51
|
Yao X, Levine SJ. Scavenger Hunt: SR-B1, Adrenal Insufficiency, IL-17A, and Neutrophilic Airway Inflammation in Asthma. Am J Respir Cell Mol Biol 2021; 64:650-651. [PMID: 33826878 PMCID: PMC8456893 DOI: 10.1165/rcmb.2021-0089ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch National Heart, Lung, and Blood Institute National Institutes of Health Bethesda, Maryland
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch National Heart, Lung, and Blood Institute National Institutes of Health Bethesda, Maryland
| |
Collapse
|
52
|
Barochia AV, Kaler M, Weir N, Gordon EM, Figueroa DM, Yao X, WoldeHanna ML, Sampson M, Remaley AT, Grant G, Barnett SD, Nathan SD, Levine SJ. Serum levels of small HDL particles are negatively correlated with death or lung transplantation in an observational study of idiopathic pulmonary fibrosis. Eur Respir J 2021; 58:13993003.04053-2020. [PMID: 34289973 DOI: 10.1183/13993003.04053-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/13/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Serum lipoproteins, such as high density lipoproteins (HDL), may influence disease severity in idiopathic pulmonary fibrosis (IPF). Here, we investigated associations between serum lipids and lipoproteins and clinical endpoints in IPF. METHODS Clinical data and serum lipids were analyzed from a discovery cohort (59 IPF subjects, 56 healthy volunteers) and validated using an independent, multicenter cohort (207 IPF subjects) from the Pulmonary Fibrosis Foundation registry. Associations between lipids and clinical endpoints (FVC, forced vital capacity; 6MWD, 6 min walk distance; GAP (Gender Age Physiology) index; death or lung transplantation) were examined using Pearson's correlation and multivariable analyses. RESULTS Serum concentrations of small HDL particles (S-HDLPNMR), measured by nuclear magnetic resonance (NMR) spectroscopy, correlated negatively with the GAP index in the discovery cohort of IPF subjects. The negative correlation of S-HDLPNMR with GAP index was confirmed in the validation cohort of IPF subjects. Higher levels of S-HDLPNMR were associated with lower odds of death or its competing outcome, lung transplantation (OR of 0.9 for each 1 μmol·L-1 increase in S-HDLPNMR, p<0.05), at 1, 2, and 3 years from study entry in a combined cohort of all IPF subjects. CONCLUSIONS Higher serum levels of S-HDLPNMR are negatively correlated with the GAP index, as well as with lower observed mortality or lung transplantation in IPF subjects. These findings support the hypothesis that S-HDLPNMR may modify mortality risk in patients with IPF.
Collapse
Affiliation(s)
- Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Nargues Weir
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA.,Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Debbie M Figueroa
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Merte Lemma WoldeHanna
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | | | - Alan T Remaley
- Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| | | | - Scott D Barnett
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
53
|
Schrijver DP, Dreu A, Hofstraat SRJ, Kluza E, Zwolsman R, Deckers J, Anbergen T, Bruin K, Trines MM, Nugraha EG, Ummels F, Röring RJ, Beldman TJ, Teunissen AJP, Fayad ZA, Meel R, Mulder WJM. Nanoengineering Apolipoprotein A1‐Based Immunotherapeutics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David P. Schrijver
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Anne Dreu
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Stijn R. J. Hofstraat
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Robby Zwolsman
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Jeroen Deckers
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Tom Anbergen
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Koen Bruin
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Mirre M. Trines
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Eveline G. Nugraha
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Floor Ummels
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Rutger J. Röring
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| | - Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York NY 10029‐6574 USA
| | - Zahi A. Fayad
- Biomedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York NY 10029‐6574 USA
| | - Roy Meel
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Willem J. M. Mulder
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| |
Collapse
|
54
|
Popeijus HE, Zwaan W, Tayyeb JZ, Plat J. Potential Contribution of Short Chain Fatty Acids to Hepatic Apolipoprotein A-I Production. Int J Mol Sci 2021; 22:ijms22115986. [PMID: 34206021 PMCID: PMC8199098 DOI: 10.3390/ijms22115986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I) is the major protein of high density lipoprotein (HDL) particles and has a crucial role in reverse cholesterol transport (RCT). It has been postulated that elevating production of de novo ApoA-I might translate into the formation of new functional HDL particles that could lower cardiovascular disease (CVD) risk via RCT. During inflammation, serum ApoA-I concentrations are reduced, which contributes to the development of dysfunctional HDL particles as Serum Amyloid A (SAA) overtakes the position of ApoA-I within the HDL particles. Therefore, instead of elevating serum HDL cholesterol concentrations, rescuing lower serum ApoA-I concentrations could be beneficial in both normal and inflamed conditions. Several nutritional compounds, amongst others short chain fatty acids (SCFAs), have shown their capacity to modulate hepatic lipoprotein metabolism. In this review we provide an overview of HDL and more specific ApoA-I metabolism, SCFAs physiology and the current knowledge regarding the influence of SCFAs on ApoA-I expression and synthesis in human liver cells. We conclude that the current evidence regarding the effect of SCFAs on ApoA-I transcription and secretion is promising, however there is a need to investigate which dietary fibres could lead to increased SCFAs formation and consequent elevated ApoA-I concentrations.
Collapse
Affiliation(s)
- Herman E. Popeijus
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (W.Z.); (J.Z.T.); (J.P.)
- Correspondence: ; Tel.: +31-620991115
| | - Willem Zwaan
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (W.Z.); (J.Z.T.); (J.P.)
| | - Jehad Z. Tayyeb
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (W.Z.); (J.Z.T.); (J.P.)
- Department of Clinical Biochemistry, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ET Maastricht, The Netherlands; (W.Z.); (J.Z.T.); (J.P.)
| |
Collapse
|
55
|
Öörni K, Kovanen PT. Aggregation Susceptibility of Low-Density Lipoproteins-A Novel Modifiable Biomarker of Cardiovascular Risk. J Clin Med 2021; 10:1769. [PMID: 33921661 PMCID: PMC8074066 DOI: 10.3390/jcm10081769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Circulating low-density lipoprotein (LDL) particles enter the arterial intima where they bind to the extracellular matrix and become modified by lipases, proteases, and oxidizing enzymes and agents. The modified LDL particles aggregate and fuse into larger matrix-bound lipid droplets and, upon generation of unesterified cholesterol, cholesterol crystals are also formed. Uptake of the aggregated/fused particles and cholesterol crystals by macrophages and smooth muscle cells induces their inflammatory activation and conversion into foam cells. In this review, we summarize the causes and consequences of LDL aggregation and describe the development and applications of an assay capable of determining the susceptibility of isolated LDL particles to aggregate when exposed to human recombinant sphingomyelinase enzyme ex vivo. Significant person-to-person differences in the aggregation susceptibility of LDL particles were observed, and such individual differences largely depended on particle lipid composition. The presence of aggregation-prone LDL in the circulation predicted future cardiovascular events in patients with atherosclerotic cardiovascular disease. We also discuss means capable of reducing LDL particles' aggregation susceptibility that could potentially inhibit LDL aggregation in the arterial wall. Whether reductions in LDL aggregation susceptibility are associated with attenuated atherogenesis and a reduced risk of atherosclerotic cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Katariina Öörni
- Wihuri Research Institute, 00290 Helsinki, Finland;
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
56
|
Jin Z, Zhou L, Tian R, Lu N. Myeloperoxidase Targets Apolipoprotein A-I for Site-Specific Tyrosine Chlorination in Atherosclerotic Lesions and Generates Dysfunctional High-Density Lipoprotein. Chem Res Toxicol 2021; 34:1672-1680. [PMID: 33861588 DOI: 10.1021/acs.chemrestox.1c00086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously demonstrated that apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), is an important target for myeloperoxidase (MPO)-catalyzed tyrosine chlorination in the circulation of subjects with cardiovascular diseases. Oxidation of apoA-I by MPO has been reported to deprive HDL of its protective properties. However, the potential effects of MPO-mediated site-specific tyrosine chlorination of apoA-I on dysfunctional HDL formation and atherosclerosis was unclear. Herein, Tyr192 in apoA-I was found to be the major chlorination site in both lesion and plasma HDL from humans with atherosclerosis, while MPO binding to apoA-I was demonstrated by immunoprecipitation studies in vivo. In vitro, MPO-mediated damage of lipid-free apoA-I impaired its ability to promote cellular cholesterol efflux by the ABCA1 pathway, whereas oxidation to lipid-associated apoA-I inhibited lecithin:cholesterol acyltransferase activation, two key steps in reverse cholesterol transport. Compared with native apoA-I, apoA-I containing a Tyr192 → Phe mutation was moderately resistant to oxidative inactivation by MPO. In high-fat-diet-fed apolipoprotein E-deficient mice, compared with native apoA-I, subcutaneous injection with oxidized apoA-I (MPO treated) failed to mediate the lipid content in aortic plaques while mutant apoA-I (Tyr192 → Phe) showed a slightly stronger ability to reduce the lipid content in vivo. Our observations suggest that oxidative damage of apoA-I and HDL involves MPO-dependent site-specific tyrosine chlorination, raising the feasibility of producing MPO-resistant forms of apoA-I that have stronger antiatherosclerotic activity in vivo.
