51
|
Jiang X, Luo T, Yang K, Lee MJ, Liu J, Tillman L, Zhen W, Weichselbaum RR, Lin W. STING activation disrupts tumor vasculature to overcome the EPR limitation and increase drug deposition. SCIENCE ADVANCES 2024; 10:eado0082. [PMID: 39018400 PMCID: PMC466951 DOI: 10.1126/sciadv.ado0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The low success rate of cancer nanomedicines has raised debate on the role of the enhanced permeability and retention (EPR) effect on tumor deposition of nanotherapeutics. Here, we report a bifunctional nanoscale coordination polymer (NCP), oxaliplatin (OX)/2',3'-cyclic guanosine monophosphate-adenosine monophosphate (GA), to overcome the EPR limitation through stimulator of interferon genes (STING) activation and enhance chemotherapeutic and STING agonist delivery for tumor eradication. OX/GA encapsulates GA and OX in the NCP to protect GA from enzymatic degradation and improve GA and OX pharmacokinetics. STING activation by OX/GA disrupts tumor vasculatures and increases intratumoral deposition of OX by 4.9-fold over monotherapy OX-NCP. OX/GA demonstrates exceptional antitumor effects with >95% tumor growth inhibition and high cure rates in subcutaneous, orthotopic, spontaneous, and metastatic tumor models. OX/GA induces immunogenic cell death of tumor cells and STING activation of innate immune cells to enhance antigen presentation. NCPs provide an excellent nanoplatform to overcome the EPR limitation for effective cancer therapy.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Morten J. Lee
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Jing Liu
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Wenyao Zhen
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave., Chicago, IL 60637, USA
| |
Collapse
|
52
|
Dou Y, Zheng J, Kang J, Wang L, Huang D, Liu Y, He C, Lin C, Lu C, Wu D, Han R, Li L, Tang L, He Y. Mesoporous manganese nanocarrier target delivery metformin for the co-activation STING pathway to overcome immunotherapy resistance. iScience 2024; 27:110150. [PMID: 39040065 PMCID: PMC11261061 DOI: 10.1016/j.isci.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Targeting the stimulator of interferon genes (STING) pathway is a promising strategy to overcome primary resistance to immune checkpoint inhibitors in non-small cell lung cancer with the STK11 mutation. We previously found metformin enhances the STING pathway and thus promotes immune response. However, its low concentration in tumors limits its clinical use. Here, we constructed high-mesoporous Mn-based nanocarrier loading metformin nanoparticles (Mn-MSN@Met-M NPs) that actively target tumors and respond to release higher concentration of Mn2+ ions and metformin. The NPs significantly enhanced the T cells to kill lung cancer cells with the STK11 mutant. The mechanism shows that enhanced STING pathway activation promotes STING, TBKI, and IRF3 phosphorylation through Mn2+ ions and metformin release from NPs, thus boosting type I interferon production. In vivo, NPs in combination with a PD-1 inhibitor effectively decreased tumor growth. Collectively, we developed a Mn-MSN@Met-M nanoactivator to intensify immune activation for potential cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanyao Dou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Jun Kang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liping Wang
- Department of pain treatment, the seventh people’s Hospital of Chongqing, Chongqing 401320, China
| | - Daijuan Huang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chao He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
53
|
Shang L, Jiang X, Zhao X, Huang X, Wang X, Jiang X, Kong X, Yao M, Jiang S, Wong PP. Mitochondrial DNA-boosted dendritic cell-based nanovaccination triggers antitumor immunity in lung and pancreatic cancers. Cell Rep Med 2024; 5:101648. [PMID: 38986624 PMCID: PMC11293323 DOI: 10.1016/j.xcrm.2024.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Low migratory dendritic cell (DC) levels pose a challenge in cancer immune surveillance, yet their impact on tumor immune status and immunotherapy responses remains unclear. We present clinical evidence linking reduced migratory DC levels to immune-cold tumor status, resulting in poor patient outcomes. To address this, we develop an autologous DC-based nanovaccination strategy using patient-derived organoid or cancer cell lysate-pulsed cationic nanoparticles (cNPs) to load immunogenic DC-derived microvesicles (cNPcancer cell@MVDC). This approach transforms immune-cold tumors, increases migratory DCs, activates T cells and natural killer cells, reduces tumor growth, and enhances survival in orthotopic pancreatic and lung cancer models, surpassing conventional methods. In vivo imaging reveals superior cNPcancer cell@MVDC accumulation in tumors and lymph nodes, promoting immune cell infiltration. Mechanistically, cNPs enrich mitochondrial DNA, enhancing cGAS-STING-mediated DC activation and migration. Our strategy shifts cold tumors to a hot state, enhancing antitumor immunity for potential personalized cancer treatments.
Collapse
Affiliation(s)
- Lihuan Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shanping Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
54
|
Li N, Yan Y, Li Y, Yang Y, Dai C, Li N. ATM, BLM, and CDH1 gene co-mutations in a high-grade endometrial stromal sarcoma patient with multiple abdominal cavity metastases: a case report and literature review. BMC Geriatr 2024; 24:603. [PMID: 39009979 PMCID: PMC11247777 DOI: 10.1186/s12877-024-05201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND High-grade endometrial stromal sarcoma (HG-ESS) is a rare malignant tumor with poor prognosis. To overcome the limitations of current treatment for advanced patients, the intervention of targeted drug therapy is urgently needed. CASE PRESENTATION A 74-year-old married woman who presented with abdominal distension and lower abdominal pain was admitted to Hebei General Hospital. After surgery, immunohistochemical staining revealed a malignant tumor which was consistent with HG-ESS. Tumor recurrence occurred 2 months after surgery. Then the patient underwent chemotherapy with two courses but responded poorly. Subsequently we observed ATM, BLM, and CDH1 co-mutations by Next Generation Sequencing (NGS). Then the patient received pamiparib, which resulted in a 10-month progression-free survival (PFS) and is now stable with the administration of sintilimab in combination with pamiparib and anlotinib. CONCLUSIONS Due to the successful use of poly ADP-ribose polymerase inhibitor (PARPi) on HG-ESS, we suggest that the selection of effective targeted drugs combined with anti- programmed death-1 (PD-1) drug therapy based on genetic testing may become a new option for the treatment of homologous repair deficient (HR-deficient) HG-ESS.
Collapse
Affiliation(s)
- Nan Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
- Teaching and Research Section of Oncology, Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yaxin Yan
- Department of Oncology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Yaxing Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Yanyan Yang
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Congwei Dai
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Na Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
55
|
Ramos A, Bizri N, Novak E, Mollen K, Khan S. The role of cGAS in epithelial dysregulation in inflammatory bowel disease and gastrointestinal malignancies. Front Pharmacol 2024; 15:1409683. [PMID: 39050748 PMCID: PMC11266671 DOI: 10.3389/fphar.2024.1409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
The gastrointestinal tract is lined by an epithelial monolayer responsible for selective permeability and absorption, as well as protection against harmful luminal contents. Recognition of foreign or aberrant DNA within these epithelial cells is, in part, regulated by pattern recognition receptors such as cyclic GMP-AMP synthase (cGAS). cGAS binds double-stranded DNA from exogenous and endogenous sources, resulting in the activation of stimulator of interferon genes (STING) and a type 1 interferon response. cGAS is also implicated in non-canonical pathways involving the suppression of DNA repair and the upregulation of autophagy via interactions with PARP1 and Beclin-1, respectively. The importance of cGAS activation in the development and progression of inflammatory bowel disease and gastrointestinal cancers has been and continues to be explored. This review delves into the intricacies of the complex role of cGAS in intestinal epithelial inflammation and gastrointestinal malignancies, as well as recent therapeutic advances targeting cGAS pathways.
Collapse
Affiliation(s)
- Anna Ramos
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nazih Bizri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elizabeth Novak
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin Mollen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sidrah Khan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
56
|
Issa W, Njeim R, Carrazco A, Burke GW, Mitrofanova A. Role of the Innate Immune Response in Glomerular Disease Pathogenesis: Focus on Podocytes. Cells 2024; 13:1157. [PMID: 38995008 PMCID: PMC11240682 DOI: 10.3390/cells13131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Accumulating evidence indicates that inflammatory and immunologic processes play a significant role in the development and progression of glomerular diseases. Podocytes, the terminally differentiated epithelial cells, are crucial for maintaining the integrity of the glomerular filtration barrier. Once injured, podocytes cannot regenerate, leading to progressive proteinuric glomerular diseases. However, emerging evidence suggests that podocytes not only maintain the glomerular filtration barrier and are important targets of immune responses but also exhibit many features of immune-like cells, where they are involved in the modulation of the activity of innate and adaptive immunity. This dual role of podocytes may lead to the discovery and development of new therapeutic targets for treating glomerular diseases. This review aims to provide an overview of the innate immunity mechanisms involved in podocyte injury and the progression of proteinuric glomerular diseases.
