51
|
Bobis-Wozowicz S, Paw M, Sarna M, Kędracka-Krok S, Nit K, Błażowska N, Dobosz A, Hammad R, Cathomen T, Zuba-Surma E, Tyszka-Czochara M, Madeja Z. Hypoxic extracellular vesicles from hiPSCs protect cardiomyocytes from oxidative damage by transferring antioxidant proteins and enhancing Akt/Erk/NRF2 signaling. Cell Commun Signal 2024; 22:356. [PMID: 38982464 PMCID: PMC11232324 DOI: 10.1186/s12964-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Stem cell-derived extracellular vesicles (EVs) are an emerging class of therapeutics with excellent biocompatibility, bioactivity and pro-regenerative capacity. One of the potential targets for EV-based medicines are cardiovascular diseases (CVD). In this work we used EVs derived from human induced pluripotent stem cells (hiPSCs; hiPS-EVs) cultured under different oxygen concentrations (21, 5 and 3% O2) to dissect the molecular mechanisms responsible for cardioprotection. METHODS EVs were isolated by ultrafiltration combined with size exclusion chromatography (UF + SEC), followed by characterization by nanoparticle tracking analysis, atomic force microscopy (AFM) and Western blot methods. Liquid chromatography and tandem mass spectrometry coupled with bioinformatic analyses were used to identify differentially enriched proteins in various oxygen conditions. We directly compared the cardioprotective effects of these EVs in an oxygen-glucose deprivation/reoxygenation (OGD/R) model of cardiomyocyte (CM) injury. Using advanced molecular biology, fluorescence microscopy, atomic force spectroscopy and bioinformatics techniques, we investigated intracellular signaling pathways involved in the regulation of cell survival, apoptosis and antioxidant response. The direct effect of EVs on NRF2-regulated signaling was evaluated in CMs following NRF2 inhibition with ML385. RESULTS We demonstrate that hiPS-EVs derived from physiological hypoxia at 5% O2 (EV-H5) exert enhanced cytoprotective function towards damaged CMs compared to EVs derived from other tested oxygen conditions (normoxia; EV-N and hypoxia 3% O2; EV-H3). This resulted from higher phosphorylation rates of Akt kinase in the recipient cells after transfer, modulation of AMPK activity and reduced apoptosis. Furthermore, we provide direct evidence for improved calcium signaling and sustained contractility in CMs treated with EV-H5 using AFM measurements. Mechanistically, our mass spectrometry and bioinformatics analyses revealed differentially enriched proteins in EV-H5 associated with the antioxidant pathway regulated by NRF2. In this regard, EV-H5 increased the nuclear translocation of NRF2 protein and enhanced its transcription in CMs upon OGD/R. In contrast, inhibition of NRF2 with ML385 abolished the protective effect of EVs on CMs. CONCLUSIONS In this work, we demonstrate a superior cardioprotective function of EV-H5 compared to EV-N and EV-H3. Such EVs were most effective in restoring redox balance in stressed CMs, preserving their contractile function and preventing cell death. Our data support the potential use of hiPS-EVs derived from physiological hypoxia, as cell-free therapeutics with regenerative properties for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Sylwia Bobis-Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland.
| | - Milena Paw
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Michał Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Sylwia Kędracka-Krok
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Krakow, Poland
| | - Kinga Nit
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Natalia Błażowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Anna Dobosz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Ruba Hammad
- Freiburg iPS Core Facility, Institute for Transfusion Medicine and Gene Therapy, Medical Center- University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Freiburg iPS Core Facility, Institute for Transfusion Medicine and Gene Therapy, Medical Center- University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Ewa Zuba-Surma
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Tyszka-Czochara
- Faculty of Pharmacy, Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Kraków, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
52
|
Mori H, Xu D, Shimoda Y, Yuan Z, Murakata Y, Xi B, Sato K, Yamamoto M, Tajiri K, Ishizu T, Ieda M, Murakoshi N. Metabolic remodeling and calcium handling abnormality in induced pluripotent stem cell-derived cardiomyocytes in dilated phase of hypertrophic cardiomyopathy with MYBPC3 frameshift mutation. Sci Rep 2024; 14:15422. [PMID: 38965264 PMCID: PMC11224225 DOI: 10.1038/s41598-024-62530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disorder characterized by left ventricular hypertrophy and diastolic dysfunction, and increases the risk of arrhythmias and heart failure. Some patients with HCM develop a dilated phase of hypertrophic cardiomyopathy (D-HCM) and have poor prognosis; however, its pathogenesis is unclear and few pathological models exist. This study established disease-specific human induced pluripotent stem cells (iPSCs) from a patient with D-HCM harboring a mutation in MYBPC3 (c.1377delC), a common causative gene of HCM, and investigated the associated pathophysiological mechanisms using disease-specific iPSC-derived cardiomyocytes (iPSC-CMs). We confirmed the expression of pluripotent markers and the ability to differentiate into three germ layers in D-HCM patient-derived iPSCs (D-HCM iPSCs). D-HCM iPSC-CMs exhibited disrupted myocardial sarcomere structures and an increased number of damaged mitochondria. Ca2+ imaging showed increased abnormal Ca2+ signaling and prolonged decay time in D-HCM iPSC-CMs. Cell metabolic analysis revealed increased basal respiration, maximal respiration, and spare-respiratory capacity in D-HCM iPSC-CMs. RNA sequencing also showed an increased expression of mitochondrial electron transport system-related genes. D-HCM iPSC-CMs showed abnormal Ca2+ handling and hypermetabolic state, similar to that previously reported for HCM patient-derived iPSC-CMs. Although further studies are required, this is expected to be a useful pathological model for D-HCM.
Collapse
Affiliation(s)
- Haruka Mori
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
- Master's Program in Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Dongzhu Xu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuzuno Shimoda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Zixun Yuan
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiko Murakata
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Binyang Xi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kimi Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayoshi Yamamoto
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuko Tajiri
- Department of Cardiology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomoko Ishizu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
53
|
Velayutham N, Garbern JC, Elwell HLT, Zhuo Z, Rüland L, Elcure Alvarez F, Frontini S, Rodriguez Carreras Y, Eichholtz M, Ricci‐Blair E, Shaw JY, Bouffard AH, Sokol M, Mancheño Juncosa E, Rhoades S, van den Berg D, Kreymerman A, Aoyama J, Höfflin J, Ryan H, Ho Sui S, Lee RT. P53 Activation Promotes Maturational Characteristics of Pluripotent Stem Cell-Derived Cardiomyocytes in 3-Dimensional Suspension Culture Via FOXO-FOXM1 Regulation. J Am Heart Assoc 2024; 13:e033155. [PMID: 38934864 PMCID: PMC11255683 DOI: 10.1161/jaha.123.033155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 μM), LOM612 (FOXO relocator, 5 μM), AS1842856 (FOXO inhibitor, 1 μM), or RCM-1 (FOXM1 inhibitor, 1 μM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Department of CardiologyBoston Children’s HospitalBostonMAUSA
| | - Hannah L. T. Elwell
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Zhu Zhuo
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Laura Rüland
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Farid Elcure Alvarez
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Sara Frontini
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Yago Rodriguez Carreras
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Marie Eichholtz
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Elisabeth Ricci‐Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Jeanna Y. Shaw
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Aldric H. Bouffard
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Morgan Sokol
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Estela Mancheño Juncosa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | - Daphne van den Berg
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | - Junya Aoyama
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
| | | | | | - Shannan Ho Sui
- Bioinformatics Core, Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell InstituteHarvard UniversityCambridgeMAUSA
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
54
|
Wakatsuki T, Daily N, Hisada S, Nunomura K, Lin B, Zushida K, Honda Y, Asyama M, Takasuna K. Bayesian approach enabled objective comparison of multiple human iPSC-derived Cardiomyocytes' Proarrhythmia sensitivities. J Pharmacol Toxicol Methods 2024; 128:107531. [PMID: 38852688 DOI: 10.1016/j.vascn.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The one-size-fits-all approach has been the mainstream in medicine, and the well-defined standards support the development of safe and effective therapies for many years. Advancing technologies, however, enabled precision medicine to treat a targeted patient population (e.g., HER2+ cancer). In safety pharmacology, computational population modeling has been successfully applied in virtual clinical trials to predict drug-induced proarrhythmia risks against a wide range of pseudo cohorts. In the meantime, population modeling in safety pharmacology experiments has been challenging. Here, we used five commercially available human iPSC-derived cardiomyocytes growing in 384-well plates and analyzed the effects of ten potential proarrhythmic compounds with four concentrations on their calcium transients (CaTs). All the cell lines exhibited an expected elongation or shortening of calcium transient duration with various degrees. Depending on compounds inhibiting several ion channels, such as hERG, peak and late sodium and L-type calcium or IKs channels, some of the cell lines exhibited irregular, discontinuous beating that was not predicted by computational simulations. To analyze the shapes of CaTs and irregularities of beat patterns comprehensively, we defined six parameters to characterize compound-induced CaT waveform changes, successfully visualizing the similarities and differences in compound-induced proarrhythmic sensitivities of different cell lines. We applied Bayesian statistics to predict sample populations based on experimental data to overcome the limited number of experimental replicates in high-throughput assays. This process facilitated the principal component analysis to classify compound-induced sensitivities of cell lines objectively. Finally, the association of sensitivities in compound-induced changes between phenotypic parameters and ion channel inhibitions measured using patch clamp recording was analyzed. Successful ranking of compound-induced sensitivity of cell lines was in lined with visual inspection of raw data.