Collapse
Affiliation(s)
- Zelong Jin
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Lan Zhou
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
57
|
Immature Circulating SP-B, Bound to HDL, Represents an Early Sign of Smoke-Induced Pathophysiological Alterations. Biomolecules 2021; 11:biom11040551. [PMID: 33918772 PMCID: PMC8069080 DOI: 10.3390/biom11040551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Cigarette smoking is a major independent risk factor for cardiovascular diseases (CVD). The underlying mechanisms, however, are not clearly understood. Lungs are the primary route of exposure to smoke, with pulmonary cells and surfactant being the first structures directly exposed, resulting in the leakage of the immature proteoform of surfactant protein B (proSP-B). Herein, we evaluated whether proSP-B joined the cargo of high-density lipoprotein (HDL) proteins in healthy young subjects (n = 106) without any CVD risk factor other than smoking, and if HDL-associated proSP-B (HDL-SPB) correlated with pulmonary function parameters, systemic inflammation, and oxidative stress. At univariable analysis, HDL-SPB resulted significantly higher in smokers (2.2-fold, p < 0.001) than in non-smokers. No significant differences have been detected between smokers and non-smokers for inflammation, oxidation variables, and alveolar-capillary diffusion markers. In a multivariable model, HDL-SPB was independently associated with smoking. In conclusion, HDL-SPB is not only a precocious and sensitive index of the acute effects of smoke, but it might be also a potential causal factor in the onset of the vascular damage induced by modified HDL. These findings contribute to the emerging concept that the quality of the HDL proteome, rather than the quantity of particles, plays a central role in CVD risk protection.
Collapse
|
58
|
Ma F, Darabi M, Lhomme M, Tubeuf E, Canicio A, Brerault J, Medadje N, Rached F, Lebreton S, Frisdal E, Brites F, Serrano C, Santos R, Gautier E, Huby T, El Khoury P, Carrié A, Abifadel M, Bruckert E, Guerin M, Couvert P, Giral P, Lesnik P, Le Goff W, Guillas I, Kontush A. Phospholipid transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis is directly correlated with HDL-cholesterol levels and is not associated with cardiovascular risk. Atherosclerosis 2021; 324:1-8. [PMID: 33798922 DOI: 10.1016/j.atherosclerosis.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS While low concentrations of high-density lipoprotein-cholesterol (HDL-C) represent a well-established cardiovascular risk factor, extremely high HDL-C is paradoxically associated with elevated cardiovascular risk, resulting in the U-shape relationship with cardiovascular disease. Free cholesterol transfer to HDL upon lipolysis of triglyceride-rich lipoproteins (TGRL) was recently reported to underlie this relationship, linking HDL-C to triglyceride metabolism and atherosclerosis. In addition to free cholesterol, other surface components of TGRL, primarily phospholipids, are transferred to HDL during lipolysis. It remains indeterminate as to whether such transfer is linked to HDL-C and cardiovascular disease. METHODS AND RESULTS When TGRL was labelled with fluorescent phospholipid 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), time- and dose-dependent transfer of DiI to HDL was observed upon incubations with lipoprotein lipase (LPL). The capacity of HDL to acquire DiI was decreased by -36% (p<0.001) in low HDL-C patients with acute myocardial infarction (n = 22) and by -95% (p<0.001) in low HDL-C subjects with Tangier disease (n = 7), unchanged in low HDL-C patients with Type 2 diabetes (n = 17) and in subjects with high HDL-C (n = 20), and elevated in subjects with extremely high HDL-C (+11%, p<0.05) relative to healthy normolipidemic controls. Across all the populations combined, HDL capacity to acquire DiI was directly correlated with HDL-C (r = 0.58, p<0.001). No relationship of HDL capacity to acquire DiI with both overall and cardiovascular mortality obtained from epidemiological studies for the mean HDL-C levels observed in the studied populations was obtained. CONCLUSIONS These data indicate that the capacity of HDL to acquire phospholipid from TGRL upon LPL-mediated lipolysis is proportional to HDL-C and does not reflect cardiovascular risk in subjects widely differing in HDL-C levels.
Collapse
Affiliation(s)
- Feng Ma
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France.
| | - Maryam Darabi
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, F-75013, France
| | - Emilie Tubeuf
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Aurélie Canicio
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Jean Brerault
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Narcisse Medadje
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Fabiana Rached
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France; Heart Institute-InCor, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Eric Frisdal
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Fernando Brites
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, CONICET. Buenos Aires, Argentina
| | - Carlos Serrano
- Heart Institute-InCor, University of Sao Paulo, Sao Paulo, Brazil
| | - Raul Santos
- Heart Institute-InCor, University of Sao Paulo, Sao Paulo, Brazil
| | - Emmanuel Gautier
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Thierry Huby
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon; INSERM LVTS U1148, Hôpital Bichat-Claude Bernard, Paris, France
| | - Alain Carrié
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon; INSERM LVTS U1148, Hôpital Bichat-Claude Bernard, Paris, France
| | - Eric Bruckert
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, F-75013, France; AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, F-75013, France
| | - Maryse Guerin
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Philippe Couvert
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Philippe Giral
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, F-75013, France; AP-HP, Groupe Hospitalier Pitié-Salpétrière, Paris, F-75013, France
| | - Philippe Lesnik
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Wilfried Le Goff
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Isabelle Guillas
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitie-Salpetriere, 91 Bld de L'Hopital, 75013, Paris, France; Sorbonne University, Paris, France
| |
Collapse
|
59
|
Allayee H. Genetic evidence for independent causal relationships between metabolic biomarkers and risk of coronary artery diseases. J Lipid Res 2021; 62:100064. [PMID: 33705740 PMCID: PMC8058558 DOI: 10.1016/j.jlr.2021.100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hooman Allayee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
60
|
Gupta A, Sharma R, Kuche K, Jain S. Exploring the therapeutic potential of the bioinspired reconstituted high density lipoprotein nanostructures. Int J Pharm 2021; 596:120272. [DOI: 10.1016/j.ijpharm.2021.120272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
|
61
|
Schilcher I, Stadler JT, Lechleitner M, Hrzenjak A, Berghold A, Pregartner G, Lhomme M, Holzer M, Korbelius M, Reichmann F, Springer A, Wadsack C, Madl T, Kratky D, Kontush A, Marsche G, Frank S. Endothelial Lipase Modulates Paraoxonase 1 Content and Arylesterase Activity of HDL. Int J Mol Sci 2021; 22:E719. [PMID: 33450841 PMCID: PMC7828365 DOI: 10.3390/ijms22020719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/26/2023] Open
Abstract
Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with EL-overexpressing HepG2 cells decreased HDL size, PON1 content, and AE activity. The EL modification of HDL did not diminish the capacity of HDL to associate with PON1 when EL-modified HDL was incubated with PON1-overexpressing cells. The overexpression of EL in mice significantly decreased HDL serum levels but unexpectedly increased HDL PON1 content and HDL AE activity. Enzymatically inactive EL had no effect on the PON1 content of HDL in mice. In healthy subjects, EL serum levels were not significantly correlated with HDL levels. However, HDL PON1 content was positively associated with EL serum levels. The EL-induced changes in the HDL-lipid composition were not linked to the HDL PON1 content. We conclude that primarily, the interaction of enzymatically active EL with HDL, rather than EL-induced alterations in HDL size and composition, causes PON1 displacement from HDL in vitro. In vivo, the EL-mediated reduction of HDL serum levels and the consequently increased PON1-to-HDL ratio in serum increase HDL PON1 content and AE activity in mice. In humans, additional mechanisms appear to underlie the association of EL serum levels and HDL PON1 content.
Collapse
Affiliation(s)
- Irene Schilcher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Margarete Lechleitner
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 16, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Marie Lhomme
- ICANalytics Lipidomics, Institute of Cardiometabolism and Nutrition, 75013 Paris, France;
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Anna Springer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Anatol Kontush
- INSERM Research Unit 1166—ICAN, Sorbonne University, 75013 Paris, France;
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
62
|
Yuan W, Yu B, Yu M, Kuai R, Morin EE, Wang H, Hu D, Zhang J, Moon JJ, Chen YE, Guo Y, Schwendeman A. Synthetic high-density lipoproteins delivering liver X receptor agonist prevent atherogenesis by enhancing reverse cholesterol transport. J Control Release 2021; 329:361-371. [PMID: 33188828 DOI: 10.1016/j.jconrel.2020.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/22/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Liver X nuclear receptor (LXR) agonists are promising anti-atherosclerotic agents that increase the expression of cholesterol transporters on atheroma macrophages leading to increased efflux of cholesterol to endogenous high-density lipoprotein (HDL) acceptors. HDL subsequently delivers effluxed cholesterol to the liver by the process of reverse cholesterol transport, resulting in reduction of atherosclerotic plaques. However, LXR agonists administration triggers undesirable liver steatosis and hypertriglyceridemia due to increased fatty acid and sterol synthesis. LXR-induced liver toxicity, poor drug aqueous solubility and low levels of endogenous HDL acceptors in target patient populations limit the clinical translation of LXR agonists. Here, we propose a dual-antiatherogenic strategy for administration of the LXR agonist, T0901317 (T1317), by encapsulating in synthetic HDL (sHDL) nanoparticles. sHDL had been clinically proven to serve as cholesterol acceptors, resulting in plaque reduction in atherosclerosis patients. In addition, the hydrophobic core and endogenous atheroma-targeting ability of sHDL allow for encapsulation of water-insoluble drugs and their subsequent delivery to atheroma. Several compositions of sHDL were tested to optimize both T1317 encapsulation efficiency and ability of T1317-sHDL to efflux cholesterol. Optimized T1317-sHDL exhibited more efficient cholesterol efflux from macrophages and enhanced atheroma-targeting relative to free drug. Most importantly, in an apolipoprotein E deficient (ApoE-/-) atherosclerosis progression murine model, T1317-sHDL showed superior inhibition of atherogenesis and reduced hypertriglyceridemia side effects in comparison to the free drug and blank sHDL. The T1317-sHDL pharmacological efficacy was observed at doses lower than those previously described for LXR agents, which may have additional safety benefits. In addition, the established clinical manufacturing, safety and efficacy of blank sHDL nanoparticles used in this study could facilitate future clinical translation of LXR-loaded sHDLs.
