51
|
Environmental Toxicants and NAFLD: A Neglected yet Significant Relationship. Dig Dis Sci 2022; 67:3497-3507. [PMID: 34383198 DOI: 10.1007/s10620-021-07203-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/27/2021] [Indexed: 01/09/2023]
Abstract
The liver is an organ of vital importance in the body; it is the center of metabolic activities and acts as the primary line of defense against toxic compounds. Exposure to environmental toxicants is an unavoidable fallout from rapid industrialization across the world and is even higher in developing countries. Technological development and industrialization have led to the release of toxicants such as pollutant toxic gases, chemical discharge, industrial effluents, pesticides and solvents, into the environment. In the last few years, a growing body of evidence has shed light on the potential impact of environmental toxicants on liver health, in particular, on non-alcoholic fatty liver disease (NAFLD) incidence and progression. NAFLD is a multifactorial disease linked to metabolic derangement including diabetes and other complications. Environmental toxicants including xenobiotics and pollutants may have a direct or indirect steatogenic/fibrogenic impact on the liver and should be considered as risk factors associated with NAFLD. This review discusses the contribution of environmental toxicants toward the increasing disease burden of NAFLD.
Collapse
|
52
|
Midya V, Colicino E, Conti DV, Berhane K, Garcia E, Stratakis N, Andrusaityte S, Basagaña X, Casas M, Fossati S, Gražulevičienė R, Haug LS, Heude B, Maitre L, McEachan R, Papadopoulou E, Roumeliotaki T, Philippat C, Thomsen C, Urquiza J, Vafeiadi M, Varo N, Vos MB, Wright J, McConnell R, Vrijheid M, Chatzi L, Valvi D. Association of Prenatal Exposure to Endocrine-Disrupting Chemicals With Liver Injury in Children. JAMA Netw Open 2022; 5:e2220176. [PMID: 35793087 PMCID: PMC9260485 DOI: 10.1001/jamanetworkopen.2022.20176] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022] Open
Abstract
Importance Prenatal exposures to endocrine-disrupting chemicals (EDCs) may increase the risk for liver injury in children; however, human evidence is scarce, and previous studies have not considered potential EDC-mixture effects. Furthermore, the association between prenatal EDC exposure and hepatocellular apoptosis in children has not been studied previously. Objective To investigate associations of prenatal exposure to EDC mixtures with liver injury risk and hepatocellular apoptosis in childhood. Design, Setting, and Participants This prospective cohort study used data collected from April 1, 2003, to February 26, 2016, from mother-child pairs from the Human Early-Life Exposome project, a collaborative network of 6 ongoing, population-based prospective birth cohort studies from 6 European countries (France, Greece, Lithuania, Norway, Spain, and the UK). Data were analyzed from April 1, 2021, to January 31, 2022. Exposures Three organochlorine pesticides, 5 polychlorinated biphenyls, 2 polybrominated diphenyl ethers (PBDEs), 3 phenols, 4 parabens, 10 phthalates, 4 organophosphate pesticides, 5 perfluoroalkyl substances, and 9 metals. Main Outcomes and Measures Child serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and CK-18 were measured at 6 to 11 years of age. Risk for liver injury was defined as having ALT, AST, and/or GGT levels above the 90th percentile. Associations of liver injury or cytokeratin 18 (CK-18) levels with each chemical group among the 45 EDCs measured in maternal blood or urine samples collected in pregnancy were estimated using 2 complimentary exposure-mixture methods: bayesian weighted quantile sum (BWQS) and bayesian kernel machine regression. Results The study included 1108 mothers (mean [SD] age at birth, 31.0 [4.7] years) and their singleton children (mean [SD] age at liver assessment, 8.2 [1.6] years; 598 [54.0%] boys). Results of the BWQS method indicated increased odds of liver injury per exposure-mixture quartile increase for organochlorine pesticides (odds ratio [OR], 1.44 [95% credible interval (CrI), 1.21-1.71]), PBDEs (OR, 1.57 [95% CrI, 1.34-1.84]), perfluoroalkyl substances (OR, 1.73 [95% CrI, 1.45-2.09]), and metals (OR, 2.21 [95% CrI, 1.65-3.02]). Decreased odds of liver injury were associated with high-molecular-weight phthalates (OR, 0.74 [95% CrI, 0.60-0.91]) and phenols (OR, 0.66 [95% CrI, 0.54-0.78]). Higher CK-18 levels were associated with a 1-quartile increase in polychlorinated biphenyls (β, 5.84 [95% CrI, 1.69-10.08] IU/L) and PBDEs (β, 6.46 [95% CrI, 3.09-9.92] IU/L). Bayesian kernel machine regression showed associations in a similar direction as BWQS for all EDCs and a nonlinear association between phenols and CK-18 levels. Conclusions and Relevance With a combination of 2 state-of-the-art exposure-mixture approaches, consistent evidence suggests that prenatal exposures to EDCs are associated with higher risk for liver injury and CK-18 levels and constitute a potential risk factor for pediatric nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - David V. Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Kiros Berhane
- Department of Biostatistics, Columbia University, New York City, New York
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Nikos Stratakis
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Madrid, Spain
| | | | | | - Barbara Heude
- Université de Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), National Research Institute for Agriculture, Food and Environment, Centre of Research in Epidemiology and Statistics, Paris, France
| | - Léa Maitre
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Madrid, Spain
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS (National Health Service) Foundation Trust, Bradford, United Kingdom
| | | | | | - Claire Philippat
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble Alpes University, INSERM, Centre National de la Recherche Scientifique, La Tronche, France
| | | | - Jose Urquiza
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Greece
| | - Nerea Varo
- Clinical Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Miriam B. Vos
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS (National Health Service) Foundation Trust, Bradford, United Kingdom
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública, Madrid, Spain
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
53
|
Kladnicka I, Bludovska M, Plavinova I, Muller L, Mullerova D. Obesogens in Foods. Biomolecules 2022; 12:biom12050680. [PMID: 35625608 PMCID: PMC9138445 DOI: 10.3390/biom12050680] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Obesogens, as environmental endocrine-disrupting chemicals, are supposed to have had an impact on the prevalence of rising obesity around the world over the last forty years. These chemicals are probably able to contribute not only to the development of obesity and metabolic disturbances in individuals, but also in their progeny, having the capability to epigenetically reprogram genetically inherited set-up points for body weight and body composition control during critical periods of development, such as fetal, early life, and puberty. In individuals, they may act on myriads of neuro-endocrine–immune metabolic regulatory pathways, leading to pathophysiological consequences in adipogenesis, lipogenesis, lipolysis, immunity, the influencing of central appetite and energy expenditure regulations, changes in gut microbiota–intestine functioning, and many other processes. Evidence-based medical data have recently brought much more convincing data about associations of particular chemicals and the probability of the raised risk of developing obesity. Foods are the main source of obesogens. Some obesogens occur naturally in food, but most are environmental chemicals, entering food as a foreign substance, whether in the form of contaminants or additives, and they are used in a large amount in highly processed food. This review article contributes to a better overview of obesogens, their occurrence in foods, and their impact on the human organism.
Collapse
Affiliation(s)
- Iva Kladnicka
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
- Correspondence: ; Tel.: +420-377-593-193
| | - Monika Bludovska
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Institute of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Iveta Plavinova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
| | - Ludek Muller
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| | - Dana Mullerova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| |
Collapse
|
54
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
55
|
Tian M, Xia P, Gou X, Yan L, Yu H, Zhang X. CRISPR screen identified that UGT1A9 was required for bisphenols-induced mitochondria dyshomeostasis. ENVIRONMENTAL RESEARCH 2022; 205:112427. [PMID: 34861229 DOI: 10.1016/j.envres.2021.112427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Exposure to bisphenols chemicals could cause various adverse health effects, including non-alcoholic fatty liver disease (NAFLD), which have been associated with cellular mitochondria stress. However, the biological mechanism underlying the mitochondria stress-mediated cell death by bisphenols was poorly understood. Here, CRISPR screens were performed to identify the critical genes which were involved in cell death caused by exposure to four bisphenols (BPA, BPB, BPE and BPS). Results of CRISPR screens showed that UGT1A9 was the primary genetic factor facilitating cell death induced by all of the four bisphenols. Systematic toxicological tests demonstrated that UGT1A9 was required for BPA-induced mitochondria dyshomeostasis in vitro and in vivo, and UGT1A9-mediated mitochondria dyshomeostasis was an important cause of facilitating cell death. Liver injury caused by exposure to BPA in wild-type mice was accompanied with suppression of mitophagy and increased expression of C-Caspase 3, but UGT1A9 knockout attenuated these adverse effects induced by BPA. Finally, molecular epidemiology analysis suggested that the five genetic variants of UGT1A9 could be potential genetic risk factors of NAFLD when people were exposed to BPA. The biological mechanism uncovered here provided mechanistic evidence for identification of susceptible populations of liver injury associated with exposure to BPA.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
56
|
Costello E, Rock S, Stratakis N, Eckel SP, Walker DI, Valvi D, Cserbik D, Jenkins T, Xanthakos SA, Kohli R, Sisley S, Vasiliou V, La Merrill MA, Rosen H, Conti DV, McConnell R, Chatzi L. Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:46001. [PMID: 35475652 PMCID: PMC9044977 DOI: 10.1289/ehp10092] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Experimental evidence indicates that exposure to certain pollutants is associated with liver damage. Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals widely used in industry and consumer products and bioaccumulate in food webs and human tissues, such as the liver. OBJECTIVE The objective of this study was to conduct a systematic review of the literature and meta-analysis evaluating PFAS exposure and evidence of liver injury from rodent and epidemiological studies. METHODS PubMed and Embase were searched for all studies from earliest available indexing year through 1 December 2021 using keywords corresponding to PFAS exposure and liver injury. For data synthesis, results were limited to studies in humans and rodents assessing the following indicators of liver injury: serum alanine aminotransferase (ALT), nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, or steatosis. For human studies, at least three observational studies per PFAS were used to conduct a weighted z-score meta-analysis to determine the direction and significance of associations. For rodent studies, data were synthesized to qualitatively summarize the direction and significance of effect. RESULTS Our search yielded 85 rodent studies and 24 epidemiological studies, primarily of people from the United States. Studies focused primarily on legacy PFAS: perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid. Meta-analyses of human studies revealed that higher ALT levels were associated with exposure to PFOA (z-score= 6.20, p<0.001), PFOS (z-score= 3.55, p<0.001), and PFNA (z-score= 2.27, p=0.023). PFOA exposure was also associated with higher aspartate aminotransferase and gamma-glutamyl transferase levels in humans. In rodents, PFAS exposures consistently resulted in higher ALT levels and steatosis. CONCLUSION There is consistent evidence for PFAS hepatotoxicity from rodent studies, supported by associations of PFAS and markers of liver function in observational human studies. This review identifies a need for additional research evaluating next-generation PFAS, mixtures, and early life exposures. https://doi.org/10.1289/EHP10092.
Collapse
Affiliation(s)
- Elizabeth Costello
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nikos Stratakis
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dora Cserbik
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Todd Jenkins
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stavra A. Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Stephanie Sisley
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | - Hugo Rosen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - David V. Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
57
|
Xu H, Jia Y, Sun Z, Su J, Liu QS, Zhou Q, Jiang G. Environmental pollution, a hidden culprit for health issues. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:31-45. [PMID: 38078200 PMCID: PMC10702928 DOI: 10.1016/j.eehl.2022.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/26/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2023]
Abstract
The environmental and health impacts from the massive discharge of chemicals and subsequent pollution have been gaining increasing public concern. The unintended exposure to different pollutants, such as heavy metals, air pollutants and organic chemicals, may cause diverse deleterious effects on human bodies, resulting in the incidence and progression of different diseases. The article reviewed the outbreak of environmental pollution-related public health emergencies, the epidemiological evidence on certain pollution-correlated health effects, and the pathological studies on specific pollutant exposure. By recalling the notable historical life-threatening disasters incurred by local chemical pollution, the damning evidence was presented to criminate certain pollutants as the main culprit for the given health issues. The epidemiological data on the prevalence of some common diseases revealed a variety of environmental pollutants to blame, such as endocrine-disrupting chemicals (EDCs), fine particulate matters (PMs) and heavy metals. The retrospection of toxicological studies provided illustrative clues for evaluating ambient pollutant-induced health risks. Overall, environmental pollution, as the hidden culprit, should answer for the increasing public health burden, and more efforts are highly encouraged to strive to explore the cause-and-effect relationships through extensive epidemiological and pathological studies.