Collapse
Affiliation(s)
- Tetsuro Wakatsuki
- Consortium for Safety Assessment Using Human iPS Cells (CSAHi), HEART Team, Tokyo, Japan; InvivoSciences, Inc., Madison, WI 53719, USA.
| | - Neil Daily
- InvivoSciences, Inc., Madison, WI 53719, USA
| | - Sunao Hisada
- Consortium for Safety Assessment Using Human iPS Cells (CSAHi), HEART Team, Tokyo, Japan; Hamamatsu Photonics, K.K. Systems Division, Shizuoka 431-3196, Japan
| | - Kazuto Nunomura
- Consortium for Safety Assessment Using Human iPS Cells (CSAHi), HEART Team, Tokyo, Japan; Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Osaka 565-0871, Japan
| | - Bangzhong Lin
- Consortium for Safety Assessment Using Human iPS Cells (CSAHi), HEART Team, Tokyo, Japan; Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, Osaka 565-0871, Japan
| | - Ko Zushida
- Consortium for Safety Assessment Using Human iPS Cells (CSAHi), HEART Team, Tokyo, Japan; FUJIFILM Wako Pure Chemical Corporation, Osaka 540-8605, Japan
| | - Yayoi Honda
- Consortium for Safety Assessment Using Human iPS Cells (CSAHi), HEART Team, Tokyo, Japan; Sumika Chemical Analysis Service, Ltd. (SCAS), Osaka 554-0022, Japan
| | - Mahoko Asyama
- Consortium for Safety Assessment Using Human iPS Cells (CSAHi), HEART Team, Tokyo, Japan; Mitsubishi Tanabe Pharma Corporation, Kanagawa 251-8555, Japan
| | - Kiyoshi Takasuna
- Consortium for Safety Assessment Using Human iPS Cells (CSAHi), HEART Team, Tokyo, Japan; Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan; Axcelead Drug Discovery Partners, Inc., Kanagawa 251-0012, Japan
| |
Collapse
|
55
|
Kriedemann N, Triebert W, Teske J, Mertens M, Franke A, Ullmann K, Manstein F, Drakhlis L, Haase A, Halloin C, Martin U, Zweigerdt R. Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks. Nat Protoc 2024; 19:1911-1939. [PMID: 38548938 DOI: 10.1038/s41596-024-00976-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 07/10/2024]
Abstract
A promising cell-therapy approach for heart failure aims at differentiating human pluripotent stem cells (hPSCs) into functional cardiomyocytes (CMs) in vitro to replace the disease-induced loss of patients' heart muscle cells in vivo. But many challenges remain for the routine clinical application of hPSC-derived CMs (hPSC-CMs), including good manufacturing practice (GMP)-compliant production strategies. This protocol describes the efficient generation of hPSC-CM aggregates in suspension culture, emphasizing process simplicity, robustness and GMP compliance. The strategy promotes clinical translation and other applications that require large numbers of CMs. Using a simple spinner-flask platform, this protocol is applicable to a broad range of users with general experience in handling hPSCs without extensive know-how in biotechnology. hPSCs are expanded in monolayer to generate the required cell numbers for process inoculation in suspension culture, followed by stirring-controlled formation of cell-only aggregates at a 300-ml scale. After 48 h at checkpoint (CP) 0, chemically defined cardiac differentiation is induced by WNT-pathway modulation through use of the glycogen-synthase kinase-3 inhibitor CHIR99021 (WNT agonist), which is replaced 24 h later by the chemical WNT-pathway inhibitor IWP-2. The exact application of the described process parameters is important to ensure process efficiency and robustness. After 10 d of differentiation (CP I), the production of ≥100 × 106 CMs is expected. Moreover, to 'uncouple' cell production from downstream applications, continuous maintenance of CM aggregates for up to 35 d in culture (CP II) is demonstrated without a reduction in CM content, supporting downstream logistics while potentially overcoming the requirement for cryopreservation.
Collapse
Affiliation(s)
- Nils Kriedemann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| | - Wiebke Triebert
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Jana Teske
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Mira Mertens
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Annika Franke
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Kevin Ullmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Felix Manstein
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Lika Drakhlis
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Alexandra Haase
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Caroline Halloin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Department of Cell Therapy Process Technology, Novo Nordisk, Måløv, Denmark
| | - Ulrich Martin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
56
|
Yeh LH, Ivanov IE, Chandler T, Byrum JR, Chhun BB, Guo SM, Foltz C, Hashemi E, Perez-Bermejo JA, Wang H, Yu Y, Kazansky PG, Conklin BR, Han MH, Mehta SB. Permittivity tensor imaging: modular label-free imaging of 3D dry mass and 3D orientation at high resolution. Nat Methods 2024; 21:1257-1274. [PMID: 38890427 PMCID: PMC11239526 DOI: 10.1038/s41592-024-02291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/24/2024] [Indexed: 06/20/2024]
Abstract
The dry mass and the orientation of biomolecules can be imaged without a label by measuring their permittivity tensor (PT), which describes how biomolecules affect the phase and polarization of light. Three-dimensional (3D) imaging of PT has been challenging. We present a label-free computational microscopy technique, PT imaging (PTI), for the 3D measurement of PT. PTI encodes the invisible PT into images using oblique illumination, polarization-sensitive detection and volumetric sampling. PT is decoded from the data with a vectorial imaging model and a multi-channel inverse algorithm, assuming uniaxial symmetry in each voxel. We demonstrate high-resolution imaging of PT of isotropic beads, anisotropic glass targets, mouse brain tissue, infected cells and histology slides. PTI outperforms previous label-free imaging techniques such as vector tomography, ptychography and light-field imaging in resolving the 3D orientation and symmetry of organelles, cells and tissue. We provide open-source software and modular hardware to enable the adoption of the method.
Collapse
Affiliation(s)
- Li-Hao Yeh
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- ASML, San Jose, CA, USA
| | | | | | - Janie R Byrum
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- California's Stem Cell Agency, South San Francisco, CA, USA
| | - Bryant B Chhun
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Eikon Therapeutics, Hayward, CA, USA
| | - Syuan-Ming Guo
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Insitro, South San Francisco, CA, USA
| | - Cameron Foltz
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Quantinuum, Broomfield, CO, USA
| | | | - Juan A Perez-Bermejo
- Gladstone Institutes, San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | | | - Yanhao Yu
- University of Southampton, Southampton, UK
| | | | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA
- University of California San Francisco, San Francisco, CA, USA
| | - May H Han
- Stanford University, Palo Alto, CA, USA
| | | |
Collapse
|
57
|
Pardon G, Vander Roest AS, Chirikian O, Birnbaum F, Lewis H, Castillo EA, Wilson R, Denisin AK, Blair CA, Holbrook C, Koleckar K, Chang ACY, Blau HM, Pruitt BL. Tracking single hiPSC-derived cardiomyocyte contractile function using CONTRAX an efficient pipeline for traction force measurement. Nat Commun 2024; 15:5427. [PMID: 38926342 PMCID: PMC11208611 DOI: 10.1038/s41467-024-49755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are powerful in vitro models to study the mechanisms underlying cardiomyopathies and cardiotoxicity. Quantification of the contractile function in single hiPSC-CMs at high-throughput and over time is essential to disentangle how cellular mechanisms affect heart function. Here, we present CONTRAX, an open-access, versatile, and streamlined pipeline for quantitative tracking of the contractile dynamics of single hiPSC-CMs over time. Three software modules enable: parameter-based identification of single hiPSC-CMs; automated video acquisition of >200 cells/hour; and contractility measurements via traction force microscopy. We analyze >4,500 hiPSC-CMs over time in the same cells under orthogonal conditions of culture media and substrate stiffnesses; +/- drug treatment; +/- cardiac mutations. Using undirected clustering, we reveal converging maturation patterns, quantifiable drug response to Mavacamten and significant deficiencies in hiPSC-CMs with disease mutations. CONTRAX empowers researchers with a potent quantitative approach to develop cardiac therapies.
Collapse
Grants
- K99 HL153679 NHLBI NIH HHS
- RM1 GM131981 NIGMS NIH HHS
- 20POST35211011 American Heart Association (American Heart Association, Inc.)
- 17CSA33590101 American Heart Association (American Heart Association, Inc.)
- 18CDA34110411 American Heart Association (American Heart Association, Inc.)
- 1R21HL13099301 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 18POST34080160 American Heart Association (American Heart Association, Inc.)
- 1F31HL158227 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F31 HL158227 NHLBI NIH HHS
- 201411MFE-338745-169197 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- P2SKP2_164954 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 13POST14480004 American Heart Association (American Heart Association, Inc.)
- RM1GM131981 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 82070248 National Natural Science Foundation of China (National Science Foundation of China)
- P400PM_180825 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Shanghai Pujiang Program 19PJ1407000 Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning 0900000024 to A.C.Y.C. Innovative Research Team of High-Level Local Universities in Shanghai (A.C.Y.C.)
- the Baxter Foundation, Li Ka Shing Foundation and The Stanford Cardiovascular Institute
Collapse
Affiliation(s)
- Gaspard Pardon
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA
- School of Life Sciences, EPFL École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alison S Vander Roest
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Engineering, Michigan Engineering, University of Michigan Ann Arbor, MI, USA
| | - Orlando Chirikian
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Foster Birnbaum
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry Lewis
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Erica A Castillo
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Robin Wilson
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Aleksandra K Denisin
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
| | - Cheavar A Blair
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Colin Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kassie Koleckar
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex C Y Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Shanghai Institute of Precision Medicine and Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and of Bioengineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Bioengineering and Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
58
|
Williams T, Kuc R, Paterson A, Abraham G, Pullinger A, Maguire J, Sinha S, Greasley P, Ambery P, Davenport A. Co-localization of the sodium-glucose co-transporter-2 channel (SGLT-2) with endothelin ETA and ETB receptors in human cardiorenal tissue. Biosci Rep 2024; 44:BSR20240604. [PMID: 38747277 PMCID: PMC11147812 DOI: 10.1042/bsr20240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Endothelin (ET) receptor antagonists are being investigated in combination with sodium-glucose co-transporter-2 inhibitors (SGLT-2i). These drugs primarily inhibit the SGLT-2 transporter that, in humans, is thought to be mainly restricted to the renal proximal convoluted tubule, resulting in increased glucose excretion favouring improved glycaemic control and diuresis. This action reduces fluid retention with ET receptor antagonists. Studies have suggested SGLT-2 may also be expressed in cardiomyocytes of human heart. To understand the potential of combining the two classes of drugs, our aim was to compare the distribution of ET receptor sub-types in human kidney, with SGLT-2. Secondly, using the same experimental conditions, we determined if SGLT-2 expression could be detected in human heart and whether the transporter co-localised with ET receptors. METHODS Immunocytochemistry localised SGLT-2, ETA and ETB receptors in sections of histologically normal kidney, left ventricle from patients undergoing heart transplantation or controls. Primary antisera were visualised using fluorescent microscopy. Image analysis was used to measure intensity compared with background in adjacent control sections. RESULTS As expected, SGLT-2 localised to epithelial cells of the proximal convoluted tubules, and co-localised with both ET receptor sub-types. Similarly, ETA receptors predominated in cardiomyocytes; low (compared with kidney but above background) positive staining was also detected for SGLT-2. DISCUSSION Whether low levels of SGLT-2 have a (patho)physiological role in cardiomyocytes is not known but results suggest the effect of direct blockade of sodium (and glucose) influx via SGLT-2 inhibition in cardiomyocytes should be explored, with potential for additive effects with ETA antagonists.