Collapse
Affiliation(s)
- Wadih Issa
- Department of Internal Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Arianna Carrazco
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
57
|
Mao HQ, Zhou L, Li JQ, Wen YH, Chen Z, Zhang L. STING inhibition alleviates bone resorption in apical periodontitis. Int Endod J 2024; 57:951-965. [PMID: 38411951 DOI: 10.1111/iej.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
AIM The goal of this study was to investigate the potential effects of an immunotherapeutic drug targeting STING to suppress the overreactive innate immune response and relieve the bone defect in apical periodontitis. METHODOLOGY We established an apical periodontitis mouse model in Sting-/- and WT mice in vivo. The progression of apical periodontitis was analysed by micro-CT analysis and H&E staining. The expression level and localization of STING in F4/80+ cells were identified by IHC and immunofluorescence staining. RANKL in periapical tissues was tested by IHC staining. TRAP staining was used to detect osteoclasts. To clarify the effect of STING inhibitor C-176 as an immunotherapeutic drug, mice with apical periodontitis were treated with C-176 and the bone loss was identified by H&E, TRAP, RANKL staining and micro-CT. Bone marrow-derived macrophages (BMMs) were isolated from Sting-/- and WT mice and induced to osteoclasts in a lipopolysaccharide (LPS)-induced inflammatory environment in vitro. Moreover, WT BMMs were treated with C-176 to determine the effect on osteoclast differentiation by TRAP staining. The expression levels of osteoclast-related genes were tested using qRT-PCR. RESULTS Compared to WT mice, the bone resorption and inflammatory cell infiltration were reduced in exposed Sting-/- mice. In the exposed WT group, STING was activated mainly in F4/80+ macrophages. Histological staining revealed the less osteoclasts and lower expression of osteoclast-related factor RANKL in Sting-/- mice. The treatment of the STING inhibitor C-176 in an apical periodontitis mice model alleviated inflammation progression and bone loss, similar to the effect observed in Sting-/- mice. Expression of RANKL and osteoclast number in periapical tissues were also decreased after C-176 administration. In vitro, TRAP staining showed fewer positive cells and qRT-PCR reflected decreased expression of osteoclastic marker, Src and Acp5 were detected during osteoclastic differentiation in Sting-/- and C-176 treated BMMs. CONCLUSIONS STING was activated and was proven to be a positive factor in bone loss and osteoclastogenesis in apical periodontitis. The STING inhibitor C-176 administration could alleviate the bone loss via modulating local immune response, which provided immunotherapy to the treatment of apical periodontitis.
Collapse
Affiliation(s)
- Han-Qing Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia-Qi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Yuan-Hao Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
58
|
Kiraly P, Fischer MD. RETRACTED ARTICLE: Cystoid Macular Oedema in a Patient Treated with STING Agonist and Ezabenlimab for Disseminated Melanoma. Ophthalmol Ther 2024; 13:2061. [PMID: 38467992 PMCID: PMC11178736 DOI: 10.1007/s40123-024-00911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Peter Kiraly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom.
| | - M Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
59
|
Tian X, Ai J, Tian X, Wei X. cGAS-STING pathway agonists are promising vaccine adjuvants. Med Res Rev 2024; 44:1768-1799. [PMID: 38323921 DOI: 10.1002/med.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.
Collapse
Affiliation(s)
- Xinyu Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
60
|
Yang W, Cao J, Di S, Chen W, Cheng H, Ren H, Xie Y, Chen L, Yu M, Chen Y, Cui X. Immunogenic Material Vaccine for Cancer Immunotherapy by Structure-Dependent Immune Cell Trafficking and Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402580. [PMID: 38630978 DOI: 10.1002/adma.202402580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Inherently immunogenic materials offer enormous prospects in enhancing vaccine efficacy. However, the understanding and improving material adjuvanticity remain elusive. Herein how the structural presentation of immunopotentiators in a material governs the dynamic dialogue between innate and adaptive immunity for enhanced cancer vaccination is reported. The immunopotentiator manganese into six differing structures that resemble the architectures of two types of pathogens (spherical viruses or rod-like bacteria) is precisely manipulated. The results reveal that innate immune cells accurately sense and respond to the architectures, of which two outperformed material candidates (151 nm hollow spheres and hollow microrods with an aspect ratio of 4.5) show higher competence in creating local proinflammatory environment with promoted innate immune cell influx and stimulation on dendritic cells (DCs). In combination with viral peptides, model proteins, or cell lysate antigens, the outperformed microrod material remarkably primes antigen-specific CD8 cytolytic T cells. In prophylactic and therapeutic regimens, the microrod adjuvanted vaccines display optimal aptitude in tumor suppression in four aggressive murine tumor models, by promoting the infiltration of heterogeneous cytolytic effector cells while decreasing suppressive immunoregulatory populations in tumors. This study demonstrates that a rationally selected architecture of immunogenic materials potentially advances the clinical reality of cancer vaccination.
Collapse
Affiliation(s)
- Wei Yang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, P. R. China
| | - Jianwei Cao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, P. R. China
| | - Sichen Di
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, P. R. China
| | - Wenjin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, P. R. China
| | - Hui Cheng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, P. R. China
| |
Collapse
|
61
|
Yamada H, Takada M, Ghone D, Yu M, Nagashima T, Fujimoto H, Sakakibara J, Hasegawa Y, Takao S, Yamada A, Narui K, Ishikawa T, Suzuki A, Otsuka M. Eribulin induces micronuclei and enhances the nuclear localization of cGAS in triple-negative breast cancer cells. Sci Rep 2024; 14:14146. [PMID: 38898119 PMCID: PMC11187130 DOI: 10.1038/s41598-024-64651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Eribulin (ERI), clinically utilized for locally advanced or metastatic breast tumors, has shown potential links to the immune system. Notably, the cGAS-STING pathway, a key component of innate immunity, has gained prominence. Yet, limited reports explore ERI's effects on the cGAS-STING pathway. Additionally, the nuclear presence of cGAS remains poorly understood. This study uniquely delves into ERI's impact on both the cytosolic cGAS-STING pathway and nuclear cGAS. ERI enhances nuclear localization of cGAS, resulting in hyper-activation of the cGAS-STING pathway in triple-negative breast cancer cells. Reduction of cGAS heightened both cell proliferation and ERI sensitivity. In clinical data using ERI in a neo-adjuvant setting, patients with low cGAS cases exhibited reduced likelihood of achieving pathological complete response after ERI treatment. These findings illuminate the potential of cGAS and IFNβ as predictive biomarkers for ERI sensitivity, providing valuable insights for personalized breast cancer treatment strategies.
Collapse
Affiliation(s)
- Hideyuki Yamada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Mamoru Takada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
| | - Dhaval Ghone
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Muhan Yu
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Takeshi Nagashima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Hiroshi Fujimoto
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Junta Sakakibara
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Yoshie Hasegawa
- Department of Breast Surgery, Hachinohe City Hospital, Hachinohe, Aomori, Japan
| | - Shintaro Takao
- Department of Breast Surgery, Konan Medical Center, Kobe, Hyogo, Japan
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazutaka Narui
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Takashi Ishikawa
- Department of Breast Oncology and Surgery, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Aussie Suzuki
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Masayuki Otsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
62
|
Aybar-Torres A, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common TMEM173 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561109. [PMID: 37886547 PMCID: PMC10602033 DOI: 10.1101/2023.10.05.561109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The significance of STING (encoded by the TMEM173 gene) in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human TMEM173 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using STING knock-in mice expressing common human TMEM173 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING-mediated cell death ex vivo, establishing a critical role of STING residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING research and STING-targeting immunotherapy should consider TMEM173 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ann T. Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Amir M. Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL 32610, U.S.A
| | - Andrew J. Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
63
|
Gu L, Liu M, Zhang Y, Zhou H, Wang Y, Xu ZX. Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front Pharmacol 2024; 15:1379166. [PMID: 38910895 PMCID: PMC11190371 DOI: 10.3389/fphar.2024.1379166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Maintaining the structural integrity of genomic chromosomal DNA is an essential role of cellular life and requires two important biological mechanisms: the DNA damage response (DDR) mechanism and telomere protection mechanism at chromosome ends. Because abnormalities in telomeres and cellular DDR regulation are strongly associated with human aging and cancer, there is a reciprocal regulation of telomeres and cellular DDR. Moreover, several drug treatments for DDR are currently available. This paper reviews the progress in research on the interaction between telomeres and cellular DNA damage repair pathways. The research on the crosstalk between telomere damage and DDR is important for improving the efficacy of tumor treatment. However, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
64
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
65
|
Toufektchan E, Dananberg A, Striepen J, Hickling JH, Shim A, Chen Y, Nichols A, Duran Paez MA, Mohr L, Bakhoum SF, Maciejowski J. Intratumoral TREX1 Induction Promotes Immune Evasion by Limiting Type I IFN. Cancer Immunol Res 2024; 12:673-686. [PMID: 38408184 PMCID: PMC11148545 DOI: 10.1158/2326-6066.cir-23-1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Chromosomal instability is a hallmark of human cancer that is associated with aggressive disease characteristics. Chromosome mis-segregations help fuel natural selection, but they risk provoking a cGAS-STING immune response through the accumulation of cytosolic DNA. The mechanisms of how tumors benefit from chromosomal instability while mitigating associated risks, such as enhanced immune surveillance, are poorly understood. Here, we identify cGAS-STING-dependent upregulation of the nuclease TREX1 as an adaptive, negative feedback mechanism that promotes immune evasion through digestion of cytosolic DNA. TREX1 loss diminishes tumor growth, prolongs survival of host animals, increases tumor immune infiltration, and potentiates response to immune checkpoint blockade selectively in tumors capable of mounting a type I IFN response downstream of STING. Together, these data demonstrate that TREX1 induction shields chromosomally unstable tumors from immune surveillance by dampening type I IFN production and suggest that TREX1 inhibitors might be used to selectively target tumors that have retained the inherent ability to mount an IFN response downstream of STING. See related article by Lim et al., p. 663.