Collapse
Affiliation(s)
- Hanqing Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian S. Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
58
|
Sun Z, Tang Z, Yang X, Liu QS, Zhang J, Zhou Q, Jiang G. 3- tert-Butyl-4-hydroxyanisole Impairs Hepatic Lipid Metabolism in Male Mice Fed with a High-Fat Diet. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3204-3213. [PMID: 35133139 DOI: 10.1021/acs.est.1c07182] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
3-tert-Butyl-4-hydroxyanisole (3-BHA), one of the widely used food antioxidants, has been found to act as a potential obesogen by promoting adipogenesis in vitro and inducing white adipose tissue development in vivo. Whether 3-BHA-induced visceral obesity was accompanied by a disruption of hepatic lipid homeostasis in mammals remained unclear. In this study, we evaluated the effect of 3-BHA on the development of nonalcoholic fatty liver disease (NAFLD) in male C57BL/6J mice. After 18 weeks of oral administration of 10 mg/kg 3-BHA, the mice fed with a high-fat diet (HFD) had higher hepatic triglyceride concentrations (0.32 mg/mg protein) and severer steatosis (1.57 for the NAFLD score) than the control ones. The in vivo hepatic lipid deposition disturbed by 3-BHA was transcriptionally regulated by the genes involved in lipid uptake, de novo lipogenesis, fatty acid oxidation, and lipid export. The in vitro studies further confirmed that 24 h of exposure to 50 μM 3-BHA could induce intracellular oleic acid (OA) uptake and triglyceride accumulation (1.5-fold of the OA control) in HepG2 cells. Lipidomic analysis indicated the perturbation of 3-BHA in the levels of 30 lipid species related to sphingolipids, glycerophospholipids, and glycerolipids under HFD conditions. The findings herein first revealed the disruption effect of 3-BHA on hepatic lipid homeostasis, thus exacerbating the development of HFD-induced NAFLD.
Collapse
Affiliation(s)
- Zhendong Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi Tang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Institute of Environmental Health, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qunfang Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
59
|
Jiang C, Wan S, Hu P, Li Y, Li S. Editorial: Transcriptional Regulation in Metabolism and Immunology. Front Genet 2022; 13:845697. [PMID: 35186050 PMCID: PMC8847674 DOI: 10.3389/fgene.2022.845697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chunjie Jiang
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Peng Hu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
60
|
Sun J, Zhang L, Zhou F, Shaw S, Roos A, Berger M, Bäcklin BM, Huang Y, Zheng X, Wang X, Chen D. Hepatic Fatty Acid Profiles Associated with Exposure to Emerging and Legacy Halogenated Contaminants in Two Harbor Seal Populations across the North Atlantic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1830-1840. [PMID: 35068154 DOI: 10.1021/acs.est.1c06512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fatty acids (FAs) have been extensively used as indicators of foraging ecology in marine mammals, yet their association with exposure to contaminants has rarely been investigated. The present study provided the first characterization of the relationship between hepatic FA profiles and exposure to a suite of contaminants in a sentinel species─the harbor seal (Phoca vitulina)─from the Gulf of Maine and the south coast of Sweden. FA profiles differed in the two seal populations, and the levels of legacy and alternative brominated flame retardants and polyhalogenated carbazoles were significantly elevated in Maine seals. Correlations between individual FAs and multiple flame retardants (FRs) and poly- and perfluoroalkyl substances (PFASs) were found in seals from both populations. Moreover, several FR and PFAS chemicals were significantly associated with the estimated desaturating enzyme activity inferred from the FA profiles. The ratios of poly to monounsaturated FAs (∑PUFAs/∑MUFAs) and those of unsaturated to saturated FAs (∑UFAs/∑SFAs) were significantly associated with HBBZ, PFHxS, or BDE 47 in seals from Maine and Sweden, whereas ∑n - 6/∑n - 3 PUFAs was significantly associated with BDE 154 and 36-CCZ in Swedish and Maine seals, respectively. Our results suggest the lipid metabolism-disrupting potential of these contaminants in marine mammals and warrant continuous biomonitoring and risk assessment, considering the critical role of PUFAs in vital biological processes.
Collapse
Affiliation(s)
- Jiachen Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Long Zhang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Fengli Zhou
- Research Center of Harmful Algae and Marine Biology, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Susan Shaw
- Shaw Institute, Blue Hill Research Center, Blue Hill, Maine 04614, United States
| | - Anna Roos
- Department of Contaminant Research and Monitoring, Swedish Museum of Natural History, Box 5007, Stockholm SE-10405, Sweden
| | - Michelle Berger
- Shaw Institute, Blue Hill Research Center, Blue Hill, Maine 04614, United States
| | - Britt-Marie Bäcklin
- Department of Contaminant Research and Monitoring, Swedish Museum of Natural History, Box 5007, Stockholm SE-10405, Sweden
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, CN-230032 Hefei, Anhui, China
| | - Xiaoshi Zheng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Xiaodong Wang
- Research Center of Harmful Algae and Marine Biology, Jinan University, CN-510632 Guangzhou, Guangdong, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, CN-510632 Guangzhou, Guangdong, China
| |
Collapse
|
61
|
Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23031062. [PMID: 35162986 PMCID: PMC8834714 DOI: 10.3390/ijms23031062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), which is often linked to obesity, encompasses a large spectrum of hepatic lesions, including simple fatty liver, steatohepatitis, cirrhosis and hepatocellular carcinoma. Besides nutritional and genetic factors, different xenobiotics such as pharmaceuticals and environmental toxicants are suspected to aggravate MAFLD in obese individuals. More specifically, pre-existing fatty liver or steatohepatitis may worsen, or fatty liver may progress faster to steatohepatitis in treated patients, or exposed individuals. The mechanisms whereby xenobiotics can aggravate MAFLD are still poorly understood and are currently under deep investigations. Nevertheless, previous studies pointed to the role of different metabolic pathways and cellular events such as activation of de novo lipogenesis and mitochondrial dysfunction, mostly associated with reactive oxygen species overproduction. This review presents the available data gathered with some prototypic compounds with a focus on corticosteroids and rosiglitazone for pharmaceuticals as well as bisphenol A and perfluorooctanoic acid for endocrine disruptors. Although not typically considered as a xenobiotic, ethanol is also discussed because its abuse has dire consequences on obese liver.
Collapse
|
62
|
Target Deconvolution of Fenofibrate in Nonalcoholic Fatty Liver Disease Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2021:3654660. [PMID: 34988225 PMCID: PMC8720586 DOI: 10.1155/2021/3654660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 01/30/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of liver damage, affecting ~25% of the global population. NAFLD comprises a spectrum of liver pathologies, from hepatic steatosis to nonalcoholic steatohepatitis (NASH), and may progress to liver fibrosis and cirrhosis. The presence of NAFLD correlates with metabolic disorders such as hyperlipidemia, obesity, blood hypertension, cardiovascular, and insulin resistance. Fenofibrate is an agonist drug for peroxisome proliferator-activated receptor alpha (PPARα), used principally for treatment of hyperlipidemia. However, fenofibrate has recently been investigated in clinical trials for treatment of other metabolic disorders such as diabetes, cardiovascular disease, and NAFLD. The evidence to date indicates that fenofibrate could improve NAFLD. While PPARα is considered to be the main target of fenofibrate, fenofibrate may exert its effect through impact on other genes and pathways thereby alleviating, and possibly reversing, NAFLD. In this study, using bioinformatics tools and gene-drug, gene-diseases databases, we sought to explore possible targets, interactions, and pathways involved in fenofibrate and NAFLD. Methods We first determined significant protein interactions with fenofibrate in the STITCH database with high confidence (0.7). Next, we investigated the identified proteins on curated targets in two databases, including the DisGeNET and DISEASES databases, to determine their association with NAFLD. We finally constructed a Venn diagram for these two collections (curated genes-NAFLD and fenofibrate-STITCH) to uncover possible primary targets of fenofibrate. Then, Gene Ontology (GO) and KEGG were analyzed to detect the significantly involved targets in molecular function, biological process, cellular component, and biological pathways. A P value < 0.01 was considered the cut-off criterion. We also estimated the specificity of targets with NAFLD by investigating them in disease-gene associations (STRING) and EnrichR (DisGeNET). Finally, we verified our findings in the scientific literature. Results We constructed two collections, one with 80 protein-drug interactions and the other with 95 genes associated with NAFLD. Using the Venn diagram, we identified 11 significant targets including LEP, SIRT1, ADIPOQ, PPARA, SREBF1, LDLR, GSTP1, VLDLR, SCARB1, MMP1, and APOC3 and then evaluated their biological pathways. Based on Gene Ontology, most of the targets are involved in lipid metabolism, and KEGG enrichment pathways showed the PPAR signaling pathway, AMPK signaling pathway, and NAFLD as the most significant pathways. The interrogation of those targets on authentic disease databases showed they were more specific to both steatosis and steatohepatitis liver injury than to any other diseases in these databases. Finally, we identified three significant genes, APOC3, PPARA, and SREBF1, that showed robust drug interaction with fenofibrate. Conclusion Fenofibrate may exert its effect directly or indirectly, via modulation of several key targets and pathways, in the treatment of NAFLD.
Collapse
|
63
|
Persistent organic pollutants in pregnant women potentially affect child development and thyroid hormone status. Pediatr Res 2022; 91:690-698. [PMID: 33824444 PMCID: PMC8904258 DOI: 10.1038/s41390-021-01488-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/15/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Potentially harmful effects of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT) on prenatal development and the endocrine system have been controversially discussed. METHODS Working with a German cohort of 324 pregnant women, we assessed POP levels and used robust linear regression models to determine potential associations between maternal POP concentrations and pre- and postnatal development in the children, as well as the thyroid hormone status of the mother and child. RESULTS Maternal p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and most measured PCBs positively correlated with postnatal weight gain. We detected no correlation between newborn birth weight and head circumference, respectively, and maternal PCB and p,p'-DDE serum levels, while body length at birth was negatively associated with the maternal serum concentration of PCB 183. Maternal p,p'-DDE and nearly all PCB serum levels showed a negative correlation with maternal free triiodothyronine (FT3). p,p'-DDE and PCB 74 and 118 were negatively associated with maternal thyroid-stimulating hormone levels. In addition, we identified significant associations between maternal POP levels and thyroid hormone parameters of the child. CONCLUSIONS These results indicate that POP exposure likely affects different aspects of pre- and postnatal development and impacts the thyroid hormone status of both mother and child. IMPACT Pregnant women in a German cohort display a substantial accumulation of POPs. Body mass index and age influence maternal serum POP levels. Maternal POP levels show correlations with the child's length at birth and weight gain, and FT3 levels in the mother and child. Our data provide additional evidence for the potentially harmful influence of POPs. Our data indicate that POPs influence pre- and postnatal development.