Collapse
Affiliation(s)
- Wenmin Yuan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bilian Yu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cardiovascular medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Emily E Morin
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Huilun Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Die Hu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
63
|
Baliga RR, Yang EH, Bossone E. Linear reverse risk of HDL-C levels for predicting cardiovascular disease: it is not that straightforward! Eur J Prev Cardiol 2020; 29:2055-2057. [PMID: 33624024 DOI: 10.1093/eurjpc/zwaa032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ragavendra R Baliga
- Division of Cardiovascular Medicine, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, UCLA Medical Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Eduardo Bossone
- Division of Cardiology, Internal Medicine Department, A. Cardarelli Hospital, Via Cardarelli 9, Naples - 80131, Italy
| |
Collapse
|
64
|
Pedersbæk D, Simonsen JB. A systematic review of the biodistribution of biomimetic high-density lipoproteins in mice. J Control Release 2020; 328:792-804. [PMID: 32971201 DOI: 10.1016/j.jconrel.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
For the past two decades, biomimetic high-density lipoproteins (b-HDL) have been used for various drug delivery applications. The b-HDL mimic the endogenous HDL, and therefore possess many attractive features for drug delivery, including high biocompatibility, biodegradability, and ability to transport and deliver their cargo (e.g. drugs and/or imaging agents) to specific cells and tissues that are recognized by HDL. The b-HDL designs reported in the literature often differ in size, shape, composition, and type of incorporated cargo. However, there exists only limited insight into how the b-HDL design dictates their biodistribution. To fill this gap, we conducted a comprehensive systematic literature search of biodistribution studies using various designs of apolipoprotein A-I (apoA-I)-based b-HDL (i.e. b-HDL with apoA-I, apoA-I mutants, or apoA-I mimicking peptides). We carefully screened 679 papers (search hits) for b-HDL biodistribution studies in mice, and ended up with 24 relevant biodistribution profiles that we compared according to b-HDL design. We show similarities between b-HDL biodistribution studies irrespectively of the b-HDL design, whereas the biodistribution of the b-HDL components (lipids and scaffold) differ significantly. The b-HDL lipids primarily accumulate in liver, while the b-HDL scaffold primarily accumulates in the kidney. Furthermore, both b-HDL lipids and scaffold accumulate well in the tumor tissue in tumor-bearing mice. Finally, we present essential considerations and strategies for b-HDL labeling, and discuss how the b-HDL biodistribution can be tuned through particle design and administration route. Our meta-analysis and discussions provide a detailed overview of the fate of b-HDL in mice that is highly relevant when applying b-HDL for drug delivery or in vivo imaging applications.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark
| | - Jens B Simonsen
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
65
|
Márquez AB, Nazir S, van der Vorst EP. High-Density Lipoprotein Modifications: A Pathological Consequence or Cause of Disease Progression? Biomedicines 2020; 8:biomedicines8120549. [PMID: 33260660 PMCID: PMC7759904 DOI: 10.3390/biomedicines8120549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
High-density lipoprotein (HDL) is well-known for its cardioprotective effects, as it possesses anti-inflammatory, anti-oxidative, anti-thrombotic, and cytoprotective properties. Traditionally, studies and therapeutic approaches have focused on raising HDL cholesterol levels. Recently, it became evident that, not HDL cholesterol, but HDL composition and functionality, is probably a more fruitful target. In disorders, such as chronic kidney disease or cardiovascular diseases, it has been observed that HDL is modified and becomes dysfunctional. There are different modification that can occur, such as serum amyloid, an enrichment and oxidation, carbamylation, and glycation of key proteins. Additionally, the composition of HDL can be affected by changes to enzymes such as cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and phospholipid transfer protein (PLTP) or by modification to other important components. This review will highlight some main modifications to HDL and discuss whether these modifications are purely a consequential result of pathology or are actually involved in the pathology itself and have a causal role. Therefore, HDL composition may present a molecular target for the amelioration of certain diseases, but more information is needed to determine to what extent HDL modifications play a causal role in disease development.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Sumra Nazir
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P.C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-241-80-36914
| |
Collapse
|
66
|
Karunakaran D, Nguyen MA, Geoffrion M, Vreeken D, Lister Z, Cheng HS, Otte N, Essebier P, Wyatt H, Kandiah JW, Jung R, Alenghat FJ, Mompeon A, Lee R, Pan C, Gordon E, Rasheed A, Lusis AJ, Liu P, Matic LP, Hedin U, Fish JE, Guo L, Kolodgie F, Virmani R, van Gils JM, Rayner KJ. RIPK1 Expression Associates With Inflammation in Early Atherosclerosis in Humans and Can Be Therapeutically Silenced to Reduce NF-κB Activation and Atherogenesis in Mice. Circulation 2020; 143:163-177. [PMID: 33222501 DOI: 10.1161/circulationaha.118.038379] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.
Collapse
Affiliation(s)
- Denuja Karunakaran
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.).,Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.)
| | - Michele Geoffrion
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Dianne Vreeken
- Leiden University Medical Center, The Netherlands (D.V., J.M.v.G.)
| | - Zachary Lister
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Henry S Cheng
- Toronto General Research Hospital Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (H.S.C.)
| | - Nicola Otte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - Patricia Essebier
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - Hailey Wyatt
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Joshua W Kandiah
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Richard Jung
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Francis J Alenghat
- Cardiology, Department of Medicine, University of Chicago, IL (F.J.A., J.E.F.)
| | - Ana Mompeon
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Richard Lee
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA (R.L.)
| | - Calvin Pan
- David Geffen School of Medicine, University of California Los Angeles (C.P., A.J.L.)
| | - Emma Gordon
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (D.K., N.O., P.E., E.G.)
| | - Adil Rasheed
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Aldons J Lusis
- David Geffen School of Medicine, University of California Los Angeles (C.P., A.J.L.)
| | - Peter Liu
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.)
| | - Ljubica Perisic Matic
- Vascular Surgery Division, Department of Molecular Medicine and Surgery, Karolinska Institute, Sweden (L.P.M.)
| | | | - Jason E Fish
- Cardiology, Department of Medicine, University of Chicago, IL (F.J.A., J.E.F.)
| | - Liang Guo
- CVPath Institute Inc., Gaithersburg, MD (L.G., F.K., R.V.)
| | - Frank Kolodgie
- CVPath Institute Inc., Gaithersburg, MD (L.G., F.K., R.V.)
| | - Renu Virmani
- CVPath Institute Inc., Gaithersburg, MD (L.G., F.K., R.V.)
| | | | - Katey J Rayner
- University of Ottawa Heart Institute, Canada (D.K., M.-A.N., M.G., Z.L., H.W., J.W.K., R.J., A.M., A.R., P.L., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada (M.-A.N., K.J.R.)
| |
Collapse
|
67
|
Galle-Treger L, Moreau M, Ballaire R, Poupel L, Huby T, Sasso E, Troise F, Poti F, Lesnik P, Le Goff W, Gautier EL, Huby T. Targeted invalidation of SR-B1 in macrophages reduces macrophage apoptosis and accelerates atherosclerosis. Cardiovasc Res 2020; 116:554-565. [PMID: 31119270 DOI: 10.1093/cvr/cvz138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/30/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
AIMS SR-B1 is a cholesterol transporter that exerts anti-atherogenic properties in liver and peripheral tissues in mice. Bone marrow (BM) transfer studies suggested an atheroprotective role in cells of haematopoietic origin. Here, we addressed the specific contribution of SR-B1 in the monocyte/macrophage. METHODS AND RESULTS We generated mice deficient for SR-B1 in monocytes/macrophages (Lysm-Cre × SR-B1f/f) and transplanted their BM into Ldlr-/- mice. Fed a cholesterol-rich diet, these mice displayed accelerated aortic atherosclerosis characterized by larger macrophage-rich areas and decreased macrophage apoptosis compared with SR-B1f/f transplanted controls. These findings were reproduced in BM transfer studies using another atherogenic mouse recipient (SR-B1 KOliver × Cholesteryl Ester Transfer Protein). Haematopoietic reconstitution with SR-B1-/- BM conducted in parallel generated similar results to those obtained with Lysm-Cre × SR-B1f/f BM; thus suggesting that among haematopoietic-derived cells, SR-B1 exerts its atheroprotective role primarily in monocytes/macrophages. Consistent with our in vivo data, free cholesterol (FC)-induced apoptosis of macrophages was diminished in the absence of SR-B1. This effect could not be attributed to differential cellular cholesterol loading. However, we observed that expression of apoptosis inhibitor of macrophage (AIM) was induced in SR-B1-deficient macrophages, and notably upon FC-loading. Furthermore, we demonstrated that macrophages were protected from FC-induced apoptosis by AIM. Finally, AIM protein was found more present within the macrophage-rich area of the atherosclerotic lesions of SR-B1-deficient macrophages than controls. CONCLUSION Our findings suggest that macrophage SR-B1 plays a role in plaque growth by controlling macrophage apoptosis in an AIM-dependent manner.