Collapse
Affiliation(s)
- Eléonore Toufektchan
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josefine Striepen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James H. Hickling
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abraham Shim
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yanyang Chen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashley Nichols
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mercedes A. Duran Paez
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa Mohr
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
66
|
Rezabakhsh A, Sadaie MR, Ala A, Roosta Y, Habtemariam S, Sahebnasagh A, Khezri MR. STING agonists as promising vaccine adjuvants to boost immunogenicity against SARS-related coronavirus derived infection: possible role of autophagy. Cell Commun Signal 2024; 22:305. [PMID: 38831299 PMCID: PMC11145937 DOI: 10.1186/s12964-024-01680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
As a major component of innate immunity and a positive regulator of interferons, the Stimulator of interferon gene (STING) has an immunotherapy potential to govern a variety of infectious diseases. Despite the recent advances regarding vaccines against COVID-19, nontoxic novel adjuvants with the potential to enhance vaccine efficacy are urgently desired. In this connection, it has been well-documented that STING agonists are applied to combat COVID-19. This approach is of major significance for boosting immune responses most likely through an autophagy-dependent manner in susceptible individuals against infection induced by severe acute respiratory syndrome Coronavirus (SARS‑CoV‑2). Given that STING agonists exert substantial immunomodulatory impacts under a wide array of pathologic conditions, these agents could be considered novel adjuvants for enhancing immunogenicity against the SARS-related coronavirus. Here, we intend to discuss the recent advances in STING agonists' recruitment to boost innate immune responses upon vaccination against SARS-related coronavirus infections. In light of the primordial role of autophagy modulation, the potential of being an antiviral vaccine adjuvant was also explored.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Shahid Madani specialized Heart Hospita, Tabriz University of Medical Sciences, University St, Tabriz, 5166615573, Iran.
| | - M Reza Sadaie
- NovoMed Consulting, Biomedical Sciences, Germantown, Maryland, USA
| | - Alireza Ala
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Roosta
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research and Herbal Analysis Services UK, University of Greenwich, Kent, UK
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, 5715799313, Iran.
| |
Collapse
|
67
|
Wang Y, Li S, Hu M, Yang Y, McCabe E, Zhang L, Withrow AM, Ting JPY, Liu R. Universal STING mimic boosts antitumour immunity via preferential activation of tumour control signalling pathways. NATURE NANOTECHNOLOGY 2024; 19:856-866. [PMID: 38480836 DOI: 10.1038/s41565-024-01624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/29/2024] [Indexed: 03/21/2024]
Abstract
The efficacy of STING (stimulator of interferon genes) agonists is due to various factors, primarily inefficient intracellular delivery, low/lack of endogenous STING expression in many tumours, and a complex balance between tumour control and progression. Here we report a universal STING mimic (uniSTING) based on a polymeric architecture. UniSTING activates STING signalling in a range of mouse and human cell types, independent of endogenous STING expression, and selectively stimulates tumour control IRF3/IFN-I pathways, but not tumour progression NF-κB pathways. Intratumoural or systemic injection of uniSTING-mRNA via lipid nanoparticles (LNPs) results in potent antitumour efficacy across established and advanced metastatic tumour models, including triple-negative breast cancer, lung cancer, melanoma and orthotopic/metastatic liver malignancies. Furthermore, uniSTING displays an effective antitumour response superior to 2'3'-cGAMP and ADU-S100. By favouring IRF3/IFN-I activity over the proinflammatory NF-κB signalling pathway, uniSTING promotes dendritic cell maturation and antigen-specific CD8+ T-cell responses. Extracellular vesicles released from uniSTING-treated tumour cells further sensitize dendritic cells via exosome-containing miRNAs that reduced the immunosuppressive Wnt2b, and a combination of LNP-uniSTING-mRNA with α-Wnt2b antibodies synergistically inhibits tumour growth and prolongs animal survival. Collectively, these results demonstrate the LNP-mediated delivery of uniSTING-mRNA as a strategy to overcome the current STING therapeutic barriers, particularly for the treatment of multiple cancer types in which STING is downregulated or absent.
Collapse
Affiliation(s)
- Ying Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mengying Hu
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Ellie McCabe
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lillian Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew M Withrow
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
68
|
Lo Cigno I, Calati F, Girone C, Catozzo M, Gariglio M. High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 2024; 96:e29685. [PMID: 38783790 DOI: 10.1002/jmv.29685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marta Catozzo
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| |
Collapse
|
69
|
Yu X, Li B, Yan J, Li W, Tian H, Wang G, Zhou S, Dai Y. Cuproptotic nanoinducer-driven proteotoxic stress potentiates cancer immunotherapy by activating the mtDNA-cGAS-STING signaling. Biomaterials 2024; 307:122512. [PMID: 38430646 DOI: 10.1016/j.biomaterials.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Proteotoxic stress, caused by the accumulation of abnormal unfolded or misfolded cellular proteins, can efficiently activate inflammatory innate immune response. Initiating the mitochondrial proteotoxic stress might go forward to enable the cytosolic release of intramitochondrial DNA (mtDNA) for the immune-related mtDNA-cGAS-STING activation, which however is easily eliminated by a cell self-protection, i.e., mitophagy. In light of this, a nanoinducer (PCM) is reported to trigger mitophagy-inhibited cuproptotic proteotoxicity. Through a simple metal-phenolic coordination, PCMs reduce the original Cu2+ with the phenolic group of PEG-polyphenol-chlorin e6 (Ce6) into Cu+. Cu+ thereby performs its high binding affinity to dihydrolipoamide S-acetyltransferase (DLAT) and aggregates DLAT for cuproptotic proteotoxic stress and mitochondrial respiratory inhibition. Meanwhile, intracellular oxygen saved from the respiratory failure can be utilized by PCM-conjugated Ce6 to boost the proteotoxic stress. Next, PCM-loaded mitophagy inhibitor (Mdivi-1) protects proteotoxic products from being mitophagy-eliminated, which allows more mtDNA to be released in the cytosol and successfully stimulate the cGAS-STING signaling. In vitro and in vivo studies reveal that PCMs can upregulate the tumor-infiltrated NK cells by 24% and enhance the cytotoxic killing of effector T cells. This study proposes an anti-tumor immunotherapy through mitochondrial proteotoxicity.
Collapse
Affiliation(s)
- Xinying Yu
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| | - Jie Yan
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Wenxi Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Hao Tian
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Guohao Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Songtao Zhou
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
70
|
Lee HJ, Park JH, Park IH, Shin OS. Stimulator of Interferon Gene Agonists Induce an Innate Antiviral Response against Influenza Viruses. Viruses 2024; 16:855. [PMID: 38932148 PMCID: PMC11209029 DOI: 10.3390/v16060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The devastating effects of COVID-19 have highlighted the importance of prophylactic and therapeutic strategies to combat respiratory diseases. Stimulator of interferon gene (STING) is an essential component of the host defense mechanisms against respiratory viral infections. Although the role of the cGAS/STING signaling axis in the innate immune response to DNA viruses has been thoroughly characterized, mounting evidence shows that it also plays a key role in the prevention of RNA virus infections. In this study, we investigated the role of STING activation during Influenza virus (IFV) infection. In both mouse bone marrow-derived macrophages and monocytic cell line THP-1 differentiated with PMA, we found that dimeric amidobenzimidazole (diABZI), a STING agonist, had substantial anti-IFV activity against multiple strains of IFV, including A/H1N1, A/H3N2, B/Yamagata, and B/Victoria. On the other hand, a pharmacological antagonist of STING (H-151) or the loss of STING in human macrophages leads to enhanced viral replication but suppressed IFN expression. Furthermore, diABZI was antiviral against IFV in primary air-liquid interface cultures of nasal epithelial cells. Our data suggest that STING agonists may serve as promising therapeutic antiviral agents to combat IFV.
Collapse
Affiliation(s)
- Hyun Jung Lee
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul 08308, Republic of Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul 08308, Republic of Korea
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
71
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
72
|
Delaunay T, Son S, Park S, Kaur B, Ahn J, Barber GN. Exogenous non-coding dsDNA-dependent trans-activation of phagocytes augments anti-tumor immunity. Cell Rep Med 2024; 5:101528. [PMID: 38677283 PMCID: PMC11148645 DOI: 10.1016/j.xcrm.2024.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Stimulator of interferon genes (STING)-dependent signaling is requisite for effective anti-microbial and anti-tumor activity. STING signaling is commonly defective in cancer cells, which enables tumor cells to evade the immunosurveillance system. We evaluate here whether intrinsic STING signaling in such tumor cells could be reconstituted by creating recombinant herpes simplex viruses (rHSVs) that express components of the STING signaling pathway. We observe that rHSVs expressing STING and/or cGAS replicate inefficiently yet retain in vivo anti-tumor activity, independent of oncolytic activity requisite on the trans-activation of extrinsic STING signaling in phagocytes by engulfed microbial dsDNA species. Accordingly, the in vivo effects of virotherapy could be simulated by nanoparticles incorporating non-coding dsDNA species, which comparably elicit the trans-activation of phagocytes and augment the efficacy of established cancer treatments including checkpoint inhibition and radiation therapy. Our results help elucidate mechanisms of virotherapeutic anti-tumor activity as well as provide alternate strategies to treat cancer.
Collapse
Affiliation(s)
- Tiphaine Delaunay
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sehee Son
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Seongji Park
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Balveen Kaur
- Georgia Cancer Center, Augusta University Medical Center, Augusta, GA, USA
| | - Jeonghyun Ahn
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Glen N Barber
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
73
|
Miranda A, Pattnaik S, Hamilton PT, Fuss MA, Kalaria S, Laumont CM, Smazynski J, Mesa M, Banville A, Jiang X, Jenkins R, Cañadas I, Nelson BH. N-MYC impairs innate immune signaling in high-grade serous ovarian carcinoma. SCIENCE ADVANCES 2024; 10:eadj5428. [PMID: 38748789 PMCID: PMC11095474 DOI: 10.1126/sciadv.adj5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.