Collapse
|
64
|
Marchlewicz E, McCabe C, Djuric Z, Hoenerhoff M, Barks J, Tang L, Song PX, Peterson K, Padmanabhan V, Dolinoy DC. Gestational exposure to high fat diets and bisphenol A alters metabolic outcomes in dams and offspring, but produces hepatic steatosis only in dams. CHEMOSPHERE 2022; 286:131645. [PMID: 34426127 PMCID: PMC8595757 DOI: 10.1016/j.chemosphere.2021.131645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 05/07/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. Perinatal development is a critical window for altered, lifelong health trajectory, and evidence supports the role of perinatal programming in chronic metabolic diseases. To examine the impact of diet and bisphenol A (BPA) on the developmental trajectory of NAFLD in offspring, we exposed dams from pre-gestation through lactation to a human-relevant dose of oral BPA coupled with intake of high fat Western or Mediterranean-style diets. We assessed hepatic steatosis by quantifying hepatic triglycerides (TGs) and metabolic health by measuring body weight, relative organ weights, and serum hormone levels in dams and offspring at postnatal day 10 (PND10) and 10-months of age. In dams, consumption of the Western or Mediterranean diet increased hepatic TGs 1.7-2.4-fold, independent of BPA intake. Among offspring, both perinatal diet and BPA exposure had a greater impact on metabolic outcomes than on hepatic steatosis. At PND10, serum leptin levels were elevated 2.6-4.8-fold in pups exposed to the Mediterranean diet, with a trend for sex-specific effects on body and organ weights. At 10-months, sex-specific increases in organ weight and hormone levels were observed in mice perinatally exposed to Western + BPA or Mediterranean + BPA. These findings suggest lifestage-specific interaction of perinatal exposures to experimental diets and BPA on offspring metabolic health without effects on NAFLD later in life. Importantly, alterations in dam phenotype by diet and BPA exposure appear to impact offspring health trajectory, emphasizing the need to define dam diet in assessing effects of environmental exposures on offspring health.
Collapse
Affiliation(s)
- Elizabeth Marchlewicz
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Carolyn McCabe
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zora Djuric
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Barks
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lu Tang
- Department of Biostatistics, University of Pittsburgh, Pittsburg, PA, USA
| | - Peter X Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen Peterson
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
65
|
Wang X, Wang L, Li F, Teng Y, Ji C, Wu H. Toxicity pathways of lipid metabolic disorders induced by typical replacement flame retardants via data-driven analysis, in silico and in vitro approaches. CHEMOSPHERE 2022; 287:132419. [PMID: 34600017 DOI: 10.1016/j.chemosphere.2021.132419] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals can interfere with hormone action via various pathways, thereby increasing the risk of adverse health outcomes. Organophosphorus ester (OPEs) retardants, a group of new emerging endocrine disruption chemicals, have been referred to as metabolism disruptors and reported to induce chronic health problems. However, the toxicity pathways were mainly focused on nuclear receptor signaling pathways. Significantly, the membrane receptor pathway (such as G protein-coupled estrogen receptor 1 (GPER) signaling pathway) had been gradually realized as the important role in respond more effective to lipid metabolism disorder than traditional nuclear receptors, whereas the detailed mechanism was unclear yet. Therefore, this study innovatively integrated the bibliometric analysis, in silico and in vitro approach to develop toxicity pathways for the mechanism interpretation. Bibliometric analysis found that the typical OPEs - triphenyl phosphate was a major concern of lipid metabolism abnormality. Results verified that TPP could damage the structures of cell membranes and exert an agonistic effect of GPER as the molecular initiating event. Then, the activated GPER could trigger the PI3K-Akt/NCOR1 and mTOR/S6K2/PPARα transduction pathways as key event 1 (KE1) and affect the process of lipid metabolism and synthesis (CPT1A, CPT2, SREBF2 and SCD) as KE2. As a result, these alterations led to lipid accumulation as adverse effect at cellular-levels. Furthermore, the potential outcomes (such as immunity damage, weight change and steatohepatitis) at high biological levels were expanded. These findings improved knowledge to deeply understand toxicity pathways of phosphorus flame retardants and then provided a theoretical basis for risk assessments.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Wang
- Yantai Yuhuangding Hosp, Dept Western Med, Yuhuangdingdong Rd 20, Yantai, 264000, Shandong, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
66
|
Shan D, Wang J, Di Q, Jiang Q, Xu Q. Steatosis induced by nonylphenol in HepG2 cells and the intervention effect of curcumin. Food Funct 2021; 13:327-343. [PMID: 34904613 DOI: 10.1039/d1fo02481g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has increasingly become a serious public health problem. There is growing evidence that nonylphenol (NP) exposure may cause steatosis, but the underlying mechanism is not fully understood. Curcumin (CUR) improves NAFLD-related lipid metabolism disorders and oxidative stress, but its preventive and therapeutic effects on NP-induced steatosis have not been reported. The objective of this investigation was to determine the capability and potential mechanism of NP to induce steatosis in vitro and the intervention of curcumin. HepG2 cells were treated with 0 μM, 20 μM, 30 μM, 40 μM NP for 24 h. Lipid droplets accumulated significantly in HepG2 cells after NP treatment, and the concentration of triglyceride (TG) and total cholesterol (T-CHO) increased significantly. Simultaneously, lipogenesis gene expression was up-regulated significantly, fatty acid oxidation (FAO) gene expression was significantly down-regulated, and reactive oxygen species (ROS) were overproduced. Meanwhile, the expression of p-AMPK/AMPK in the AMPK/mTOR signaling pathway was significantly down-regulated and the expression of p-mTOR/mTOR was markedly up-regulated. However, blocking ROS production with N-acetyl-L-cysteine (NAC) can reverse these phenomena. In addition, our study found that curcumin effectively ameliorated the effects of NP-induced steatosis. Our study indicates that NP can induce steatosis in HepG2 cells, and may be implicated in inhibiting the ROS-dependent AMPK/mTOR pathway, and that curcumin ameliorates the NAFLD-like changes induced by NP in HepG2 cells.
Collapse
Affiliation(s)
- Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Jinming Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qianqian Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
67
|
Jin J, Wahlang B, Thapa M, Head KZ, Hardesty JE, Srivastava S, Merchant ML, Rai SN, Prough RA, Cave MC. Proteomics and metabolic phenotyping define principal roles for the aryl hydrocarbon receptor in mouse liver. Acta Pharm Sin B 2021; 11:3806-3819. [PMID: 35024308 PMCID: PMC8727924 DOI: 10.1016/j.apsb.2021.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Dioxin-like molecules have been associated with endocrine disruption and liver disease. To better understand aryl hydrocarbon receptor (AHR) biology, metabolic phenotyping and liver proteomics were performed in mice following ligand-activation or whole-body genetic ablation of this receptor. Male wild type (WT) and Ahr–/– mice (Taconic) were fed a control diet and exposed to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) (61 nmol/kg by gavage) or vehicle for two weeks. PCB126 increased expression of canonical AHR targets (Cyp1a1 and Cyp1a2) in WT but not Ahr–/–. Knockouts had increased adiposity with decreased glucose tolerance; smaller livers with increased steatosis and perilipin-2; and paradoxically decreased blood lipids. PCB126 was associated with increased hepatic triglycerides in Ahr–/–. The liver proteome was impacted more so by Ahr–/– genotype than ligand-activation, but top gene ontology (GO) processes were similar. The PCB126-associated liver proteome was Ahr-dependent. Ahr principally regulated liver metabolism (e.g., lipids, xenobiotics, organic acids) and bioenergetics, but it also impacted liver endocrine response (e.g., the insulin receptor) and function, including the production of steroids, hepatokines, and pheromone binding proteins. These effects could have been indirectly mediated by interacting transcription factors or microRNAs. The biologic roles of the AHR and its ligands warrant more research in liver metabolic health and disease.
Collapse
Key Words
- AHR
- AHR, aryl hydrocarbon receptor
- ALT, alanine transaminase
- ANOVA, analysis of variance
- AST, aspartate transaminase
- AUC, area under the curve
- CAR, constitutive androstane receptor
- CD36, cluster of differentiation 36
- CYP, cytochrome P450
- EPF, enrichment by protein function
- Endocrine disruption
- Environmental liver disease
- FDR, false discovery rate
- FGF21, fibroblast growth factor 21
- GCR, glucocorticoid receptor
- GO, gene ontology
- H&E, hematoxylin-eosin
- HDL, high-density lipoprotein
- HFD, high fat diet
- IGF1, insulin-like growth factor 1
- IL-6, interleukin 6
- IPF, interaction by protein function
- LDL, low-density lipoprotein
- MCP-1, monocyte chemoattractant protein-1
- MUP, major urinary protein
- NAFLD, non-alcoholic fatty liver disease
- NFKBIA, nuclear factor kappa-inhibitor alpha
- Nonalcoholic fatty liver disease
- PAI-1, plasminogen activator inhibitor-1
- PCB, polychlorinated biphenyl
- PCB126
- PLIN2, perilipin-2
- PNPLA3, patatin-like phospholipase domain-containing protein 3
- PPARα, peroxisome proliferator-activated receptor alpha
- PXR, pregnane-xenobiotic receptor
- Perilipin-2
- Pheromones
- SGK1, serum/glucocorticoid regulated kinase
- TAFLD, toxicant-associated fatty liver disease
- TASH, toxicant-associated steatohepatitis
- TAT, tyrosine aminotransferase
- TMT, tandem mass tag
- VLDL, very low-density lipoprotein
- WT, wild type
- ZFP125, zinc finger protein 125
- miR, microRNA
- nHDLc, non-HDL cholesterol
Collapse
|
68
|
Mukherjee R, Pandya P, Baxi D, Ramachandran AV. Endocrine Disruptors-'Food' for Thought. PROCEEDINGS OF THE ZOOLOGICAL SOCIETY 2021; 74:432-442. [PMID: 34866764 PMCID: PMC8632730 DOI: 10.1007/s12595-021-00414-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022]
Abstract
Green vegetables, fruits, cereals, and pulses are all rich sources of antioxidants. Retinoic acid, ascorbate, proanthocyanidins, tannins, saponins, melatonin, curcumin, allicin, and alpha-lipoic acid stand documented in plants as bioactive compounds. The international dietary committee advocates a specific quantum of these natural antioxidants through diet. Interestingly, environmental pollution has indeed affected most of these farm products. The use of chemical fertilizers, pesticides and heavy metals in soil has a cumulative effect on human health. Enough evidence is available for the presence of phytoestrogen, xenoestrogen, and a host of other endocrine disruptors in the food. These plant-based nutrients can mimic or enhance the natural hormone's health effects. While endocrine disruptors are found in many everyday products, this review aims to address endocrine disruptors from food in the Asian subcontinent. 'Food for thought' justifies the paradigm shift towards good endocrine health by swaying away from the conventional daily dietary recommendations.
