical health conditions were found in clinical and subclinical autism/ADHD, with odds ratios ranging from 1.31 for asthma in subclinical ADHD to 8.03 for epilepsy in clinical autism. The estimated genetic correlation (ra) with epilepsy was 0.50 for clinical autism and 0.35 for subclinical autism. In addition, a modest genetic correlation was estimated between clinical autism and constipation (ra = 0.31), functional diarrhea (ra = 0.27) as well as mixed gastrointestinal disorders (ra = 0.30). Genetic effects contributed 0.86 for mixed gastrointestinal disorders in clinical ADHD (ra = 0.21). Finally, subclinical ADHD shared genetic risk factors with epilepsy, constipation, and mixed gastrointestinal disorders (ra = 0.30, 0.17, and 0.17, respectively). LIMITATIONS Importantly, since medical records from primary care were not included in the registry data used, we probably identified only more severe rather than the full range of physical health conditions. Furthermore, it needs to be considered that the higher prevalence of physical health conditions among autistic children and children with ADHD could be associated with the increased number of medical visits. CONCLUSIONS Shared genetic effects contribute significantly to autism and ADHD phenotypes with the co-occurring physical health conditions across different organ systems, including epilepsy and gastrointestinal disorders. The shared genetic liability with co-occurring physical health conditions was present across different levels of autism and ADHD symptom severity.
Collapse
Affiliation(s)
- Pei-Yin Pan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Gävlegatan 22, 11330, Stockholm, Sweden.
| | - Mark J Taylor
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Berzelius Väg 8, Solna, 17165, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Berzelius Väg 8, Solna, 17165, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Berzelius Väg 8, Solna, 17165, Stockholm, Sweden
- Lung and Allergy Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Eugeniavägen 23, Solna, 17164, Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Berzelius Väg 8, Solna, 17165, Stockholm, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Kungsgatan 12, 41119, GothenburgGöteborg, Sweden
- Centre for Ethics, Law, and Mental Health, University of Gothenburg, Universitetsplatsen 1, 41124, Gothenburg, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Gävlegatan 22, 11330, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Solnavägen 1E, 113 65, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
| |
Collapse
|
66
|
Aldossari AA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Ayadhi LY, Alanazi MM, Shahid M, Alwetaid MY, Hussein MH, Ahmad SF. Upregulation of Inflammatory Mediators in Peripheral Blood CD40 + Cells in Children with Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24087475. [PMID: 37108638 PMCID: PMC10138695 DOI: 10.3390/ijms24087475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.
Collapse
Affiliation(s)
- Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
67
|
Gao MM, Shi H, Yan HJ, Long YS. Proteome profiling of the prefrontal cortex of Fmr1 knockout mouse reveals enhancement of complement and coagulation cascades. J Proteomics 2023; 274:104822. [PMID: 36646274 DOI: 10.1016/j.jprot.2023.104822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Fragile X mental retardation protein (FMRP) deficit resulted from mutations in its encoded fragile X mental retardation 1 (Fmr1) gene is a common inherited cause of Fragile X syndrome (FXS) characterized by intellectual disability and autism spectrum disorder (ASD). The FMRP absence-induced altered gene expression in prefrontal cortex (PFC) are associated with autistic behaviors. However, there lacks a large-scale protein profiling in the PFC upon loss of FMRP. This study used a TMT-labeled proteomic analysis to identify a protein profile of the PFC in the Fmr1 knockout mouse. A total of 5886 proteins were identified in the PFC with 100 differentially abundant proteins (DAPs) in response to FMRP deficiency. Bioinformatical analyses showed that these DAPs were mostly enriched in immune system, extracellular part and complement and coagulation cascades. The complement and coagulation cascades include 6 upregulated proteins (SERPING1, C1QA, C3, FGA, FGB and FGG), which are associated with fibrin degradation, cell lysis, degranulation chemotaxis and phagocytosis linked to activation of immune and inflammatory responses. Thus, our data provide an altered protein profile upon loss of FMRP in the PFC, and suggest that the enhancement of complement and coagulation cascades might contribute to etiological and pathogenic roles of ASD in FXS. SIGNIFICANCE: The etiology of autism spectrum disorder (ASD), a group of neurobiological disorders characterized by deficits in social interaction barriers and other abnormal behaviors, is still elusive. Autistic-like phenotypes are present in both Fragile X syndrome (FXS) patients and FMRP-deficiency FXS models. Given that prefrontal cortex is a critical brain area for social interaction, the FMRP absence induced-changes of a subset of proteins might contribute to ASD in FXS. Using a comprehensive proteomic analysis, this study provides a prefrontal protein profile of the FMRP-absent mouse with a total of 100 differentially abundant proteins (DAPs). Bioinformatic analyses suggest that these DAPs are mainly involved in the regulations of immune system and complement and coagulation cascades. We also show that 6 upregulated proteins (SERPING1, C1QA, C3, FGA, FGB and FGG) in the complement and coagulation cascades are associated with fibrin degradation, cell lysis, degranulation chemotaxis and phagocytosis regarding dysregulation of immune and inflammatory responses in the prefrontal cortex. Therefore, this study suggests that these FMRP-deficient DAPs in the prefrontal cortex might contribute to the etiology and pathogenesis of ASD in FXS.
Collapse
Affiliation(s)
- Mei-Mei Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hang Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hua-Juan Yan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
68
|
Siecinski SK, Giamberardino SN, Spanos M, Hauser AC, Gibson JR, Chandrasekhar T, Trelles MDP, Rockhill CM, Palumbo ML, Cundiff AW, Montgomery A, Siper P, Minjarez M, Nowinski LA, Marler S, Kwee LC, Shuffrey LC, Alderman C, Weissman J, Zappone B, Mullett JE, Crosson H, Hong N, Luo S, She L, Bhapkar M, Dean R, Scheer A, Johnson JL, King BH, McDougle CJ, Sanders KB, Kim SJ, Kolevzon A, Veenstra-VanderWeele J, Hauser ER, Sikich L, Gregory SG. Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder. Autism Res 2023; 16:502-523. [PMID: 36609850 PMCID: PMC10023458 DOI: 10.1002/aur.2884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT), the brain's most abundant neuropeptide, plays an important role in social salience and motivation. Clinical trials of the efficacy of OT in autism spectrum disorder (ASD) have reported mixed results due in part to ASD's complex etiology. We investigated whether genetic and epigenetic variation contribute to variable endogenous OT levels that modulate sensitivity to OT therapy. To carry out this analysis, we integrated genome-wide profiles of DNA-methylation, transcriptional activity, and genetic variation with plasma OT levels in 290 participants with ASD enrolled in a randomized controlled trial of OT. Our analysis identified genetic variants with novel association with plasma OT, several of which reside in known ASD risk genes. We also show subtle but statistically significant association of plasma OT levels with peripheral transcriptional activity and DNA-methylation profiles across several annotated gene sets. These findings broaden our understanding of the effects of the peripheral oxytocin system and provide novel genetic candidates for future studies to decode the complex etiology of ASD and its interaction with OT signaling and OT-based interventions. LAY SUMMARY: Oxytocin (OT) is an abundant chemical produced by neurons that plays an important role in social interaction and motivation. We investigated whether genetic and epigenetic factors contribute to variable OT levels in the blood. To this, we integrated genetic, gene expression, and non-DNA regulated (epigenetic) signatures with blood OT levels in 290 participants with autism enrolled in an OT clinical trial. We identified genetic association with plasma OT, several of which reside in known autism risk genes. We also show statistically significant association of plasma OT levels with gene expression and epigenetic across several gene pathways. These findings broaden our understanding of the factors that influence OT levels in the blood for future studies to decode the complex presentation of autism and its interaction with OT and OT-based treatment.