Collapse
Affiliation(s)
| | - Martine Moreau
- Sorbonne Université, INSERM, UMR_S 1166 ICAN, F-75013, Paris, France
| | | | - Lucie Poupel
- Sorbonne Université, INSERM, UMR_S 1166 ICAN, F-75013, Paris, France
| | - Thomas Huby
- Sorbonne Université, INSERM, UMR_S 1166 ICAN, F-75013, Paris, France
| | - Emanuele Sasso
- Ceinge Biotecnologie Avanzate S.C.R.L, Via Gaetano Salvatore 486, 80145, Napoli, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Napoli, Italy
| | - Fulvia Troise
- Ceinge Biotecnologie Avanzate S.C.R.L, Via Gaetano Salvatore 486, 80145, Napoli, Italy
| | - Francesco Poti
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, Parma, Italy
| | - Philippe Lesnik
- Sorbonne Université, INSERM, UMR_S 1166 ICAN, F-75013, Paris, France
| | - Wilfried Le Goff
- Sorbonne Université, INSERM, UMR_S 1166 ICAN, F-75013, Paris, France
| | | | - Thierry Huby
- Sorbonne Université, INSERM, UMR_S 1166 ICAN, F-75013, Paris, France
| |
Collapse
|
68
|
Chen CL, Liu XC, Liu L, Lo K, Yu YL, Huang JY, Huang YQ, Chen JY. U-Shaped Association of High-Density Lipoprotein Cholesterol with All-Cause and Cardiovascular Mortality in Hypertensive Population. Risk Manag Healthc Policy 2020; 13:2013-2025. [PMID: 33116982 PMCID: PMC7549655 DOI: 10.2147/rmhp.s272624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/12/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Whether the paradox of high-density lipoprotein cholesterol (HDL-C) and elevated mortality risk extends to hypertensive patients is unclear. We aimed to investigate the association between HDL-C and all-cause and cardiovascular disease mortality in adults with hypertension. Methods In the National Health and Nutrition Examination Surveys, 11,497 hypertensive participants aged ≥18years old and examined at baseline between 1999 and 2014 were followed up until December 2015. We categorized the HDL-C concentration as ≤30, 31–40, 41–50, 51–60 (reference), 61–70, >70 mg/dL and examined their associations with all-cause and cardiovascular mortality, respectively. Multivariate Cox regression was used to calculated hazard ratio (HR) and 95% confidence interval (CI) for mortality risk. Results During follow-up (median: 9.2 ± 3.8 years), 3012 deaths and 713 cardiovascular deaths were observed. In the restrictive cubic curves, associations of HDL-C levels and all-cause and cardiovascular mortality were detected to be U-shaped. After multivariable adjustment, HRs for all-cause mortality were for the lowest HDL-C concentration (≤30 mg/dL) 1.29 (95% CI, 1.07–1.56) and the highest (>70 mg/dL) 1.20 (1.06–1.37), comparing with the reference group. For cardiovascular mortality, HRs were 1.31 (0.83–1.48) and 1.09 (0.83–1.43), respectively. Similar results were obtained in subgroups stratified by age, gender, race, and taking lipid-lowering drugs. The lowest all-cause mortality risk was observed at HDL-C 66 mg/dL (concentration) and 51–60 mg/dL (range). Conclusion Both lower and higher HDL-C concentration appeared to be associated with higher mortality in hypertensive population. Further investigation is warranted to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Chao-Lei Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Xiao-Cong Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Lin Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Kenneth Lo
- Centre for Global Cardiometabolic Health, Department of Epidemiology, Brown University, Providence, RI, USA
| | - Yu-Ling Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Jia-Yi Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Yu-Qing Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Ji-Yan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| |
Collapse
|
69
|
May-Zhang LS, Kirabo A, Huang J, Linton MF, Davies SS, Murray KT. Scavenging Reactive Lipids to Prevent Oxidative Injury. Annu Rev Pharmacol Toxicol 2020; 61:291-308. [PMID: 32997599 DOI: 10.1146/annurev-pharmtox-031620-035348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidative injury due to elevated levels of reactive oxygen species is implicated in cardiovascular diseases, Alzheimer's disease, lung and liver diseases, and many cancers. Antioxidant therapies have generally been ineffective at treating these diseases, potentially due to ineffective doses but also due to interference with critical host defense and signaling processes. Therefore, alternative strategies to prevent oxidative injury are needed. Elevated levels of reactive oxygen species induce lipid peroxidation, generating reactive lipid dicarbonyls. These lipid oxidation products may be the most salient mediators of oxidative injury, as they cause cellular and organ dysfunction by adducting to proteins, lipids, and DNA. Small-molecule compounds have been developed in the past decade to selectively and effectively scavenge these reactive lipid dicarbonyls. This review outlines evidence supporting the role of lipid dicarbonyls in disease pathogenesis, as well as preclinical data supporting the efficacy of novel dicarbonyl scavengers in treating or preventing disease.
Collapse
Affiliation(s)
- Linda S May-Zhang
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Jiansheng Huang
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - MacRae F Linton
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Sean S Davies
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| | - Katherine T Murray
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA;
| |
Collapse
|
70
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
71
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
72
|
Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020; 12:E604. [PMID: 32610448 PMCID: PMC7407889 DOI: 10.3390/pharmaceutics12070604] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles have been extensively used as carriers for the delivery of chemicals and biomolecular drugs, such as anticancer drugs and therapeutic proteins. Natural biomolecules, such as proteins, are an attractive alternative to synthetic polymers commonly used in nanoparticle formulation because of their safety. In general, protein nanoparticles offer many advantages, such as biocompatibility and biodegradability. Moreover, the preparation of protein nanoparticles and the corresponding encapsulation process involved mild conditions without the use of toxic chemicals or organic solvents. Protein nanoparticles can be generated using proteins, such as fibroins, albumin, gelatin, gliadine, legumin, 30Kc19, lipoprotein, and ferritin proteins, and are prepared through emulsion, electrospray, and desolvation methods. This review introduces the proteins used and methods used in generating protein nanoparticles and compares the corresponding advantages and disadvantages of each.
Collapse
Affiliation(s)
- Seyoung Hong
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
73
|
Sorokin AV, Karathanasis SK, Yang ZH, Freeman L, Kotani K, Remaley AT. COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J 2020; 34:9843-9853. [PMID: 32588493 PMCID: PMC7361619 DOI: 10.1096/fj.202001451] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
The current coronavirus disease 2019 (COVID‐19) pandemic presents a global challenge for managing acutely ill patients and complications from viral infection. Systemic inflammation accompanied by a “cytokine storm,” hemostasis alterations and severe vasculitis have all been reported to occur with COVID‐19, and emerging evidence suggests that dysregulation of lipid transport may contribute to some of these complications. Here, we aim to summarize the current understanding of the potential mechanisms related to COVID‐19 dyslipidemia and propose possible adjunctive type therapeutic approaches that modulate lipids and lipoproteins. Specifically, we hypothesize that changes in the quantity and composition of high‐density lipoprotein (HDL) that occurs with COVID‐19 can significantly decrease the anti‐inflammatory and anti‐oxidative functions of HDL and could contribute to pulmonary inflammation. Furthermore, we propose that lipoproteins with oxidized phospholipids and fatty acids could lead to virus‐associated organ damage via overactivation of innate immune scavenger receptors. Restoring lipoprotein function with ApoA‐I raising agents or blocking relevant scavenger receptors with neutralizing antibodies could, therefore, be of value in the treatment of COVID‐19. Finally, we discuss the role of omega‐3 fatty acids transported by lipoproteins in generating specialized proresolving mediators and how together with anti‐inflammatory drugs, they could decrease inflammation and thrombotic complications associated with COVID‐19.
Collapse
Affiliation(s)
- Alexander V Sorokin
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sotirios K Karathanasis
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,NeoProgen, Baltimore, MD, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lita Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Japan
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
74
|
Yu S, Guo X, Li GX, Yang H, Zheng L, Sun Y. Lower or higher HDL-C levels are associated with cardiovascular events in the general population in rural China. Lipids Health Dis 2020; 19:152. [PMID: 32586331 PMCID: PMC7315555 DOI: 10.1186/s12944-020-01331-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The present study aims to estimate whether high-density lipoprotein cholesterol (HDL-C) is correlated with cardiovascular events (CVEs) and cardiovascular mortality (CVM) in a large sample of the general population in rural areas of China. METHODS Adult participants (n = 10,266, age = 53.79 ± 10.49 years; 46.5% men) were enrolled from the Northeast China Rural Cardiovascular Health Study (NCRCHS). Laboratory testing, blood pressure, weight, height, and questionnaires about socioeconomic status were collected. RESULTS In all, 585 nonfatal or fatal CVEs and 212 cardiovascular deaths were documented during a 4.66-year follow-up. Compared to the reference groups (HDL-C between 1.5 and 1.99 mmol/L), either lower or higher levels of HDL-C were correlated with an increased incidence of CVEs but not CVM [hazard ratio (HR) the lowest = 1.369, 95% confidence interval, 1.007-1.861; HR the highest = 1.044, 0.509-2.231]. Elevated CVM was seen in the lowest HDL-C category (1.840; 1.121-3.021). CONCLUSIONS Lower or higher HDL-C was associated with a higher incidence of CVEs but not CVM in the general population of rural China. Perhaps if an appropriate level of HDL-C is maintained, CVEs can be effectively prevented.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Guang Xiao Li
- Department of Clinical Epidemiology, Institute of Cardiovascular Diseases, First Hospital of China Medical University, Shenyang, 110001, China
| | - Hongmei Yang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Liqiang Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
75
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
76
|
Goulooze SC, Kruithof AC, Alikunju S, Gautam A, Burggraaf J, Kamerling IMC, Stevens J. The effect of food and formulation on the population pharmacokinetics of cholesteryl ester transferase protein inhibitor DRL-17822 in healthy male volunteers. Br J Clin Pharmacol 2020; 86:2095-2101. [PMID: 32250455 PMCID: PMC7495284 DOI: 10.1111/bcp.14297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
We aimed to characterise the population pharmacokinetics of cholesteryl ester transferase protein inhibitor DRL-17822 in healthy males and explore the effect of food and formulation on the oral absorption of DRL-17822 in 4 phase I studies. DRL-17822 was dosed orally (2-1000 mg) in 2 different drug formulations (nanocrystal formulation and amorphous solid dispersion formulation) after either an overnight fast, or a low-fat, continental or high-fat breakfast. A 2-compartment model with 6 transit absorption compartments best characterised the data. Additionally, a strong interaction of food and formulation on bioavailability was observed and parsimoniously characterised in the model by binning combinations of food state and formulation with similar bio-availabilities. The final model adequately characterised the pharmacokinetic data of DRL-17822 in healthy males including the complex interaction of food and drug formulation. The amorphous solid dispersion formulation has a lower food effect on bioavailability compared with the nanocrystal formulation.