Collapse
Affiliation(s)
- Raktim Mukherjee
- Shree P.M. Patel Institute of PG Studies and Research in Science, Affiliated to Sardar Patel University, Anand, Gujarat India
| | - Parth Pandya
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| | - Darshee Baxi
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| | - A. V. Ramachandran
- School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| |
Collapse
|
69
|
Saroglitazar and Hepano treatment offers protection against high fat high fructose diet induced obesity, insulin resistance and steatosis by modulating various class of hepatic and circulating lipids. Biomed Pharmacother 2021; 144:112357. [PMID: 34794234 DOI: 10.1016/j.biopha.2021.112357] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
Higher global prevalence of non-alcoholic fatty liver disease (NAFLD) is associated with obesity, steatosis, and insulin resistance (IR), and often progresses to steatohepatitis (NASH). Even after more than twenty years of research, there is still no FDA approved therapy for the treatment of fatty liver disease/NASH though, Saroglitazar - a dual PPAR α/γ agonist has been recently approved as a therapeutic option for the fatty liver disease in India. Hepatoprotective Ayurvedic formulations are widely used and are considered safe. In the present study, C57BL/6 male mice on HFHF diet for four weeks were treated with vehicle, Saroglitazar (3 mg/kg/po), and Hepano - a formulation of five herbs (200 mg/kg/po), at the human equivalent therapeutic doses for additional eight weeks. These animals were evaluated after 12 weeks for obesity, body mass index (BMI), systemic insulin resistance, hyperglycaemia, dyslipidaemia, and hepatic lipid accumulation. Differential liquid chromatography-mass spectrometry (LC-MS/MS) based lipidomics analysis demonstrated significant changes in the different class of lipids [phospholipids, sphingolipids, diglycerides and triglycerides (TG)] in HFHF fed group. The protective effects of both Saroglitazar and Hepano were evident against IR, obesity and in the modulation of different class of lipids in the circulation and hepatic tissue. Saroglitazar reduced TG as well as modulated phospholipids levels, while Hepano modulated only phospholipids, ceramides, oxidised lipids, and had no effect on hepatic or circulating TG levels in HFHF fed mice. In addition, in vitro studies using HepG2, THP1 and LX2 cells demonstrated safety of both the test substances where Hepano possess better anti-inflammatory as well as anti-fibrotic potential. Overall, Saroglitazar seems to be more efficacious than Hepano in the regimen used against HFHF induced IR, obesity, and dyslipidaemia.
Collapse
|
70
|
Negi CK, Bajard L, Kohoutek J, Blaha L. An adverse outcome pathway based in vitro characterization of novel flame retardants-induced hepatic steatosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117855. [PMID: 34340181 DOI: 10.1016/j.envpol.2021.117855] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 05/22/2023]
Abstract
A wide range of novel replacement flame retardants (nFRs) is consistently detected in increasing concentrations in the environment and human matrices. Evidence suggests that nFRs exposure may be associated with disruption of the endocrine system, which has been linked with the etiology of various metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). NAFLD is a multifactorial disease characterized by the uncontrolled accumulation of fats (lipids) in the hepatocytes and involves multiple-hit pathogenesis, including exposure to occupational and environmental chemicals such as organophosphate flame retardants (OPFRs). In the present study we aimed to investigate the potential mechanisms of the nFRs-induced hepatic steatosis in the human liver cells. In this study, we employed an in vitro bioassay toolbox to assess the key events (KEs) in the proposed adverse outcome pathways (AOP) (s) for hepatic steatosis. We examined nine nFRs using AOP- based in vitro assays measuring KEs such as lipid accumulation, mitochondrial dysfunction, gene expression, and in silico approach to identify the putative molecular initiating events (MIEs). Our findings suggest that several tested OPFRs induced lipid accumulation in human liver cell culture. Tricresyl phosphate (TMPP), triphenyl phosphate (TPHP), tris(1,3-dichloropropyl) phosphate (TDCIPP), and 2-ethylhexyl diphenyl phosphate (EHDPP) induced the highest lipid accumulation by altering the expression of genes encoding hepatic de novo lipogenesis and mitochondrial dysfunction depicted by decreased cellular ATP production. Available in vitro data from ToxCast and in silico molecular docking suggests that pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ) could be the molecular targets for the tested nFRs. The study identifies several nFRs, such as TMPP and EHDPP, TPHP, and TDCIPP, as potential risk factor for NAFLD and advances our understanding of the mechanisms involved, demonstrating the utility of an AOP-based strategy for screening and prioritizing chemicals and elucidating the molecular mechanisms of toxicity.
Collapse
Affiliation(s)
- Chander K Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Jiri Kohoutek
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Ludek Blaha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic.
| |
Collapse
|
71
|
Sakhteman A, Failli M, Kublbeck J, Levonen AL, Fortino V. A toxicogenomic data space for system-level understanding and prediction of EDC-induced toxicity. ENVIRONMENT INTERNATIONAL 2021; 156:106751. [PMID: 34271427 DOI: 10.1016/j.envint.2021.106751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting compounds (EDCs) are a persistent threat to humans and wildlife due to their ability to interfere with endocrine signaling pathways. Inspired by previous work to improve chemical hazard identification through the use of toxicogenomics data, we developed a genomic-oriented data space for profiling the molecular activity of EDCs in an in silico manner, and for creating predictive models that identify and prioritize EDCs. Predictive models of EDCs, derived from gene expression data from rats (in vivo and in vitro primary hepatocytes) and humans (in vitro primary hepatocytes and HepG2), achieve testing accuracy greater than 90%. Negative test sets indicate that known safer chemicals are not predicted as EDCs. The rat in vivo-based classifiers achieve accuracy greater than 75% when tested for invitro to in vivoextrapolation. This study reveals key metabolic pathways and genes affected by EDCs together with a set of predictive models that utilize these pathways to prioritize EDCs in dose/time dependent manner and to predict EDCevokedmetabolic diseases.
Collapse
Affiliation(s)
- A Sakhteman
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland
| | - M Failli
- Department of Chemical, Materials and Industrial Engineering, University of Naples, 'Federico II', Naples 80125, Italy
| | - J Kublbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70210, Finland; School of Pharmacy, University of Eastern Finland, Kuopio 70210, Finland
| | - A L Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70210, Finland
| | - V Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210, Finland.
| |
Collapse
|
72
|
Luo YS, Wu TH. Utilizing High-Throughput Screening Data, Integrative Toxicological Prioritization Index Score, and Exposure-Activity Ratios for Chemical Prioritization: A Case Study of Endocrine-Active Pesticides in Food Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11427-11439. [PMID: 34524809 DOI: 10.1021/acs.jafc.1c03191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Endocrine-active chemicals can directly act on nuclear receptors and trigger the disturbances of metabolism and a homeostatic system, which are important risk factors for complicating chronic diseases in humans. The endocrine-active potentials of pesticides acting on estrogen, androgen, and thyroid hormone receptors have been extensively evaluated for pesticides; however, the effects on other receptors are less understood. This study aims to comprehensively characterize and prioritize the endocrine-active pesticides using an exposure-activity ratio (EAR) method and toxicological prioritization index (ToxPi). The aggregate exposure assessment of pesticides was performed using a computational exposure model [stochastic human exposure and dose simulation high-throughput model (SHEDS-HT)]. Minimum in vitro point of departure values were converted to human oral equivalent doses via in vitro-to-in vivo extrapolation. The overall endocrine-disrupting potentials of pesticides were evaluated via 76 assays, representing 11 nuclear receptors. EARs and ToxPi scores were then derived to prioritize 79 pesticides in food. This case study demonstrates that EAR profiling can inform the regulatory agencies for a relevant chemical prioritization, which would direct in-depth health risk assessments in the future.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Road, Zhongzheng District, Taipei 100, Taiwan
- Master of Public Health Program, National Taiwan University, 17 Xuzhou Road, Zhongzheng District, Taipei 100055, Taiwan
| | - Tsung Hsien Wu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Road, Zhongzheng District, Taipei 100, Taiwan
| |
Collapse
|
73
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
74
|
An SJ, Yang EJ, Oh S, Park KJ, Kim T, Hong YP, Yang YJ. The association between urinary bisphenol A levels and nonalcoholic fatty liver disease in Korean adults: Korean National Environmental Health Survey (KoNEHS) 2015-2017. Environ Health Prev Med 2021; 26:91. [PMID: 34521354 PMCID: PMC8442282 DOI: 10.1186/s12199-021-01010-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is becoming a global health problem. Bisphenol A (BPA), one of most widely used environmental chemicals, is suspected to be a contributor to the development NAFLD. This study was performed to examine the relationship between human BPA levels and risk of NAFLD. METHODS The data (n = 3476 adults: 1474 men and 2002 women) used in this study were obtained from the Korean National Environmental Health Survey III (2015-2017). BPA levels were measured in urine samples. NAFLD was defined using hepatic steatosis index after exclusion of other causes of hepatic diseases. RESULTS There was a significant linear relationship between the elevated urinary BPA concentrations and risk of NAFLD. In a univariate analysis, odds ratio (OR) of the highest quartile of urinary BPA level was 1.47 [95% confidence interval (CI) 1.11-1.94] compared to the lowest quartile. After adjusted with covariates, the ORs for NAFLD in the third and fourth quartiles were 1.31 [95% CI 1.03-1.67] and 1.32 [95% CI 1.03-1.70], respectively. CONCLUSIONS Urinary BPA levels are positively associated with the risk of NAFLD in adults. Further experimental studies are needed to understand the molecular mechanisms of BPA on NAFLD prevalence.
Collapse
Affiliation(s)
- Sang Joon An
- Department of Neurology, Catholic Kwandong University International St Mary's Hospital, Incheon, 22711, Republic of Korea
| | - Eun-Jung Yang
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Subin Oh
- College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Kyong Jin Park
- College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Taehyen Kim
- College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Yeon-Pyo Hong
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yun-Jung Yang
- Institute of Biomedical Science, Catholic Kwandong University International St. Mary's Hospital, Incheon, 22711, Republic of Korea.
| |
Collapse
|
75
|
Stratakis N, Golden-Mason L, Margetaki K, Zhao Y, Valvi D, Garcia E, Maitre L, Andrusaityte S, Basagana X, Borràs E, Bustamante M, Casas M, Fossati S, Grazuleviciene R, Haug LS, Heude B, McEachan RR, Meltzer HM, Papadopoulou E, Roumeliotaki T, Robinson O, Sabidó E, Urquiza J, Vafeiadi M, Varo N, Wright J, Vos MB, Hu H, Vrijheid M, Berhane KT, Conti DV, McConnell R, Rosen HR, Chatzi L. In Utero Exposure to Mercury Is Associated With Increased Susceptibility to Liver Injury and Inflammation in Childhood. Hepatology 2021; 74:1546-1559. [PMID: 33730435 PMCID: PMC8446089 DOI: 10.1002/hep.31809] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) is the most prevalent cause of liver disease in children. Mercury (Hg), a ubiquitous toxic metal, has been proposed as an environmental factor contributing to toxicant-associated fatty liver disease. APPROACH AND RESULTS We investigated the effect of prenatal exposure to Hg on childhood liver injury by combining epidemiological results from a multicenter mother-child cohort with complementary in vitro experiments on monocyte cells that are known to play a key role in liver immune homeostasis and NAFLD. We used data from 872 mothers and their children (median age, 8.1 years; interquartile range [IQR], 6.5-8.7) from the European Human Early-Life Exposome cohort. We measured Hg concentration in maternal blood during pregnancy (median, 2.0 μg/L; IQR, 1.1-3.6). We also assessed serum levels of alanine aminotransferase (ALT), a common screening tool for pediatric NAFLD, and plasma concentrations of inflammation-related cytokines in children. We found that prenatal Hg exposure was associated with a phenotype in children that was characterized by elevated ALT (≥22.1 U/L for females and ≥25.8 U/L for males) and increased concentrations of circulating IL-1β, IL-6, IL-8, and TNF-α. Consistently, inflammatory monocytes exposed in vitro to a physiologically relevant dose of Hg demonstrated significant up-regulation of genes encoding these four cytokines and increased concentrations of IL-8 and TNF-α in the supernatants. CONCLUSIONS These findings suggest that developmental exposure to Hg can contribute to inflammation and increased NAFLD risk in early life.