Collapse
Affiliation(s)
- Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Marina Spanos
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Annalise C Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Tara Chandrasekhar
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - M D Pilar Trelles
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol M Rockhill
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Michelle L Palumbo
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Paige Siper
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mendy Minjarez
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Lisa A Nowinski
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Marler
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Lydia C Kwee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Cheryl Alderman
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jordana Weissman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brooke Zappone
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Jennifer E Mullett
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hope Crosson
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Natalie Hong
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Sheng Luo
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Lilin She
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Manjushri Bhapkar
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Russell Dean
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abby Scheer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jacqueline L Johnson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan H King
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Christopher J McDougle
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin B Sanders
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Soo-Jeong Kim
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Alexander Kolevzon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Linmarie Sikich
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
69
|
Joseph RM, Lai ER, Bishop S, Yi J, Bauman ML, Frazier JA, Santos HP, Douglas LM, Kuban KK, Fry RC, O’Shea MT. Comparing autism phenotypes in children born extremely preterm and born at term. Autism Res 2023; 16:653-666. [PMID: 36595641 PMCID: PMC10551822 DOI: 10.1002/aur.2885] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
Children born preterm are at increased risk for autism spectrum disorder (ASD). There is limited knowledge about whether ASD phenotypes in children born preterm differ from children born at term. The objective of this study was to compare ASD core symptoms and associated characteristics among extremely preterm (EP) and term-born children with ASD. EP participants (n = 59) from the Extremely Low Gestational Age Newborn Study who met diagnostic criteria for ASD at approximately 10 years of age were matched with term-born participants from the Simons Simplex Collection on age, sex, spoken language level, and nonverbal IQ. Core ASD symptomatology was evaluated with the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS). Developmental milestones, anthropometrics, seizure disorder, and psychiatric symptoms were also investigated. The EP group had lower parent-reported symptom scores on ADI-R verbal communication, specifically stereotyped language, and restricted, repetitive behaviors. There were no between-group differences on ADI-R nonverbal communication and ADI-R reciprocal social interaction or with direct observation on the ADOS-2. The EP group was more likely to have delayed speech milestones and lower physical growth parameters. Results from female-only analyses were similar to those from whole-group analyses. In sum, behavioral presentation was similar between EP and IQ- and sex-matched term-born children assessed at age 10 years, with the exception of less severe retrospectively reported stereotyped behaviors, lower physical growth parameters, and increased delays in language milestones among EP-born children with ASD.
Collapse
Affiliation(s)
- Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Emily R. Lai
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Somer Bishop
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joe Yi
- Department of Allied Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Margaret L. Bauman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hudson P. Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA
| | | | - Karl K.C. Kuban
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael T. O’Shea
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
70
|
Modrzejewska M, Bosy-Gąsior W. The Use of Optical Coherence Tomography and Electrophysiological Tests in the Early Diagnosis of Inflammatory Changes in the CNS in children with ASD-A Review of Contemporary Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3591. [PMID: 36834288 PMCID: PMC9964154 DOI: 10.3390/ijerph20043591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
This article is a review of the contemporary literature on the possibility of using modern ophthalmological diagnostics, such as optical coherence tomography and electrophysiological tests, in the assessment of changes in eyesight correlating with inflammatory changes in the central nervous system (CNS) as one of the risk factors for neurodevelopmental disorders in children with ASD. A significant role is attributed to the activation of nerve and glial cells, as well as inflammatory changes in the brain, both of which can be of great importance in regard to an autism development predisposition. This fact indicates the possibility of using certain ophthalmic markers to depict an early correlation between the CNS and its outermost layer, i.e., the retina. A comprehensive ophthalmological assessment, and above all, characteristic changes in the functional function of photoreceptors and disorders of the structures of the retina or optic nerve fibers found in the latest OCT or ERG tests may in the future become diagnostic tools, further confirming the early characteristics of autism in children and adolescents. The above information, therefore, emphasizes the importance of cooperation between specialists in improving the diagnosis and treatment of children with autism.
Collapse
Affiliation(s)
- Monika Modrzejewska
- 2nd Department of Ophthalmology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Wiktoria Bosy-Gąsior
- Scientific Association of Students 2nd Department of Ophthalmology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
71
|
Alshehri S, Nadeem A, Ahmad SF, Alqarni SS, Al-Harbi NO, Al-Ayadhi LY, Attia SM, Alqarni SA, Bakheet SA. Disequilibrium in the Thioredoxin Reductase-1/Thioredoxin-1 Redox Couple Is Associated with Increased T-Cell Apoptosis in Children with Autism. Metabolites 2023; 13:metabo13020286. [PMID: 36837907 PMCID: PMC9964134 DOI: 10.3390/metabo13020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric childhood disorder that affects social skill and language development, and is characterized by persistent stereotypic behaviors, restricted social interests, and impaired language/social skills. ASD subjects have dysregulated immune responses due to impairment in inflammatory and antioxidant signaling in immune cells, such as T cells. Thioredoxin reductase-1 (TrxR1) and thioredoxin-1 (Trx1) play a crucial role in the maintenance of redox equilibrium in several immune cells, including T cells. T-cell apoptosis plays a crucial role in the pathogenesis of several inflammatory diseases. However, it remains to be explored how the TrxR1/Trx1 redox couple affects T-cells apoptosis in ASD and typically developing control (TDC) groups. Therefore, this single-center cross-sectional study explored the expression/activity of TrxR1/Trx1, and Bcl2, 7-AAD/annexin V immunostaining in T cells of ASD (n = 25) and TDC (n = 22) groups. Further, effects of the LPS were determined on apoptosis in TDC and ASD T cells. Our data show that T cells have increased TrxR1 expression, while having decreased Trx1 expression in the ASD group. Further, TrxR enzymatic activity was also elevated in T cells of the ASD group. Furthermore, T cells of the ASD group had a decreased Bcl2 expression and an increased % of annexin V immunostaining. Treatment of T cells with LPS caused greater apoptosis in the ASD group than the TDC group, with same treatment. These data reveal that the redox couple TrxR1/Trx1 is dysregulated in T cells of ASD subjects, which is associated with decreased Bcl2 expression and increased apoptosis. This may lead to decreased survival of T cells in ASD subjects during chronic inflammation. Future studies should investigate environmental factors, such as gut dysbiosis and pollutants, that may cause abnormal immune responses in the T cells of ASD subjects due to chronic inflammation.
Collapse
Affiliation(s)
- Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S. Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y. Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
72
|
Guerrin CG, Doorduin J, Prasad K, Vazquez-Matias DA, Barazzuol L, de Vries EF. Social adversity during juvenile age but not adulthood increases susceptibility to an immune challenge later in life. Neurobiol Stress 2023; 23:100526. [PMID: 36844420 PMCID: PMC9945751 DOI: 10.1016/j.ynstr.2023.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Adverse experiences in early life can increase mental vulnerability to immune challenges experienced later in life, which may induce the development of stress-related psychopathologies. Here, we investigated whether the combined effect of both events is higher if the first adverse experience occurs when the brain is still in development. Therefore, male Wistar rats were exposed to repeated social defeat (RSD, first hit) during juvenile age or adulthood and to an immune challenge consisting of a single injection of lipopolysaccharide (LPS, second hit) in adulthood. Control animals were not exposed to RSD, but only to the LPS challenge. Translocator protein density, a marker for reactive microglia, microglia cell density and plasma corticosterone levels were measured using in vivo [11C]PBR28 positron emission tomography, iba1 immunostaining, and corticosterone ELISA, respectively. Anhedonia, social behavior and anxiety were measured with the sucrose preference, social interaction, and open field tests, respectively. Rats exposed to RSD during juvenile age exhibited enhanced anhedonia and social interaction dysfunction after an immune challenge in adulthood. This enhanced susceptibility was not observed in rats exposed to RSD during adulthood. In addition, exposure to RSD synergistically increased microglia cell density and glial reactivity to the LPS challenge. This increase in microglia cell density and reactivity to the LPS challenge was more pronounced in rats exposed to RSD during juvenile age than in adulthood. Exposure to RSD alone in juvenile age or adulthood induced similar short-term anhedonia, a long-lasting increase in plasma corticosterone and microglial activity, but no change in anxiety and social behavior. Our findings indicate that exposure to social stress during juvenile age, but not adulthood, primes the immune system and increases the sensitivity to an immune challenge experienced later in life. This suggests that juvenile social stress can have more deleterious effects in the long term than similar stress in adulthood.