Collapse
Affiliation(s)
- Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Swetansu Pattnaik
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, NSW, Australia
| | - Phineas T. Hamilton
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Shreena Kalaria
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | - Céline M. Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Monica Mesa
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Allyson Banville
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Russell Jenkins
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Brad H. Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| |
Collapse
|
74
|
Meng S, Jiangtao B, Haisong W, Mei L, Long Z, Shanfeng L. RNA m 5C methylation: a potential modulator of innate immune pathways in hepatocellular carcinoma. Front Immunol 2024; 15:1362159. [PMID: 38807595 PMCID: PMC11131105 DOI: 10.3389/fimmu.2024.1362159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
RNA 5-methylcytosine (m5C) methylation plays a crucial role in hepatocellular carcinoma (HCC). As reported, aberrant m5C methylation is closely associated with the progression, therapeutic efficacy, and prognosis of HCC. The innate immune system functions as the primary defense mechanism in the body against pathogenic infections and tumors since it can activate innate immune pathways through pattern recognition receptors to exert anti-infection and anti-tumor effects. Recently, m5C methylation has been demonstrated to affect the activation of innate immune pathways including TLR, cGAS-STING, and RIG-I pathways by modulating RNA function, unveiling new mechanisms underlying the regulation of innate immune responses by tumor cells. However, research on m5C methylation and its interplay with innate immune pathways is still in its infancy. Therefore, this review details the biological significance of RNA m5C methylation in HCC and discusses its potential regulatory relationship with TLR, cGAS-STING, and RIG-I pathways, thereby providing fresh insights into the role of RNA methylation in the innate immune mechanisms and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Shanfeng
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
75
|
Huang Z, Gu R, Huang S, Chen Q, Yan J, Cui X, Jiang H, Yao D, Shen C, Su J, Liu T, Wu J, Luo Z, Hu Y, Yuan A. Chiral coordination polymer nanowires boost radiation-induced in situ tumor vaccination. Nat Commun 2024; 15:3902. [PMID: 38724527 PMCID: PMC11082158 DOI: 10.1038/s41467-024-48423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Radiation-induced in situ tumor vaccination alone is very weak and insufficient to elicit robust antitumor immune responses. In this work, we address this issue by developing chiral vidarabine monophosphate-gadolinium nanowires (aAGd-NWs) through coordination-driven self-assembly. We elucidate the mechanism of aAGd-NW assembly and characterize their distinct features, which include a negative surface charge, ultrafine topography, and right-handed chirality. Additionally, aAGd-NWs not only enhance X-ray deposition but also inhibit DNA repair, thereby enhancing radiation-induced in situ vaccination. Consequently, the in situ vaccination induced by aAGd-NWs sensitizes radiation enhances CD8+ T-cell-dependent antitumor immunity and synergistically potentiates the efficacy immune checkpoint blockade therapies against both primary and metastatic tumors. The well-established aAGd-NWs exhibit exceptional therapeutic capacity and biocompatibility, offering a promising avenue for the development of radioimmunotherapy approaches.
Collapse
Affiliation(s)
- Zhusheng Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Shiqian Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qian Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Jing Yan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210023, China
| | - Xiaoya Cui
- Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100083, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Dan Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Chuang Shen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiayue Su
- Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100083, China
| | - Tao Liu
- Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100083, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China.
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
76
|
Sun W, Ge J, Zhang L, Zhou F, Liu J. Exploring the role of innate immunity in Cholangiocarcinoma: implications for prognosis, immune infiltration, and tumor metastasis. J Cancer 2024; 15:3547-3565. [PMID: 38817870 PMCID: PMC11134439 DOI: 10.7150/jca.94194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 06/01/2024] Open
Abstract
The innate immune system serves as the body's primary physiological defense against the intrusion of pathogenic microorganisms, playing a pivotal role in restricting viral infections. However, current research on the interplay between innate immune pathways and cancer is limited, with reported effects often inconsistent. Therefore, we aimed to elucidate the relationship between innate immune pathways and tumors through an amalgamation of bioinformatics and extensive data analysis. Conducting a pan-cancer analysis encompassing expression, genomic alterations, and clinical prognosis, we identified a close association between the innate immune pathway and cholangiocarcinoma. Subsequently, our focus shifted to unraveling the role of innate immune pathway proteins in cholangiocarcinoma. TIMER database analysis showed that the innate immune pathway predominantly influences the infiltration of macrophages and B cells in cholangiocarcinoma. Additionally, gene ontology (GO) and pathway analyses were performed for significantly differentially expressed genes correlated with the innate immune pathway in cholangiocarcinoma. Single-cell transcriptome analysis in cholangiocarcinoma demonstrated that genes in the innate immune pathway are primarily expressed in malignant cells, endothelial cells, monocytes and macrophages. To further validate the expression of proteins in the innate immune pathway in the tumor tissues of patients with cholangiocarcinoma, tumor tissue slices from patients with liver intrahepatic cholangiocarcinoma and normal tissue slices from the HPA database were analyzed. These results indicated pronounced activation of the innate immune pathway in the tumor tissues of patients with cholangiocarcinoma. Finally, proteomic data from patients with or without intrahepatic cholangiocarcinoma metastasis were analyzed. The results revealed a significant correlation between the expression and phosphorylation of IKKε and the occurrence of intrahepatic cholangiocarcinoma metastasis. These findings not only demonstrate the significance of the innate immune pathway in cholangiocarcinoma but also its potential as a prospective prognostic biomarker and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Wenhuan Sun
- The first Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jianrong Ge
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China Cancer Center, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- The first Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jisheng Liu
- The first Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
77
|
Li J, Yu H, Kang Y, Niu K, Wang M, Jiang Y, Jiang N, Ding Z, Gan Z, Yu Q. STING Membrane Prevents Post-Surgery Tissue Adhesion and Tumor Recurrence of Colorectal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309655. [PMID: 38517062 DOI: 10.1002/adma.202309655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Surgery is the standard treatment regimen for resectable colorectal cancer (CRC). However, it is very hard to completely remove all cancer cells in clinical practice, leading to the high recurrence rates of the disease. Moreover, the post-surgery tissue adhesion greatly prevents the possibility of reoperation, significantly limiting the long-term surviving of CRC patients. To overcome CRC recurrence and avoid the post-surgery tissue adhesion, this work develops a novel stimulator of interferon genes "STING" membrane based on the coaxial electrospinning technology and hyaluronic acid modification. A reactive oxygen species responsive prodrug of gambogic acid (GB) and a potent STING agonist (CDN) are coloaded in the core-shell structure of the membrane, which endows the loaded drug with sustained and sequential release patterns. The localized delivery of GB and CDN can selectively induce efficient immunogenic cell death of cancer cells and then evoke the systemic anticancer immunity by activating the Cyclic GMP-AMP (cGAMP) synthase/STING pathway. As-designed "STING" membrane not only safely prevents tumor recurrence through the synergistic chemoimmunotherapy but also efficiently avoids the post-surgery tissue adhesion, facilitating the clinical intervention of CRC.
Collapse
Affiliation(s)
- Jianlin Li
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haiwang Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Kang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kun Niu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Wang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yitong Jiang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ni Jiang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospitals, Beijing, 100029, China
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
78
|
Xu H, Qin X, Guo Y, Zhao S, Feng X, Zhang R, Tian T, Kong L, Yang C, Zhang Z. Radiation-based immunogenic vaccine combined with a macrophage "checkpoint inhibitor" for boosting innate and adaptive immunity against metastatic colon cancers. Acta Pharm Sin B 2024; 14:2247-2262. [PMID: 38799631 PMCID: PMC11120279 DOI: 10.1016/j.apsb.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 05/29/2024] Open
Abstract
Immunogenic dying tumor cells hold promising prospects as cancer vaccines to activate systemic immunity against both primary and metastatic tumors. Especially, X-ray- induced dying tumor cells are rich in highly immunogenic tumor-associated antigens and self-generated dsDNA as potent adjuvants. However, we found that the X-ray induction process can result in the excessive exposure of phosphatidylserine in cancer vaccines, which can specifically bind with the MerTK receptor on macrophages, acting as a "checkpoint" to facilitate immune silence in the tumor microenvironment. Therefore, we developed a novel strategy combining X-ray-induced cancer vaccines with UNC2250, a macrophage MerTK "checkpoint inhibitor," for treating peritoneal carcinomatosis in colon cancer. By incorporating UNC2250 into the treatment regimen, immunosuppressive efferocytosis of macrophages, which relies on MerTK-directed recognition of phosphatidylserine on vaccines, was effectively blocked. Consequently, the immune analysis revealed that this combination strategy promoted the maturation of dendritic cells and M1-like repolarization of macrophages, thereby simultaneously eliciting robust adaptive and innate immunity. This innovative approach utilizing X-ray-induced vaccines combined with a checkpoint inhibitor may provide valuable insights for developing effective cancer vaccines and immunotherapies targeting colon cancer.