Collapse
Affiliation(s)
- Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lucy Golden-Mason
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Katerina Margetaki
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Erika Garcia
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Léa Maitre
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagana
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra, Barcelona, Spain,Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mariona Bustamante
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Maribel Casas
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Serena Fossati
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | | | | | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Rosemary R.C. McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | | | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Oliver Robinson
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Eduard Sabidó
- Universitat Pompeu Fabra, Barcelona, Spain,Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Urquiza
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Nerea Varo
- Laboratorio de Bioquímica, Clínica Universidad de Navarra, Pamplona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Miriam B. Vos
- Department of Pediatrics, School of Medicine and Nutrition Health Sciences, Emory University, Atlanta, GA,Children’s Healthcare of Atlanta, Atlanta, GA
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Martine Vrijheid
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY,Universitat Pompeu Fabra, Barcelona, Spain,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Kiros T. Berhane
- Mailman School of Public Health, Columbia University, New York, NY
| | - David V. Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Hugo R. Rosen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
76
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
77
|
Chamorro-Garcia R, Veiga-Lopez A. The new kids on the block: Emerging obesogens. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:457-484. [PMID: 34452694 PMCID: PMC8941623 DOI: 10.1016/bs.apha.2021.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current obesity epidemic is calling for action in the determination of contributing factors. Although social and life-style factors have been traditionally associated with metabolic disruption, a subset of endocrine-disrupting chemicals (EDCs), called obesogens are garnering increasing attention for their ability to promote adipose tissue differentiation and accumulation. For some chemicals, such as tributyltin, there is conclusive evidence regarding their ability to promote adipogenesis and their mechanism of action. In recent years, the list of chemicals that exert obesogenic potential is increasing. In this chapter, we review current knowledge of the most recent developments in the field of emerging obesogens with a specific focus on food additives, surfactants, and sunscreens, for which the mechanism of action remains unclear. We also review new evidence relative to the obesogenic potential of environmentally relevant chemical mixtures and point to potential therapeutic approaches to minimize the detrimental effects of obesogens. We conclude by discussing the available tools to investigate new obesogenic chemicals, strategies to maximize reproducibility in adipogenic studies, and future directions that will help propel the field forward.
Collapse
Affiliation(s)
- Raquel Chamorro-Garcia
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois-Chicago, Chicago, IL, United States; The ChicAgo Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
78
|
Molecular Initiating Events Associated with Drug-Induced Liver Malignant Tumors: An Integrated Study of the FDA Adverse Event Reporting System and Toxicity Predictions. Biomolecules 2021; 11:biom11070944. [PMID: 34202146 PMCID: PMC8301945 DOI: 10.3390/biom11070944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Liver malignant tumors (LMTs) represent a serious adverse drug event associated with drug-induced liver injury. Increases in endocrine-disrupting chemicals (EDCs) have attracted attention in recent years, due to their liver function-inhibiting abilities. Exposure to EDCs can induce nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, which are major etiologies of LMTs, through interaction with nuclear receptors (NR) and stress response pathways (SRs). Therefore, exposure to potential EDC drugs could be associated with drug-induced LMTs. However, the drug classes associated with LMTs and the molecular initiating events (MIEs) that are specific to these drugs are not well understood. In this study, using the Food and Drug Administration Adverse Event Reporting System, we detected LMT-inducing drug signals based on adjusted odds ratios. Furthermore, based on the hypothesis that drug-induced LMTs are triggered by NR and SR modulation of potential EDCs, we used the quantitative structure-activity relationship platform for toxicity prediction to identify potential MIEs that are specific to LMT-inducing drug classes. Events related to cell proliferation and apoptosis, DNA damage, and lipid accumulation were identified as potential MIEs, and their relevance to LMTs was supported by the literature. The findings of this study may contribute to drug development and research, as well as regulatory decision making.
Collapse
|
79
|
Reja D, Makar M, Visaria A, Karanfilian B, Rustgi V. Blood lead level is associated with advanced liver fibrosis in patients with non-alcoholic fatty liver disease: A nationwide survey (NHANES 2011-2016). Ann Hepatol 2021; 19:404-410. [PMID: 32376236 DOI: 10.1016/j.aohep.2020.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Non-Alcoholic Fatty Liver Disease (NAFLD) is linked to obesity and metabolic syndrome, but increasing evidence also implicates environmental toxins. In this study, we aim to show that in elevated blood Lead levels in NAFLD patients result in worsening liver fibrosis. MATERIALS AND METHODS 30,172 patients from NHANES 2011-2016 met inclusion criteria. 2499 patients ages 20-74 were identified with NAFLD as determined by the Fatty Liver Index score, and 425 with advanced liver fibrosis were identified using the NAFLD Fibrosis Score. Simple linear regression, Student's T-test, and Rao-Scott Chi-Square test was used for continuous and categorical variables. Multivariate regression analysis was used to adjust for confounders to determine odds of Advanced Fibrosis. RESULTS Increased serum Lead level was independently associated with increased risk of Advanced Fibrosis (OR 5.93, 95% CI 2.88-12.24) in the highest Lead quartile (Q4). In subgroup analysis stratified by BMI, a significant association between advanced liver fibrosis and blood Lead levels was consistently present, Q4 (OR 5.78, 95% CI 0.97-33.63) and Q4 (OR 6.04, 95% CI 2.92-12.48) in BMI <30 and >30, respectively. Increased Lead exposure was also evident in patients who were older, less educated, male, and drank alcohol and smoked tobacco. CONCLUSIONS Our findings show that advanced liver fibrosis is up to six times more likely in NAFLD patients with increased Lead exposure.
Collapse
Affiliation(s)
- Debashis Reja
- Rutgers Robert Wood Johnson Medical School, Department of Internal Medicine, 1 Robert Wood Johnson Place, New Brunswick, NJ, United States.
| | - Michael Makar
- Rutgers Robert Wood Johnson Medical School, Department of Internal Medicine, 1 Robert Wood Johnson Place, New Brunswick, NJ, United States
| | - Aayush Visaria
- Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, United States
| | - Briette Karanfilian
- Rutgers Robert Wood Johnson Medical School, Department of Internal Medicine, 1 Robert Wood Johnson Place, New Brunswick, NJ, United States
| | - Vinod Rustgi
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, 1 Robert Wood Johnson Place, New Brunswick, New Brunswick, NJ, United States
| |
Collapse
|
80
|
Urinary Phthalate Levels Associated with the Risk of Nonalcoholic Fatty Liver Disease in Adults: The Korean National Environmental Health Survey (KoNEHS) 2012-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116035. [PMID: 34199698 PMCID: PMC8199983 DOI: 10.3390/ijerph18116035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/22/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Recent experimental studies suggested that phthalates might induce NAFLD. Therefore, this study aimed to investigate the relationship between phthalates metabolites and NAFLD in the human population. This cross-sectional analysis was performed using data from the Korean National Environmental Health Survey II (2012-2014) among Korean adults (n = 5800). NAFLD was diagnosed using the hepatic steatosis index (HSI) in the absence of other causes of chronic liver diseases. Among the participants (mean age 46 years, 47.5% male), the prevalence of NAFLD was associated with urinary levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-benzyl phthalate (MBzP), and mono-n-butyl phthalate (MnBP) compared to the reference group. In the multivariate model, the odds ratios (ORs), 95% confidence interval (CI) for NAFLD were 1.33 (1.00-1.78) and 1.39 (1.00-1.92) in the 3rd and 4th quartile of MEHHP, respectively. Based on the study findings, high levels of urinary phthalates are associated with the prevalence of NAFLD in Korean adults. Further investigation is required to elucidate the causal relationship.
Collapse
|
81
|
Diagnosis and management of secondary causes of steatohepatitis. J Hepatol 2021; 74:1455-1471. [PMID: 33577920 DOI: 10.1016/j.jhep.2021.01.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
The term non-alcoholic fatty liver disease (NAFLD) was originally coined to describe hepatic fat deposition as part of the metabolic syndrome. However, a variety of rare hereditary liver and metabolic diseases, intestinal diseases, endocrine disorders and drugs may underlie, mimic, or aggravate NAFLD. In contrast to primary NAFLD, therapeutic interventions are available for many secondary causes of NAFLD. Accordingly, secondary causes of fatty liver disease should be considered during the diagnostic workup of patients with fatty liver disease, and treatment of the underlying disease should be started to halt disease progression. Common genetic variants in several genes involved in lipid handling and metabolism modulate the risk of progression from steatosis to fibrosis, cirrhosis and hepatocellular carcinoma development in NAFLD, alcohol-related liver disease and viral hepatitis. Hence, we speculate that genotyping of common risk variants for liver disease progression may be equally useful to gauge the likelihood of developing advanced liver disease in patients with secondary fatty liver disease.
Collapse
|
82
|
Voisin AS, Suarez Ulloa V, Stockwell P, Chatterjee A, Silvestre F. Genome-wide DNA methylation of the liver reveals delayed effects of early-life exposure to 17-α-ethinylestradiol in the self-fertilizing mangrove rivulus. Epigenetics 2021; 17:473-497. [PMID: 33892617 DOI: 10.1080/15592294.2021.1921337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organisms exposed to endocrine disruptors in early life can show altered phenotype later in adulthood. Although the mechanisms underlying these long-term effects remain poorly understood, an increasing body of evidence points towards the potential role of epigenetic processes. In the present study, we exposed hatchlings of an isogenic lineage of the self-fertilizing fish mangrove rivulus for 28 days to 4 and 120 ng/L of 17-α-ethinylestradiol. After a recovery period of 140 days, reduced representation bisulphite sequencing (RRBS) was performed on the liver in order to assess the hepatic genome-wide methylation landscape. Across all treatment comparisons, a total of 146 differentially methylated fragments (DMFs) were reported, mostly for the group exposed to 4 ng/L, suggesting a non-monotonic effect of EE2 exposure. Gene ontology analysis revealed networks involved in lipid metabolism, cellular processes, connective tissue function, molecular transport and inflammation. The highest effect was reported for nipped-B-like protein B (NIPBL) promoter region after exposure to 4 ng/L EE2 (+ 21.9%), suggesting that NIPBL could be an important regulator for long-term effects of EE2. Our results also suggest a significant role of DNA methylation in intergenic regions and potentially in transposable elements. These results support the ability of early exposure to endocrine disruptors of inducing epigenetic alterations during adulthood, providing plausible mechanistic explanations for long-term phenotypic alteration. Additionally, this work demonstrates the usefulness of isogenic lineages of the self-fertilizing mangrove rivulus to better understand the biological significance of long-term alterations of DNA methylation by diminishing the confounding factor of genetic variability.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Victoria Suarez Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Peter Stockwell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| |
Collapse
|
83
|
Betanzos-Robledo L, Cantoral A, Peterson KE, Hu H, Hernández-Ávila M, Perng W, Jansen E, Ettinger AS, Mercado-García A, Solano-González M, Sánchez B, Téllez-Rojo MM. Association between cumulative childhood blood lead exposure and hepatic steatosis in young Mexican adults. ENVIRONMENTAL RESEARCH 2021; 196:110980. [PMID: 33691159 PMCID: PMC8119339 DOI: 10.1016/j.envres.2021.110980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to environmental toxicants may play a role in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD). Cumulative exposure to lead (Pb) has chronic and permanent effects on liver function. Pediatric populations are vulnerable to the toxic effects of Pb, even at low exposure levels. The purpose of the study was to estimate the association between cumulative Pb exposure during childhood and hepatic steatosis biomarkers in young Mexican adults. METHODS A subsample of 93 participants from the ELEMENT cohort were included in this study. Childhood blood samples were collected annually from ages 1-4 years and were used to calculate the Cumulative Childhood Blood Lead Levels (CCBLL). Hepatic steatosis during adulthood was defined as an excessive accumulation of hepatic triglycerides (>5%) determined using Magnetic Resonance Imaging (MRI). Liver enzymes were also measured at this time, and elevated liver enzyme levels were defined as ALT (≥30 IU/L), AST (≥30 IU/L), and GGT (≥40 IU/L). Adjusted linear regression models were fit to examine the association between CCBLL (quartiles) and the hepatic steatosis in young adulthood. RESULTS In adulthood, the mean age was 21.4 years, 55% were male. The overall prevalence of hepatic steatosis by MRI was 19%. Elevate levels of the enzymes ALT, AST, and GGT were present in 25%, 15%, and 17% of the sample, respectively. We found a positive association between the highest quartile of CCBLL with the steatosis biomarkers of hepatic triglycerides (Q4 vs. Q1: β = 6.07, 95% CI: 1.91-10.21), elevated ALT (Q4 vs. Q1: β = 14.5, 95% CI: 1.39-27.61) and elevated AST (Q4 vs. Q1: β = 7.23, 95% CI: 0.64-13.82). No significant associations were found with GGT. CONCLUSIONS Chronic Pb exposure during early childhood is associated with a higher levels of hepatic steatosis biomarkers and hepatocellular injury in young adulthood. More actions should be taken to eliminate sources of Pb during the first years of life.