Collapse
Affiliation(s)
- Cyprien G.J. Guerrin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
- Corresponding author.
| | - Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Daniel A. Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Erik F.J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| |
Collapse
|
73
|
Ellul P, Melki I, Antoun S, Lavialle L, Acquaviva E, Aeschlimann FA, Bader-Meunier B, Belot A, Dingulu G, Dumaine C, Faye A, Frémond ML, Meinzer U, Peyre H, Quartier P, Rosenzwajg M, Savioz I, Vinit C, Tchitchek N, Klatzmann D, Delorme R. Early systemic inflammation induces neurodevelopmental disorders: results from ARTEMIS, a French multicenter study of juvenile rheumatisms and systemic autoimmune and auto-inflammatory disorders and meta-analysis. Mol Psychiatry 2023; 28:1516-1526. [PMID: 36747095 DOI: 10.1038/s41380-023-01980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
Prenatal immune-mediated events are known risk factors for neurodevelopmental disorders in the offspring (NDD). Although the brain continues to develop for years after birth and many postnatal factors alter the regular trajectory of neurodevelopment, little is known about the impact of postnatal immune factors. To fill this gap we set up ARTEMIS, a cohort of juvenile rheumatisms and systemic autoimmune and auto-inflammatory disorders (jRSAID), and assessed their neurodevelopment. We then complemented our results with a systematic review and meta-analysis. In ARTEMIS, we used unsupervised and supervised analysis to determine the influence of jRSAID age at onset (AO) and delay in introduction of disease-modifying therapy (DMT) on NDD (NCT04814862). For the meta-analysis, we searched MEDLINE, EMBASE, PsycINFO, Cochrane, and Web of Science up to April 2022 without any restrictions on language, or article type for studies investigating the co-occurence of jRSAID and NDD (PROSPERO- CRD42020150346). 195 patients were included in ARTEMIS. Classification tree isolated 3 groups of patients (i) A low-risk group (AO > 130 months (m)) with 5% of NDD (ii) A medium-risk group (AO < 130 m and DMT < 2 m) with 20% of NDD (iii) and a high-risk-group (AO < 130 m and DMT > 2 m) with almost half of NDD. For the meta-analysis, 18 studies encompassing a total of (i) 46,267 children with jRSAID; 213,930 children with NDD, and 6,213,778 children as controls were included. We found a positive association between jRSAID and NDD with an OR = 1.44 [95% CI 1.31; 1.57] p < 0.0001, [I2 = 66%, Tau2 = 0.0067, p < 0.01]. Several sensitivity analyses were performed without changing the results. Metaregression confirmed the importance of AO (p = 0.005). Our study supports the association between jRSAID and NDD. AO and DMT have pivotal roles in the risk of developing NDD. We plead for systematic screening of NDD in jRSAID to prevent the functional impact of NDD.
Collapse
Affiliation(s)
- Pierre Ellul
- Excellence Centre for Autism & Neuro-developmental Disorders, Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris Cité University, Paris, France. .,Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP, Pitié-Salpêtrière Hospital, Paris, and Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France. .,Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.
| | - Isabelle Melki
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debre, AP-HP, Paris Cité University Paris, Paris, France.,Université Paris Cité, Inserm UMR 1163, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris Cité University, Paris, France
| | - Stephanie Antoun
- Excellence Centre for Autism & Neuro-developmental Disorders, Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris Cité University, Paris, France
| | - Laura Lavialle
- Excellence Centre for Autism & Neuro-developmental Disorders, Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris Cité University, Paris, France
| | - Eric Acquaviva
- Excellence Centre for Autism & Neuro-developmental Disorders, Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris Cité University, Paris, France
| | - Florence A Aeschlimann
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris Cité University, Paris, France
| | - Brigitte Bader-Meunier
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris Cité University, Paris, France
| | - Alexandre Belot
- Pediatric Nephrology, Rheumatology, Dermatology Department, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Bd Pinel, 68677, Lyon, Bron Cedex, France
| | - Glory Dingulu
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debre, AP-HP, Paris Cité University Paris, Paris, France
| | - Cecile Dumaine
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debre, AP-HP, Paris Cité University Paris, Paris, France
| | - Albert Faye
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debre, AP-HP, Paris Cité University Paris, Paris, France
| | - Marie-Louise Frémond
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,Université Paris Cité, Inserm UMR 1163, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris Cité University, Paris, France
| | - Ulrich Meinzer
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debre, AP-HP, Paris Cité University Paris, Paris, France
| | - Hugo Peyre
- Excellence Centre for Autism & Neuro-developmental Disorders, Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris Cité University, Paris, France
| | - Pierre Quartier
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris Cité University, Paris, France
| | - Michelle Rosenzwajg
- Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP, Pitié-Salpêtrière Hospital, Paris, and Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
| | - Isabelle Savioz
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debre, AP-HP, Paris Cité University Paris, Paris, France
| | - Caroline Vinit
- Reference Center for Rheumatic, AutoImmune and Systemic diseases in children (RAISE), Paris, France.,General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debre, AP-HP, Paris Cité University Paris, Paris, France
| | - Nicolas Tchitchek
- Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP, Pitié-Salpêtrière Hospital, Paris, and Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
| | - David Klatzmann
- Inflammation-Immunopathology-Biotherapy Department (i2B), AP-HP, Pitié-Salpêtrière Hospital, Paris, and Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, INSERM, Paris, France
| | - Richard Delorme
- Excellence Centre for Autism & Neuro-developmental Disorders, Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris Cité University, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| |
Collapse
|
74
|
Lovato I, Simonelli A, Visentin S, Priante E, Baraldi E, Sacchi C. Prenatal environment and developmental trajectories: the intrauterine growth restriction. Minerva Pediatr (Torino) 2023; 75:62-74. [PMID: 35708036 DOI: 10.23736/s2724-5276.22.06949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The prenatal environment is of fundamental importance for the fetus, as the fetus is particularly susceptible to environmental influences while in utero, and several prenatal adversities may constitute a risk factor for fetal growth and child development. Intrauterine growth restriction (IUGR) refers to a pregnancy complication involving the inadequate growth of the fetus in utero, with potential programming consequences on the children's brain-behavior development. In this narrative review we will discuss the most recent literature about IUGR children, including their development and their relationship with the prenatal and postnatal environment. In particular, as an attempt to an adaptive response to intrauterine changes, the brain development of IUGR fetuses follows abnormal developmental pathways, which likely has cascade effects on the future neurodevelopmental outcomes of the children. Cognitive and motor functions are in fact impaired, as well as IUGR children present, across studies, poor socio-emotional abilities and a greater risk for internalizing and externalizing behavior problems. The current work also highlights how the postnatal environment, and in particular parental care, has an important role in IUGR development, acting as a protective factor, or otherwise increasing their constitutional vulnerabilities. Overall, this narrative review has important implications for clinical practice, suggesting the need for long-term follow-up care with IUGR children and strategies supporting parent-child interactions as well.
Collapse
Affiliation(s)
- Irene Lovato
- Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy
| | - Alessandra Simonelli
- Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy
| | - Silvia Visentin
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Elena Priante
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Sacchi
- Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy -
| |
Collapse
|
75
|
Chen Y, Dai J, Tang L, Mikhailova T, Liang Q, Li M, Zhou J, Kopp RF, Weickert C, Chen C, Liu C. Neuroimmune transcriptome changes in patient brains of psychiatric and neurological disorders. Mol Psychiatry 2023; 28:710-721. [PMID: 36424395 PMCID: PMC9911365 DOI: 10.1038/s41380-022-01854-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
Neuroinflammation has been implicated in multiple brain disorders but the extent and the magnitude of change in immune-related genes (IRGs) across distinct brain disorders has not been directly compared. In this study, 1275 IRGs were curated and their expression changes investigated in 2467 postmortem brains of controls and patients with six major brain disorders, including schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD). There were 865 IRGs present across all microarray and RNA-seq datasets. More than 60% of the IRGs had significantly altered expression in at least one of the six disorders. The differentially expressed immune-related genes (dIRGs) shared across disorders were mainly related to innate immunity. Moreover, sex, tissue, and putative cell type were systematically evaluated for immune alterations in different neuropsychiatric disorders. Co-expression networks revealed that transcripts of the neuroimmune systems interacted with neuronal-systems, both of which contribute to the pathology of brain disorders. However, only a few genes with expression changes were also identified as containing risk variants in genome-wide association studies. The transcriptome alterations at gene and network levels may clarify the immune-related pathophysiology and help to better define neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiacheng Dai
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Longfei Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tatiana Mikhailova
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Qiuman Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Richard F Kopp
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Cynthia Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
- School of Psychiatry, UNSW, Sydney, NSW, Australia
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
76
|
Runge K, Fiebich BL, Kuzior H, Rausch J, Maier SJ, Dersch R, Nickel K, Domschke K, Tebartz van Elst L, Endres D. Altered cytokine levels in the cerebrospinal fluid of adult patients with autism spectrum disorder. J Psychiatr Res 2023; 158:134-142. [PMID: 36584491 DOI: 10.1016/j.jpsychires.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite intensive research, the etiological causes of autism spectrum disorder (ASD) remain elusive. Immunological mechanisms have recently been studied more frequently in the context of maternal autoantibodies and infections, as well as altered cytokine profiles. For the detection of immunological processes in the central nervous system, analyses of cerebrospinal fluid (CSF) are advantageous due to its proximity to the brain. However, cytokine studies in the CSF of ASD patients are sparse. METHODS CSF was collected from a patient sample of 24 adults (m = 16, f = 8, age: 30.3 ± 11.6 years) with ASD and compared to a previously published mentally healthy control sample of 39 neurological patients with idiopathic intracranial hypertension. A magnetic bead multiplexing immunoassay was used to measure multiple cytokines in CSF. RESULTS Significantly decreased interferon-γ-induced protein-10 (p = 0.001) and monocyte chemoattractant protein-1 (p = 0.041) levels as well as significantly higher interleukin-8 levels (p = 0.041) were detected in patients with ASD compared with the control group. CONCLUSION The main finding of this study is an altered cytokine profile in adult patients with ASD compared to the control group. This may indicate immune dysregulation in a subgroup of adult ASD patients. Further studies in larger cohorts that examine a broader spectrum of chemokines and cytokines in general are needed to detect possible specific immune signatures in ASD.