Collapse
Affiliation(s)
- Sebastiaan C Goulooze
- Centre for Human Drug Research, Leiden, the Netherlands.,Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and Pharmacology, Leiden University, Leiden, the Netherlands
| | | | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherlands.,Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and Pharmacology, Leiden University, Leiden, the Netherlands.,Leiden University, Leiden University Medical Center, Leiden, the Netherlands
| | - Ingrid M C Kamerling
- Centre for Human Drug Research, Leiden, the Netherlands.,Leiden University, Leiden University Medical Center, Leiden, the Netherlands
| | - Jasper Stevens
- Centre for Human Drug Research, Leiden, the Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
77
|
High-density lipoproteins from egg yolk's effect on hyperlipidemia in a high-fat-diet obese mouse using lipidomic analysis. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Huang J, Wang D, Huang LH, Huang H. Roles of Reconstituted High-Density Lipoprotein Nanoparticles in Cardiovascular Disease: A New Paradigm for Drug Discovery. Int J Mol Sci 2020; 21:ijms21030739. [PMID: 31979310 PMCID: PMC7037452 DOI: 10.3390/ijms21030739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/08/2023] Open
Abstract
Epidemiological results revealed that there is an inverse correlation between high-density lipoprotein (HDL) cholesterol levels and risks of atherosclerotic cardiovascular disease (ASCVD). Mounting evidence supports that HDLs are atheroprotective, therefore, many therapeutic approaches have been developed to increase HDL cholesterol (HDL-C) levels. Nevertheless, HDL-raising therapies, such as cholesteryl ester transfer protein (CETP) inhibitors, failed to ameliorate cardiovascular outcomes in clinical trials, thereby casting doubt on the treatment of cardiovascular disease (CVD) by increasing HDL-C levels. Therefore, HDL-targeted interventional studies were shifted to increasing the number of HDL particles capable of promoting ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux. One such approach was the development of reconstituted HDL (rHDL) particles that promote ABCA1-mediated cholesterol efflux from lipid-enriched macrophages. Here, we explore the manipulation of rHDL nanoparticles as a strategy for the treatment of CVD. In addition, we discuss technological capabilities and the challenge of relating preclinical in vivo mice research to clinical studies. Finally, by drawing lessons from developing rHDL nanoparticles, we also incorporate the viabilities and advantages of the development of a molecular imaging probe with HDL nanoparticles when applied to ASCVD, as well as gaps in technology and knowledge required for putting the HDL-targeted therapeutics into full gear.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, 318 Preston Research Building, 2200 Pierce Avenue, Nashville, TN 37232, USA
- Correspondence:
| | - Dongdong Wang
- Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland;
| | - Li-Hao Huang
- Pathology and Immunology Department, Washington University School of Medicine, St. Louis, MO 63110-1093, USA;
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
79
|
Wong P, Li L, Chea J, Hu W, Poku E, Ebner T, Bowles N, Wong JYC, Yazaki PJ, Sligar S, Shively JE. Antibody Targeted PET Imaging of 64Cu-DOTA-Anti-CEA PEGylated Lipid Nanodiscs in CEA Positive Tumors. Bioconjug Chem 2020; 31:743-753. [DOI: 10.1021/acs.bioconjchem.9b00854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patty Wong
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, California 91010, United States
| | - Lin Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Junie Chea
- Radiopharmacy, City of Hope Medical Center, Duarte, California 91010, United States
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Erasmus Poku
- Radiopharmacy, City of Hope Medical Center, Duarte, California 91010, United States
| | - Todd Ebner
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Nicole Bowles
- Radiopharmacy, City of Hope Medical Center, Duarte, California 91010, United States
| | - Jeffrey Y. C. Wong
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, California 91010, United States
| | - Paul J. Yazaki
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Stephen Sligar
- Department of Molecular and Cellular Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - John E. Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| |
Collapse
|
80
|
Sun Z, Sun Y, Li Y, Luan X, Chen H, Wu H, Peng B, Lu C. Identification of HeLa cell proteins that interact with Chlamydia trachomatis glycogen synthase using yeast two‑hybrid assays. Mol Med Rep 2020; 21:1572-1580. [PMID: 32016474 PMCID: PMC7003024 DOI: 10.3892/mmr.2020.10947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is the leading cause of bacterial sexually transmitted diseases and infectious diseases that cause blindness. The pathophysiology of chlamydial infections is poorly understood, but secreted proteins have emerged as key virulence factors. C. trachomatis glycogen synthase (GlgA) is a chlamydial secretory protein, which localizes in the lumen of chlamydial inclusion bodies and the cytosol of host cells. In order to improve understanding of the roles of GlgA in chlamydial pathogenesis, four proteins that interact with GlgA, Homo sapiens CXXC finger protein 1, prohibitin (PHB), gelsolin-like actin-capping protein and apolipoprotein A-I binding protein were identified using yeast two-hybrid assays. The functions of these proteins are complex, and preliminary results suggested that PHB interacts with GlgA. However, further studies are required to determine the specific interactions of these proteins with GlgA. The findings of the present study may provide a direction and foundation for future studies focusing on the mechanism of GlgA in C. trachomatis infection.
Collapse
Affiliation(s)
- Zhenjie Sun
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuhui Sun
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yumeng Li
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiuli Luan
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Chen
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Haiying Wu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bo Peng
- Department of Pathology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chunxue Lu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
81
|
Structural analysis of lecithin:cholesterol acyltransferase bound to high density lipoprotein particles. Commun Biol 2020; 3:28. [PMID: 31942029 PMCID: PMC6962161 DOI: 10.1038/s42003-019-0749-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) catalyzes a critical step of reverse cholesterol transport by esterifying cholesterol in high density lipoprotein (HDL) particles. LCAT is activated by apolipoprotein A-I (ApoA-I), which forms a double belt around HDL, however the manner in which LCAT engages its lipidic substrates and ApoA-I in HDL is poorly understood. Here, we used negative stain electron microscopy, crosslinking, and hydrogen-deuterium exchange studies to refine the molecular details of the LCAT-HDL complex. Our data are consistent with LCAT preferentially binding to the edge of discoidal HDL near the boundary between helix 5 and 6 of ApoA-I in a manner that creates a path from the lipid bilayer to the active site of LCAT. Our results provide not only an explanation why LCAT activity diminishes as HDL particles mature, but also direct support for the anti-parallel double belt model of HDL, with LCAT binding preferentially to the helix 4/6 region.
Collapse
|
82
|
ABCA1 gene R1587K polymorphism could be associated with metabolic syndrome and increased plasma triglyceride concentration in adults from northern Mexico. NUTR HOSP 2020; 37:944-950. [DOI: 10.20960/nh.03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
83
|
Abstract
High-density lipoprotein (HDL) and its main protein component apolipoprotein (apo)A-I, play an important role in cholesterol homeostasis. It has been demonstrated that HDLs comprise of a very heterogeneous group of particles, not only regarding size but also composition. HDL's best described function is its role in the reverse cholesterol transport, where lipid-free apoA-I or small HDLs can accept and take up cholesterol from peripheral cells and subsequently transport this to the liver for excretion. However, several other functions have also been described, like anti-oxidant, anti-inflammatory and anti-thrombotic effects. In this article, the general features, synthesis and metabolism of apoA-I and HDLs will be discussed. Additionally, an overview of HDL functions will be given, especially in the context of some major pathologies like cardiovascular disease, cancer and diabetes mellitus. Finally, the therapeutic potential of raising HDL will be discussed, focussing on the difficulties of the past and the promises of the future.