Collapse
Affiliation(s)
- Larissa Betanzos-Robledo
- National Council of Science and Technology, National Institute of Public Health, Mexico City, MX, Mexico
| | - Alejandra Cantoral
- Department of Health, Universidad Iberoamericana, Mexico City, MX, Mexico.
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Howard Hu
- Department of Preventive Medicine Keck School of Medicine of University of Southern California, USA
| | | | - Wei Perng
- Department of Epidemiology, Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Erica Jansen
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Adriana Mercado-García
- National Council of Science and Technology, National Institute of Public Health, Mexico City, MX, Mexico
| | - Maritsa Solano-González
- National Council of Science and Technology, National Institute of Public Health, Mexico City, MX, Mexico
| | - Brisa Sánchez
- Dornsife School of Public Health, Drexel University, USA
| | - Martha M Téllez-Rojo
- National Council of Science and Technology, National Institute of Public Health, Mexico City, MX, Mexico
| |
Collapse
|
84
|
Cano R, Pérez JL, Dávila LA, Ortega Á, Gómez Y, Valero-Cedeño NJ, Parra H, Manzano A, Véliz Castro TI, Albornoz MPD, Cano G, Rojas-Quintero J, Chacín M, Bermúdez V. Role of Endocrine-Disrupting Chemicals in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:4807. [PMID: 34062716 PMCID: PMC8125512 DOI: 10.3390/ijms22094807] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.
Collapse
Affiliation(s)
- Raquel Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - José L. Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile;
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Nereida Josefina Valero-Cedeño
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Teresa Isabel Véliz Castro
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - María P. Díaz Albornoz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Gabriel Cano
- Insitute für Pharmazie, Freie Universitänt Berlin, Königin-Louise-Strabe 2-4, 14195 Berlin, Germany;
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| |
Collapse
|
85
|
Negi CK, Khan S, Dirven H, Bajard L, Bláha L. Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22084282. [PMID: 33924165 PMCID: PMC8074384 DOI: 10.3390/ijms22084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Collapse
Affiliation(s)
- Chander K. Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
- Correspondence: or
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, 0456 Oslo, Norway;
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| |
Collapse
|
86
|
Kamboj P, Sarkar S, Gupta SK, Bisht N, Kumari D, Alam MJ, Barge S, Kashyap B, Deka B, Bharadwaj S, Rahman S, Dutta PP, Borah JC, Talukdar NC, Banerjee SK, Kumar Y. Methanolic Extract of Lysimachia Candida Lindl. Prevents High-Fat High-Fructose-Induced Fatty Liver in Rats: Understanding the Molecular Mechanism Through Untargeted Metabolomics Study. Front Pharmacol 2021; 12:653872. [PMID: 33935766 PMCID: PMC8082144 DOI: 10.3389/fphar.2021.653872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver is one of the most common metabolic syndrome affecting the global population. Presently, limited treatment modalities with symptomatic approach are available for alleviating fatty liver. Traditional and herbal treatment modalities have shown evidence to improve the disease pathology. In the present research work, evaluation of a selected medicinal plant Lysimachia candida Lindl. was carried out to investigate its beneficial effects on fatty liver disease in rats. Male Sprague Dawley (SD) rats were fed with high-fat high-fructose diet to induce fatty liver phenotypes. After induction for 15 weeks, methanolic extract of Lysimachia candida Lindl. (250 mg/kg b. w. p. o.) was administrated to the rats daily for the next 17 weeks. Blood samples were collected at different time points to analyze fasting blood glucose levels and relevant biochemical parameters important for the assessment of metabolic disease phenotypes. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression and how the medicinally important plant extract treatment reversed the metabolic diseases. Multivariate data analysis approaches have been employed to understand the metabolome changes and disease pathology. This study has identified the interplay of some metabolic pathways that alter the disease progression and their reversal after administration of the plant extract. Different group of metabolites mainly bile acids, fatty acids, carnitines, and their derivatives were found to be altered in the diseased rats. However, all the metabolites identified between control and disease groups are mainly related to lipid metabolism. The results depict that the treatment with the above-mentioned plant extract improves the regulation of aberrant lipid metabolism, and reverses the metabolic syndrome phenotype. Therefore, the present study reveals the potential mechanism of the herbal extract to prevent metabolic syndrome in rats.
Collapse
Affiliation(s)
- Parul Kamboj
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Soumalya Sarkar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Neema Bisht
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Deepika Kumari
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Sagar Barge
- Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | - Bhaswati Kashyap
- Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | - Barsha Deka
- Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | - Simanta Bharadwaj
- Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | - Seydur Rahman
- Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | - Partha Pratim Dutta
- Institute of Advanced Study in Science and Technology (IASST), Guwahati, India.,Assam Down Town University, Guwahati, India
| | - Jagat C Borah
- Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | - Narayan Chandra Talukdar
- Institute of Advanced Study in Science and Technology (IASST), Guwahati, India.,Assam Down Town University, Guwahati, India
| | - Sanjay K Banerjee
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Yashwant Kumar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
87
|
Yang Y, Sun F, Chen H, Tan H, Yang L, Zhang L, Xie J, Sun J, Huang X, Huang Y. Postnatal exposure to DINP was associated with greater alterations of lipidomic markers for hepatic steatosis than DEHP in postweaning mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143631. [PMID: 33223173 DOI: 10.1016/j.scitotenv.2020.143631] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 05/13/2023]
Abstract
The toxicity of the endocrine disruptor di(2-ethylhexyl) phthalate (DEHP) has been extensively studied for its hormonal dysregulation, obesogenic effect and associated metabolic diseases. DEHP's primary substitute di-isononyl phthalate (DINP), however, although increased in annual production globally, requires better understanding of its health effect. Our previous work reported disruptions in plasma lipid profiles, but the metabolic responses following phthalate exposure in the liver, particularly the entire hepatic lipidome, have been lacking. A targeted lipidomic technique was applied to accurately quantify a total of 363 lipid species in the liver of neonatal mice after exposure to a daily dose of 4.8 mg/kg body weight/day from birth throughout lactation. Distinct patterns of disruption for each sum of lipid classes or sub-classes between the genders were the most noticeable. Following DINP administration, female pups were subject to greater changes in phosphatidylethanolamines, bis(monoacylglycero)phosphate and ceramides. In contrast, the males exhibited less changes in the phosphoglycerol backbone-based molecules, whereas glycerol and cholesterol esters were more disrupted by DINP. DEHP, however, induced less changes overall compared to DINP. These findings highlighted the predominant lipidomic disruption of DINP on glycerol (diacylglycerides and triacylglycerides) and/or cholesterol (in ester or free form) molecules in neonatal mice across genders, suggesting the genesis of hepatic steatosis occurring at as early as post weaning. Collectively, these findings question the suitability of DINP as a safe DEHP substitute and warrant further investigation on longer-term exposure to elucidate its effect on chronic liver diseases.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, Guangdong, China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, Guangdong, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Liu Yang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Long Zhang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jinxin Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jiachen Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaochen Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
88
|
Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative Stress in Non-alcoholic Fatty Liver Disease. An Updated Mini Review. Front Med (Lausanne) 2021; 8:595371. [PMID: 33718398 PMCID: PMC7952971 DOI: 10.3389/fmed.2021.595371] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it remains still orphan of an adequate therapeutic strategy. Herein we focus on the interplay between oxidative stress (OS) and the other causal pathogenetic factors. Different reactive oxygen species (ROS) generators contribute to NAFLD inflammatory and fibrotic progression, which is quite strictly linked to the lipotoxic liver injury from fatty acids and/or a wide variety of their biologically active metabolites in the context of either a two-hit or a (more recent) multiple parallel hits theory. An antioxidant defense system is usually able to protect hepatic cells from damaging effects caused by ROS, including those produced into the gastrointestinal tract, i.e., by-products generated by usual cellular metabolic processes, normal or dysbiotic microbiota, and/or diet through an enhanced gut–liver axis. Oxidative stress originating from the imbalance between ROS generation and antioxidant defenses is under the influence of individual genetic and epigenetic factors as well. Healthy diet and physical activity have been shown to be effective on NAFLD also with antioxidant mechanisms, but compliance to these lifestyles is very low. Among several considered antioxidants, vitamin E has been particularly studied; however, data are still contradictory. Some studies with natural polyphenols proposed for NAFLD prevention and treatment are encouraging. Probiotics, prebiotics, diet, or fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors will likely assist in further selecting the treatment that could work best for a specific patient.
Collapse
Affiliation(s)
- Anna Pia Delli Bovi
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Francesca Marciano
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Claudia Mandato
- Department of Pediatrics, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Anna Siano
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Marcella Savoia
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| |
Collapse
|
89
|
Antraco VJ, Hirata BKS, de Jesus Simão J, Cruz MM, da Silva VS, da Cunha de Sá RDC, Abdala FM, Armelin-Correa L, Alonso-Vale MIC. Omega-3 Polyunsaturated Fatty Acids Prevent Nonalcoholic Steatohepatitis (NASH) and Stimulate Adipogenesis. Nutrients 2021; 13:nu13020622. [PMID: 33671850 PMCID: PMC7918199 DOI: 10.3390/nu13020622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
The increasing impact of obesity on global human health intensifies the importance of studies focusing on agents interfering with the metabolism and remodeling not only of the white adipose tissue (WAT) but also of the liver. In the present study, we have addressed the impact of n-3 PUFA in adipose cells' proliferation and adipogenesis, as well as in the hepatic lipid profile and morphology. Mice were induced to obesity by the consumption of a high-fat diet (HFD) for 16 weeks. At the 9th week, the treatment with fish oil (FO) was initiated and maintained until the end of the period. The FO treatment reduced the animals' body mass, plasma lipids, glucose, plasma transaminases, liver mass, triacylglycerol, and cholesterol liver content when compared to animals consuming only HFD. FO also decreased the inguinal (ing) WAT mass, reduced adipocyte volume, increased adipose cellularity (hyperplasia), and increased the proliferation of adipose-derived stromal cells (AdSCs) which corroborates the increment in the proliferation of 3T3-L1 pre-adipocytes or AdSCs treated in vitro with n-3 PUFA. After submitting the in vitro treated (n-3 PUFA) cells, 3T3-L1 and AdSCs, to an adipogenic cocktail, there was an increase in the mRNA expression of adipogenic transcriptional factors and other late adipocyte markers, as well as an increase in lipid accumulation when compared to not treated cells. Finally, the expression of browning-related genes was also higher in the n-3 PUFA treated group. We conclude that n-3 PUFA exerts an attenuating effect on body mass, dyslipidemia, and hepatic steatosis induced by HFD. FO treatment led to decreasing adiposity and adipocyte hypertrophy in ingWAT while increasing hyperplasia. Data suggest that FO treatment might induce recruitment (by increased proliferation and differentiation) of new adipocytes (white and/or beige) to the ingWAT, which is fundamental for the healthy expansion of WAT.