Collapse
Affiliation(s)
- Thomas L. Williams
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge U.K
| | - Rhoda E. Kuc
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge U.K
| | - Anna L. Paterson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, U.K
| | - George R. Abraham
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge U.K
- Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K
| | - Anna L. Pullinger
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge U.K
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, U.K
| | - Janet J. Maguire
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge U.K
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, U.K
| | - Peter J. Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Philip Ambery
- Late-Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anthony P. Davenport
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge U.K
| |
Collapse
|
59
|
Stairley RA, Trouten AM, Li S, Roddy PL, DeLeon-Pennell KY, Lee KH, Sucov HM, Liu C, Tao G. Anti-Ferroptotic Treatment Deteriorates Myocardial Infarction by Inhibiting Angiogenesis and Altering Immune Response. Antioxidants (Basel) 2024; 13:769. [PMID: 39061839 PMCID: PMC11273385 DOI: 10.3390/antiox13070769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian cardiomyocytes have limited regenerative ability. Cardiac disease, such as congenital heart disease and myocardial infarction, causes an initial loss of cardiomyocytes through regulated cell death (RCD). Understanding the mechanisms that govern RCD in the injured myocardium is crucial for developing therapeutics to promote heart regeneration. We previously reported that ferroptosis, a non-apoptotic and iron-dependent form of RCD, is the main contributor to cardiomyocyte death in the injured heart. To investigate the mechanisms underlying the preference for ferroptosis in cardiomyocytes, we examined the effects of anti-ferroptotic reagents in infarcted mouse hearts. The results revealed that the anti-ferroptotic reagent did not improve neonatal heart regeneration, and further compromised the cardiac function of juvenile hearts. On the other hand, ferroptotic cardiomyocytes played a supportive role during wound healing by releasing pro-angiogenic factors. The inhibition of ferroptosis in the regenerating mouse heart altered the immune and angiogenic responses. Our study provides insights into the preference for ferroptosis over other types of RCD in stressed cardiomyocytes, and guidance for designing anti-cell-death therapies for treating heart disease.
Collapse
Affiliation(s)
- Rebecca A. Stairley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
| | - Allison M. Trouten
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
| | - Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Patrick L. Roddy
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
| | - Kristine Y. DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Kyu-Ho Lee
- Department of Medicine Digestive Disease Research Core Center, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Henry M. Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Chun Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
| |
Collapse
|
60
|
Wali R, Xu H, Cheruiyot C, Saleem HN, Janshoff A, Habeck M, Ebert A. Integrated machine learning and multimodal data fusion for patho-phenotypic feature recognition in iPSC models of dilated cardiomyopathy. Biol Chem 2024; 405:427-439. [PMID: 38651266 DOI: 10.1515/hsz-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish patho-phenotypic features at the subcellular level for dilated cardiomyopathy (DCM). We employed a human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of a DCM mutation in the sarcomere protein troponin T (TnT), TnT-R141W, compared to isogenic healthy (WT) control iPSC-CMs. We established a multimodal data fusion (MDF)-based analysis to integrate source datasets for Ca2+ transients, force measurements, and contractility recordings. Data were acquired for three additional layer types, single cells, cell monolayers, and 3D spheroid iPSC-CM models. For data analysis, numerical conversion as well as fusion of data from Ca2+ transients, force measurements, and contractility recordings, a non-negative blind deconvolution (NNBD)-based method was applied. Using an XGBoost algorithm, we found a high prediction accuracy for fused single cell, monolayer, and 3D spheroid iPSC-CM models (≥92 ± 0.08 %), as well as for fused Ca2+ transient, beating force, and contractility models (>96 ± 0.04 %). Integrating MDF and XGBoost provides a highly effective analysis tool for prediction of patho-phenotypic features in complex human disease models such as DCM iPSC-CMs.
Collapse
Affiliation(s)
- Ruheen Wali
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Hang Xu
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Cleophas Cheruiyot
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Hafiza Nosheen Saleem
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, Göttingen University, Tammannstraße 6, D-37077 Göttingen, Germany
| | - Michael Habeck
- Microscopic Image Analysis, 39065 Jena University Hospital , Kollegiengasse 10, D-07743 Jena, Germany
| | - Antje Ebert
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| |
Collapse
|
61
|
Pereira IT, Gomes-Júnior R, Hansel-Frose A, França RSV, Liu M, Soliman HAN, Chan SSK, Dudley SC, Kyba M, Dallagiovanna B. Cardiac Development Long Non-Coding RNA ( CARDEL) Is Activated during Human Heart Development and Contributes to Cardiac Specification and Homeostasis. Cells 2024; 13:1050. [PMID: 38920678 PMCID: PMC11201801 DOI: 10.3390/cells13121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Successful heart development depends on the careful orchestration of a network of transcription factors and signaling pathways. In recent years, in vitro cardiac differentiation using human pluripotent stem cells (hPSCs) has been used to uncover the intricate gene-network regulation involved in the proper formation and function of the human heart. Here, we searched for uncharacterized cardiac-development genes by combining a temporal evaluation of human cardiac specification in vitro with an analysis of gene expression in fetal and adult heart tissue. We discovered that CARDEL (CARdiac DEvelopment Long non-coding RNA; LINC00890; SERTM2) expression coincides with the commitment to the cardiac lineage. CARDEL knockout hPSCs differentiated poorly into cardiac cells, and hPSC-derived cardiomyocytes showed faster beating rates after controlled overexpression of CARDEL during differentiation. Altogether, we provide physiological and molecular evidence that CARDEL expression contributes to sculpting the cardiac program during cell-fate commitment.
Collapse
Affiliation(s)
- Isabela T. Pereira
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Rubens Gomes-Júnior
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Aruana Hansel-Frose
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Rhaíza S. V. França
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Man Liu
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (S.C.D.J.)
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
| | - Hossam A. N. Soliman
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sunny S. K. Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel C. Dudley
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (S.C.D.J.)
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| |
Collapse
|
62
|
Mensah IK, Gowher H. Signaling Pathways Governing Cardiomyocyte Differentiation. Genes (Basel) 2024; 15:798. [PMID: 38927734 PMCID: PMC11202427 DOI: 10.3390/genes15060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
63
|
Kowalczewski A, Sun S, Mai NY, Song Y, Hoang P, Liu X, Yang H, Ma Z. Design optimization of geometrically confined cardiac organoids enabled by machine learning techniques. CELL REPORTS METHODS 2024; 4:100798. [PMID: 38889687 PMCID: PMC11228370 DOI: 10.1016/j.crmeth.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Stem cell organoids are powerful models for studying organ development, disease modeling, drug screening, and regenerative medicine applications. The convergence of organoid technology, tissue engineering, and artificial intelligence (AI) could potentially enhance our understanding of the design principles for organoid engineering. In this study, we utilized micropatterning techniques to create a designer library of 230 cardiac organoids with 7 geometric designs. We employed manifold learning techniques to analyze single organoid heterogeneity based on 10 physiological parameters. We clustered and refined the cardiac organoids based on their functional similarity using unsupervised machine learning approaches, thus elucidating unique functionalities associated with geometric designs. We also highlighted the critical role of calcium transient rising time in distinguishing organoids based on geometric patterns and clustering results. This integration of organoid engineering and machine learning enhances our understanding of structure-function relationships in cardiac organoids, paving the way for more controlled and optimized organoid design.
Collapse
Affiliation(s)
- Andrew Kowalczewski
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shiyang Sun
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Nhu Y Mai
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Yuanhui Song
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Plansky Hoang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Xiyuan Liu
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
64
|
Xu W, Cao Y, Stephens SB, Arredondo MJ, Chen Y, Perez W, Sun L, Yu AC, Kim JJ, Lalani SR, Li N, Horrigan FT, Altamirano F, Wehrens XH, Miyake CY, Zhang L. Folate as a potential treatment for lethal ventricular arrhythmias in TANGO2-deficiency disorder. JCI Insight 2024; 9:e171005. [PMID: 38855866 PMCID: PMC11382877 DOI: 10.1172/jci.insight.171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
TANGO2-deficiency disorder (TDD) is an autosomal-recessive genetic disease caused by biallelic loss-of-function variants in the TANGO2 gene. TDD-associated cardiac arrhythmias are recalcitrant to standard antiarrhythmic medications and constitute the leading cause of death. Disease modeling for TDD has been primarily carried out using human dermal fibroblast and, more recently, in Drosophila by multiple research groups. No human cardiomyocyte system has been reported, which greatly hinders the investigation and understanding of TDD-associated arrhythmias. Here, we established potentially novel patient-derived induced pluripotent stem cell differentiated cardiomyocyte (iPSC-CM) models that recapitulate key electrophysiological abnormalities in TDD. These electrophysiological abnormalities were rescued in iPSC-CMs with either adenoviral expression of WT-TANGO2 or correction of the pathogenic variant using CRISPR editing. Our natural history study in patients with TDD suggests that the intake of multivitamin/B complex greatly diminished the risk of cardiac crises in patients with TDD. In agreement with the clinical findings, we demonstrated that high-dose folate (vitamin B9) virtually abolishes arrhythmias in TDD iPSC-CMs and that folate's effect was blocked by the dihydrofolate reductase inhibitor methotrexate, supporting the need for intracellular folate to mediate antiarrhythmic effects. In summary, data from TDD iPSC-CM models together with clinical observations support the use of B vitamins to mitigate cardiac crises in patients with TDD, providing potentially life-saving treatment strategies during life-threatening events.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yingqiong Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Sara B Stephens
- Department of Pediatrics, Division of Pediatric Cardiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Maria Jose Arredondo
- Department of Pediatrics, Division of Pediatric Cardiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Yifan Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - William Perez
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Liang Sun
- Department of Integrative Physiology
| | - Andy C Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jean J Kim
- Department of Molecular and Cellular Biology
- Human Stem Cell Core, Advanced Technology Cores
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), and
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | | | - Francisco Altamirano
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, Ithaca, New York, USA
| | - Xander Ht Wehrens
- Department of Integrative Physiology
- Department of Medicine (Section of Cardiovascular Research), and
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience
- Department of Pediatrics
- Center for Space Medicine, and
| | - Christina Y Miyake
- Department of Pediatrics, Division of Pediatric Cardiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
65
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
66
|