Collapse
|
84
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
85
|
Lake NJ, Taylor RL, Trahair H, Harikrishnan KN, Curran JE, Almeida M, Kulkarni H, Mukhamedova N, Hoang A, Low H, Murphy AJ, Johnson MP, Dyer TD, Mahaney MC, Göring HHH, Moses EK, Sviridov D, Blangero J, Jowett JBM, Bozaoglu K. TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis. Eur Heart J 2019; 38:3579-3587. [PMID: 28655204 DOI: 10.1093/eurheartj/ehx315] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/25/2017] [Indexed: 12/28/2022] Open
Abstract
Aims The recent failures of HDL-raising therapies have underscored our incomplete understanding of HDL biology. Therefore there is an urgent need to comprehensively investigate HDL metabolism to enable the development of effective HDL-centric therapies. To identify novel regulators of HDL metabolism, we performed a joint analysis of human genetic, transcriptomic, and plasma HDL-cholesterol (HDL-C) concentration data and identified a novel association between trafficking protein, kinesin binding 2 (TRAK2) and HDL-C concentration. Here we characterize the molecular basis of the novel association between TRAK2 and HDL-cholesterol concentration. Methods and results Analysis of lymphocyte transcriptomic data together with plasma HDL from the San Antonio Family Heart Study (n = 1240) revealed a significant negative correlation between TRAK2 mRNA levels and HDL-C concentration, HDL particle diameter and HDL subspecies heterogeneity. TRAK2 siRNA-mediated knockdown significantly increased cholesterol efflux to apolipoprotein A-I and isolated HDL from human macrophage (THP-1) and liver (HepG2) cells by increasing the mRNA and protein expression of the cholesterol transporter ATP-binding cassette, sub-family A member 1 (ABCA1). The effect of TRAK2 knockdown on cholesterol efflux was abolished in the absence of ABCA1, indicating that TRAK2 functions in an ABCA1-dependent efflux pathway. TRAK2 knockdown significantly increased liver X receptor (LXR) binding at the ABCA1 promoter, establishing TRAK2 as a regulator of LXR-mediated transcription of ABCA1. Conclusion We show, for the first time, that TRAK2 is a novel regulator of LXR-mediated ABCA1 expression, cholesterol efflux, and HDL biogenesis. TRAK2 may therefore be an important target in the development of anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Nicole J Lake
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Rachael L Taylor
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Hugh Trahair
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - K N Harikrishnan
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Department of Pathology, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Hemant Kulkarni
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Nigora Mukhamedova
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Anh Hoang
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Hann Low
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Andrew J Murphy
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Matthew P Johnson
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Thomas D Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Eric K Moses
- University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.,Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Jeremy B M Jowett
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Kiymet Bozaoglu
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville,VIC 3052, Australia
| |
Collapse
|
86
|
High-Density Lipoprotein Particle Subfractions in Heart Failure With Preserved or Reduced Ejection Fraction. J Am Coll Cardiol 2019; 73:177-186. [PMID: 30654890 DOI: 10.1016/j.jacc.2018.10.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circulating high-density lipoprotein particle (HDL-P) subfractions impact atherogenesis, inflammation, and endothelial function, all of which are implicated in the pathobiology of heart failure (HF). OBJECTIVES The authors sought to identify key differences in plasma HDL-P subfractions between patients with HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF) to determine their prognostic utility. METHODS Patients with HFrEF (n = 782), HFpEF (n = 1,004), and no HF (n = 4,742) were identified in the CATHGEN (Catheterization Genetics) biorepository of sequential patients undergoing cardiac catheterization. Nuclear magnetic resonance-based lipoprotein profiling was performed on frozen fasting plasma obtained at catheterization. The authors used multivariable analysis of covariance to compare high-density lipoprotein particle (HDL-P) subfractions across groups, and Cox proportional hazards modeling to determine associations between HDL-P subfractions and time to death or major adverse cardiac events. RESULTS Mean HDL-P size was greater in HFrEF than HFpEF, both of which were greater than in no HF (all 2-way p < 0.0001). By contrast, concentrations of small HDL-P and total HDL-P were lesser in HFrEF than HFpEF, which were both lesser than no HF (all 2-way p ≤ 0.0002). In both HFrEF and HFpEF, total HDL-P and small HDL-P were inversely associated with time to adverse events. These findings persisted after adjustment for 14 clinical covariates (including high-density lipoprotein cholesterol content, coronary artery disease, and the inflammatory biomarker GlycA), and in sensitivity analyses featuring alternate left ventricular ejection fraction definitions, or stricter inclusion criteria with diastolic dysfunction or left ventricular end-diastolic pressure thresholds. CONCLUSIONS In the largest analysis of HDL-P subfractions in HF to date, derangements in HDL-P subfractions were identified that were more severe in HFrEF than HFpEF and were independently associated with adverse outcomes. These data may help refine risk assessment and provide new insights into the complex interaction of HDL and HF pathophysiology.
Collapse
|
87
|
Abstract
Several new or emerging drugs for dyslipidemia owe their existence, in part, to human genetic evidence, such as observations in families with rare genetic disorders or in Mendelian randomization studies. Much effort has been directed to agents that reduce LDL (low-density lipoprotein) cholesterol, triglyceride, and Lp[a] (lipoprotein[a]), with some sustained programs on agents to raise HDL (high-density lipoprotein) cholesterol. Lomitapide, mipomersen, AAV8.TBG.hLDLR, inclisiran, bempedoic acid, and gemcabene primarily target LDL cholesterol. Alipogene tiparvovec, pradigastat, and volanesorsen primarily target elevated triglycerides, whereas evinacumab and IONIS-ANGPTL3-LRx target both LDL cholesterol and triglyceride. IONIS-APO(a)-LRx targets Lp(a).
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, La Jolla (S.T.)
| |
Collapse
|
88
|
Schultz ML, Fawaz MV, Azaria RD, Hollon TC, Liu EA, Kunkel TJ, Halseth TA, Krus KL, Ming R, Morin EE, McLoughlin HS, Bushart DD, Paulson HL, Shakkottai VG, Orringer DA, Schwendeman AS, Lieberman AP. Synthetic high-density lipoprotein nanoparticles for the treatment of Niemann-Pick diseases. BMC Med 2019; 17:200. [PMID: 31711490 PMCID: PMC6849328 DOI: 10.1186/s12916-019-1423-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C is a fatal and progressive neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in late endosomes and lysosomes. We sought to develop new therapeutics for this disorder by harnessing the body's endogenous cholesterol scavenging particle, high-density lipoprotein (HDL). METHODS Here we design, optimize, and define the mechanism of action of synthetic HDL (sHDL) nanoparticles. RESULTS We demonstrate a dose-dependent rescue of cholesterol storage that is sensitive to sHDL lipid and peptide composition, enabling the identification of compounds with a range of therapeutic potency. Peripheral administration of sHDL to Npc1 I1061T homozygous mice mobilizes cholesterol, reduces serum bilirubin, reduces liver macrophage size, and corrects body weight deficits. Additionally, a single intraventricular injection into adult Npc1 I1061T brains significantly reduces cholesterol storage in Purkinje neurons. Since endogenous HDL is also a carrier of sphingomyelin, we tested the same sHDL formulation in the sphingomyelin storage disease Niemann-Pick type A. Utilizing stimulated Raman scattering microscopy to detect endogenous unlabeled lipids, we show significant rescue of Niemann-Pick type A lipid storage. CONCLUSIONS Together, our data establish that sHDL nanoparticles are a potential new therapeutic avenue for Niemann-Pick diseases.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Maria V Fawaz
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ruth D Azaria
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Todd C Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Elaine A Liu
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Troy A Halseth
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelsey L Krus
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ran Ming
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Emily E Morin
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - David D Bushart
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Daniel A Orringer
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anna S Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
89
|
Mast Cells as Potential Accelerators of Human Atherosclerosis-From Early to Late Lesions. Int J Mol Sci 2019; 20:ijms20184479. [PMID: 31514285 PMCID: PMC6770933 DOI: 10.3390/ijms20184479] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mast cells are present in atherosclerotic lesions throughout their development. The process of atherogenesis itself is characterized by infiltration and retention of cholesterol-containing blood-derived low-density lipoprotein (LDL) particles in the intimal layer of the arterial wall, where the particles become modified and ingested by macrophages, resulting in the formation of cholesterol-filled foam cells. Provided the blood-derived high-density lipoproteins (HDL) particles are able to efficiently carry cholesterol from the foam cells back to the circulation, the early lesions may stay stable or even disappear. However, the modified LDL particles also trigger a permanent local inflammatory reaction characterized by the presence of activated macrophages, T cells, and mast cells, which drive lesion progression. Then, the HDL particles become modified and unable to remove cholesterol from the foam cells. Ultimately, the aging foam cells die and form a necrotic lipid core. In such advanced lesions, the lipid core is separated from the circulating blood by a collagenous cap, which may become thin and fragile and susceptible to rupture, so causing an acute atherothrombotic event. Regarding the potential contribution of mast cells in the initiation and progression of atherosclerotic lesions, immunohistochemical studies in autopsied human subjects and studies in cell culture systems and in atherosclerotic mouse models have collectively provided evidence that the compounds released by activated mast cells may promote atherogenesis at various steps along the path of lesion development. This review focuses on the presence of activated mast cells in human atherosclerotic lesions. Moreover, some of the molecular mechanisms potentially governing activation and effector functions of mast cells in such lesions are presented and discussed.