Collapse
Affiliation(s)
- Hongbo Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Guo
- Wuhan Liyuan Hospital of Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Siyu Zhao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingxing Feng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Runzan Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Wuhan 430030, China
| |
Collapse
|
79
|
He S, Li Z, Wang L, Yao N, Wen H, Yuan H, Zhang J, Li Z, Shen C. A nanoenzyme-modified hydrogel targets macrophage reprogramming-angiogenesis crosstalk to boost diabetic wound repair. Bioact Mater 2024; 35:17-30. [PMID: 38304915 PMCID: PMC10831190 DOI: 10.1016/j.bioactmat.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic wounds has a gradually increasing incidence and morbidity. Excessive inflammation due to immune imbalance leads to delayed wound healing. Here, we reveal the interconnection between activation of the NLRP3 inflammatory pathway in endotheliocyte and polarization of macrophages via the cGAS-STING pathway in the oxidative microenvironment. To enhance the immune-regulation based on repairing mitochondrial oxidative damage, a zeolitic imidazolate framework-8 coated with cerium dioxide that carries Rhoassociated protein kinase inhibition Y-27632 (CeO2-Y@ZIF-8) is developed. It is encapsulated in a photocross-linkable hydrogel (GelMA) with cationic quaternary ammonium salt groups modified to endow the antibacterial properties (CeO2-Y@ZIF-8@Gel). CeO2 with superoxide dismutase and catalase activities can remove excess reactive oxygen species to limit mitochondrial damage and Y-27632 can repair damaged mitochondrial DNA, thus improving the proliferation of endotheliocyte. After endotheliocyte uptakes CeO2-Y@ZIF-8 NPs to degrade peroxides into water and oxygen in cells and mitochondria, NLRP3 inflammatory pathway is inhibited and the leakage of oxidatively damaged mitochondrial DNA (Ox-mtDNA, a damage-associated molecular pattern) through mPTP decreases. Futhermore, as the cGAS-STING pathway activated by Ox-mtDNA down-regulated, the M2 phenotype polarization and anti-inflammatory factors increase. Collectively, CeO2-Y@ZIF-8@Gel, through remodulating the crosstalk between macrophage reprogramming and angiogenesis to alleviate inflammation in the microenvironment and accelerates wound healing.
Collapse
Affiliation(s)
- Shan He
- Department of Burns and Plastic Surgery, Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhao Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lu Wang
- Department of Burns and Plastic Surgery, Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Nannan Yao
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Huangding Wen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huageng Yuan
- Department of Burns and Plastic Surgery, Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jiatao Zhang
- Jiatao Zhang, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiqing Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuanan Shen
- Department of Burns and Plastic Surgery, Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
| |
Collapse
|
80
|
King RE, Rademacher J, Ward-Shaw ET, Hu R, Bilger A, Blaine-Sauer S, Spurgeon ME, Thibeault SL, Lambert PF. The Larynx is Protected from Secondary and Vertical Papillomavirus Infection in Immunocompetent Mice. Laryngoscope 2024; 134:2322-2330. [PMID: 38084790 PMCID: PMC11006576 DOI: 10.1002/lary.31228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE Mouse papillomavirus MmuPV1 causes both primary and secondary infections of the larynx in immunocompromised mice. Understanding lateral and vertical transmission of papillomavirus to the larynx would benefit patients with recurrent respiratory papillomatosis (RRP). To test the hypothesis that the larynx is uniquely vulnerable to papillomavirus infection, and to further develop a mouse model of RRP, we assessed whether immunocompetent mice were vulnerable to secondary or vertical laryngeal infection with MmuPV1. METHODS Larynges were collected from 405 immunocompetent adult mice that were infected with MmuPV1 in the oropharynx, oral cavity, or anus, and 31 mouse pups born to immunocompetent females infected in the cervicovaginal tract. Larynges were analyzed via polymerase chain reaction (PCR) of lavage fluid or whole tissues for viral DNA, histopathology, and/or in situ hybridization for MmuPV1 transcripts. RESULTS Despite some positive laryngeal lavage PCR screens, all laryngeal tissue PCR and histopathology results were negative for MmuPV1 DNA, transcripts, and disease. There was no evidence for lateral spread of MmuPV1 to the larynges of immunocompetent mice that were infected in the oral cavity, oropharynx, or anus. Pups born to infected mothers were negative for laryngeal MmuPV1 infection from birth through weaning age. CONCLUSION Secondary and vertical laryngeal MmuPV1 infections were not found in immunocompetent mice. Further work is necessary to explore immunologic control of laryngeal papillomavirus infection in a mouse model and to improve preclinical models of RRP. LEVEL OF EVIDENCE NA Laryngoscope, 134:2322-2330, 2024.
Collapse
Affiliation(s)
- Renee E. King
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
- Division of Surgical Oncology, Department of Surgery, University of Wisconsin-Madison, Madison, WI
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Josef Rademacher
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Ella T. Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Susan L. Thibeault
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
81
|
Li W, Shen N, Kong L, Huang H, Wang X, Zhang Y, Wang G, Xu P, Hu W. STING mediates microglial pyroptosis via interaction with NLRP3 in cerebral ischaemic stroke. Stroke Vasc Neurol 2024; 9:153-164. [PMID: 37402504 PMCID: PMC11103158 DOI: 10.1136/svn-2023-002320] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Ischaemia-evoked neuroinflammation is a critical pathogenic event following ischaemic stroke. Gasdermin D (GSDMD)-associated pyroptosis represents a type of inflammation-associated programmed cell death, which can exacerbate neuroinflammatory responses and brain damage. Stimulator of interferon genes (STING) was recently described as a vital innate immune adaptor protein associated with neuroinflammation. Nevertheless, the regulatory effects of STING on microglial pyroptosis post-stroke have not been well elaborated. METHODS STING-knockout and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO). STING small interfering RNA (siRNA) was transfected into BV2 cells before oxygen-glucose deprivation/reoxygenation (OGD/R). STING-overexpressing adeno-associated virus (AAV) and NOD-like receptor family pyrin domain containing 3 (NLRP3) siRNA were administered by stereotaxic injection. 2,3,5-Triphenyl tetrazolium chloride (TTC) staining, TdT-mediated dUTP nick end labeling (TUNEL) staining, Fluoro-Jade C (FJC) staining, neurobehavioural tests, immunohistochemistry, cytokine antibody array assay, transmission electron microscopy, immunoblot, Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) were carried out. Co-immunoprecipitation assays were used to investigate the interplay between STING and NLRP3. RESULTS STING expression was increased after MCAO and mainly detected on microglia. STING deletion alleviated brain infarction, neuronal damage and neurobehavioural impairment in mice subjected to MCAO. STING knockout suppressed microglial activation and the secretion of inflammatory chemokines, accompanied by mitigation of microglial pyroptosis. Specific upregulation of microglial STING by AAV-F4/80-STING aggravated brain injury and microglial pyroptosis. Mechanistically, co-immunoprecipitation showed that STING bound to NLRP3 in microglia. Supplementation of NLRP3 siRNA reversed AAV-F4/80-STING-induced deterioration of microglial pyroptosis. CONCLUSIONS The current findings indicate that STING modulates NLRP3-mediated microglial pyroptosis following MCAO. STING may serve as a therapeutic target in neuroinflammation induced by cerebral ischaemic/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongmei Huang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyue Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
82
|
Yang Y, Qi J, Hu J, Zhou Y, Zheng J, Deng W, Inam M, Guo J, Xie Y, Li Y, Xu C, Deng W, Chen W. Lovastatin/SN38 co-loaded liposomes amplified ICB therapeutic effect via remodeling the immunologically-cold colon tumor and synergized stimulation of cGAS-STING pathway. Cancer Lett 2024; 588:216765. [PMID: 38408604 DOI: 10.1016/j.canlet.2024.216765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Current immune checkpoint blockade (ICB) immunotherapeutics have revolutionized cancer treatment. However, many cancers especially the "immunologically cold" tumors, do not respond to ICB, prompting the search for additional strategies to achieve durable responses. The cGAS-STING pathway, as an essential immune response pathway, has been demonstrated for a potent target to sensitize ICB immunotherapy. However, the low efficiency of conventional STING agonists limits their clinical application. Recent studies have shown that DNA topoisomerase I (TOPI) inhibitor chemodrug SN38 can activate the cGAS-STING pathway and induce an immune response through DNA damage, while the traditional statins medication lovastatin was found to inhibit DNA damage repair, which may in turn upregulate the damaged DNA level. Herein, we have developed a liposomal carrier co-loaded with SN38 and lovastatin (SL@Lip), which can be accumulated in tumors and efficiently released SN38 and lovastatin, addressing the problem of weak solubility of these two drugs. Importantly, lovastatin can increase DNA damage and enhance the activation of cGAS-STING pathway, coordinating with SN38 chemotherapy and exhibiting the enhanced combinational immunotherapy of PD-1 antibody by remodeling the tumor microenvironment in mouse colorectal cancer of both subcutaneous and orthotopic xenograft models. Overall, this study demonstrates that lovastatin-assisted cGAS-STING stimulation mediated by liposomal delivery system significantly strengthened both chemotherapy and immunotherapy of colorectal cancer, providing a clinically translational strategy for combinational ICB therapy in the "immunologically cold" tumors.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, 650032, PR China
| | - Jialin Hu
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - You Zhou
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiena Zheng
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenxia Deng
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Muhammad Inam
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiaxin Guo
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongyi Xie
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuan Li
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chuanshan Xu
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Wenjie Chen
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
83
|
Dong MP, Dharmaraj N, Kaminagakura E, Xue J, Leach DG, Hartgerink JD, Zhang M, Hanks HJ, Ye Y, Aouizerat BE, Vining K, Thomas CM, Dovat S, Young S, Viet CT. Stimulator of Interferon Genes Pathway Activation through the Controlled Release of STINGel Mediates Analgesia and Anti-Cancer Effects in Oral Squamous Cell Carcinoma. Biomedicines 2024; 12:920. [PMID: 38672274 PMCID: PMC11047833 DOI: 10.3390/biomedicines12040920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING) agonism has been investigated as an anti-cancer strategy. We have developed STINGel, an extended-release formulation that prolongs the availability of STING agonists, which has demonstrated an enhanced anti-tumor effect in OSCC compared to STING agonist injection. This study investigates the impact of intra-tumoral STINGel on OSCC-induced pain using two separate OSCC models and nociceptive behavioral assays. Intra-tumoral STINGel significantly reduced mechanical allodynia in the orofacial cancer model and alleviated thermal and mechanical hyperalgesia in the hind paw model. To determine the cellular signaling cascade contributing to the antinociceptive effect, we performed an in-depth analysis of immune cell populations via single-cell RNA-seq. We demonstrated an increase in M1-like macrophages and N1-like neutrophils after STINGel treatment. The identified regulatory pathways controlled immune response activation, myeloid cell differentiation, and cytoplasmic translation. Functional pathway analysis demonstrated the suppression of translation at neuron synapses and the negative regulation of neuron projection development in M2-like macrophages after STINGel treatment. Importantly, STINGel treatment upregulated TGF-β pathway signaling between various cell populations and peripheral nervous system (PNS) macrophages and enhanced TGF-β signaling within the PNS itself. Overall, this study sheds light on the mechanisms underlying STINGel-mediated antinociception and anti-tumorigenic impact.