Iwoń Z, Krogulec E, Kierlańczyk A, Wojasiński M, Jastrzębska E. Hypoxia and re-oxygenation effects on human cardiomyocytes cultured on polycaprolactone and polyurethane nanofibrous mats. J Biol Eng 2024; 18:37. [PMID: 38844979 PMCID: PMC11157810 DOI: 10.1186/s13036-024-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Heart diseases are caused mainly by chronic oxygen insufficiency (hypoxia), leading to damage and apoptosis of cardiomyocytes. Research into the regeneration of a damaged human heart is limited due to the lack of cellular models that mimic damaged cardiac tissue. Based on the literature, nanofibrous mats affect the cardiomyocyte morphology and stimulate the growth and differentiation of cells cultured on them; therefore, nanofibrous materials can support the production of in vitro models that faithfully mimic the 3D structure of human cardiac tissue. Nanofibrous mats were used as scaffolds for adult primary human cardiomyocytes (HCM) and immature human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). This work focuses on understanding the effects of hypoxia and re-oxygenation on human cardiac cells cultured on polymer nanofibrous mats made of poly(ε-caprolactone) (PCL) and polyurethane (PU). The expression of selected genes and proteins in cardiomyocytes during hypoxia and re-oxygenation were evaluated. In addition, the type of cell death was analyzed. To the best of our knowledge, there are no studies on the effects of hypoxia on cardiomyocyte cells cultured on nanofibrous mats. The present study aimed to use nanofiber mats as scaffolds that structurally could mimic cardiac extracellular matrix. Understanding the impact of 3D structural properties in vitro cardiac models on different human cardiomyocytes is crucial for advancing cardiac tissue engineering and regenerative medicine. Observing how 3D scaffolds affect cardiomyocyte function under hypoxic conditions is necessary to understand the functioning of the entire human heart.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Aleksandra Kierlańczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
67
|
Iwoń Z, Krogulec E, Tarnowska I, Łopianiak I, Wojasiński M, Dobrzyń A, Jastrzębska E. Maturation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) on polycaprolactone and polyurethane nanofibrous mats. Sci Rep 2024; 14:12975. [PMID: 38839879 PMCID: PMC11153585 DOI: 10.1038/s41598-024-63905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Investigating the potential of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) in in vitro heart models is essential to develop cardiac regenerative medicine. iPSC-CMs are immature with a fetal-like phenotype relative to cardiomyocytes in vivo. Literature indicates methods for enhancing the structural maturity of iPSC-CMs. Among these strategies, nanofibrous scaffolds offer more accurate mimicry of the functioning of cardiac tissue structures in the human body. However, further research is needed on the use of nanofibrous mats to understand their effects on iPSC-CMs. Our research aimed to evaluate the suitability of poly(ε-caprolactone) (PCL) and polyurethane (PU) nanofibrous mats with different elasticities as materials for the maturation of iPSC-CMs. Analysis of cell morphology and orientation and the expression levels of selected genes and proteins were performed to determine the effect of the type of nanofibrous mats on the maturation of iPSC-CMs after long-term (10-day) culture. Understanding the impact of 3D structural properties in in vitro cardiac models on induced pluripotent stem cell-derived cardiomyocyte maturation is crucial for advancing cardiac tissue engineering and regenerative medicine because it can help optimize conditions for obtaining more mature and functional human cardiomyocytes.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Inez Tarnowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Iwona Łopianiak
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
68
|
Naito C, Kosar K, Kishimoto E, Pena L, Huang Y, Hao K, Bernieh A, Kasten J, Villa C, Kishnani P, Deeksha B, Gu M, Asai A. Induced pluripotent stem cell (iPSC) modeling validates reduced GBE1 enzyme activity due to a novel variant, p.Ile694Asn, found in a patient with suspected glycogen storage disease IV. Mol Genet Metab Rep 2024; 39:101069. [PMID: 38516405 PMCID: PMC10955421 DOI: 10.1016/j.ymgmr.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background Glycogen Storage disease type 4 (GSD4), a rare disease caused by glycogen branching enzyme 1 (GBE1) deficiency, affects multiple organ systems including the muscles, liver, heart, and central nervous system. Here we report a GSD4 patient, who presented with severe hepatosplenomegaly and cardiac ventricular hypertrophy. GBE1 sequencing identified two variants: a known pathogenic missense variant, c.1544G>A (p.Arg515His), and a missense variant of unknown significance (VUS), c.2081T>A (p. Ile694Asn). As a liver transplant alone can exacerbate heart dysfunction in GSD4 patients, a precise diagnosis is essential for liver transplant indication. To characterize the disease-causing variant, we modeled patient-specific GBE1 deficiency using CRISPR/Cas9 genome-edited induced pluripotent stem cells (iPSCs). Methods iPSCs from a healthy donor (iPSC-WT) were genome-edited by CRISPR/Cas9 to induce homozygous p.Ile694Asn in GBE1 (iPSC-GBE1-I694N) and differentiated into hepatocytes (iHep) or cardiomyocytes (iCM). GBE1 enzyme activity was measured, and PAS-D staining was performed to analyze polyglucosan deposition in these cells. Results iPSCGBE1-I694N differentiated into iHep and iCM exhibited reduced GBE1 protein level and enzyme activity in both cell types compared to iPSCwt. Both iHepGBE1-I694N and iCMGBE1-I694N showed polyglucosan deposits correlating to the histologic patterns of the patient's biopsies. Conclusions iPSC-based disease modeling supported a loss of function effect of p.Ile694Asn in GBE1. The modeling of GBE1 enzyme deficiency in iHep and iCM cell lines had multi-organ findings, demonstrating iPSC-based modeling usefulness in elucidating the effects of novel VUS in ultra-rare diseases.
Collapse
Affiliation(s)
- Chie Naito
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karis Kosar
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eriko Kishimoto
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Loren Pena
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yilun Huang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaili Hao
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anas Bernieh
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jennifer Kasten
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chet Villa
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Priya Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke Health, Durham, NC, USA
| | - Bali Deeksha
- Department of Pediatrics, Division of Medical Genetics, Duke Health, Durham, NC, USA
| | - Mingxia Gu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Akihiro Asai
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
69
|
Gokhan I, Blum TS, Campbell SG. Engineered heart tissue: Design considerations and the state of the art. BIOPHYSICS REVIEWS 2024; 5:021308. [PMID: 38912258 PMCID: PMC11192576 DOI: 10.1063/5.0202724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Originally developed more than 20 years ago, engineered heart tissue (EHT) has become an important tool in cardiovascular research for applications such as disease modeling and drug screening. Innovations in biomaterials, stem cell biology, and bioengineering, among other fields, have enabled EHT technologies to recapitulate many aspects of cardiac physiology and pathophysiology. While initial EHT designs were inspired by the isolated-trabecula culture system, current designs encompass a variety of formats, each of which have unique strengths and limitations. In this review, we describe the most common EHT formats, and then systematically evaluate each aspect of their design, emphasizing the rational selection of components for each application.
Collapse
Affiliation(s)
| | - Thomas S. Blum
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
70
|
Luo Y, Safabakhsh S, Palumbo A, Fiset C, Shen C, Parker J, Foster LJ, Laksman Z. Sex-Based Mechanisms of Cardiac Development and Function: Applications for Induced-Pluripotent Stem Cell Derived-Cardiomyocytes. Int J Mol Sci 2024; 25:5964. [PMID: 38892161 PMCID: PMC11172775 DOI: 10.3390/ijms25115964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Males and females exhibit intrinsic differences in the structure and function of the heart, while the prevalence and severity of cardiovascular disease vary in the two sexes. However, the mechanisms of this sex-based dimorphism are yet to be elucidated. Sex chromosomes and sex hormones are the main contributors to sex-based differences in cardiac physiology and pathophysiology. In recent years, the advances in induced pluripotent stem cell-derived cardiac models and multi-omic approaches have enabled a more comprehensive understanding of the sex-specific differences in the human heart. Here, we provide an overview of the roles of these two factors throughout cardiac development and explore the sex hormone signaling pathways involved. We will also discuss how the employment of stem cell-based cardiac models and single-cell RNA sequencing help us further investigate sex differences in healthy and diseased hearts.
Collapse
Affiliation(s)
- Yinhan Luo
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Sina Safabakhsh
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| | - Alessia Palumbo
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Céline Fiset
- Research Centre, Montreal Heart Institute, Faculty of Pharmacy, Université de Montréal, Montréal, QC H1T 1C8, Canada;
| | - Carol Shen
- Department of Integrated Sciences, University of British Columbia, Vancouver, BC V6T 1Z2, Canada;
| | - Jeremy Parker
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Leonard J. Foster
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Zachary Laksman
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| |
Collapse
|
71
|
Saleem HN, Ignatyeva N, Stuut C, Jakobs S, Habeck M, Ebert A. 3D Computational Modeling of Defective Early Endosome Distribution in Human iPSC-Based Cardiomyopathy Models. Cells 2024; 13:923. [PMID: 38891055 PMCID: PMC11171759 DOI: 10.3390/cells13110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios.
Collapse
Affiliation(s)
- Hafiza Nosheen Saleem
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| | - Nadezda Ignatyeva
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| | - Christiaan Stuut
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
- Clinic of Neurology, High Resolution Microscopy, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
- Clinic of Neurology, High Resolution Microscopy, University Medical Center Goettingen, 37075 Goettingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, 37075 Goettingen, Germany
| | - Michael Habeck
- Microscopic Image Analysis, 39065 Jena University Hospital, Kollegiengasse 10, 07743 Jena, Germany
| | - Antje Ebert
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
72
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024. [PMID: 38778747 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
73
|
Shi H, Li L, Mu S, Gou S, Liu X, Chen F, Chen M, Jin Q, Lai L, Wang K. Exonuclease editor promotes precision of gene editing in mammalian cells. BMC Biol 2024; 22:119. [PMID: 38769511 PMCID: PMC11107001 DOI: 10.1186/s12915-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Many efforts have been made to improve the precision of Cas9-mediated gene editing through increasing knock-in efficiency and decreasing byproducts, which proved to be challenging. RESULTS Here, we have developed a human exonuclease 1-based genome-editing tool, referred to as exonuclease editor. When compared to Cas9, the exonuclease editor gave rise to increased HDR efficiency, reduced NHEJ repair frequency, and significantly elevated HDR/indel ratio. Robust gene editing precision of exonuclease editor was even superior to the fusion of Cas9 with E1B or DN1S, two previously reported precision-enhancing domains. Notably, exonuclease editor inhibited NHEJ at double strand breaks locally rather than globally, reducing indel frequency without compromising genome integrity. The replacement of Cas9 with single-strand DNA break-creating Cas9 nickase further increased the HDR/indel ratio by 453-fold than the original Cas9. In addition, exonuclease editor resulted in high microhomology-mediated end joining efficiency, allowing accurate and flexible deletion of targeted sequences with extended lengths with the aid of paired sgRNAs. Exonuclease editor was further used for correction of DMD patient-derived induced pluripotent stem cells, where 30.0% of colonies were repaired by HDR versus 11.1% in the control. CONCLUSIONS Therefore, the exonuclease editor system provides a versatile and safe genome editing tool with high precision and holds promise for therapeutic gene correction.