Collapse
|
90
|
Bahrami A, Barreto GE, Lombardi G, Pirro M, Sahebkar A. Emerging roles for high-density lipoproteins in neurodegenerative disorders. Biofactors 2019; 45:725-739. [PMID: 31301192 DOI: 10.1002/biof.1541] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
Lipoproteins are the complexes of different lipids and proteins, which are devoted to the transport and clearance of lipids or lipid-related molecules in the circulation. Lipoproteins have been found to play a crucial role in brain function and may influence myelination process. Among lipoproteins, high-density lipoproteins (HDLs) and their major protein component, apoA-I, are directly involved in cholesterol efflux in the brain. It has been suggested that inadequate or dysfunctional brain HDLs may contribute to cerebrovascular dysfunctions, neurodegeneration, or neurovascular instability. HDL deficiency could also promote cognitive decline through impacting on atherosclerotic risk. The focus of this review is to discuss knowledge on HDL dysregulation in neurological disorders. A better understanding on how changes in cellular HDL and apolipoprotein homeostasis affect central nervous system function may provide promising novel avenues for the treatment of specific HDL-related neurological disorders.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
91
|
Kornmueller K, Vidakovic I, Prassl R. Artificial High Density Lipoprotein Nanoparticles in Cardiovascular Research. Molecules 2019; 24:E2829. [PMID: 31382521 PMCID: PMC6695986 DOI: 10.3390/molecules24152829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Lipoproteins are endogenous nanoparticles which are the major transporter of fats and cholesterol in the human body. They play a key role in the regulatory mechanisms of cardiovascular events. Lipoproteins can be modified and manipulated to act as drug delivery systems or nanocarriers for contrast agents. In particular, high density lipoproteins (HDL), which are the smallest class of lipoproteins, can be synthetically engineered either as nascent HDL nanodiscs or spherical HDL nanoparticles. Reconstituted HDL (rHDL) particles are formed by self-assembly of various lipids and apolipoprotein AI (apo-AI). A variety of substances including drugs, nucleic acids, signal emitting molecules, or dyes can be loaded, making them efficient nanocarriers for therapeutic applications or medical diagnostics. This review provides an overview about synthesis techniques, physicochemical properties of rHDL nanoparticles, and structural determinants for rHDL function. We discuss recent developments utilizing either apo-AI or apo-AI mimetic peptides for the design of pharmaceutical rHDL formulations. Advantages, limitations, challenges, and prospects for clinical translation are evaluated with a special focus on promising strategies for the treatment and diagnosis of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ivan Vidakovic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| |
Collapse
|
92
|
Valanti EK, Chroni A, Sanoudou D. The future of apolipoprotein E mimetic peptides in the prevention of cardiovascular disease. Curr Opin Lipidol 2019; 30:326-341. [PMID: 31157629 DOI: 10.1097/mol.0000000000000615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review aims to discuss the recent developments in the area of apolipoprotein E (apoE) mimetics and their therapeutic potential for treating cardiovascular disease, the leading cause of mortality worldwide. RECENT FINDINGS Ongoing research efforts target the development of novel therapies that would not only reduce circulating levels of atherogenic lipoproteins, but could also increase high density lipoprotein cholesterol (HDL-C) levels and/or improve HDL function. Among them, synthetic peptides that mimic the structure of natural human apoE, a component of triglyceride-rich lipoproteins and HDL, have been designed and proven to be functionally similar to apoE. In specific, apoE mimetic peptides mediate hepatic clearance of circulating atherogenic lipoproteins, dramatically reduce plasma cholesterol, and lead to attenuation of atherosclerosis development in vivo. These peptides also exhibit pleiotropic antiatherogenic properties, such as macrophage cholesterol efflux capacity, as well as anti-inflammatory and antioxidative functions. SUMMARY ApoE mimetics are undergoing preclinical and clinical evaluation with promising results to date that render them attractive candidates in cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Eftaxia-Konstantina Valanti
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research 'Demokritos'
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
93
|
Abstract
PURPOSE OF REVIEW The inverse association between plasma high-density lipoprotein cholesterol (HDL-C) concentration and the incidence of cardiovascular disease (CVD) has been unequivocally proven by many epidemiological studies. There are several genetic disorders affecting HDL-C plasma levels, either providing atheroprotection or predisposing to premature atherosclerosis. However, up to date, there has not been any pharmacological intervention modulating HDL-C levels, which has been clearly shown to prevent the progression of CVD. Thus, clarifying the exact underlying mechanisms of inheritance of these genetic disorders that affect HDL is a current goal of the research, as key roles of molecular components of HDL metabolism and function can be revealed and become targets for the discovery of novel medications for the prevention and treatment of CVD. RECENT FINDINGS Primary genetic disorders of HDL can be either associated with longevity or, in contrast, may lead to premature CVD, causing high morbidity and mortality to their carriers. A large body of recent research has closely examined the genetic disorders of HDL and new promising therapeutic strategies have been developed, which may be proven beneficial in patients predisposed to CVD in the near future. SUMMARY We have reviewed recent findings on the inheritance of genetic disorders associated with high and low HDL-C plasma levels and we have discussed their clinical features, as well as information about new promising HDL-C-targeted therapies that are under clinical trials.
Collapse
Affiliation(s)
| | - Constantine E Kosmas
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
94
|
Zwol WV, Rimbert A, Kuivenhoven JA. The Future of Lipid-lowering Therapy. J Clin Med 2019; 8:E1085. [PMID: 31340607 PMCID: PMC6678580 DOI: 10.3390/jcm8071085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
The recent introduction of inhibitors of proprotein convertase subtilisin/kexin 9 to lower low-density lipoprotein (LDL) cholesterol on top of statins or as monotherapy is rapidly changing the landscape of treatment of atherosclerotic cardiovascular disease (ASCVD). However, existing lipid-lowering drugs have little impact on lipoprotein(a) (Lp(a)) or plasma triglycerides, two other risk factors for ASCVD. This review summarizes the evidence and the rationale to target Lp(a) and triglycerides and provides an overview of currently tested strategies to lower Lp(a), apolipoprotein C-III and angiopoietin-like protein 3. In addition, it summarizes new findings on the use of omega-3 fatty acids (OM3FA) to fight ASCVD. With the exception of OM3FA supplementation, the promise of the experimental drugs discussed here depends on the long-term safety and efficacy of monoclonal antibodies and/or antisense oligonucleotides Clinical outcome trials will ultimately prove whether these new therapeutic modalities will reduce ASCVD risk.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Centre Groningen, 9713 Groningen, The Netherlands
| | - Antoine Rimbert
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Centre Groningen, 9713 Groningen, The Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Centre Groningen, 9713 Groningen, The Netherlands.
| |
Collapse
|
95
|
Zhao X, Zhang HW, Sun D, Xu RX, Guo YL, Sun J, Zhu CG, Wu NQ, Zhang Y, Li S, Li JJ. Relation of oxidized-low-density lipoprotein and high-density lipoprotein subfractions in non-treated patients with coronary artery disease. Prostaglandins Other Lipid Mediat 2019; 144:106345. [PMID: 31278984 DOI: 10.1016/j.prostaglandins.2019.106345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 05/16/2019] [Accepted: 06/19/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oxidized-low-density lipoprotein (ox-LDL), as well as high-density lipoprotein (HDL) and its subfractions play important role in the development of coronary artery disease (CAD). METHODS A total of 1417 individuals who received selective coronary angiography (CAG) without lipids-lowering treatments were consecutively enrolled. Patients were divided into CAD (n = 942) and non-CAD group (n = 475). The severity of CAD was assessed by Gensini Scores (GS) system. The correlations of ox-LDL with HDL subfractions were analyzed. RESULTS Compared with non-CAD subjects, CAD patients had higher ox-LDL but lower concentrations of HDL cholesterol (p = 0.002) and large HDL subfractions (p = 0.004). And ox-LDL was negatively correlated with large HDL subfractions in patients with severe CAD (p < 0.05). Moreover, ox-LDL was elevated and large HDL subfractions decreased with the increase of the number of stenotic coronary arteries and GS (p < 0.05, respectivelly). CONCLUSIONS The correlations between ox-LDL and cholesterol level of large HDL particles varied among CAD and non-CAD, and CAD with different severities of atherosclerosis.
Collapse
Affiliation(s)
- Xi Zhao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China; Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui-Wen Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Di Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jing Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Yan Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China.
| |
Collapse
|
96
|
Lipoprotein modulation of proteinuric renal injury. J Transl Med 2019; 99:1107-1116. [PMID: 31019291 PMCID: PMC6658349 DOI: 10.1038/s41374-019-0253-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
High-density lipoprotein (HDL) and its main protein, apolipoprotein AI (apoAI), have established benefits in various cells, but whether these cytoprotective effects of HDL pertain to renal cells is unclear. We investigated the in vitro consequences of exposing damaged podocytes to normal apoAI, HDL, and apoAI mimetic (L-4F), and the in vivo effects of L-4F on kidney and atherosclerotic injury in a podocyte-specific injury model of proteinuria. In vitro, primary mouse podocytes were injured by puromycin aminonucleoside (PAN). Cellular viability, migration, production of reactive oxygen species (ROS), apoptosis, and the underlying signaling pathway were assessed. In vivo, we used a proteinuric model, Nphs1-hCD25 transgenic (NEP25+) mice, which express human CD25 on podocytes. Podocyte injury was induced by using immunotoxin (LMB2) and generated a proteinuric atherosclerosis model, NEP25+:apoE-/- mice, was generated by mating apoE-deficient (apoE-/-) mice with NEP25+ mice. Animals received L-4F or control vehicle. Renal function, podocyte injury, and atherosclerosis were assessed. PAN reduced podocyte viability, migration, and increased ROS production, all significantly lessened by apoAI, HDL, and L-4F. L-4F attenuated podocyte apoptosis and diminished PAN-induced inactivation of Janus family protein kinase-2/signal transducers and activators of transcription 3. In NEP25+ mice, L-4F significantly lessened overall proteinuria, and preserved podocyte expression of synaptopodin and cell density. Proteinuric NEP25+:apoE-/- mice had more atherosclerosis than non-proteinuric apoE-/- mice, and these lesions were significantly decreased by L-4F. Normal human apoAI, HDL, and apoAI mimetic protect against podocyte damage. ApoAI mimetic provides in vivo beneficial effects on podocytes that culminate in reduced albuminuria and atherosclerosis. The results suggest supplemental apoAI/apoAI mimetic may be a novel candidate to lessen podocyte damage and its complications.
Collapse
|
97
|
Xiang AS, Kingwell BA. Rethinking good cholesterol: a clinicians' guide to understanding HDL. Lancet Diabetes Endocrinol 2019; 7:575-582. [PMID: 30910502 DOI: 10.1016/s2213-8587(19)30003-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022]
Abstract
Low HDL cholesterol dyslipidaemia affects about half of people with type 2 diabetes and represents a major independent risk factor for atherosclerotic cardiovascular disease. The "good cholesterol" label was coined decades ago on the basis of a presumed causal role of HDL cholesterol in atherosclerotic cardiovascular disease. However, this view has been challenged by the negative results of several studies of HDL cholesterol-raising drugs, creating a paradox for clinicians regarding the value of HDL cholesterol as a risk biomarker and therapeutic target, and seemingly contradicting decades of evidence substantiating an inverse relation between HDL cholesterol and cardiovascular disease risk. We seek to resolve this issue by revisiting the history of the HDL hypothesis, chronicling how this paradox is ultimately rooted in the progressive erroneous blurring of the distinction between HDL and HDL cholesterol. We describe the compositional complexity of HDL particles beyond their cholesterol cargo and focus on their role in lipid transport. We discuss the evidence regarding novel HDL functions, including effects on glucose metabolism, and speculate on the implications for type 2 diabetes. HDL cholesterol is an imperfect biomarker of a highly complex and multifunctional lipid transport system, and we should now consider how new HDL markers more causally linked to cardiovascular complications could be adapted for clinical use. In the absence of a superior alternative, HDL cholesterol generally has value as a component of primary cardiovascular disease risk prediction models, including in people with type 2 diabetes. However, to avoid prognostic overgeneralisations, it is high time that the good cholesterol label is dropped.