Collapse
Affiliation(s)
- Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hanna Kuzior
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jördis Rausch
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon J Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
77
|
Li H, Xu Y, Li W, Zhang L, Zhang X, Li B, Chen Y, Wang X, Zhu C. Novel insights into the immune cell landscape and gene signatures in autism spectrum disorder by bioinformatics and clinical analysis. Front Immunol 2023; 13:1082950. [PMID: 36761165 PMCID: PMC9905846 DOI: 10.3389/fimmu.2022.1082950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
The pathogenesis of autism spectrum disorder (ASD) is not well understood, especially in terms of immunity and inflammation, and there are currently no early diagnostic or treatment methods. In this study, we obtained six existing Gene Expression Omnibus transcriptome datasets from the blood of ASD patients. We performed functional enrichment analysis, PPI analysis, CIBERSORT algorithm, and Spearman correlation analysis, with a focus on expression profiling in hub genes and immune cells. We validated that monocytes and nonclassical monocytes were upregulated in the ASD group using peripheral blood (30 children with ASD and 30 age and sex-matched typically developing children) using flow cytometry. The receiver operating characteristic curves (PSMC4 and ALAS2) and analysis stratified by ASD severity (LIlRB1 and CD69) showed that they had predictive value using the "training" and verification groups. Three immune cell types - monocytes, M2 macrophages, and activated dendritic cells - had different degrees of correlation with 15 identified hub genes. In addition, we analyzed the miRNA-mRNA network and agents-gene interactions using miRNA databases (starBase and miRDB) and the DSigDB database. Two miRNAs (miR-342-3p and miR-1321) and 23 agents were linked with ASD. These findings suggest that dysregulation of the immune system may contribute to ASD development, especially dysregulation of monocytes and monocyte-derived cells. ASD-related hub genes may serve as potential predictors for ASD, and the potential ASD-related miRNAs and agents identified here may open up new strategies for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,National Health Council (NHC) Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiwen Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Changlian Zhu, ;;
| |
Collapse
|
78
|
Xie H, Liu S, Fu Y, Cheng Q, Wang P, Bi CL, Wang R, Chen MM, Fang M. Nuclear access of DNlg3 c-terminal fragment and its function in regulating innate immune response genes. Biochem Biophys Res Commun 2023; 641:93-101. [PMID: 36525929 DOI: 10.1016/j.bbrc.2022.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Neuroligins (NLGNs) are one of the autism susceptibility genes, however, the mechanism that how dysfunction of NLGNs leads to Autism remains unclear. More and more studies have shown that the transcriptome alteration may be one of the important factors to generate Autism. Therefore, we are very concerned about whether Neuroligins would affect transcriptional regulation, which may at last lead to Autism. As a single-transmembrane receptor, proteolytic cleavage is one of the most important posttranslational modifications of NLGN proteins. In this study, we demonstrated the existence of DNlg3 C-terminal fragment. Studies in the S2 cells and HEK293T cells showed the evidence for nuclear access of the DNlg3 C-terminal fragment. Then we identified the possible targets of DNlg3 C-terminal fragment after its nuclear access by RNA-seq. The bioinformatics analysis indicated the transcriptome alteration between dnlg3 null flies and wild type flies focused on genes for the innate immune responses. These results were consistent with the infection hypotheses for autism. Our study revealed the nuclear access ability of DNlg3 c-terminal fragment and its possible function in transcriptional regulation of the innate immune response genes. This work provides the new links between synaptic adhesion molecule NLGNs and immune activation, which may help us to get a deeper understanding on the relationship between NLGNs and Autism.
Collapse
Affiliation(s)
- Hao Xie
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China.
| | - Si Liu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Yiqiu Fu
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Qian Cheng
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Ping Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Cai-Li Bi
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Meng-Meng Chen
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China
| | - Ming Fang
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
79
|
Patel S, Keating BA, Dale RC. Anti-inflammatory properties of commonly used psychiatric drugs. Front Neurosci 2023; 16:1039379. [PMID: 36704001 PMCID: PMC9871790 DOI: 10.3389/fnins.2022.1039379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Mental health and neurodevelopmental disorders are extremely common across the lifespan and are characterized by a complicated range of symptoms that affect wellbeing. There are relatively few drugs available that target disease mechanisms for any of these disorders. Instead, therapeutics are focused on symptoms and syndromes, largely driven by neurotransmitter hypotheses, such as serotonin or dopamine hypotheses of depression. Emerging evidence suggests that maternal inflammation during pregnancy plays a key role in neurodevelopmental disorders, and inflammation can influence mental health expression across the lifespan. It is now recognized that commonly used psychiatric drugs (anti-depressants, anti-psychotics, and mood stabilizers) have anti-inflammatory properties. In this review, we bring together the human evidence regarding the anti-inflammatory mechanisms for these main classes of psychiatric drugs across a broad range of mental health disorders. All three classes of drugs showed evidence of decreasing levels of pro-inflammatory cytokines, particularly IL-6 and TNF-α, while increasing the levels of the anti-inflammatory cytokine, IL-10. Some studies also showed evidence of reduced inflammatory signaling via nuclear factor- (NF-)κB and signal transducer and activator of transcription (STAT) pathways. As researchers, clinicians, and patients become increasingly aware of the role of inflammation in brain health, it is reassuring that these psychiatric drugs may also abrogate this inflammation, in addition to their effects on neurotransmission. Further studies are required to determine whether inflammation is a driver of disease pathogenesis, and therefore should be a therapeutic target in future clinical trials.
Collapse
Affiliation(s)
- Shrujna Patel
- Faculty of Medicine and Health, Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Clinical School, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Brooke A. Keating
- Faculty of Medicine and Health, Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Russell C. Dale
- Faculty of Medicine and Health, Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Clinical School, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia,*Correspondence: Russell C. Dale ✉
| |
Collapse
|
80
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
81
|
Ballaz S, Bourin M. Anti-Inflammatory Therapy as a Promising Target in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:459-486. [PMID: 36949322 DOI: 10.1007/978-981-19-7376-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This chapter analyzes the therapeutic potential of current anti-inflammatory drugs in treating psychiatric diseases from a neuro-immunological perspective. Based on the bidirectional brain-immune system relationship, the rationale is that a dysregulated inflammation contributes to the pathogenesis of psychiatric and neurological disorders, while the immunology function is associated with psychological variables like stress, affective disorders, and psychosis. Under certain social, psychological, and environmental conditions and biological factors, a healthy inflammatory response and the associated "sickness behavior," which are aimed to resolve a physical injury and microbial threat, become harmful to the central nervous system. The features and mechanisms of the inflammatory response are described across the main mental illnesses with a special emphasis on the profile of cytokines and the function of the HPA axis. Next, it is reviewed the potential clinical utility of immunotherapy (cytokine agonists and antagonists), glucocorticoids, unconventional anti-inflammatory agents (statins, minocycline, statins, and polyunsaturated fatty acids (PUFAs)), the nonsteroidal anti-inflammatory drugs (NSAIDs), and particularly celecoxib, a selective cyclooxygenase-2 (Cox-2) inhibitor, as adjuvants of conventional psychiatric medications. The implementation of anti-inflammatory therapies holds great promise in psychiatry. Because the inflammatory background may account for the etiology and/or progression of psychiatric disorders only in a subset of patients, there is a need to elucidate the immune underpinnings of the mental illness progression, relapse, and remission. The identification of immune-related bio-signatures will ideally assist in the stratification of the psychiatric patient to predict the risk of mental disease, the prognosis, and the response to anti-inflammatory therapy.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Science and Engineering, Yachay Tech University, Urcuquí, Ecuador
- Medical School, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Michel Bourin
- Neurobiology of Anxiety and Mood Disorders, University of Nantes, Nantes, France.