Collapse
|
90
|
Wang J, Yu P, Xie X, Wu L, Zhou M, Huan F, Jiang L, Gao R. Bisphenol F induces nonalcoholic fatty liver disease-like changes: Involvement of lysosome disorder in lipid droplet deposition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116304. [PMID: 33401208 DOI: 10.1016/j.envpol.2020.116304] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Epidemiological studies have demonstrated that the general population's exposure to bisphenol A (BPA) substitutes is ubiquitous. Bisphenol F (BPF), one of the main BPA substitutes, is increasingly replacing BPA in plastics for food and beverage applications. Accumulating evidence suggests that BPA exposure is associated with nonalcoholic fatty liver disease (NAFLD)-like changes. However, the potential effects of BPF on lipid homeostasis remain poorly understood. In the present study, an epidemiological analysis with LC-MS-MS revealed that the BPF concentrations in the serum of NAFLD patients were significantly higher than those in a control group. Supporting this result, using Oil Red O, BODIPY 493/503, LipidTox Deep Red staining and gas chromatography-time-of-flight mass spectrometry (TOF-MS) assays, we found that BPF exposure induced NAFLD-like changes, with obvious lipid droplet deposition, triglyceride (TG) and fatty acids increase in mouse livers. Meanwhile, lipid droplet deposition and TG increase induced by BPF were also observed in HepG2 cells, accompanied by autophagic flux blockade, including autophagosome accumulation and the decreased degradation of SQSTM1/p62. Using adenoviruses dual-reporter plasmid RFP-GFP-LC3, RFP-GFP-PLIN2 transfection, AO staining, and EGFR degradation assays, we demonstrated that BPF treatment impaired lysosomal degradative capacity, since BPF treatment obviously impaired lysosomal acidification, manifested as decreased lysosomal hydrolase cathepsin L (CTSL) and mature cathepsin D (CTSD) in HepG2 and mouse liver issues. Additionally, v-ATPase D, a multi-subunit enzyme that mediates acidification of eukaryotic intracellular organelles, significantly decreased after BPF exposure in both the vitro and in vivo studies. This study ascertained a novel mechanism involving dysfunctional of lysosomal degradative capacity induced by BPF, which contributes to lipophagic disorders and causes lipid droplet deposition. This work provides evidence that lysosomes may be a target organelle where BPF exerts its potential toxicity; therefore, novel intervention strategies targeting lysosome are promising for BPF-induced NAFLD-like changes.
Collapse
Affiliation(s)
- Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Pengfei Yu
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Xuexue Xie
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Linlin Wu
- Wuxi Center for Disease Control and Prevention, Wuxi, Jiangsu, 214000, China
| | - Manfei Zhou
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, NanjingMedical University, Nanjing, China
| | - Fei Huan
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, NanjingMedical University, Nanjing, China.
| |
Collapse
|
91
|
Wang M, Wang B, Wang S, Lu H, Wu H, Ding M, Ying L, Mao Y, Li Y. Effect of Quercetin on Lipids Metabolism Through Modulating the Gut Microbial and AMPK/PPAR Signaling Pathway in Broilers. Front Cell Dev Biol 2021; 9:616219. [PMID: 33634119 PMCID: PMC7900412 DOI: 10.3389/fcell.2021.616219] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The present study was conducted to investigate effects and mechanism of quercetin on lipids metabolism in broilers. 480 AA broilers were randomly allotted to four treatments (0, 0.2, 0.4, and 0.6 g/kg quercetin) for 42 days. Compared with the control, 0.6 g/kg quercetin significantly decreased percentage of abdominal fat (P < 0.05); 0.2, 0.4, and 0.6 g/kg quercetin significantly decreased relative abundance of Lachnospiraceae and Desulfovibrionaceae (P < 0.05, P < 0.05, P < 0.01; P < 0.01, P < 0.01, P < 0.01); 0.2 g/kg quercetin significantly increased mRNA expression of PI3K, AMPKα1, AMPKα2, AMPKβ2, LKB1 (P < 0.01, P < 0.01, P < 0.05, P < 0.01, P < 0.05), and significantly reduced mRNA expression of SREBP1 and PPARγ (P < 0.01, P < 0.05); 0.4 g/kg quercetin significantly increased mRNA expression of LKB1 and PKB (P < 0.05, P < 0.01) and significantly reduced mRNA expression of ACC, HMGR, PPARγ, and SREBP1 (P < 0.05, P < 0.01, P < 0.01, P < 0.01); 0.6 g/kg quercetin significantly increased mRNA expression of AMPKγ, LKB1, CPT1, PPARα, PKB (P < 0.01, P < 0.01, P < 0.01, P < 0.05, P < 0.05), and significantly reduced the mRNA expression of PI3K, ACC, HMGR, PPARγ, SREBP1 (P < 0.05, P < 0.05, P < 0.01, P < 0.01, P < 0.01); 0.2 g/kg quercetin significantly increased protein expression of AMPK (P < 0.01); 0.6 g/kg quercetin significantly increased protein expression of LKB1 (P < 0.01), 0.2 and 0.6 g/kg quercetin significantly increased protein expression of PI3K, PKB, CPT1 (P < 0.05, P < 0.01, P < 0.05, P < 0.01, P < 0.01, P < 0.01), and significantly reduced protein expression of ACC and SREBP1 (P < 0.01, P < 0.01, P < 0.01, P < 0.01). In conclusion, quercetin improved lipid metabolism by modulating gut microbial and AMPK/PPAR signaling pathway in broilers.
Collapse
Affiliation(s)
- Mi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.,College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Bo Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shanshan Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Han Lu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Hao Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Manyi Ding
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Linlin Ying
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yanjun Mao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yao Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
92
|
Liu H, Zhan Q, Miao X, Xia X, Yang G, Peng X, Yan C. Punicalagin Prevents Hepatic Steatosis through Improving Lipid Homeostasis and Inflammation in Liver and Adipose Tissue and Modulating Gut Microbiota in Western Diet-Fed Mice. Mol Nutr Food Res 2021; 65:e2001031. [PMID: 33369197 DOI: 10.1002/mnfr.202001031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/09/2020] [Indexed: 12/13/2022]
Abstract
SCOPE Punicalagin (PU)-rich pomegranate peel extract has been shown before to exert protective effects against high fat-induced hepatic damage. The aim of this study is to explore whether and how PU antagonizes hepatic steatosis in Western diet-fed (WD) mice. METHODS AND RESULTS Mice are fed either chow diet, WD (containing 42% fat, 15% protein, and 43% carbohydrates), or WD supplemented with PU (50 mg kg-1 body weight/day) for 13 weeks. Weight gain, hepatic fat content, and inflammation in the liver and adipose tissues are measured. Compared to the WD group, PU-treated mice have lower fat content, decreased levels of alanine transaminase, and inflammation in liver. PU also changed the transcriptional expression of important genes in fatty acid oxidation pathway and alleviated glucose intolerance. Furthermore, PU improved adiponectin signaling and lipid metabolism in visceral adipose tissue. Moreover, PU improved gut microbiota dysbiosis induced by WD and enhanced gut barrier function. CONCLUSIONS The findings suggest that PU improves hepatic steatosis induced by WD, in part through regulating lipid homeostasis and inflammation in liver and adipose tissue and restoring microbiota shift and impaired gut barrier function. Thus, PU can be potentially developed as a potential prevention strategy in combating nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Huanhuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Qiuyao Zhan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China
| | - Xin Miao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Gaoji Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunhong Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| |
Collapse
|
93
|
Zhao X, Chen T, Yang B, Wang D, Sun W, Wang Y, Yang X, Wen S, Li J, Shi Z. Serum levels of novel brominated flame retardants (NBFRs) in residents of a major BFR-producing region: Occurrence, impact factors and the relationship to thyroid and liver function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111467. [PMID: 33080422 DOI: 10.1016/j.ecoenv.2020.111467] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Five currently used novel brominated flame retardants (NBFRs) were determined in 172 serum samples collected from nonoccupational residents of a major BFR-producing region. All the 5 NBFRs presented high detection frequencies (DFs, >90%), and decabromodiphenyl ethane (DBDPE), a substitute of decabrominated diphenyl ethers (deca-BDE), was the most abundant NBFR. The levels of DBDPE were from <LOD to 1590 ng/g lw, with a median level of 32.5 ng/g lw. The median levels of other NBFRs were from 0.134 to 2.87 ng/g lw, which were at least 10 times lower than that of DBDPE. Moreover, a comparison to other studies showed that our results were significantly higher than studies conducted in background population. The levels of some NBFRs adjusted by serum lipid showed negative and significant correlation with BMI, whereas the difference disappeared when NBFRs levels were calculated based on serum volume. Certain NBFRs in female showed significantly higher concentrations than those in male. No significant effect of age, smoking habit, education level and children birth (in female) on serum NBFR levels was observed. The relationship between the serum levels of NBFRs and a series of thyroid/liver injury biomarkers was further analyzed to evaluate the health effects of these NBFRs to human being. Results showed that a 10-fold increment in the serum DBDPE level was associated with decreased total triiodothyronine (TT3) level (-0.037 nmol/L) [95% CI: -0.070, -0.003], whereas serum pentabromoethylbenzene (PBEB) level was associated with increased total triiodothyronine (TT3) level (0.031 nmol/L) [95% CI: 0.001, 0.060]. For liver indicators, a 10-fold increment in the serum level of PBT was associated with decreased Ln aspartate aminotransferase/alanine aminotransferase (AST/ALT) level (-0.068) [95% CI: -0.129, -0.007]. A 10-fold increment in the serum level of BTBPE was associated with increased TBIL level (0.869 μmol/L) [95% CI: 0.175, 1.564], direct bilirubin (DBIL) level (0.231 μmol/L) [95% CI: 0.075, 0.388] and IDBIL level (0.638 μmol/L) [95% CI: 0.091, 1.185]. Our findings indicate that BFR production is posing heavy BFR contamination to surrounding environment and human being, and which might relate to thyroid disruption and liver injury.
Collapse
Affiliation(s)
- Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Bin Yang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Dejun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Wen Sun
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yuwei Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xiaodi Yang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, China.
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
94
|
Sun Z, Cao H, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G. 4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115635. [PMID: 33045592 DOI: 10.1016/j.envpol.2020.115635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Finding the potential environmental obesogens is crucial to explain the prevalence of obesity and the related pathologies. Increasing evidence has showed that many chemicals with endocrine disrupting effects can disturb lipid metabolism. Whether 4-hexylphenol (4-HP), a widely-used surfactant and a potential endocrine disrupting chemical (EDC), is associated to influence adipogenesis and hepatic lipid accumulation remained to be elucidated. In this study, both the 3T3-L1 differentiation model and oleic acid (OA)-treated HepG2 cells were used to investigate the effects of 4-HP on lipid metabolism, and the underlying estrogen receptor (ER)-involved mechanism was explored using MVLN assay, molecular docking simulation and the antagonist test. The results based on lipid droplet staining and triglyceride accumulation assay showed that 4-HP treatment promoted the adipogenic differentiation of 3T3-L1 cells and increased hepatic cellular OA accumulation in exposure concentration-dependent manners. The study on the elaborated transcription networks indicated that 4-HP activated peroxisome proliferator-activated receptor γ (PPARγ) as well as the subsequent adipogenic gene program in 3T3-L1 cells. This chemical also induced the increase of OA uptake and decreases of de novo lipogenesis and fatty acid oxidation in HepG2 cells. The agonistic activity of 4-HP in triggering ER-mediated pathway was shown to correlate with its perturbation in lipid metabolism, as evidenced by the enhanced development of mature lipid-laden adipocytes and suppression of excessive hepatic lipid accumulation upon its co-treatment with ER antagonist. Altogether, these findings provide new insights into the potential health impacts of 4-HP exposure as it may relate to obesity and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiming Cao
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Heidelore Fiedler
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82, Örebro, Sweden
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
95
|
Dolai J, Ali H, Jana NR. Selective capturing and fluorescence “turn on” detection of dibutyl phthalate using a molecular imprinted nanocomposite. NEW J CHEM 2021. [DOI: 10.1039/d1nj04169j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence-based selective detection of dibutyl phthalate is achieved via a paper-strip-based approach.