Collapse
Affiliation(s)
- Hui Shi
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Lei Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangshuang Mu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
| | - Xiaoyi Liu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Menglong Chen
- Department of Neurology and Stroke Centre, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
74
|
Haideri T, Lin J, Bao X, Lian XL. MAGIK: A rapid and efficient method to create lineage-specific reporters in human pluripotent stem cells. Stem Cell Reports 2024; 19:744-757. [PMID: 38579711 PMCID: PMC11103783 DOI: 10.1016/j.stemcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Precise insertion of fluorescent proteins into lineage-specific genes in human pluripotent stem cells (hPSCs) presents challenges due to low knockin efficiency and difficulties in isolating targeted cells. To overcome these hurdles, we present the modified mRNA (ModRNA)-based Activation for Gene Insertion and Knockin (MAGIK) method. MAGIK operates in two steps: first, it uses a Cas9-2A-p53DD modRNA with a mini-donor plasmid (without a drug selection cassette) to significantly enhance efficiency. Second, a deactivated Cas9 activator modRNA and a 'dead' guide RNA are used to temporarily activate the targeted gene, allowing for live cell sorting of targeted cells. Consequently, MAGIK eliminates the need for drug selection cassettes or labor-intensive single-cell colony screening, expediting precise gene editing. We showed MAGIK can be utilized to insert fluorescent proteins into various genes, including SOX17, NKX6.1, NKX2.5, and PDX1, across multiple hPSC lines. This underscores its robust performance and offers a promising solution for achieving knockin in hPSCs within a significantly shortened time frame.
Collapse
Affiliation(s)
- Tahir Haideri
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Jirong Lin
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
75
|
McClain AK, Monteleone PP, Zoldan J. Sex in cardiovascular disease: Why this biological variable should be considered in in vitro models. SCIENCE ADVANCES 2024; 10:eadn3510. [PMID: 38728407 PMCID: PMC11086622 DOI: 10.1126/sciadv.adn3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Cardiovascular disease (CVD), the world's leading cause of death, exhibits notable epidemiological, clinical, and pathophysiological differences between sexes. Many such differences can be linked back to cardiovascular sexual dimorphism, yet sex-specific in vitro models are still not the norm. A lack of sex reporting and apparent male bias raises the question of whether in vitro CVD models faithfully recapitulate the biology of intended treatment recipients. To ensure equitable treatment for the overlooked female patient population, sex as a biological variable (SABV) inclusion must become commonplace in CVD preclinical research. Here, we discuss the role of sex in CVD and underlying cardiovascular (patho)physiology. We review shortcomings in current SABV practices, describe the relevance of sex, and highlight emerging strategies for SABV inclusion in three major in vitro model types: primary cell, stem cell, and three-dimensional models. Last, we identify key barriers to inclusive design and suggest techniques for overcoming them.
Collapse
Affiliation(s)
- Anna K. McClain
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78751, USA
| | - Peter P. Monteleone
- Ascension Texas Cardiovascular, Austin, TX 78705, USA
- Dell School of Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78751, USA
| |
Collapse
|
76
|
Deogharia M, Venegas-Zamora L, Agrawal A, Shi M, Jain AK, McHugh KJ, Altamirano F, Marian AJ, Gurha P. Histone demethylase KDM5 regulates cardiomyocyte maturation by promoting fatty acid oxidation, oxidative phosphorylation, and myofibrillar organization. Cardiovasc Res 2024; 120:630-643. [PMID: 38230606 PMCID: PMC11074792 DOI: 10.1093/cvr/cvae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
AIMS Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature foetal to an adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and oxidative phosphorylation (OXPHOS) among others. Lysine demethylase 5 (KDM5) specifically demethylates H3K4me1/2/3 and has emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function. The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS KDM5A, B, and C proteins were mainly expressed in the early post-natal stages, and their expressions were progressively downregulated in the post-natal CMs and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the cleavage under targets and release using nuclease assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased the expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSION KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.
Collapse
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, C950G, Houston, TX 77030, USA
| | - Leslye Venegas-Zamora
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, USA
| | - Akanksha Agrawal
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, USA
| | - Miusi Shi
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
- Department of Chemistry, Rice University, Houston, 6500 Main Street, Houston, TX 77030, USA
| | - Francisco Altamirano
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, Ithaca, NY, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, C950G, Houston, TX 77030, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, C950G, Houston, TX 77030, USA
| |
Collapse
|
77
|
Lu RXZ, Zhao Y, Radisic M. The emerging role of heart-on-a-chip systems in delineating mechanisms of SARS-CoV-2-induced cardiac dysfunction. Bioeng Transl Med 2024; 9:e10581. [PMID: 38818123 PMCID: PMC11135153 DOI: 10.1002/btm2.10581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 06/01/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a major global health concern since its emergence in 2019, with over 680 million confirmed cases as of April 2023. While COVID-19 has been strongly associated with the development of cardiovascular complications, the specific mechanisms by which viral infection induces myocardial dysfunction remain largely controversial as studies have shown that the severe acute respiratory syndrome coronavirus-2 can lead to heart failure both directly, by causing damage to the heart cells, and indirectly, by triggering an inflammatory response throughout the body. In this review, we summarize the current understanding of potential mechanisms that drive heart failure based on in vitro studies. We also discuss the significance of three-dimensional heart-on-a-chip technology in the context of the current and future pandemics.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Yimu Zhao
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Milica Radisic
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
- Terence Donnelly Centre for Cellular & Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
78
|
Desa DE, Amitrano MJ, Murphy WL, Skala MC. Optical redox imaging to screen synthetic hydrogels for stem cell-derived cardiomyocyte differentiation and maturation. BIOPHOTONICS DISCOVERY 2024; 1:015002. [PMID: 39036366 PMCID: PMC11258857 DOI: 10.1117/1.bios.1.1.015002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Significance Heart disease is the leading cause of death in the United States, yet research is limited by the inability to culture primary cardiac cells. Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) are a promising solution for drug screening and disease modeling. Aim Induced pluripotent stem cell-derived CM (iPSC-CM) differentiation and maturation studies typically use heterogeneous substrates for growth and destructive verification methods. Reproducible, tunable substrates and touch-free monitoring are needed to identify ideal conditions to produce homogenous, functional CMs. Approach We generated synthetic polyethylene glycol-based hydrogels for iPSC-CM differentiation and maturation. Peptide concentrations, combinations, and gel stiffness were tuned independently. Label-free optical redox imaging (ORI) was performed on a widefield microscope in a 96-well screen of gel formulations. We performed live-cell imaging throughout differentiation and early to late maturation to identify key metabolic shifts. Results Label-free ORI confirmed the expected metabolic shifts toward oxidative phosphorylation throughout the differentiation and maturation processes of iPSC-CMs on synthetic hydrogels. Furthermore, ORI distinguished high and low differentiation efficiency cell batches in the cardiac progenitor stage. Conclusions We established a workflow for medium throughput screening of synthetic hydrogel conditions with the ability to perform repeated live-cell measurements and confirm expected metabolic shifts. These methods have implications for reproducible iPSC-CM generation in biomanufacturing.
Collapse
Affiliation(s)
- Danielle E. Desa
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Margot J. Amitrano
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - William L. Murphy
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Orthopedics and Rehabilitation, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
79
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
80
|
Zheng Z, Tang W, Li Y, Ai Y, Tu Z, Yang J, Fan C. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev 2024; 29:599-613. [PMID: 37943420 DOI: 10.1007/s10741-023-10367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.
Collapse
Affiliation(s)
- Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yichen Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yinze Ai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zhi Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
81
|
Takahi M, Hamazaki Y, Ohnuma K, Imamura M. Cardiac differentiation of chimpanzee induced pluripotent stem cell lines with different subspecies backgrounds. In Vitro Cell Dev Biol Anim 2024; 60:555-562. [PMID: 38753247 DOI: 10.1007/s11626-024-00914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
The comparative analysis between humans and non-human primates is an instrumental approach for elucidating the evolutional traits and disease propensity of humans. However, in primates, cross-species analyses of their developmental events have encountered constraints because of the ethical and technical limitations in available sample collection, sequential monitoring, and manipulations. In an endeavor to surmount these challenges, in recent years, induced pluripotent stem cells (iPSCs) have garnered escalating interest as an in vitro tool for cross-species analyses between humans and non-human primates. Meanwhile, compared to humans, there is less information on in vitro differentiation of non-human primate iPSCs, and their genetic diversity including subspecies may cause different eligibility to in vitro differentiation methods. Therefore, antecedent to embarking on a comparative analysis to humans, it is a prerequisite to develop the efficacious methodologies for in vitro differentiation regardless of the intraspecies genetic background in non-human primates. In this study, we executed the in vitro differentiation of cardiomyocytes from four chimpanzee iPSC lines with different subspecies and individual backgrounds. To induce cardiomyocytes from chimpanzee iPSCs, we evaluated our methodology for in vitro cardiac differentiation of human iPSCs. Eventually, with minor alterations, our cardiac differentiation method was applicable to all chimpanzee iPSC lines tested as assessed by the expression of cardiac marker genes and the beating ability. Hence, our in vitro differentiation method will advance iPSC-based research of chimpanzee cardiac development and also hold possible utility to cross-species analyses among primate species.
Collapse
Affiliation(s)
- Mika Takahi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Yusuke Hamazaki
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Kiyoshi Ohnuma
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Masanori Imamura
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
82
|
Neeman-Egozi S, Livneh I, Dolgopyat I, Nussinovitch U, Milman H, Cohen N, Eisen B, Ciechanover A, Binah O. Stress-Induced Proteasome Sub-Cellular Translocation in Cardiomyocytes Causes Altered Intracellular Calcium Handling and Arrhythmias. Int J Mol Sci 2024; 25:4932. [PMID: 38732146 PMCID: PMC11084437 DOI: 10.3390/ijms25094932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is an essential mechanism responsible for the selective degradation of substrate proteins via their conjugation with ubiquitin. Since cardiomyocytes have very limited self-renewal capacity, as they are prone to protein damage due to constant mechanical and metabolic stress, the UPS has a key role in cardiac physiology and pathophysiology. While altered proteasomal activity contributes to a variety of cardiac pathologies, such as heart failure and ischemia/reperfusion injury (IRI), the environmental cues affecting its activity are still unknown, and they are the focus of this work. Following a recent study by Ciechanover's group showing that amino acid (AA) starvation in cultured cancer cell lines modulates proteasome intracellular localization and activity, we tested two hypotheses in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs, CMs): (i) AA starvation causes proteasome translocation in CMs, similarly to the observation in cultured cancer cell lines; (ii) manipulation of subcellular proteasomal compartmentalization is associated with electrophysiological abnormalities in the form of arrhythmias, mediated via altered intracellular Ca2+ handling. The major findings are: (i) starving CMs to AAs results in proteasome translocation from the nucleus to the cytoplasm, while supplementation with the aromatic amino acids tyrosine (Y), tryptophan (W) and phenylalanine (F) (YWF) inhibits the proteasome recruitment; (ii) AA-deficient treatments cause arrhythmias; (iii) the arrhythmias observed upon nuclear proteasome sequestration(-AA+YWF) are blocked by KB-R7943, an inhibitor of the reverse mode of the sodium-calcium exchanger NCX; (iv) the retrograde perfusion of isolated rat hearts with AA starvation media is associated with arrhythmias. Collectively, our novel findings describe a newly identified mechanism linking the UPS to arrhythmia generation in CMs and whole hearts.