| |
Collapse
|
82
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
83
|
Billeci L, Callara AL, Guiducci L, Prosperi M, Morales MA, Calderoni S, Muratori F, Santocchi E. A randomized controlled trial into the effects of probiotics on electroencephalography in preschoolers with autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:117-132. [PMID: 35362336 PMCID: PMC9806478 DOI: 10.1177/13623613221082710] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
LAY ABSTRACT This study investigates the effects of a probiotic on preschoolers' brain electrical activity with autism spectrum disorder. Autism is a disorder with an increasing prevalence characterized by an enormous individual, family, and social cost. Although the etiology of autism spectrum disorder is unknown, an interaction between genetic and environmental factors is implicated, converging in altered brain synaptogenesis and, therefore, connectivity. Besides deepening the knowledge on the resting brain electrical activity that characterizes this disorder, this study allows analyzing the positive central effects of a 6-month therapy with a probiotic through a randomized, double-blind placebo-controlled study and the correlations between electroencephalography activity and biochemical and clinical parameters. In subjects treated with probiotics, we observed a decrease of power in frontopolar regions in beta and gamma bands, and increased coherence in the same bands together with a shift in frontal asymmetry, which suggests a modification toward a typical brain activity. Electroencephalography measures were significantly correlated with clinical and biochemical measures. These findings support the importance of further investigations on probiotics' benefits in autism spectrum disorder to better elucidate mechanistic links between probiotics supplementation and changes in brain activity.
Collapse
Affiliation(s)
- Lucia Billeci
- Institute of Clinical Physiology,
National Research Council, Pisa, Italy
| | | | - Letizia Guiducci
- Institute of Clinical Physiology,
National Research Council, Pisa, Italy
| | - Margherita Prosperi
- Department of Developmental
Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | | | - Sara Calderoni
- Department of Developmental
Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental
Medicine, University of Pisa, Pisa, Italy
| | - Filippo Muratori
- Department of Developmental
Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental
Medicine, University of Pisa, Pisa, Italy
| | - Elisa Santocchi
- UFSMIA zona Valle del Serchio, Azienda
USL Toscana Nord Ovest, Castelnuovo Garfagnana (LU), Italy
| |
Collapse
|
84
|
Qureshi F, Hahn J. Towards the Development of a Diagnostic Test for Autism Spectrum Disorder: Big Data Meets Metabolomics. CAN J CHEM ENG 2023; 101:9-17. [PMID: 36591338 PMCID: PMC9799131 DOI: 10.1002/cjce.24594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/06/2022] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorder (ASD) is defined as a neurodevelopmental disorder which results in impairments in social communications and interactions as well as repetitive behaviors. Despite current estimates showing that approximately 2.2% of children are affected in the United States, relatively little about ASD pathophysiology is known in part due to the highly heterogenous presentation of the disorder. Given the limited knowledge into the biological mechanisms governing its etiology, the diagnosis of ASD is performed exclusively based on an individual's behavior assessed by a clinician through psychometric tools. Although there is no readily available biochemical test for ASD diagnosis, multivariate statistical methods show considerable potential for effectively leveraging multiple biochemical measurements for classification and characterization purposes. In this work, markers associated with the folate dependent one-carbon metabolism and transulfuration (FOCM/TS) pathways analyzed via both Fisher Discriminant Analysis and Support Vector Machine showed strong capability to distinguish between ASD and TD cohorts. Furthermore, using Kernel Partial Least Squares regression it was possible to assess some degree of behavioral severity from metabolomic data. While the results presented need to be replicated in independent future studies, they represent a promising avenue for uncovering clinically relevant ASD biomarkers.
Collapse
Affiliation(s)
- Fatir Qureshi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY 12180
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY 12180
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY 12180
| |
Collapse
|
85
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
86
|
Mutovina A, Ayriyants K, Mezhlumyan E, Ryabushkina Y, Litvinova E, Bondar N, Khantakova J, Reshetnikov V. Unique Features of the Immune Response in BTBR Mice. Int J Mol Sci 2022; 23:15577. [PMID: 36555219 PMCID: PMC9779573 DOI: 10.3390/ijms232415577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation plays a considerable role in the pathogenesis of many diseases, including neurodegenerative and psychiatric ones. Elucidation of the specific features of an immune response in various model organisms, and studying the relation of these features with the behavioral phenotype, can improve the understanding of the molecular mechanisms of many psychopathologies. In this work, we focused on BTBR mice, which have a pronounced autism-like behavioral phenotype, elevated levels of oxidative-stress markers, an abnormal immune response, several structural aberrations in the brain, and other unique traits. Although some studies have already shown an abnormal immune response in BTBR mice, the existing literature data are still fragmentary. Here, we used inflammation induced by low-dose lipopolysaccharide, polyinosinic:polycytidylic acid, or their combinations, in mice of strains BTBR T+Itpr3tf/J (BTBR) and C57BL6/J. Peripheral inflammation was assessed by means of a complete blood count, lymphocyte immunophenotyping, and expression levels of cytokines in the spleen. Neuroinflammation was evaluated in the hypothalamus and prefrontal cortex by analysis of mRNA levels of proinflammatory cytokines (tumor necrosis factor, Tnf), (interleukin-1 beta, Il-1β), and (interleukin-6, Il-6) and of markers of microglia activation (allograft inflammatory factor 1, Aif1) and astroglia activation (glial fibrillary acidic protein, Gfap). We found that in both strains of mice, the most severe inflammatory response was caused by the administration of polyinosinic:polycytidylic acid, whereas the combined administration of the two toll-like receptor (TLR) agonists did not enhance this response. Nonetheless, BTBR mice showed a more pronounced response to low-dose lipopolysaccharide, an altered lymphocytosis ratio due to an increase in the number of CD4+ lymphocytes, and high expression of markers of activated microglia (Aif1) and astroglia (Gfap) in various brain regions as compared to C57BL6/J mice. Thus, in addition to research into mechanisms of autism-like behavior, BTBR mice can be used as a model of TLR3/TLR4-induced neuroinflammation and a unique model for finding and evaluating the effectiveness of various TLR antagonists aimed at reducing neuroinflammation.
Collapse
Affiliation(s)
- Anastasia Mutovina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Kseniya Ayriyants
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Eva Mezhlumyan
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Yulia Ryabushkina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Ekaterina Litvinova
- Physical Engineering Faculty, Novosibirsk State Technical University, Prospekt Karl Marx, 20, 630073 Novosibirsk, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Julia Khantakova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Vasiliy Reshetnikov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| |
Collapse
|
87
|
Artık A, Kocaman O, Kara H, Tuncer SÇ. Galectin-3 levels in school aged children with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2022; 69:757-761. [PMID: 37547549 PMCID: PMC10402832 DOI: 10.1080/20473869.2022.2150035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 08/08/2023]
Abstract
Objective: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with underlying pathogenesis and etiological factors not fully understood. We assumed that galectin-3, which is also linked with inflammatory responses, may be central to the ethiopathogenesis of ASD. Method: The current study consisted of 33 psychotropic medication-naive children with ASD and 32 control subjects. The Schedule for Affective Disorders and Schizophrenia for School-Aged Children, Present and Lifetime Version-DSM-5 (K-SADS-PL-DSM-5) was used to screen healthy controls for psychiatric disorders by a psychiatrist after a physical examination by a pediatrician. The clinical severity of the ASD symptoms has been assessed by the Childhood Autism Rating Scale (CARS). Venous blood samples were collected and serum galectin-3 levels were measured. Results: When the ASD and control groups are compared, the mean galectin-3 level is 417.77 (SD = 200.20) in the ASD group and 243.08 (SD = 64.65) in the control group, and there is a statistically significant difference between the groups (p < 0.001). When examining whether there is a correlation between galectin-3 levels and CARS total scores, no statistically significant correlation was found between them (r = 0.015, p = 0.933). Discussion: In this study, we examined whether serum galectin-3 levels have a relation with ASD in childhood or not. Our findings have indicated that the children with ASD have higher serum galectin-3 levels compared to the controls. However, no significant relationship has been found between serum galectin-3 levels and ASD symptom severity.