Collapse
Affiliation(s)
- Minh Phuong Dong
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Neeraja Dharmaraj
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - Estela Kaminagakura
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São Paulo 12245-00, Brazil;
| | - Jianfei Xue
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - David G. Leach
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (D.G.L.); (J.D.H.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (D.G.L.); (J.D.H.)
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Michael Zhang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Hana-Joy Hanks
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| | - Yi Ye
- Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010, USA;
- NYU Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Bradley E. Aouizerat
- NYU Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Kyle Vining
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Materials Science and Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carissa M. Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Simon Young
- Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (N.D.); (J.X.); (S.Y.)
| | - Chi T. Viet
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA; (M.P.D.); (M.Z.); (H.-J.H.)
| |
Collapse
|
84
|
Chen S, Li J, Yan L, Zhang X, Huang J, Zhou P. Electroacupuncture alleviates the symptom of depression in mice by regulating the cGAS-STING-NLRP3 signaling. Aging (Albany NY) 2024; 16:6731-6744. [PMID: 38643466 PMCID: PMC11087112 DOI: 10.18632/aging.205596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/13/2023] [Indexed: 04/22/2024]
Abstract
PURPOSE To investigate the therapeutic effect of electroacupuncture (EA) on chronic and unpredictable mild stress (CUMS)-induced depression in mice and the underlying mechanism. METHODS Male C57BL/6 mice were randomly divided into 6 groups: Control, CUMS, CUMS+EA-placebo, CUMS+EA, CUMS+ ad-NC, CUMS+ ad-cGAS-shRNA. CUMS was utilized to establish the depression model in mice. The behavioral changes were determined by the forced swimming, open field, and sucrose preference experiments. The pathological changes in the hippocampus tissue were evaluated by HE staining. The release of TNF-α, IL-1β, IL-6, 5-HT, and NE in the hippocampus tissue was determined by ELISA. IBA-1 expression detected by the immunofluorescence was used to represent the activity of microglia. Western blot and RT-PCR were utilized to measure the expression of Bax, bcl-2, cGAS, STING, TBK1, IRF3, and NLRP3. RESULTS The depression behavior in CUMS mice was significantly alleviated by the treatment of EA and cGAS-shRNA, accompanied by ameliorated hippocampus pathological changes, declined production of TNF-α, IL-1β, and IL-6, elevated secretion of 5-HT and NE, and inhibition on the activity of microglia. Furthermore, significantly elevated expression level of Bax, cGAS, STING, TBK1, IRF3, and NLRP3 and declined expression level of bcl-2 were observed in the CUMS+EA and CUMS+ ad-cGAS-shRNA groups. CONCLUSIONS EA significantly mitigated the symptom of depression in mice, which was closely associated with the repressed neuroinflammation, increased monoamine concentration, inactivated microglia, and inhibited cGAS-STING-NLRP3 signaling.
Collapse
Affiliation(s)
- Shiyun Chen
- Department of Acupuncture, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Bao’an, Shenzhen, Guangdong Province, China
| | - Jingjing Li
- Department of Acupuncture, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Bao’an, Shenzhen, Guangdong Province, China
| | - Luda Yan
- Department of Acupuncture, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Bao’an, Shenzhen, Guangdong Province, China
| | - Xianhao Zhang
- Department of Acupuncture, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Bao’an, Shenzhen, Guangdong Province, China
| | - Jiesi Huang
- Department of Acupuncture, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Bao’an, Shenzhen, Guangdong Province, China
| | - Peng Zhou
- Department of Acupuncture, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Bao’an, Shenzhen, Guangdong Province, China
| |
Collapse
|
85
|
Yu Z, Zou J, Xu F. Tumor-associated macrophages affect the treatment of lung cancer. Heliyon 2024; 10:e29332. [PMID: 38623256 PMCID: PMC11016713 DOI: 10.1016/j.heliyon.2024.e29332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
As one of the most common malignant tumors in the world, lung cancer has limited benefits for patients despite its diverse treatment methods due to factors such as personalized medicine targeting histological type, immune checkpoint expression, and driver gene mutations. The high mortality rate of lung cancer is partly due to the immune-suppressive which limits the effectiveness of anti-cancer drugs and induces tumor cell resistance. The currently widely recognized TAM phenotypes include the anti-tumor M1 and pro-tumor M2 phenotypes. M2 macrophages promote the formation of an immune-suppressive microenvironment and hinder immune cell infiltration, thereby inhibiting activation of the anti-tumor immune system and aiding tumor cells in resisting treatment. Analyzing the relationship between different treatment methods and macrophages in the TME can help us better understand the impact of TAMs on lung cancer and confirm the feasibility of targeted TAM therapy. Targeting TAMs to reduce the M2/M1 ratio and reverse the immune-suppressive microenvironment can improve the clinical efficacy of conventional treatment methods and potentially open up more efficient combination treatment strategies, maximizing the benefit for lung cancer patients.
Collapse
Affiliation(s)
- Zhuchen Yu
- Clinical Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Juntao Zou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Fei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
86
|
Wang L, Liang Z, Guo Y, Habimana JDD, Ren Y, Amissah OB, Mukama O, Peng S, Ding X, Lv L, Li J, Chen M, Liu Z, Huang R, Zhang Y, Li Y, Li Z, Sun Y. STING agonist diABZI enhances the cytotoxicity of T cell towards cancer cells. Cell Death Dis 2024; 15:265. [PMID: 38615022 PMCID: PMC11016101 DOI: 10.1038/s41419-024-06638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Antigen-specific T cell receptor-engineered T cell (TCR-T) based immunotherapy has proven to be an effective method to combat cancer. In recent years, cross-talk between the innate and adaptive immune systems may be requisite to optimize sustained antigen-specific immunity, and the stimulator of interferon genes (STING) is a promising therapeutic target for cancer immunotherapy. The level of expression or presentation of antigen in tumor cells affects the recognition and killing of tumor cells by TCR-T. This study aimed at investigating the potential of innate immune stimulation of T cells and engineered T cells to enhance immunotherapy for low-expression antigen cancer cells. We systematically investigated the function and mechanism of cross-talk between STING agonist diABZI and adaptive immune systems. We established NY-ESO-1 full knockout Mel526 cells for this research and found that diABZI activated STING media and TCR signaling pathways. In addition, the results of flow cytometry showed that antigens presentation from cancer cells induced by STING agonist diABZI also improved the affinity of TCR-T cells function against tumor cells in vitro and in vivo. Our findings revealed that diABZI enhanced the immunotherapy efficacy of TCR-T by activating STING media and TCR signaling pathways, improving interferon-γ expression, and increasing antigens presentation of tumor cells. This indicates that STING agonist could be used as a strategy to promote TCR-T cancer immunotherapy.
Collapse
Affiliation(s)
- Ling Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhaoduan Liang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, 510005, China
| | - Yunzhuo Guo
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuefei Ren
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, 3900, Rwanda
| | - Siqi Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xuanyan Ding
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Linshuang Lv
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Junyi Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Min Chen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yinchao Zhang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, 130022, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
87
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
88
|
Tang W, Zhou W, Ji M, Yang X. Role of STING in the treatment of non-small cell lung cancer. Cell Commun Signal 2024; 22:202. [PMID: 38566036 PMCID: PMC10986073 DOI: 10.1186/s12964-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent form of lung cancer. Patients with advanced NSCLC are currently being treated with various therapies, including traditional radiotherapy, chemotherapy, molecular targeted therapies and immunotherapy. However, a considerable proportion of advance patients who cannot benefit from them. Consequently, it is essential to identify a novel research target that offers an encouraging perspective. The stimulator of interferon genes (STING) has emerged as such a target. At present, it is confirmed that activating STING in NSCLC tumor cells can impede the proliferation and metastasis of dormant tumor cells. This review focuses on the role of STING in NSCLC treatment and the factors influencing its activation. Additionally, it explores the correlation between STING activation and diverse therapy modalities for NSCLC, such as radiotherapy, chemotherapy, molecular targeted therapies and immunotherapy. Furthermore, it proposes the prospect of innovative therapy methods involving nanoparticles, with the aim of using the features of STING to develop more strategies for NSCLC therapy.