Collapse
Affiliation(s)
- Shunit Neeman-Egozi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Ido Livneh
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Irit Dolgopyat
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Udi Nussinovitch
- Department of Cardiology, Edith Wolfson Medical Center, Holon 5822012, Israel
- The Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Nadav Cohen
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| | - Aaron Ciechanover
- The Rappaport-Technion Integrated Cancer Center (R-TICC) and The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 319060, Israel; (I.L.); (N.C.)
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3190601, Israel; (S.N.-E.); (B.E.)
| |
Collapse
|
83
|
Chatterjee S, Leach-Mehrwald M, Huang CK, Xiao K, Fuchs M, Otto M, Lu D, Dang V, Winkler T, Dunbar CE, Thum T, Bär C. Telomerase is essential for cardiac differentiation and sustained metabolism of human cardiomyocytes. Cell Mol Life Sci 2024; 81:196. [PMID: 38658440 PMCID: PMC11043037 DOI: 10.1007/s00018-024-05239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.
Collapse
Affiliation(s)
- Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Megan Leach-Mehrwald
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Mandy Otto
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Vinh Dang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Winkler
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| |
Collapse
|
84
|
Berndt A, Lee J, Nguyen A, Jin Z, Moghadasi A, Gibbs C, Wait S, Evitts K, Asencio A, Bremner S, Zuniga S, Chavan V, Williams A, Smith A, Moussavi-Harami F, Regnier M, Young J, Mack D, Nance E, Boyle P. Far-red and sensitive sensor for monitoring real time H 2O 2 dynamics with subcellular resolution and in multi-parametric imaging applications. RESEARCH SQUARE 2024:rs.3.rs-3974015. [PMID: 38699332 PMCID: PMC11065073 DOI: 10.21203/rs.3.rs-3974015/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
H2O2 is a key oxidant in mammalian biology and a pleiotropic signaling molecule at the physiological level, and its excessive accumulation in conjunction with decreased cellular reduction capacity is often found to be a common pathological marker. Here, we present a red fluorescent Genetically Encoded H2O2 Indicator (GEHI) allowing versatile optogenetic dissection of redox biology. Our new GEHI, oROS-HT, is a chemigenetic sensor utilizing a HaloTag and Janelia Fluor (JF) rhodamine dye as fluorescent reporters. We developed oROS-HT through a structure-guided approach aided by classic protein structures and recent protein structure prediction tools. Optimized with JF635, oROS-HT is a sensor with 635 nm excitation and 650 nm emission peaks, allowing it to retain its brightness while monitoring intracellular H2O2 dynamics. Furthermore, it enables multi-color imaging in combination with blue-green fluorescent sensors for orthogonal analytes and low auto-fluorescence interference in biological tissues. Other advantages of oROS-HT over alternative GEHIs are its fast kinetics, oxygen-independent maturation, low pH sensitivity, lack of photo-artifact, and lack of intracellular aggregation. Here, we demonstrated efficient subcellular targeting and how oROS-HT can map inter and intracellular H2O2 diffusion at subcellular resolution. Lastly, we used oROS-HT with other green fluorescence reporters to investigate the transient effect of the anti-inflammatory agent auranofin on cellular redox physiology and calcium levels via multi-parametric, dual-color imaging.
Collapse
|
85
|
Akagi K, Baba S, Fujita H, Fuseya Y, Yoshinaga D, Kubota H, Kume E, Fukumura F, Matsuda K, Tanaka T, Hirata T, Saito MK, Iwai K, Takita J. HOIL-1L deficiency induces cell cycle alteration which causes immaturity of skeletal muscle and cardiomyocytes. Sci Rep 2024; 14:8871. [PMID: 38632277 PMCID: PMC11024103 DOI: 10.1038/s41598-024-57504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
HOIL-1L deficiency was recently reported to be one of the causes of myopathy and dilated cardiomyopathy (DCM). However, the mechanisms by which myopathy and DCM develop have not been clearly elucidated. Here, we sought to elucidate these mechanisms using the murine myoblast cell line C2C12 and disease-specific human induced pluripotent stem cells (hiPSCs). Myotubes differentiated from HOIL-1L-KO C2C12 cells exhibited deteriorated differentiation and mitotic cell accumulation. CMs differentiated from patient-derived hiPSCs had an abnormal morphology with a larger size and were excessively multinucleated compared with CMs differentiated from control hiPSCs. Further analysis of hiPSC-derived CMs showed that HOIL-1L deficiency caused cell cycle alteration and mitotic cell accumulation. These results demonstrate that abnormal cell maturation possibly contribute to the development of myopathy and DCM. In conclusion, HOIL-1L is an important intrinsic regulator of cell cycle-related myotube and CM maturation and cell proliferation.
Collapse
Affiliation(s)
- Kentaro Akagi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Shiro Baba
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan.
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Yasuhiro Fuseya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Daisuke Yoshinaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Hirohito Kubota
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Eitaro Kume
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Fumiaki Fukumura
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Koichi Matsuda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Takuya Hirata
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| |
Collapse
|
86
|
Ghahremani S, Kanwal A, Pettinato A, Ladha F, Legere N, Thakar K, Zhu Y, Tjong H, Wilderman A, Stump WT, Greenberg L, Greenberg MJ, Cotney J, Wei CL, Hinson JT. CRISPR Activation Reverses Haploinsufficiency and Functional Deficits Caused by TTN Truncation Variants. Circulation 2024; 149:1285-1297. [PMID: 38235591 PMCID: PMC11031707 DOI: 10.1161/circulationaha.123.063972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND TTN truncation variants (TTNtvs) are the most common genetic lesion identified in individuals with dilated cardiomyopathy, a disease with high morbidity and mortality rates. TTNtvs reduce normal TTN (titin) protein levels, produce truncated proteins, and impair sarcomere content and function. Therapeutics targeting TTNtvs have been elusive because of the immense size of TTN, the rarity of specific TTNtvs, and incomplete knowledge of TTNtv pathogenicity. METHODS We adapted CRISPR activation using dCas9-VPR to functionally interrogate TTNtv pathogenicity and develop a therapeutic in human cardiomyocytes and 3-dimensional cardiac microtissues engineered from induced pluripotent stem cell models harboring a dilated cardiomyopathy-associated TTNtv. We performed guide RNA screening with custom TTN reporter assays, agarose gel electrophoresis to quantify TTN protein levels and isoforms, and RNA sequencing to identify molecular consequences of TTN activation. Cardiomyocyte epigenetic assays were also used to nominate DNA regulatory elements to enable cardiomyocyte-specific TTN activation. RESULTS CRISPR activation of TTN using single guide RNAs targeting either the TTN promoter or regulatory elements in spatial proximity to the TTN promoter through 3-dimensional chromatin interactions rescued TTN protein deficits disturbed by TTNtvs. Increasing TTN protein levels normalized sarcomere content and contractile function despite increasing truncated TTN protein. In addition to TTN transcripts, CRISPR activation also increased levels of myofibril assembly-related and sarcomere-related transcripts. CONCLUSIONS TTN CRISPR activation rescued TTNtv-related functional deficits despite increasing truncated TTN levels, which provides evidence to support haploinsufficiency as a relevant genetic mechanism underlying heterozygous TTNtvs. CRISPR activation could be developed as a therapeutic to treat a large proportion of TTNtvs.
Collapse
Affiliation(s)
| | - Aditya Kanwal
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Anthony Pettinato
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Feria Ladha
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Yanfen Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Harianto Tjong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Andrea Wilderman
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Justin Cotney
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - J. Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Cardiology Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
87
|
Arthur TD, Nguyen JP, D'Antonio-Chronowska A, Jaureguy J, Silva N, Henson B, Panopoulos AD, Belmonte JCI, D'Antonio M, McVicker G, Frazer KA. Multi-omic QTL mapping in early developmental tissues reveals phenotypic and temporal complexity of regulatory variants underlying GWAS loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588874. [PMID: 38645112 PMCID: PMC11030419 DOI: 10.1101/2024.04.10.588874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Most GWAS loci are presumed to affect gene regulation, however, only ∼43% colocalize with expression quantitative trait loci (eQTLs). To address this colocalization gap, we identify eQTLs, chromatin accessibility QTLs (caQTLs), and histone acetylation QTLs (haQTLs) using molecular samples from three early developmental (EDev) tissues. Through colocalization, we annotate 586 GWAS loci for 17 traits by QTL complexity, QTL phenotype, and QTL temporal specificity. We show that GWAS loci are highly enriched for colocalization with complex QTL modules that affect multiple elements (genes and/or peaks). We also demonstrate that caQTLs and haQTLs capture regulatory variations not associated with eQTLs and explain ∼49% of the functionally annotated GWAS loci. Additionally, we show that EDev-unique QTLs are strongly depleted for colocalizing with GWAS loci. By conducting one of the largest multi-omic QTL studies to date, we demonstrate that many GWAS loci exhibit phenotypic complexity and therefore, are missed by traditional eQTL analyses.