Collapse
Affiliation(s)
- Abdülbaki Artık
- Child and Adolescent Mental Health Department, Faculty of Medicine, Uşak University, Uşak, Turkey
| | - Orhan Kocaman
- Child and Adolescent Mental Health Department, Faculty of Medicine, Kütahya University, Kütahya, Turkey
| | - Halil Kara
- Child and Adolescent Mental Health Department, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Sibel Çiğdem Tuncer
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
88
|
Sun JJ, Chen B, Yu T. Construction of an immune-related ceRNA network to screen for potential diagnostic markers for autism spectrum disorder. Front Genet 2022; 13:1025813. [PMID: 36468003 PMCID: PMC9713698 DOI: 10.3389/fgene.2022.1025813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2023] Open
Abstract
Purpose: The diagnosis of autism spectrum disorder (ASD) is reliant on evaluation of patients' behavior. We screened the potential diagnostic and therapeutic targets of ASD through bioinformatics analysis. Methods: Four ASD-related datasets were downloaded from the Gene Expression Omnibus database. The "limma" package was employed to analyze differentially expressed messenger (m)RNAs, long non-coding (lnc)RNAs, and micro (mi)RNAs between ASD patients and healthy volunteers (HVs). We constructed a competing endogenous-RNA (ceRNA) network. Enrichment analyses of key genes were undertaken using the Gene Ontology database and Kyoto Encyclopedia of Genes and Genomes database. The ImmucellAI database was used to analyze differences in immune-cell infiltration (ICI) in ASD and HV samples. Synthetic analyses of the ceRNA network and ICI was done to obtain a diagnostic model using LASSO regression analysis. Analyses of receiver operating characteristic (ROC) curves were done for model verification. Results: The ceRNA network comprised 49 lncRNAs, 30 miRNAs, and 236 mRNAs. mRNAs were associated with 41 cellular components, 208 biological processes, 39 molecular functions, and 35 regulatory signaling pathways. Significant differences in the abundance of 10 immune-cell species between ASD patients and HVs were noted. Using the ceRNA network and ICI results, we constructed a diagnostic model comprising five immune cell-associated genes: adenosine triphosphate-binding cassette transporter A1 (ABCA1), DiGeorge syndrome critical region 2 (DGCR2), glucose-fructose oxidoreductase structural domain gene 1 (GFOD1), glutaredoxin (GLRX), and SEC16 homolog A (SEC16A). The diagnostic performance of our model was revealed by an area under the ROC curve of 0.923. Model verification was done using the validation dataset and serum samples of patients. Conclusion: ABCA1, DGCR2, GFOD1, GLRX, and SEC16A could be diagnostic biomarkers and therapeutic targets for ASD.
Collapse
Affiliation(s)
- Jing-Jing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Chen
- Disabled Service Center of Liaoning Province, Shenyang, Liaoning, China
| | - Tao Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
89
|
Artık A, Öztelcan Gündüz B, Mızrak S, Işık Ü. Increased serum levels of tumour necrosis factor-like weak inducer of apoptosis in children with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2022; 69:611-616. [PMID: 37346259 PMCID: PMC10281418 DOI: 10.1080/20473869.2022.2143033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/23/2023]
Abstract
Introduction: A previous study has evaluated the association between serum tumour necrosis factor-like weak apoptosis inducer (TWEAK) levels and autism spectrum disorder (ASD). In line with this investigation, the present study aimed to measure serum TWEAK levels to determine whether their eventual alteration might have etiopathogenetic significance in children with ASD. Methods: A total of 40 treatment-naive children with ASD and 40 healthy children as controls were included in the present study. The Schedule for Affective Disorders and Schizophrenia for School-Aged Children-Present and Lifetime Version, DSM-5 was used by a psychiatrist to screen the healthy controls for psychiatric disorders after a physical examination by a paediatrician. The clinical severity of the ASD symptoms was assessed by the Childhood Autism Rating Scale. Venous blood samples were collected, and serum TWEAK levels were measured. Results: This study included 80 children in total, with 40 (50.0%) in the patient group and 40 (50.0%) in the healthy control group. Thirty four (85.0%) of the participants in the patient group, and 31 (77.5%) in the healthy control group, were male, and the remainder were female. The distribution of the gender ratio was statistically similar between groups (p = 0.568). The volunteers were between 36 and 59 months old. The average age in the patient group was 46.0 ± 6.5, while that in the healthy control group was 45.2 ± 6.7. The ages were also statistically similar between groups (p = 0.615). The TWEAK values of the patient group were found to be statistically higher than those of the healthy control group (p < 0.001). Discussion: This study examined whether serum TWEAK levels were related to ASD in childhood. Our findings indicate that children with ASD have higher TWEAK levels when compared to other children. The findings further indicate that serum TWEAK levels could be related to ASD etiopathogenesis independent of ASD symptom severity.
Collapse
Affiliation(s)
- Abdülbaki Artık
- Faculty of Medicine, Child and Adolescent Mental Health Department, Uşak University, Ankara, Turkey
| | | | - Soycan Mızrak
- Faculty of Medicine, Department of Medical Biochemistry, Uşak University, Ankara, Turkey
| | - Ümit Işık
- Faculty of Medicine, Child and Adolescent Mental Health Department, Süleyman Demirel University, Ankara, Turkey
| |
Collapse
|
90
|
Brandenburg C, Griswold AJ, Van Booven DJ, Kilander MBC, Frei JA, Nestor MW, Dykxhoorn DM, Pericak-Vance MA, Blatt GJ. Transcriptomic analysis of isolated and pooled human postmortem cerebellar Purkinje cells in autism spectrum disorders. Front Genet 2022; 13:944837. [PMID: 36437953 PMCID: PMC9683032 DOI: 10.3389/fgene.2022.944837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2023] Open
Abstract
At present, the neuronal mechanisms underlying the diagnosis of autism spectrum disorder (ASD) have not been established. However, studies from human postmortem ASD brains have consistently revealed disruptions in cerebellar circuitry, specifically reductions in Purkinje cell (PC) number and size. Alterations in cerebellar circuitry would have important implications for information processing within the cerebellum and affect a wide range of human motor and non-motor behaviors. Laser capture microdissection was performed to obtain pure PC populations from a cohort of postmortem control and ASD cases and transcriptional profiles were compared. The 427 differentially expressed genes were enriched for gene ontology biological processes related to developmental organization/connectivity, extracellular matrix organization, calcium ion response, immune function and PC signaling alterations. Given the complexity of PCs and their far-ranging roles in response to sensory stimuli and motor function regulation, understanding transcriptional differences in this subset of cerebellar cells in ASD may inform on convergent pathways that impact neuronal function.