Collapse
Affiliation(s)
- Wenhua Tang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wenjie Zhou
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Xin Yang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
89
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
90
|
Li X, Cai J, Zhang H, Sun S, Zhao S, Wang Z, Nie X, Xu C, Zhang Y, Xiao H. A Trisulfide Bond Containing Biodegradable Polymer Delivering Pt(IV) Prodrugs to Deplete Glutathione and Donate H 2S to Boost Chemotherapy and Antitumor Immunity. ACS NANO 2024; 18:7852-7867. [PMID: 38437513 DOI: 10.1021/acsnano.3c06194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The clinical application of cisplatin (CisPt) is limited by its dose-dependent toxicity. To overcome this, we developed reduction-responsive nanoparticles (NP(3S)s) for the targeted delivery of a platinum(IV) (Pt(IV)) prodrug to improve efficacy and reduce the toxicity. NP(3S)s could release Pt(II) and hydrogen sulfide (H2S) upon encountering intracellular glutathione, leading to potent anticancer effects. Notably, NP(3S)s induced DNA damage and activated the STING pathway, which is a known promoter for T cell activation. Comparative RNA profiling revealed that NP(3S)s outperformed CisPt in enhancing T cell immunity, antitumor immunity, and oxidative stress pathways. In vivo experiments showed that NP(3S)s accumulated in tumors, promoting CD8+ T cell infiltration and boosting antitumor immunity. Furthermore, NP(3S)s exhibited robust in vivo anticancer efficacy while minimizing the CisPt-induced liver toxicity. Overall, the results indicate NP(3S)s hold great promise for clinical translation due to their low toxicity profile and potent anticancer activity.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Simei Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
91
|
Guzman RM, Savolainen NG, Hayden OM, Lee M, Osbron CA, Liu Z, Yang H, Shaw DK, Omsland A, Goodman AG. Drosophila melanogaster Sting mediates Coxiella burnetii infection by reducing accumulation of reactive oxygen species. Infect Immun 2024; 92:e0056022. [PMID: 38363133 PMCID: PMC10929449 DOI: 10.1128/iai.00560-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The Gram-negative bacterium Coxiella burnetii is the causative agent of query fever in humans and coxiellosis in livestock. C. burnetii infects a variety of cell types, tissues, and animal species including mammals and arthropods, but there is much left to be understood about the molecular mechanisms at play during infection in distinct species. Human stimulator of interferon genes (STING) induces an innate immune response through the induction of type I interferons (IFNs), and IFN promotes or suppresses C. burnetii replication, depending on tissue type. Drosophila melanogaster contains a functional STING ortholog (Sting) which activates NF-κB signaling and autophagy. Here, we sought to address the role of D. melanogaster Sting during C. burnetii infection to uncover how Sting regulates C. burnetii infection in flies. We show that Sting-null flies exhibit higher mortality and reduced induction of antimicrobial peptides following C. burnetii infection compared to control flies. Additionally, Sting-null flies induce lower levels of oxidative stress genes during infection, but the provision of N-acetyl-cysteine (NAC) in food rescues Sting-null host survival. Lastly, we find that reactive oxygen species levels during C. burnetii infection are higher in Drosophila S2 cells knocked down for Sting compared to control cells. Our results show that at the host level, NAC provides protection against C. burnetii infection in the absence of Sting, thus establishing a role for Sting in protection against oxidative stress during C. burnetii infection.
Collapse
Affiliation(s)
- Rosa M. Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nathan G. Savolainen
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Olivia M. Hayden
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Miyoung Lee
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Ziying Liu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Hong Yang
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
92
|
Zhao X, Zheng R, Zhang B, Zhao Y, Xue W, Fang Y, Huang Y, Yin M. Sulfonated Perylene as Three-in-One STING Agonist for Cancer Chemo-Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202318799. [PMID: 38230819 DOI: 10.1002/anie.202318799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/18/2024]
Abstract
Activation of stimulator of interferon genes (STING) by cyclic dinucleotides (CDNs) has been considered as a powerful immunotherapy strategy. While promising, the clinical translation of CDNs is still overwhelmed by its limited biostability and the resulting systemic immunotoxicity. Being differentiating from current application of exogenous CDNs to address these challenges, we herein developed one perylene STING agonist PDIC-NS, which not only promotes the production of endogenous CDNs but also inhibits its hydrolysis. More significantly, PDIC-NS can well reach lung-selective enrichment, and thus mitigates the systemic immunotoxicity upon intravenous administration. As a result, PDIC-NS had realized remarkable in vivo antitumor activity, and backward verified on STING knock out mice. Overall, this study states that PDIC-NS can function as three-in-one small-molecule STING agonist characterized by promoting the content and biostability of endogenous CDNs as well as possessing good tissue specificity, and hence presents an innovative strategy and platform for tumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Xuejie Zhao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Rijie Zheng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Bianbian Zhang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Ying Zhao
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Wanli Xue
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yingfei Fang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
93
|
Kulkarni R, Maranholkar V, Nguyen N, Cirino PC, Willson RC, Varadarajan N. The efficient synthesis and purification of 2'3'- cGAMP from Escherichia coli. Front Microbiol 2024; 15:1345617. [PMID: 38525075 PMCID: PMC10957790 DOI: 10.3389/fmicb.2024.1345617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Agonists of the stimulator of interferon genes (STING) pathway are being explored as potential immunotherapeutics for the treatment of cancer and as vaccine adjuvants for infectious diseases. Although chemical synthesis of 2'3' - cyclic Guanosine Monophosphate-Adenosine Monophosphate (cGAMP) is commercially feasible, the process results in low yields and utilizes organic solvents. To pursue an efficient and environmentally friendly process for the production of cGAMP, we focused on the recombinant production of cGAMP via a whole-cell biocatalysis platform utilizing the murine cyclic Guanosine monophosphate-Adenosine monophosphate synthase (mcGAS). In E. coli BL21(DE3) cells, recombinant expression of mcGAS, a DNA-dependent enzyme, led to the secretion of cGAMP to the supernatants. By evaluating the: (1) media composition, (2) supplementation of divalent cations, (3) temperature of protein expression, and (4) amino acid substitutions pertaining to DNA binding; we showed that the maximum yield of cGAMP in the supernatants was improved by 30% from 146 mg/L to 186 ± 7 mg/mL under optimized conditions. To simplify the downstream processing, we developed and validated a single-step purification process for cGAMP using anion exchange chromatography. The method does not require protein affinity chromatography and it achieved a yield of 60 ± 2 mg/L cGAMP, with <20 EU/mL (<0.3 EU/μg) of endotoxin. Unlike chemical synthesis, our method provides a route for the recombinant production of cGAMP without the need for organic solvents and supports the goal of moving toward shorter, more sustainable, and more environmentally friendly processes.
Collapse
Affiliation(s)
- Rohan Kulkarni
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Vijay Maranholkar
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Nam Nguyen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Patrick C. Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
94
|
Zhao T, Wei P, Zhang C, Zhou S, Liang L, Guo S, Yin Z, Cheng S, Gan Z, Xia Y, Zhang Y, Guo S, Zhong J, Yang Z, Tu F, Wang Q, Bai J, Ren F, Feng Z, Jia H. Nifuroxazide suppresses PD-L1 expression and enhances the efficacy of radiotherapy in hepatocellular carcinoma. eLife 2024; 12:RP90911. [PMID: 38441416 PMCID: PMC10942647 DOI: 10.7554/elife.90911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Radiation therapy is a primary treatment for hepatocellular carcinoma (HCC), but its effectiveness can be diminished by various factors. The over-expression of PD-L1 has been identified as a critical reason for radiotherapy resistance. Previous studies have demonstrated that nifuroxazide exerts antitumor activity by damaging the Stat3 pathway, but its efficacy against PD-L1 has remained unclear. In this study, we investigated whether nifuroxazide could enhance the efficacy of radiotherapy in HCC by reducing PD-L1 expression. Our results showed that nifuroxazide significantly increased the sensitivity of tumor cells to radiation therapy by inhibiting cell proliferation and migration while increasing apoptosis in vitro. Additionally, nifuroxazide attenuated the up-regulation of PD-L1 expression induced by irradiation, which may be associated with increased degradation of PD-L1 through the ubiquitination-proteasome pathway. Furthermore, nifuroxazide greatly enhanced the efficacy of radiation therapy in H22-bearing mice by inhibiting tumor growth, improving survival, boosting the activation of T lymphocytes, and decelerating the ratios of Treg cells in spleens. Importantly, nifuroxazide limited the increased expression of PD-L1 in tumor tissues induced by radiation therapy. This study confirms, for the first time, that nifuroxazide can augment PD-L1 degradation to improve the efficacy of radiation therapy in HCC-bearing mice.