Collapse
|
88
|
Duan Y, He K, Lan W, Luo Y, Fan H, Lin P, Wang W, Tang Y. Noninvasive Assessment of hiPSC Differentiation toward Cardiomyocytes Using Pretrained Convolutional Neural Networks and the Channel Pruning Algorithm. ACS Biomater Sci Eng 2024; 10:2498-2509. [PMID: 38531866 DOI: 10.1021/acsbiomaterials.3c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) offer versatile applications in tissue engineering and drug screening. To facilitate the monitoring of hiPSC cardiac differentiation, a noninvasive approach using convolutional neural networks (CNNs) was explored. HiPSCs were differentiated into cardiomyocytes and analyzed using the quantitative real-time polymerase chain reaction (qRT-PCR). The bright-field images of the cells at different time points were captured to create the dataset. Six pretrained models (AlexNet, GoogleNet, ResNet 18, ResNet 50, DenseNet 121, VGG 19-BN) were employed to identify different stages in differentiation. VGG 19-BN outperformed the other five CNNs and exhibited remarkable performance with 99.2% accuracy, recall, precision, and F1 score and 99.8% specificity. The pruning process was then applied to the optimal model, resulting in a significant reduction of model parameters while maintaining high accuracy. Finally, an automation application using the pruned VGG 19-BN model was developed, facilitating users in assessing the cell status during the myocardial differentiation of hiPSCs.
Collapse
Affiliation(s)
- Yujie Duan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Kaitong He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Lan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuli Luo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
89
|
Goecke T, Ius F, Ruhparwar A, Martin U. Unlocking the Future: Pluripotent Stem Cell-Based Lung Repair. Cells 2024; 13:635. [PMID: 38607074 PMCID: PMC11012168 DOI: 10.3390/cells13070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field.
Collapse
Affiliation(s)
- Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fabio Ius
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
90
|
Rodríguez NA, Patel N, Dariolli R, Ng S, Aleman AG, Gong JQ, Lin HM, Rodríguez M, Josowitz R, Sol-Church K, Gripp KW, Lin X, Song SC, Fishman GI, Sobie EA, Gelb BD. HRAS-Mutant Cardiomyocyte Model of Multifocal Atrial Tachycardia. Circ Arrhythm Electrophysiol 2024; 17:e012022. [PMID: 38415356 PMCID: PMC11021157 DOI: 10.1161/circep.123.012022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Germline HRAS gain-of-function pathogenic variants cause Costello syndrome (CS). During early childhood, 50% of patients develop multifocal atrial tachycardia, a treatment-resistant tachyarrhythmia of unknown pathogenesis. This study investigated how overactive HRAS activity triggers arrhythmogenesis in atrial-like cardiomyocytes (ACMs) derived from human-induced pluripotent stem cells bearing CS-associated HRAS variants. METHODS HRAS Gly12 mutations were introduced into a human-induced pluripotent stem cells-ACM reporter line. Human-induced pluripotent stem cells were generated from patients with CS exhibiting tachyarrhythmia. Calcium transients and action potentials were assessed in induced pluripotent stem cell-derived ACMs. Automated patch clamping assessed funny currents. HCN inhibitors targeted pacemaker-like activity in mutant ACMs. Transcriptomic data were analyzed via differential gene expression and gene ontology. Immunoblotting evaluated protein expression associated with calcium handling and pacemaker-nodal expression. RESULTS ACMs harboring HRAS variants displayed higher beating rates compared with healthy controls. The hyperpolarization activated cyclic nucleotide gated potassium channel inhibitor ivabradine and the Nav1.5 blocker flecainide significantly decreased beating rates in mutant ACMs, whereas voltage-gated calcium channel 1.2 blocker verapamil attenuated their irregularity. Electrophysiological assessment revealed an increased number of pacemaker-like cells with elevated funny current densities among mutant ACMs. Mutant ACMs demonstrated elevated gene expression (ie, ISL1, TBX3, TBX18) related to intracellular calcium homeostasis, heart rate, RAS signaling, and induction of pacemaker-nodal-like transcriptional programming. Immunoblotting confirmed increased protein levels for genes of interest and suppressed MAPK (mitogen-activated protein kinase) activity in mutant ACMs. CONCLUSIONS CS-associated gain-of-function HRASG12 mutations in induced pluripotent stem cells-derived ACMs trigger transcriptional changes associated with enhanced automaticity and arrhythmic activity consistent with multifocal atrial tachycardia. This is the first human-induced pluripotent stem cell model establishing the mechanistic basis for multifocal atrial tachycardia in CS.
Collapse
Affiliation(s)
- Nelson A. Rodríguez
- Mindich Child Health & Development Inst, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nihir Patel
- Mindich Child Health & Development Inst, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rafael Dariolli
- Dept of Pharmacological Sciences & Systems Biology Ctr New York, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Simon Ng
- Mindich Child Health & Development Inst, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Angelika G. Aleman
- Mindich Child Health & Development Inst, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jingqi Q.X. Gong
- Dept of Pharmacological Sciences & Systems Biology Ctr New York, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hung-Mo Lin
- Yale Center for Analytical Sciences (YCAS), New Haven, CT
| | - Matthew Rodríguez
- Mindich Child Health & Development Inst, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rebecca Josowitz
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Katia Sol-Church
- Dept of Pathology, Univ of Virginia School of Medicine, Charlottesville, VA
| | - Karen W. Gripp
- Division of Medical Genetics; Al duPont Hospital for Children/Nemours, Wilmington, DE
| | - Xianming Lin
- Leon H. Charney Division of Cardiology; New York Univ School of Medicine
| | - Soomin C. Song
- Ion Lab, Dept of Pathology, NYU Langone Health, New York, NY
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology; New York Univ School of Medicine
| | - Eric A. Sobie
- Dept of Pharmacological Sciences & Systems Biology Ctr New York, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bruce D. Gelb
- Mindich Child Health & Development Inst, Icahn School of Medicine at Mount Sinai, New York, NY
- Depts of Pediatrics & Genetics and Genomic Sciences; Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
91
|
Pierre B, Laëtitia DB, Camille B, Claire P, Elise B, Estelle G, Vincent F, Eric V. Generation of CRISPR/Cas9 edited human induced pluripotent stem cell line carrying the heterozygous p.H695VfsX5 frameshift mutation in the exon 10 of the PKP2 gene. Stem Cell Res 2024; 76:103341. [PMID: 38382214 DOI: 10.1016/j.scr.2024.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Loss-of-function mutations in the PKP2 gene are associated with arrhythmogenic right ventricular cardiomyopathy (ARVC), a rare cardiac disease associated with a poor prognosis. The search for therapeutics and a better understanding of the molecular mechanisms of the disease require the development of cellular modelling. Using CRISPR/Cas9, we generated a hiPSC line with heterozygous 7-bp deletion in exon 10 of PKP2 (p.H695VfsX5). We demonstrated that hiPSCs were fully pluripotent and showed a high rate of differentiation into cardiomyocytes (iPS-CM). We also showed that PKP2 protein was expressed at the plasma membrane, with an overall decreased expression in iPS-CM indicating haploinsufficiency.
Collapse
Affiliation(s)
- Bobin Pierre
- Sorbonne Université, INSERM, UMRS 1166, Paris, France
| | - Duboscq-Bidot Laëtitia
- Sorbonne Université, INSERM, UMRS 1166, Paris, France; APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | | | - Perret Claire
- Sorbonne Université, INSERM, UMRS 1166, Paris, France
| | - Balse Elise
- Sorbonne Université, INSERM, UMRS 1166, Paris, France
| | - Gandjbakhch Estelle
- Sorbonne Université, INSERM, UMRS 1166, Paris, France; APHP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Fontaine Vincent
- Sorbonne Université, INSERM, UMRS 1166, Paris, France; ICAN Biocell iPS core - Institute for Cardiometabolism and Nutrition, Paris, France
| | - Villard Eric
- Sorbonne Université, INSERM, UMRS 1166, Paris, France; APHP, Pitié-Salpêtrière University Hospital, Paris, France; ICAN Biocell iPS core - Institute for Cardiometabolism and Nutrition, Paris, France.