Collapse
Affiliation(s)
- Angie S Xiang
- Metabolic and Vascular Physiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bronwyn A Kingwell
- Metabolic and Vascular Physiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
98
|
Bajaj A, Xie D, Cedillo-Couvert E, Charleston J, Chen J, Deo R, Feldman HI, Go AS, He J, Horwitz E, Kallem R, Rahman M, Weir MR, Anderson AH, Rader DJ. Lipids, Apolipoproteins, and Risk of Atherosclerotic Cardiovascular Disease in Persons With CKD. Am J Kidney Dis 2019; 73:827-836. [PMID: 30686529 PMCID: PMC6615056 DOI: 10.1053/j.ajkd.2018.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023]
Abstract
RATIONALE & OBJECTIVE A large residual risk for atherosclerotic cardiovascular disease (ASCVD) remains in the setting of chronic kidney disease (CKD) despite treatment with statins. We sought to evaluate the associations of lipid and apolipoprotein levels with risk for ASCVD in individuals with CKD. STUDY DESIGN Prospective cohort study. SETTINGS & PARTICIPANTS Adults aged 21 to 74 years with non-dialysis-dependent CKD at baseline enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study in 7 clinical study centers in the United States. PREDICTOR Baseline total cholesterol, non-high-density lipoprotein cholesterol (non-HDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglycerides, low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (Apo-B), HDL-C, and apolipoprotein AI (Apo-AI) values stratified into tertiles. OUTCOME A composite ASCVD event of myocardial infarction or ischemic stroke. ANALYTIC APPROACH Multivariable Cox proportional hazards regression to estimate the risk for ASCVD for each tertile of lipoprotein predictor. RESULTS Among 3,811 CRIC participants (mean age, 57.7 years; 41.8% white), there were 451 ASCVD events during a median follow-up of 7.9 years. There was increased ASCVD risk among participants with VLDL-C levels in the highest tertile (HR, 1.28; 95% CI, 1.01-1.64), Apo-B levels in the middle tertile (HR, 1.30; 95% CI, 1.03-1.64), HDL-C levels in the middle and lowest tertiles (HRs of 1.40 [95% CI, 1.08-1.83] and 1.77 [95% CI, 1.35-2.33], respectively), and Apo-AI levels in the middle and lowest tertiles (HRs of 1.77 [95% CI, 1.02-1.74] and 1.77 [95% CI, 1.36-2.32], respectively). LDL-C level was not significantly associated with the ASCVD outcome in this population (HR, 1.00 [95% CI, 0.77-1.30] for the highest tertile). LIMITATIONS Associations based on observational data do not permit inferences about causal associations. CONCLUSIONS Higher VLDL-C and Apo-B levels, as well as lower HDL-C and Apo-AI levels, are associated with increased risk for ASCVD. These findings support future investigations into pharmacologic targeting of lipoproteins beyond LDL-C, such as triglyceride-rich lipoproteins, to reduce residual risk for ASCVD among individuals with CKD.
Collapse
Affiliation(s)
- Archna Bajaj
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| | - Dawei Xie
- Department of Biostatistics and Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Esteban Cedillo-Couvert
- Division of Nephrology, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL
| | - Jeanne Charleston
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jing Chen
- Division of Nephrology and Hypertension, Department of Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Rajat Deo
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Harold I Feldman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Biostatistics and Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Edward Horwitz
- Division of Nephrology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH
| | - Radhakrishna Kallem
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mahboob Rahman
- Division of Nephrology and Hypertension, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH
| | - Matthew R Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Amanda H Anderson
- Department of Biostatistics and Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; The Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
99
|
Durham KK, Kluck G, Mak KC, Deng YD, Trigatti BL. Treatment with apolipoprotein A1 protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class B, type I-dependent manner. Am J Physiol Heart Circ Physiol 2019; 316:H1447-H1457. [DOI: 10.1152/ajpheart.00432.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin, an agent used to treat a variety of cancers, is cardiotoxic by triggering cardiomyocyte apoptosis. We previously showed that treating cultured cardiomyocytes with human high-density lipoprotein in vitro or transgenic overexpression of human apolipoprotein A1, its main structural protein, protects against doxorubicin-induced cardiomyocyte apoptosis in a manner dependent on the scavenger receptor class B type I [Durham KK, Chathely KM, Mak KC, Momen A, Thomas CT, Zhao YY, MacDonald ME, Curtis JM, Husain M, Trigatti BL. HDL protects against doxorubicin-induced cardiotoxicity in a scavenger receptor class B type 1-, phosphatidylinositol 3-kinase-, and Akt-dependent manner. Am J Physiol Heart Circ Physiol 314: H31–H44, 2018]. This was due to high-density lipoprotein-induced activation of Akt signaling in cardiomyocytes. We now demonstrate that mice lacking the scavenger receptor class B, type I exhibit increased sensitivity to doxorubicin-induced cardiomyocyte apoptosis in vivo. Cardiomyocytes expressing scavenger receptor class B, type I are protected from doxorubicin-induced apoptosis by preincubation with high-density lipoprotein isolated from wild-type mice, whereas high-density lipoprotein from scavenger receptor class B, type 1 knockout mice is less effective. Cardiomyocytes from scavenger receptor class B, type I knockout mice, however, are not protected by high-density lipoprotein in vitro, and hearts from knockout mice are more sensitive to doxorubicin in vivo. Pharmacological administration of purified apolipoprotein A1 dramatically protected wild-type mice from doxorubicin-induced cardiotoxicity and left ventricular dysfunction, whereas this protection was lost in scavenger receptor class B, type I-deficient mice. This demonstrates, at least in mice, that high-density lipoprotein therapy can confer protection against doxorubicin-induced cardiomyocyte apoptosis in a manner mediated by the scavenger receptor class B, type I. NEW & NOTEWORTHY We show that scavenger receptor class B, type I (SR-B1) mediates HDL-dependent protection against doxorubicin-induced cardiomyocyte apoptosis and that this is a property of SR-B1 in cardiomyocytes in vitro and in hearts in vivo. We also demonstrate that pharmacological treatment with apolipoprotein A1, the major HDL structural protein, protects mice against doxorubicin-induced cardiomyocyte apoptosis and left ventricular dysfunction in an SR-B1-dependent manner. This suggests that HDL-targeted pharmacological therapy may hold promise for protecting against the deleterious, cardiotoxic side effects of this commonly used chemotherapeutic drug.
Collapse
Affiliation(s)
- Kristina K. Durham
- Medical Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - George Kluck
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Kei Cheng Mak
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Yak D. Deng
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
100
|
Dal Magro R, Simonelli S, Cox A, Formicola B, Corti R, Cassina V, Nardo L, Mantegazza F, Salerno D, Grasso G, Deriu MA, Danani A, Calabresi L, Re F. The Extent of Human Apolipoprotein A-I Lipidation Strongly Affects the β-Amyloid Efflux Across the Blood-Brain Barrier in vitro. Front Neurosci 2019; 13:419. [PMID: 31156358 PMCID: PMC6532439 DOI: 10.3389/fnins.2019.00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Much evidence suggests a protective role of high-density lipoprotein (HDL) and its major apolipoprotein apoA-I, in Alzheimer's disease (AD). The biogenesis of nascent HDL derived from a first lipidation of apoA-I, which is synthesized by the liver and intestine but not in the brain, in a process mediated by ABCA1. The maturation of nascent HDL in mature spherical HDL is due to a subsequent lipidation step, LCAT-mediated cholesterol esterification, and the change of apoA-I conformation. Therefore, different subclasses of apoA-I-HDL simultaneously exist in the blood circulation. Here, we investigated if and how the lipidation state affects the ability of apoA-I-HDL to target and modulate the cerebral β-amyloid (Aβ) content from the periphery, that is thus far unclear. In particular, different subclasses of HDL, each with different apoA-I lipidation state, were purified from human plasma and their ability to cross the blood-brain barrier (BBB), to interact with Aβ aggregates, and to affect Aβ efflux across the BBB was assessed in vitro using a transwell system. The results showed that discoidal HDL displayed a superior capability to promote Aβ efflux in vitro (9 × 10-5 cm/min), when compared to apoA-I in other lipidation states. In particular, no effect on Aβ efflux was detected when apoA-I was in mature spherical HDL, suggesting that apoA-I conformation, and lipidation could play a role in Aβ clearance from the brain. Finally, when apoA-I folded its structure in discoidal HDL, rather than in spherical ones, it was able to cross the BBB in vitro and strongly destabilize the conformation of Aβ fibrils by decreasing the order of the fibril structure (-24%) and the β-sheet content (-14%). These data suggest that the extent of apoA-I lipidation, and consequently its conformation, may represent crucial features that could exert their protective role in AD pathogenesis.
Collapse
Affiliation(s)
- Roberta Dal Magro
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Sara Simonelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Alysia Cox
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Beatrice Formicola
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Roberta Corti
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Valeria Cassina
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Luca Nardo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Francesco Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Gianvito Grasso
- Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Marco Agostino Deriu
- Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Andrea Danani
- Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Laura Calabresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|