Collapse
Affiliation(s)
- Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Pengkun Wei
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
- Zhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Congli Zhang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Shijie Zhou
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Lirui Liang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Shuoshuo Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan UniversityGuangzhouChina
| | - Sichang Cheng
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Zerui Gan
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Yuanling Xia
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Sheng Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Jiateng Zhong
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Zishan Yang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Fei Tu
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Qianqing Wang
- Department of Gynecology, Xinxiang Central HospitalXinxiangChina
- The Fourth Clinical College, Xinxiang Medical UniversityXinxiangChina
| | - Jin Bai
- Department of Gynecology, Xinxiang Central HospitalXinxiangChina
- The Fourth Clinical College, Xinxiang Medical UniversityXinxiangChina
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Zhiwei Feng
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiangChina
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| | - Huijie Jia
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical UniversityXinxiangChina
| |
Collapse
|
95
|
Liu W, Higashikuni Y. Self-DNA sensing in cigarette smoke-induced vascular inflammation: the role of mitochondrial DNA release in vascular endothelial cells. Hypertens Res 2024; 47:799-802. [PMID: 38114653 DOI: 10.1038/s41440-023-01545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Wenhao Liu
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasutomi Higashikuni
- Department of Cardiovascular Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
96
|
He X, Wedn A, Wang J, Gu Y, Liu H, Zhang J, Lin Z, Zhou R, Pang X, Cui Y. IUPHAR ECR review: The cGAS-STING pathway: Novel functions beyond innate immune and emerging therapeutic opportunities. Pharmacol Res 2024; 201:107063. [PMID: 38216006 DOI: 10.1016/j.phrs.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Stimulator of interferon genes (STING) is a crucial innate immune sensor responsible for distinguishing pathogens and cytosolic DNA, mediating innate immune signaling pathways to defend the host. Recent studies have revealed additional regulatory functions of STING beyond its innate immune-related activities, including the regulation of cellular metabolism, DNA repair, cellular senescence, autophagy and various cell deaths. These findings highlight the broader implications of STING in cellular physiology beyond its role in innate immunity. Currently, approximately 10 STING agonists have entered the clinical stage. Unlike inhibitors, which have a maximum inhibition limit, agonists have the potential for infinite amplification. STING signaling is a complex process that requires precise regulation of STING to ensure balanced immune responses and prevent detrimental autoinflammation. Recent research on the structural mechanism of STING autoinhibition and its negative regulation by adaptor protein complex 1 (AP-1) provides valuable insights into its different effects under physiological and pathological conditions, offering a new perspective for developing immune regulatory drugs. Herein, we present a comprehensive overview of the regulatory functions and molecular mechanisms of STING beyond innate immune regulation, along with updated details of its structural mechanisms. We discuss the implications of these complex regulations in various diseases, emphasizing the importance and feasibility of targeting the immunity-dependent or immunity-independent functions of STING. Moreover, we highlight the current trend in drug development and key points for clinical research, basic research, and translational research related to STING.
Collapse
Affiliation(s)
- Xu He
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Abdalla Wedn
- School of Medicine, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA, USA
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanlun Gu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| | - Hongjin Liu
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Juqi Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China; Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven CT06519, USA.
| | - Xiaocong Pang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
97
|
Wang Y, Liu Y, Zhang J, Peng Q, Wang X, Xiao X, Shi K. Nanomaterial-mediated modulation of the cGAS-STING signaling pathway for enhanced cancer immunotherapy. Acta Biomater 2024; 176:51-76. [PMID: 38237711 DOI: 10.1016/j.actbio.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Despite the current promise of immunotherapy, many cancer patients still suffer from challenges such as poor immune response rates, resulting in unsatisfactory clinical efficacy of existing therapies. There is an urgent need to combine emerging biomedical discoveries and innovations in traditional therapies. Modulation of the cGAS-STING signalling pathway represents an important innate immunotherapy pathway that serves as a crucial DNA sensing mechanism in innate immunity and viral defense. It has attracted increasing attention as an emerging target for cancer therapy. The recent advancements in nanotechnology have led to the significant utilization of nanomaterials in cancer immunotherapy, owing to their exceptional physicochemical properties such as large specific surface area and efficient permeability. Given the rapid development of cancer immunotherapy driven by the cGAS-STING activation, this study reviews the latest research progress in employing nanomaterials to modulate this signaling pathway. Based on the introduction of the main activation mechanisms of cGAS-STING pathway, this review focuses on nanomaterials that mediate the agonists involved and effectively activate this signaling pathway. In addition, combination nanotherapeutics based on the activation of the cGAS-STING signaling pathway are also discussed, including emerging strategies combining nanoformulated agonists with chemotherapy, radiotherapy as well as other immunomodulation in tumor targeting therapy. STATEMENT OF SIGNIFICANCE: Given the rapid development of cancer immunotherapy driven by the cGAS / STING activation, this study reviews the latest research advances in the use of nanomaterials to modulate this signaling pathway. Based on the introduction of key cGAS-STING components and their activation mechanisms, this review focuses on nanomaterials that can mediate the corresponding agonists and effectively activate this signaling pathway. In addition, combination nanotherapies based on the activation of the cGAS-STING signaling pathway are also discussed, including emerging strategies combining nanoformulated agonists with chemotherapy, radiotherapy as well as immunomodulation in cancer therapy,.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Jincheng Zhang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Qikai Peng
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xingdong Wang
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xiyue Xiao
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
98
|
Mavroeidi D, Georganta A, Panagiotou E, Syrigos K, Souliotis VL. Targeting ATR Pathway in Solid Tumors: Evidence of Improving Therapeutic Outcomes. Int J Mol Sci 2024; 25:2767. [PMID: 38474014 DOI: 10.3390/ijms25052767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The DNA damage response (DDR) system is a complicated network of signaling pathways that detects and repairs DNA damage or induces apoptosis. Critical regulators of the DDR network include the DNA damage kinases ataxia telangiectasia mutated Rad3-related kinase (ATR) and ataxia-telangiectasia mutated (ATM). The ATR pathway coordinates processes such as replication stress response, stabilization of replication forks, cell cycle arrest, and DNA repair. ATR inhibition disrupts these functions, causing a reduction of DNA repair, accumulation of DNA damage, replication fork collapse, inappropriate mitotic entry, and mitotic catastrophe. Recent data have shown that the inhibition of ATR can lead to synthetic lethality in ATM-deficient malignancies. In addition, ATR inhibition plays a significant role in the activation of the immune system by increasing the tumor mutational burden and neoantigen load as well as by triggering the accumulation of cytosolic DNA and subsequently inducing the cGAS-STING pathway and the type I IFN response. Taken together, we review stimulating data showing that ATR kinase inhibition can alter the DDR network, the immune system, and their interplay and, therefore, potentially provide a novel strategy to improve the efficacy of antitumor therapy, using ATR inhibitors as monotherapy or in combination with genotoxic drugs and/or immunomodulators.
Collapse
Affiliation(s)
- Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastasia Georganta
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Emmanouil Panagiotou
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Konstantinos Syrigos
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Vassilis L Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| |
Collapse
|
99
|
Clark GC, Lai A, Agarwal A, Liu Z, Wang XY. Biopterin metabolism and nitric oxide recoupling in cancer. Front Oncol 2024; 13:1321326. [PMID: 38469569 PMCID: PMC10925643 DOI: 10.3389/fonc.2023.1321326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 03/13/2024] Open
Abstract
Tetrahydrobiopterin is a cofactor necessary for the activity of several enzymes, the most studied of which is nitric oxide synthase. The role of this cofactor-enzyme relationship in vascular biology is well established. Recently, tetrahydrobiopterin metabolism has received increasing attention in the field of cancer immunology and immunotherapy due to its involvement in the cytotoxic T cell response. Past research has demonstrated that when the availability of BH4 is low, as it is in chronic inflammatory conditions and tumors, electron transfer in the active site of nitric oxide synthase becomes uncoupled from the oxidation of arginine. This results in the production of radical species that are capable of a direct attack on tetrahydrobiopterin, further depleting its local availability. This feedforward loop may act like a molecular switch, reinforcing low tetrahydrobiopterin levels leading to altered NO signaling, restrained immune effector activity, and perpetual vascular inflammation within the tumor microenvironment. In this review, we discuss the evidence for this underappreciated mechanism in different aspects of tumor progression and therapeutic responses. Furthermore, we discuss the preclinical evidence supporting a clinical role for tetrahydrobiopterin supplementation to enhance immunotherapy and radiotherapy for solid tumors and the potential safety concerns.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alan Lai
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Zheng Liu
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
100
|
Wang J, Li S, Wang M, Wang X, Chen S, Sun Z, Ren X, Huang G, Sumer BD, Yan N, Fu YX, Gao J. STING licensing of type I dendritic cells potentiates antitumor immunity. Sci Immunol 2024; 9:eadj3945. [PMID: 38363830 DOI: 10.1126/sciimmunol.adj3945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/04/2024] [Indexed: 02/18/2024]
Abstract
Stimulator of interferon genes (STING) is an immune adaptor protein that senses cyclic GMP-AMP in response to self or microbial cytosolic DNA as a danger signal. STING is ubiquitously expressed in diverse cell populations, including cancer cells, with distinct cellular functions, such as activation of type I interferons, autophagy induction, or triggering apoptosis. It is not well understood whether and which subsets of immune cells, stromal cells, or cancer cells are particularly important for STING-mediated antitumor immunity. Here, using a polymeric STING-activating nanoparticle (PolySTING) with a shock-and-lock dual activation mechanism, we show that conventional type 1 dendritic cells (cDC1s) are essential for STING-mediated rejection of multiple established and metastatic murine tumors. STING status in the host but not in the cancer cells (Tmem173-/-) is important for antitumor efficacy. Specific depletion of cDC1 (Batf3-/-) or STING deficiency in cDC1 (XCR1creSTINGfl/fl) abolished PolySTING efficacy, whereas depletion of other myeloid cells had little effect. Adoptive transfer of wild-type cDC1 in Batf3-/- mice restored antitumor efficacy, whereas transfer of cDC1 with STING or IRF3 deficiency failed to rescue. PolySTING induced a specific chemokine signature in wild-type but not Batf3-/- mice. Multiplexed immunohistochemistry analysis of STING-activating cDC1s in resected tumors correlates with patient survival. Furthermore, STING-cDC1 signature was increased after neoadjuvant pembrolizumab therapy in patients with non-small cell lung cancer. Therefore, we have defined that a subset of myeloid cells is essential for STING-mediated antitumor immunity with associated biomarkers for prognosis.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Suxin Li
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maggie Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xu Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqing Chen
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhichen Sun
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Gang Huang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baran D Sumer
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|