| |
Collapse
|
92
|
Somers T, Siddiqi S, Maas RGC, Sluijter JPG, Buikema JW, van den Broek PHH, Meuwissen TJ, Morshuis WJ, Russel FGM, Schirris TJJ. Statins affect human iPSC-derived cardiomyocytes by interfering with mitochondrial function and intracellular acidification. Basic Res Cardiol 2024; 119:309-327. [PMID: 38305903 DOI: 10.1007/s00395-023-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Statins are effective drugs in reducing cardiovascular morbidity and mortality by inhibiting cholesterol synthesis. These effects are primarily beneficial for the patient's vascular system. A significant number of statin users suffer from muscle complaints probably due to mitochondrial dysfunction, a mechanism that has recently been elucidated. This has raised our interest in exploring the effects of statins on cardiac muscle cells in an era where the elderly and patients with poorer functioning hearts and less metabolic spare capacity start dominating our patient population. Here, we investigated the effects of statins on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-derived CMs). hiPSC-derived CMs were exposed to simvastatin, atorvastatin, rosuvastatin, and cerivastatin at increasing concentrations. Metabolic assays and fluorescent microscopy were employed to evaluate cellular viability, metabolic capacity, respiration, intracellular acidity, and mitochondrial membrane potential and morphology. Over a concentration range of 0.3-100 µM, simvastatin lactone and atorvastatin acid showed a significant reduction in cellular viability by 42-64%. Simvastatin lactone was the most potent inhibitor of basal and maximal respiration by 56% and 73%, respectively, whereas simvastatin acid and cerivastatin acid only reduced maximal respiration by 50% and 42%, respectively. Simvastatin acid and lactone and atorvastatin acid significantly decreased mitochondrial membrane potential by 20%, 6% and 3%, respectively. The more hydrophilic atorvastatin acid did not seem to affect cardiomyocyte metabolism. This calls for further research on the translatability to the clinical setting, in which a more conscientious approach to statin prescribing might be considered, especially regarding the current shift in population toward older patients with poor cardiac function.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Renee G C Maas
- Department of Cardiology, Experimental Cardiology Laboratory, Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Jan W Buikema
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam Heart Center, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Petra H H van den Broek
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Tanne J Meuwissen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Wim J Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| | - Tom J J Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
93
|
Hou X, Fan W, Zeng J, Gao Z, Wan J, Liao B. Generation of a ISL1 homozygous knockout stem cell line (WAe009-A-1G) by episomal vector-based CRISPR/Cas9 system. Stem Cell Res 2024; 76:103376. [PMID: 38452706 DOI: 10.1016/j.scr.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024] Open
Abstract
The ISL LIM homeobox 1 (ISL1) gene belongs to the LIM/homeodomain transcription factor family and plays a pivotal role in conveying multipotent and proliferative properties of cardiac precursor cells. Mutations in ISL1 are linked to congenital heart disease. To further explore ISL1's role in the human heart, we have created a homozygous ISL1 knockout (ISL1-KO) human embryonic stem cell line using the CRISPR/Cas9 system. Notably, this ISL1-KO cell line retains normal morphology, pluripotency, and karyotype. This resource serves as a valuable tool for investigating ISL1's function in cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Fan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jun Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100069, PR China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
94
|
Lu RXZ, Rafatian N, Zhao Y, Wagner KT, Beroncal EL, Li B, Lee C, Chen J, Churcher E, Vosoughi D, Liu C, Wang Y, Baker A, Trahtemberg U, Li B, Pierro A, Andreazza AC, dos Santos CC, Radisic M. Cardiac tissue model of immune-induced dysfunction reveals the role of free mitochondrial DNA and the therapeutic effects of exosomes. SCIENCE ADVANCES 2024; 10:eadk0164. [PMID: 38536913 PMCID: PMC10971762 DOI: 10.1126/sciadv.adk0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Despite tremendous progress in the development of mature heart-on-a-chip models, human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip with circulating immune cells to model severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced acute myocarditis. We observed hallmarks of coronavirus disease (COVID-19)-induced myocardial inflammation, as the presence of immune cells augmented the secretion of proinflammatory cytokines, triggered progressive impairment of contractile function, and altered intracellular calcium transients. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the heart-on-a-chip and then validated in COVID-19 patients with low left ventricular ejection fraction, demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation-induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2-induced myocardial inflammation, we established that administration of endothelial cell-derived exosomes effectively rescued the contractile deficit, normalized calcium handling, elevated the contraction force, and reduced the ccf-mtDNA and cytokine release via Toll-like receptor-nuclear factor κB signaling axis.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Karl T. Wagner
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Erika L. Beroncal
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bo Li
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carol Lee
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jingan Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Eryn Churcher
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Daniel Vosoughi
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andrew Baker
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Uriel Trahtemberg
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Galilee Medical Center, Nahariya, Israel
| | - Bowen Li
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Agostino Pierro
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ana C. Andreazza
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Claudia C. dos Santos
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3D5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1
| |
Collapse
|
95
|
Kobeissi H, Jilberto J, Karakan MÇ, Gao X, DePalma SJ, Das SL, Quach L, Urquia J, Baker BM, Chen CS, Nordsletten D, Lejeune E. MicroBundleCompute: Automated segmentation, tracking, and analysis of subdomain deformation in cardiac microbundles. PLoS One 2024; 19:e0298863. [PMID: 38530829 PMCID: PMC10965069 DOI: 10.1371/journal.pone.0298863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - M. Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Photonics Center, Boston University, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Lani Quach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan Urquia
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, United States of America
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King’s College London, King’s Health Partners, London, United Kingdom
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| |
Collapse
|
96
|
Loeb EJ, Havlik PL, Elmore ZC, Rosales A, Fergione SM, Gonzalez TJ, Smith TJ, Benkert AR, Fiflis DN, Asokan A. Capsid-mediated control of adeno-associated viral transcription determines host range. Cell Rep 2024; 43:113902. [PMID: 38431840 PMCID: PMC11150003 DOI: 10.1016/j.celrep.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Adeno-associated virus (AAV) is a member of the genus Dependoparvovirus, which infects a wide range of vertebrate species. Here, we observe that, unlike most primate AAV isolates, avian AAV is transcriptionally silenced in human cells. By swapping the VP1 N terminus from primate AAVs (e.g., AAV8) onto non-mammalian isolates (e.g., avian AAV), we identify a minimal component of the AAV capsid that controls viral transcription and unlocks robust transduction in both human cells and mouse tissue. This effect is accompanied by increased AAV genome chromatin accessibility and altered histone methylation. Proximity ligation analysis reveals that host factors are selectively recruited by the VP1 N terminus of AAV8 but not avian AAV. Notably, these include AAV essential factors implicated in the nuclear factor κB pathway, chromatin condensation, and histone methylation. We postulate that the AAV capsid has evolved mechanisms to recruit host factors to its genome, allowing transcriptional activation in a species-specific manner.
Collapse
Affiliation(s)
- Ezra J Loeb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Patrick L Havlik
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary C Elmore
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alan Rosales
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia M Fergione
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Timothy J Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Abigail R Benkert
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - David N Fiflis
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
97
|
Hang C, Moawad MS, Lin Z, Guo H, Xiong H, Zhang M, Lu R, Liu J, Shi D, Xie D, Liu Y, Liang D, Chen YH, Yang J. Biosafe cerium oxide nanozymes protect human pluripotent stem cells and cardiomyocytes from oxidative stress. J Nanobiotechnology 2024; 22:132. [PMID: 38532378 DOI: 10.1186/s12951-024-02383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) have the highest mortality worldwide. Human pluripotent stem cells (hPSCs) and their cardiomyocyte derivatives (hPSC-CMs) offer a valuable resource for disease modeling, pharmacological screening, and regenerative therapy. While most CVDs are linked to significant over-production of reactive oxygen species (ROS), the effects of current antioxidants targeting excessive ROS are limited. Nanotechnology is a powerful tool to develop antioxidants with improved selectivity, solubility, and bioavailability to prevent or treat various diseases related to oxidative stress. Cerium oxide nanozymes (CeONZs) can effectively scavenge excessive ROS by mimicking the activity of endogenous antioxidant enzymes. This study aimed to assess the nanotoxicity of CeONZs and their potential antioxidant benefits in stressed human embryonic stem cells (hESCs) and their derived cardiomyocytes (hESC-CMs). RESULTS CeONZs demonstrated reliable nanosafety and biocompatibility in hESCs and hESC-CMs within a broad range of concentrations. CeONZs exhibited protective effects on the cell viability of hESCs and hESC-CMs by alleviating excessive ROS-induced oxidative stress. Moreover, CeONZs protected hESC-CMs from doxorubicin (DOX)-induced cardiotoxicity and partially ameliorated the insults from DOX in neonatal rat cardiomyocytes (NRCMs). Furthermore, during hESCs culture, CeONZs were found to reduce ROS, decrease apoptosis, and enhance cell survival without affecting their self-renewal and differentiation potential. CONCLUSIONS CeONZs displayed good safety and biocompatibility, as well as enhanced the cell viability of hESCs and hESC-CMs by shielding them from oxidative damage. These promising results suggest that CeONZs may be crucial, as a safe nanoantioxidant, to potentially improve the therapeutic efficacy of CVDs and be incorporated into regenerative medicine.
Collapse
Affiliation(s)
- Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 3725005, Egypt.
| | - Zheyi Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hui Xiong
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
98
|
Berndt A, Lee J, Won W, Kimball K, Neiswanger C, Schattauer S, Wang Y, Yeboah F, Ruiz M, Evitts K, Rappleye M, Bremner S, Chun C, Smith N, Mack D, Young J, Lee CJ, Chavkin C. Ultra-fast genetically encoded sensor for precise real-time monitoring of physiological and pathophysiological peroxide dynamics. RESEARCH SQUARE 2024:rs.3.rs-4048855. [PMID: 38585715 PMCID: PMC10996778 DOI: 10.21203/rs.3.rs-4048855/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity and response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse brain ex vivo and in vivo. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aβ-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. Lastly, we demonstrated acute opioid-induced generation of H2O2 signal in vivo which highlights redox-based mechanisms of GPCR regulation. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for understanding diseases associated with oxidative stress, such as cancer, neurodegenerative, and cardiovascular diseases.
Collapse
|
99
|
Sun H, He Z, Gao Y, Yang Y, Wang Y, Gu A, Xu J, Quan Y, Yang Y. Polyoxyethylene tallow amine and glyphosate exert different developmental toxicities on human pluripotent stem cells-derived heart organoid model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170675. [PMID: 38316312 DOI: 10.1016/j.scitotenv.2024.170675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The early stage of heart development is highly susceptible to various environmental factors. While the use of animal models has aided in identifying numerous environmental risk factors, the variability between species and the low throughput limit their translational potential. Recently, a type of self-assembling cardiac structures, known as human heart organoids (hHOs), exhibits a remarkable biological consistency with human heart. However, the feasibility of hHOs for assessing cardiac developmental risk factors remains unexplored. Here, we focused on the cardiac developmental effects of core components of Glyphosate-based herbicides (GBHs), the most widely used herbicides, to evaluate the reliability of hHOs for the prediction of possible cardiogenesis toxicity. GBHs have been proven toxic to cardiac development based on multiple animal models, with the mechanism remaining unknown. We found that polyoxyethylene tallow amine (POEA), the most common surfactant in GBHs formulations, played a dominant role in GBHs' heart developmental toxicity. Though there were a few differences in transcriptive features, hHOs exposed to sole POEA and combined POEA and Glyphosate would suffer from both disruption of heart contraction and disturbance of commitment in cardiomyocyte isoforms. By contrast, Glyphosate only caused mild epicardial hyperplasia. This study not only sheds light on the toxic mechanism of GBHs, but also serves as a methodological demonstration, showcasing its effectiveness in recognizing and evaluating environmental risk factors, and deciphering toxic mechanisms.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhazheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yao Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanhan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yachang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingyi Quan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
100
|
Wu Z, Shen S, Mizikovsky D, Cao Y, Naval-Sanchez M, Tan SZ, Alvarez YD, Sun Y, Chen X, Zhao Q, Kim D, Yang P, Hill TA, Jones A, Fairlie DP, Pébay A, Hewitt AW, Tam PPL, White MD, Nefzger CM, Palpant NJ. Wnt dose escalation during the exit from pluripotency identifies tranilast as a regulator of cardiac mesoderm. Dev Cell 2024; 59:705-722.e8. [PMID: 38354738 DOI: 10.1016/j.devcel.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Wnt signaling is a critical determinant of cell lineage development. This study used Wnt dose-dependent induction programs to gain insights into molecular regulation of stem cell differentiation. We performed single-cell RNA sequencing of hiPSCs responding to a dose escalation protocol with Wnt agonist CHIR-99021 during the exit from pluripotency to identify cell types and genetic activity driven by Wnt stimulation. Results of activated gene sets and cell types were used to build a multiple regression model that predicts the efficiency of cardiomyocyte differentiation. Cross-referencing Wnt-associated gene expression profiles to the Connectivity Map database, we identified the small-molecule drug, tranilast. We found that tranilast synergistically activates Wnt signaling to promote cardiac lineage differentiation, which we validate by in vitro analysis of hiPSC differentiation and in vivo analysis of developing quail embryos. Our study provides an integrated workflow that links experimental datasets, prediction models, and small-molecule databases to identify drug-like compounds that control cell differentiation.
Collapse
Affiliation(s)
- Zhixuan Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Siew Zhuan Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yanina D Alvarez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qiongyi Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Kim
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Pengyi Yang
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Timothy A Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Patrick P L Tam
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|