Collapse
Affiliation(s)
- Jayanta Dolai
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Haydar Ali
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nikhil R. Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|
96
|
Vanni R, Bussuan RM, Rombaldi RL, Arbex AK. Endocrine Disruptors and the Induction of Insulin Resistance. Curr Diabetes Rev 2021; 17:e102220187107. [PMID: 33092513 DOI: 10.2174/1573399816666201022121254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The incidence of insulin resistance syndrome and type 2 diabetes mellitus has increased at an alarming rate worldwide and constitutes a serious challenge to public health care in the 21st century. Endocrine disrupting chemicals are defined as "substances or mixtures of substances that alter the endocrine system functions and, hence, adversely affect organisms, their progeny, or sub populations" and may be associated with this increase in prevalence. OBJECTIVE This study aimed to assess the role of endocrine disrupting chemicals in insulin resistance and the importance of approaching the subject during anamnesis. METHODS A full review of the literature regarding insulin resistance, type-2 diabetes and endocrine disruptors were conducted. CONCLUSION Large-scale production and distribution of endocrine disrupting chemicals coincide with the increase in the prevalence of insulin resistance globally. In recent years, studies have shown that endocrine disrupting chemicals are positively associated with insulin resistance syndrome, evidenced by worse prognoses among individuals with higher levels of exposure. Health professionals should recognize the forms of exposure, most susceptible people, and lifestyle habits that can worsen patients' prognoses.
Collapse
Affiliation(s)
- Rafael Vanni
- IPEMED Medical School/ AFYA Educational, Rio de Janeiro, Brazil
| | | | | | - Alberto K Arbex
- Medical Clinic in Schleswig-Flensburg, State of Schleswig-Holstein, Germany
| |
Collapse
|
97
|
Diniz TA, de Lima Junior EA, Teixeira AA, Biondo LA, da Rocha LAF, Valadão IC, Silveira LS, Cabral-Santos C, de Souza CO, Rosa Neto JC. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci 2020; 266:118868. [PMID: 33310034 DOI: 10.1016/j.lfs.2020.118868] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
Liver steatosis is one of the main drivers for the development of whole-body insulin resistance. Conversely, aerobic training (AT) has been suggested as non-pharmacological tool to improve liver steatosis, however, the underlying molecular mechanism remains unclear. Therefore, the aim of this study was to analyze the effect of 8-weeks AT in non-alcoholic liver disease (NAFLD) outcomes in obese mice. Male C57BL/6 J wild type (WT) were fed with standard (SD) or high-fat diet (HFD) for 12-weeks. Another group fed with HFD underwent 8-weeks of AT (60% of maximum velocity), initiated at the 5th week of experimental protocol. We measured metabolic, body composition parameters, protein and gene expression inflammatory and metabolic mediators. We found that AT attenuates the weight gain, but not body fat accumulation. AT improved triacylglycerol and non-esterified fatty acid plasma concentrations, and also whole-body insulin resistance. Regarding NAFLD, AT decreased the progression of macrovesicular steatosis and inflammation through the upregulation of AMPK Thr172 phosphorylation and PPAR-α protein expression. Moreover, although no effects of intervention in PPAR-γ protein concentration were observed, we found increased levels of its target genes Cd36 and Scd1 in exercised group, demonstrating augmented transcriptional activity. AT reduced liver cytokines concentrations, such as TNF-α, IL-10, MCP-1 and IL-6, regardless of increased Ser536 NF-κB phosphorylation. In fact, none of the interventions regulated NF-κB target genes Il1b and Cccl2, demonstrating its low transcriptional activity. Therefore, we conclude that AT attenuates the progression of liver macrovesicular steatosis and inflammation through AMPK-PPAR-α signaling and PPAR-γ activation, respectively, improving insulin resistance in obese mice.
Collapse
Affiliation(s)
- Tiego Aparecido Diniz
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - Edson Alves de Lima Junior
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - Alexandre Abílio Teixeira
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - Luana Amorim Biondo
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | | | | | - Loreana Sanches Silveira
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - Carol Cabral-Santos
- Exercise and Immunometabolism Research Group, Department of Physical Education, University of the State of Sao Paulo, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP, Brazil
| | - Camila Oliveira de Souza
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil
| | - José Cesar Rosa Neto
- Immunometabolism Research Group, Department of Cell and Developmental Biology, University of São Paulo, Avenida Prof Lineu Prestes, 1524, CEP 05508-900 Butantã, São Paulo, Brazil.
| |
Collapse
|
98
|
Brulport A, Vaiman D, Bou-Maroun E, Chagnon MC, Corre LL. Hepatic transcriptome and DNA methylation patterns following perinatal and chronic BPS exposure in male mice. BMC Genomics 2020; 21:881. [PMID: 33297965 PMCID: PMC7727143 DOI: 10.1186/s12864-020-07294-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/28/2020] [Indexed: 11/21/2022] Open
Abstract
Background Bisphenol S (BPS) is a common bisphenol A (BPA) substitute, since BPA is virtually banned worldwide. However, BPS and BPA have both endocrine disrupting properties. Their effects appear mostly in adulthood following perinatal exposures. The objective of the present study was to investigate the impact of perinatal and chronic exposure to BPS at the low dose of 1.5 μg/kg body weight/day on the transcriptome and methylome of the liver in 23 weeks-old C57BL6/J male mice. Results This multi-omic study highlights a major impact of BPS on gene expression (374 significant deregulated genes) and Gene Set Enrichment Analysis show an enrichment focused on several biological pathways related to metabolic liver regulation. BPS exposure also induces a hypomethylation in 58.5% of the differentially methylated regions (DMR). Systematic connections were not found between gene expression and methylation profile excepted for 18 genes, including 4 genes involved in lipid metabolism pathways (Fasn, Hmgcr, Elovl6, Lpin1), which were downregulated and featured differentially methylated CpGs in their exons or introns. Conclusions This descriptive study shows an impact of BPS on biological pathways mainly related to an integrative disruption of metabolism (energy metabolism, detoxification, protein and steroid metabolism) and, like most high-throughput studies, contributes to the identification of potential exposure biomarkers. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07294-3.
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France.,AgroSup, LNC UMR1231, 1 Esplanade Erasme, 21000, Dijon, France.,Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Daniel Vaiman
- From Gametes to Birth Team (FGTB), INSERM, U1016, Institut Cochin, F-75014, Paris, France.,CNRS UMR8104, F-75014, Paris, France.,Université Sorbonne Paris Cité, F-75014, Paris, France
| | - Elias Bou-Maroun
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Procédés Alimentaires et Microbiologiques, F-21000, Dijon, France
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France.,AgroSup, LNC UMR1231, 1 Esplanade Erasme, 21000, Dijon, France.,Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France. .,AgroSup, LNC UMR1231, 1 Esplanade Erasme, 21000, Dijon, France. .,Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France.
| |
Collapse
|
99
|
Chung SM, Moon JS, Yoon JS, Won KC, Lee HW. The sex-specific effects of blood lead, mercury, and cadmium levels on hepatic steatosis and fibrosis: Korean nationwide cross-sectional study. J Trace Elem Med Biol 2020; 62:126601. [PMID: 32634767 DOI: 10.1016/j.jtemb.2020.126601] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
AIM The potential effects of heavy metals on non-alcoholic fatty liver disease (NAFLD) remain unknown. We investigated the sex-specific relationships of blood lead (BPb), mercury (BHg), and cadmium (BCd) levels with hepatic steatosis (HS) and fibrosis (HF). METHOD We included 4420 participants from the 2016-2017 Korea National Health and Nutrition Examination Survey. High-risk alcoholics and patients with chronic hepatitis B or C infections or liver cirrhosis were excluded. We calculated the hepatic steatosis index (HSI) and fibrosis-4 index (FIB-4) values; we defined the presence of HS and HF as an HSI ≥ 36 and FIB-4 score >2.67, respectively. We adjusted for age, smoking and alcohol consumption statuses, hypertension, obesity, diabetes, hypertriglyceridemia, and BPb, BHg, and BCd levels. RESULT In males (n = 1860), the HSI was correlated negatively with the BPb level and positively with the BHg level (both p < 0.01). The FIB-4 score was correlated positively with the BPb and BCd levels (both p < 0.01). In females (n = 2560), the HSI and FIB-4 score were correlated positively with the BPb, BHg, and BCd levels (all p < 0.01). After adjustments, the BHg level increased the risk of HS in both males (OR = 1.065, p = 0.003) and females (OR = 1.061, p = 0.048), and the BCd level increased the risk of HF in females (OR = 1.668, p = 0.012). CONCLUSION Blood heavy metal levels were generally correlated positively with the HSI and FIB4 score, more so in females than males. The BHg level was associated with HS in males and females, and the BCd level was associated with HF in females. Further studies on NAFLD progression according to heavy metal status and sex are warranted.
Collapse
Affiliation(s)
- Seung Min Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| | - Jun Sung Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| | - Ji Sung Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| | - Kyu Chang Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| | - Hyoung Woo Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeungnam College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
100
|
Gong Y, Su J, Li M, Zhu A, Liu G, Liu P. Fabrication and Adsorption Optimization of Novel Magnetic Core-shell Chitosan/Graphene Oxide/β-cyclodextrin Composite Materials for Bisphenols in Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5408. [PMID: 33261177 PMCID: PMC7730130 DOI: 10.3390/ma13235408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 01/06/2023]
Abstract
A novel magnetic composite material, Fe3O4@SiO2/chitosan/graphene oxide/β-cyclodextrin (MCGC), was prepared by multi-step methods. Various methods were used to systematically characterize the morphology, composition, structure, and magnetic properties of MCGC. The results obtained show that the composite material has good morphology and crystal structure and can be separated quickly by an external magnetic field. The operation is relatively easy, and the raw materials used to prepare this material are economical, easy to obtain, and environmentally friendly. The performance and adsorption mechanism for using this material as an adsorbent to remove bisphenol A (BPA) and bisphenol F (BPF) from water were studied. The adsorption parameters were optimized. Under optimal conditions, MCGC was found to remove more than 90% of BPA and BPF in a mixed solution (20 mg/L, 50 mL); the adsorption process for BPA and BPF on MCGC was found to follow a Redlich-Peterson isotherm model and Pseudo-second-order kinetic model. The adsorption mechanism for MCGC may involve a combination of various forces. Recycling experiments showed that after five uses, MCGC retained a more than 80% removal effect for BPA and BPF, and through real sample verification, MCGC can be used for wastewater treatment. Therefore, MCGC is economical, environmentally friendly, and easy to separate and collect, and has suitable stability and broad application prospects.
Collapse
Affiliation(s)
- Yichao Gong
- College of Chemistry & Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071000, China; (Y.G.); (J.S.); (M.L.); (A.Z.); (G.L.)
| | - Jianbing Su
- College of Chemistry & Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071000, China; (Y.G.); (J.S.); (M.L.); (A.Z.); (G.L.)
| | - Muyuan Li
- College of Chemistry & Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071000, China; (Y.G.); (J.S.); (M.L.); (A.Z.); (G.L.)
| | - Aixue Zhu
- College of Chemistry & Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071000, China; (Y.G.); (J.S.); (M.L.); (A.Z.); (G.L.)
| | - Guisui Liu
- College of Chemistry & Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071000, China; (Y.G.); (J.S.); (M.L.); (A.Z.); (G.L.)
| | - Pengyan Liu
- College of Chemistry & Environmental Science, Hebei University, No. 180 Wusi East Road, Baoding 071000, China; (Y.G.); (J.S.); (M.L.); (A.Z.); (G.L.)
- Key Laboratory of Analytical Science and Technology of Hebei Province, No. 180 Wusi East Road, Baoding 071000, China
| |
Collapse
|