Collapse
Affiliation(s)
- Cheryl Brandenburg
- Hussman Institute for Autism, Baltimore, MD, United States
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Derek J. Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | | | | | | | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | | | - Gene J. Blatt
- Hussman Institute for Autism, Baltimore, MD, United States
| |
Collapse
|
91
|
Yang X, Li J, Zhou Y, Zhang N, Liu J. Effect of stigma maydis polysaccharide on the gut microbiota and transcriptome of VPA induced autism model rats. Front Microbiol 2022; 13:1009502. [PMID: 36406395 PMCID: PMC9672813 DOI: 10.3389/fmicb.2022.1009502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 07/27/2023] Open
Abstract
Stigma maydis polysaccharide (SMPS) is a plant polysaccharide that participates in immune regulation and gastrointestinal motility. Autism spectrum disorder (ASD) refers to a group of neurodevelopmental disorders, and ASD patients often present intestinal microflora imbalance problems; however, there is no effective treatment method. This study explores the effect of SMPS intervention on the gut microbiota in autism model rats as well as the potential action pathways. Female Wistar rats were intraperitoneally injected with sodium valproic acid (VPA) or normal saline at embryonic day 12.5 to establish an autism model or normal control in their offspring. The offspring prenatally exposed to VPA were randomly assigned to the VPA and the SMPS groups. The SMPS group was administered SMPS from E0.5 to postnatal day (PND) 21. We performed 16S rRNA and transcriptomics analyses to reveal the gut microbiota (GM) and differentially expressed genes in the autism model rats in response to SMPS intervention. SMPS intervention significantly improved the diversity and structure of the GM in autism model rats compared with the VPA rats. Moreover, the relative abundance of Prevotellaceae and Lachnospiraceae_NK4A136_group was increased after SMPS intervention. Transcriptome sequencing showed that 496 differentially expressed genes (DEGs) were identified after SMPS administration compared with the VPA group. Meanwhile, gene ontology (GO) enrichment analysis of DEGs was showed that the SMPS group had significant 653 GO terms. SMPS intervention had a major influence on oxidative phosphorylation, retrograde endocannabinoid signaling, thermogenesis, ribosome, protein digestion and absorption, renin-angiotensin system, calcium signaling pathway, glycosphingolipid biosynthesis-ganglio series, and propanoate metabolism pathways. Overall, this study suggests that SMPS interventions in early life may have an impact on gut microbiota, and then affect the transcriptomics levels of the hippocampal tissue in the VPA-induced autism model rats. It provides scientific evidence for the role of the microbe-gut-brain axis in ASD research.
Collapse
Affiliation(s)
- Xiaolei Yang
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Jiyuan Li
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Yang Zhou
- Department of Anorectal Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ning Zhang
- College of Pathology, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- Research Institute of Medical and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
92
|
Beopoulos A, Géa M, Fasano A, Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front Neurosci 2022; 16:988735. [PMID: 36408388 PMCID: PMC9671112 DOI: 10.3389/fnins.2022.988735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) involves alterations in neural connectivity affecting cortical network organization and excitation to inhibition ratio. It is characterized by an early increase in brain volume mediated by abnormal cortical overgrowth patterns and by increases in size, spine density, and neuron population in the amygdala and surrounding nuclei. Neuronal expansion is followed by a rapid decline from adolescence to middle age. Since no known neurobiological mechanism in human postnatal life is capable of generating large excesses of frontocortical neurons, this likely occurs due to a dysregulation of layer formation and layer-specific neuronal migration during key early stages of prenatal cerebral cortex development. This leads to the dysregulation of post-natal synaptic pruning and results in a huge variety of forms and degrees of signal-over-noise discrimination losses, accounting for ASD clinical heterogeneities, including autonomic nervous system abnormalities and comorbidities. We postulate that sudden changes in environmental conditions linked to serotonin/kynurenine supply to the developing fetus, throughout the critical GW7 - GW20 (Gestational Week) developmental window, are likely to promote ASD pathogenesis during fetal brain development. This appears to be driven by discrete alterations in differentiation and patterning mechanisms arising from in utero RNA editing, favoring vulnerability outcomes over plasticity outcomes. This paper attempts to provide a comprehensive model of the pathogenesis and progression of ASD neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
93
|
Ubah UDB, Triyasakorn K, Roan B, Conlin M, Lai JCK, Awale PS. Pan HDACi Valproic Acid and Trichostatin A Show Apparently Contrasting Inflammatory Responses in Cultured J774A.1 Macrophages. EPIGENOMES 2022; 6:epigenomes6040038. [PMID: 36412793 PMCID: PMC9680436 DOI: 10.3390/epigenomes6040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study was initiated as an attempt to clarify some of the apparent conflicting data regarding the so-called anti-inflammatory versus proinflammatory properties of histone deacetylase inhibitors (HDACis). In cell culture, typically, chronic pretreatment with the HDACi valproic acid (VPA) and trichostatin A (TSA) exhibits an anti-inflammatory effect. However, the effect of acute treatment with VPA and TSA on the levels of inflammatory cytokines in J774A.1 macrophage cell line is unknown. Therefore, this study investigated the effect of acute treatment with VPA and TSA on levels of key inflammatory cytokines in maximally stimulated J774A.1 cells. J774A.1 macrophages were treated with either VPA or TSA for 1 h (acute treatment), followed by maximal stimulation with LPS + IFNγ for 24 h. ELISA was used to measure the levels of proinflammatory cytokines TNFα, NO and IL-1β from the culture medium. Acute treatment with VPA showed a dose-dependent increase in levels of all three cytokines. Similar to VPA, TSA also showed a dose-dependent increase in levels of IL-1β alone. This study sheds new light on the conflicting data in the literature that may partly be explained by acute or short-term exposure versus chronic or long-term exposure to HDACi.
Collapse
Affiliation(s)
- Ubah Dominic Babah Ubah
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Korawin Triyasakorn
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Brandon Roan
- Division of Health Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Minsyusheen Conlin
- Department of Biological Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Prabha S. Awale
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
- Correspondence:
| |
Collapse
|
94
|
Grivas G, Frye RE, Hahn J. Maternal risk factors vary between subpopulations of children with autism spectrum disorder. Autism Res 2022; 15:2038-2055. [PMID: 36065595 PMCID: PMC9637779 DOI: 10.1002/aur.2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
Previous work identified three subgroups of children with ASD based upon co-occurring conditions (COCs) diagnosed during the first 5 years of life. This work examines prenatal risk factors, given by maternal medical claims, for each of the three subgroups: children with a High-Prevalence of COCs, children with mainly developmental delay and seizures (DD/Seizure COCs), and children with a Low-Prevalence of COCs. While some risk factors are shared by all three subgroups, the majority of the factors identified for each subgroup were unique; infections, anti-inflammatory and other complex medications were associated with the High-Prevalence COCs group; immune deregulatory conditions such as asthma and joint disorders were associated with the DD/Seizure COCs group; and overall pregnancy complications were associated with the Low-Prevalence COCs group. Thus, we have found that the previously identified subgroups of children with ASD have distinct associated prenatal risk factors. As such, this work supports subgrouping children with ASD based upon COCs, which may provide a framework for elucidating some of the heterogeneity associated with ASD.
Collapse
Affiliation(s)
- Genevieve Grivas
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- OptumLabs Visiting Fellow, OptumsLabs, Eden Prairie, Minnesota 55344, United States
| | - Richard E. Frye
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona 85004, United States
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, Arizona 85016, United States
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
95
|
Abstract
Despite decades of investigation into the genetics of autism spectrum disorder (ASD), a current consensus in the field persists that ASD risk is too heterogeneous to be diagnosed by a single set of genetic variants. As such, ASD research has broadened to include assessment of other molecular biomarkers implicated in the condition that may be reflective of environmental exposures or gene by environment interactions. Epigenetic variance, and specifically differential DNA methylation, have emerged as areas of particularly high interest to ASD, as the epigenetic markers from specific chromatin loci collectively can reflect influences of multiple genetic and environmental factors and can also result in differential gene expression patterns. This review examines recent studies of the ASD epigenome, detailing common gene pathways found to be differentially methylated in people with ASD, and considers how these discoveries may inform our understanding of ASD etiology. We also consider future applications of epigenetics in ASD research and clinical practice, focusing on substratification, biomarker development, and experimental preclinical models of ASD that test causality. In combination with other -omics approaches, epigenomics allows an improved conceptualization of the multifactorial nature of ASD, and opens future lines of inquiry for both basic research and clinical practice.
Collapse
Affiliation(s)
- Logan A Williams
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California Davis, Davis, CA, USA.
- Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
96
|
The role of maternal immune activation in the immunological and neurological pathogenesis of autism. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
97
|
Brister D, Rose S, Delhey L, Tippett M, Jin Y, Gu H, Frye RE. Metabolomic Signatures of Autism Spectrum Disorder. J Pers Med 2022; 12:1727. [PMID: 36294866 PMCID: PMC9604590 DOI: 10.3390/jpm12101727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is associated with many variations in metabolism, but the ex-act correlates of these metabolic disturbances with behavior and development and their links to other core metabolic disruptions are understudied. In this study, large-scale targeted LC-MS/MS metabolomic analysis was conducted on fasting morning plasma samples from 57 children with ASD (29 with neurodevelopmental regression, NDR) and 37 healthy controls of similar age and gender. Linear model determined the metabolic signatures of ASD with and without NDR, measures of behavior and neurodevelopment, as well as markers of oxidative stress, inflammation, redox, methylation, and mitochondrial metabolism. MetaboAnalyst ver 5.0 (the Wishart Research Group at the University of Alberta, Edmonton, Canada) identified the pathways associated with altered metabolic signatures. Differences in histidine and glutathione metabolism as well as aromatic amino acid (AAA) biosynthesis differentiated ASD from controls. NDR was associated with disruption in nicotinamide and energy metabolism. Sleep and neurodevelopment were associated with energy metabolism while neurodevelopment was also associated with purine metabolism and aminoacyl-tRNA biosynthesis. While behavior was as-sociated with some of the same pathways as neurodevelopment, it was also associated with alternations in neurotransmitter metabolism. Alterations in methylation was associated with aminoacyl-tRNA biosynthesis and branched chain amino acid (BCAA) and nicotinamide metabolism. Alterations in glutathione metabolism was associated with changes in glycine, serine and threonine, BCAA and AAA metabolism. Markers of oxidative stress and inflammation were as-sociated with energy metabolism and aminoacyl-tRNA biosynthesis. Alterations in mitochondrial metabolism was associated with alterations in energy metabolism and L-glutamine. Using behavioral and biochemical markers, this study finds convergent disturbances in specific metabolic pathways with ASD, particularly changes in energy, nicotinamide, neurotransmitters, and BCAA, as well as aminoacyl-tRNA biosynthesis.
Collapse
Affiliation(s)
- Danielle Brister
- College of Liberal Arts and Sciences, School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Shannon Rose
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Leanna Delhey
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Marie Tippett
- Arkansas Children’s Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | | |
Collapse
|
98
|
Lynall ME, Soskic B, Hayhurst J, Schwartzentruber J, Levey DF, Pathak GA, Polimanti R, Gelernter J, Stein MB, Trynka G, Clatworthy MR, Bullmore E. Genetic variants associated with psychiatric disorders are enriched at epigenetically active sites in lymphoid cells. Nat Commun 2022; 13:6102. [PMID: 36243721 PMCID: PMC9569335 DOI: 10.1038/s41467-022-33885-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/06/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple psychiatric disorders have been associated with abnormalities in both the innate and adaptive immune systems. The role of these abnormalities in pathogenesis, and whether they are driven by psychiatric risk variants, remains unclear. We test for enrichment of GWAS variants associated with multiple psychiatric disorders (cross-disorder or trans-diagnostic risk), or 5 specific disorders (cis-diagnostic risk), in regulatory elements in immune cells. We use three independent epigenetic datasets representing multiple organ systems and immune cell subsets. Trans-diagnostic and cis-diagnostic risk variants (for schizophrenia and depression) are enriched at epigenetically active sites in brain tissues and in lymphoid cells, especially stimulated CD4+ T cells. There is no evidence for enrichment of either trans-risk or cis-risk variants for schizophrenia or depression in myeloid cells. This suggests a possible model where environmental stimuli activate T cells to unmask the effects of psychiatric risk variants, contributing to the pathogenesis of mental health disorders.
Collapse
Affiliation(s)
- Mary-Ellen Lynall
- Department of Psychiatry, Herchel Smith Building of Brain & Mind Sciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0SZ, UK.
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK.
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK.
| | - Blagoje Soskic
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- Human Technopole, Milan, Italy
| | | | | | - Daniel F Levey
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Gita A Pathak
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Renato Polimanti
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Joel Gelernter
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Murray B Stein
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Ed Bullmore
- Department of Psychiatry, Herchel Smith Building of Brain & Mind Sciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0SZ, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
99
|
Guo M, Li R, Wang Y, Ma S, Zhang Y, Li S, Zhang H, Liu Z, You C, Zheng H. Lactobacillus plantarum ST-III modulates abnormal behavior and gut microbiota in a mouse model of autism spectrum disorder. Physiol Behav 2022; 257:113965. [PMID: 36126693 DOI: 10.1016/j.physbeh.2022.113965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Probiotic treatment might improve autism spectrum disorder (ASD) behavior. In this study, we investigated the improvement effects of Lactobacillus plantarum ST-III on a mouse model of ASD, which was constructed using triclosan. After two weeks of L. plantarum ST-III oral feeding, autism-like social deficits in male mouse models were ameliorated. L. plantarum ST-III also attenuated the self-grooming and freezing times of female mice. High-throughput sequencing revealed changes in the gut microbiota after L. plantarum ST-III intervention. In the female probiotic group, the abundance of beneficial Lachnospiraceae bacteria increased, whereas that of harmful Alistipes bacteria decreased. Correlation analysis showed that amelioration of abnormal behavior in a mouse model of ASD was related to the involvement of certain metabolic pathways. A reduction in the abundance of Alistipes was involved in stereotyped behavioral improvement. Thus, oral supplementation with L. plantarum ST-III can help improve social behavior in a male mouse model of ASD and contribute to more balanced intestinal homeostasis.
Collapse
Affiliation(s)
- Min Guo
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xietu Road, Shanghai, China
| | - Ruiying Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies, 250 Bibo Road, Shanghai, China
| | - Shiyu Ma
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xietu Road, Shanghai, China
| | - Yilin Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Sheng Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xietu Road, Shanghai, China
| | - Hongfa Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China.
| | - Huajun Zheng
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xietu Road, Shanghai, China.
| |
Collapse
|
100
|
Bilgen Ulgar Ş, Ayaydın H, Çelik H, Koyuncu İ, Kirmit A. Evaluation of antineuronal antibodies and 8-OHdG in mothers of children with autism spectrum disorder: a case-control study. Int J Psychiatry Clin Pract 2022; 26:244-250. [PMID: 34689686 DOI: 10.1080/13651501.2021.1993925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of our study was to investigated the anti-Yo, anti-Hu, anti-Ri, anti-amphiphysin antibody levels and 8-OHdG in mothers of children with autism. METHODS This study included 60 participants, 33 of whom were healthy mothers of 3-12-year-old children diagnosed with autism spectrum disorder (ASD) and the 27 others who constituted the control group, were healthy mothers with age-matched healthy children. Two groups were examined for plasma anti-Yo, anti-Hu, anti-amphiphysin and anti-Ri antibodies and, 8-OHdG levels. The participants were asked to accomplish a sociodemographic data form. The severity of ASD symptoms was evaluated according to the Childhood Autism Rating Scale (CARS). RESULTS Anti-amphiphysin antibody levels and anti-Ri antibody positivity were significantly higher in the case group (p = 0.001; p = 0.027, respectively). The two groups did not significantly differ in terms of anti-Yo and anti-Hu antibody levels and in terms of 8-OHdG levels (p = 0.065; p = 0.099; p = 0.490, respectively). The two groups did not significantly differ in terms of sociodemographic data (p > 0.05). CONCLUSIONS According to the our study, maternal antineuronal antibodies, such as anti-amphiphysin and anti-Ri, may contribute to the risk of childhood autism. Studies with larger samples are needed.KEY POINTSMaternal factors associated with autism should be investigated in order to create early diagnosis and treatment opportunities for autism.Based on the importance of immunological and cerebellar pathologies in autism aetiology, we aimed to investigate antineuronal antibodies in mothers of children with autism.Maternal antineuronal antibodies, such as anti-amphiphysin and anti-Ri, may contribute to the risk of childhood autism.High anti-amphiphysin antibody levels in mothers of children with autism may also occur against the amphiphysin in the structure of the SrGAP3 gene, which is associated with autism.
Collapse
Affiliation(s)
- Şermin Bilgen Ulgar
- Department of Child and Adolescent Psychiatry, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hamza Ayaydın
- Department of Child and Adolescent Psychiatry, School of Medicine, Harran University, Şanlıurfa, Turkey
| | - Hakim Çelik
- Department of Physiology, School of Medicine, Harran University, Şanlıurfa, Turkey
| | - İsmail Koyuncu
- Department of Biochemistry, School of Medicine, Harran University, Şanlıurfa, Turkey
| | - Adnan Kirmit
- Department of Biochemistry, School of Medicine, Harran University, Şanlıurfa, Turkey
| |
Collapse
|