51
|
Sayegh M, Ni QQ, Ranawana V, Raikos V, Hayward NJ, Hayes HE, Duncan G, Cantlay L, Farquharson F, Solvang M, Horgan GW, Louis P, Russell WR, Clegg M, Thies F, Neacsu M. Habitual consumption of high-fibre bread fortified with bean hulls increased plasma indole-3-propionic concentration and decreased putrescine and deoxycholic acid faecal concentrations in healthy volunteers. Br J Nutr 2023; 130:1521-1536. [PMID: 36847278 PMCID: PMC10551484 DOI: 10.1017/s0007114523000491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Only 6 to 8 % of the UK adults meet the daily recommendation for dietary fibre. Fava bean processing lead to vast amounts of high-fibre by-products such as hulls. Bean hull fortified bread was formulated to increase and diversify dietary fibre while reducing waste. This study assessed the bean hull: suitability as a source of dietary fibre; the systemic and microbial metabolism of its components and postprandial events following bean hull bread rolls. Nine healthy participants (53·9 ± 16·7 years) were recruited for a randomised controlled crossover study attending two 3 days intervention sessions, involving the consumption of two bread rolls per day (control or bean hull rolls). Blood and faecal samples were collected before and after each session and analysed for systemic and microbial metabolites of bread roll components using targeted LC-MS/MS and GC analysis. Satiety, gut hormones, glucose, insulin and gastric emptying biomarkers were also measured. Two bean hull rolls provided over 85 % of the daily recommendation for dietary fibre; but despite being a rich source of plant metabolites (P = 0·04 v. control bread), these had poor systemic bioavailability. Consumption of bean hull rolls for 3 days significantly increased plasma concentration of indole-3-propionic acid (P = 0·009) and decreased faecal concentration of putrescine (P = 0·035) and deoxycholic acid (P = 0·046). However, it had no effect on postprandial plasma gut hormones, bacterial composition and faecal short chain fatty acids amount. Therefore, bean hulls require further processing to improve their bioactives systemic availability and fibre fermentation.
Collapse
Affiliation(s)
- Marietta Sayegh
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Qian Qian Ni
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Viren Ranawana
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Vassilios Raikos
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | | | - Helen E. Hayes
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Gary Duncan
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Louise Cantlay
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | | | - Michael Solvang
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Graham W. Horgan
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
- BIOSS Aberdeen, Aberdeen, UK
| | - Petra Louis
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Wendy R. Russell
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Miriam Clegg
- Institute for Food, Nutrition and Health and Department of Food and Nutritional Sciences, University of Reading, Whiteknights, UK
| | - Frank Thies
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Madalina Neacsu
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| |
Collapse
|
52
|
Slouha E, Rezazadah A, Farahbod K, Gerts A, Clunes LA, Kollias TF. Type-2 Diabetes Mellitus and the Gut Microbiota: Systematic Review. Cureus 2023; 15:e49740. [PMID: 38161953 PMCID: PMC10757596 DOI: 10.7759/cureus.49740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
The gut microbiota is a community situated in the gastrointestinal tract that consists of bacteria thriving and contributing to the functions of our body. It is heavily influenced by what individuals eat, as the quality, amount, and frequency of food consumed can favor and inhibit specific bacteria. Type-2 diabetes mellitus (T2DM) is a common but detrimental condition that arises from excessive hyperglycemia, leading to either insulin resistance or damage to the B-cells that produce insulin in the pancreas. A poor diet high in sugar and fats leads to hyperglycemia, and as this persists, it can lead to the development of T2DM. Both insulin resistance and damage to B-cells are greatly affected by the diet an individual consumes, but is there a more involved relationship between the gut microbiota and T2DM? This paper aimed to evaluate the changes in the gut microbiota in patients with T2DM and the impacts of the changes in gut microbiota. Bacteroides, Proteobacteria, Firmicutes, and Actinobacteria prevailed in patients with T2DM and healthy control, but their abundance varied greatly. There was also a significant decrease in bacteria like Lactobacilli spp.and F. prausnitizii associated with insulin resistance. High levels of BMI in patients with T2DM have also been associated with increased levels of A. muciniphilia, which has been associated with decreased fat metabolism and increased BMI. Metabolites such as butyrates and melatonin have also been identified as influencing the development and progression of T2DM. Testosterone levels have also been greatly influenced by the gut microbiota changes in T2DM, such that males with lower testosterone have a greater abundance of bacteria like Gemella, Lachnospiraceae, and Massiia. Identifying these changes and how they impact the body may lead to a treatment addressing insulin dysfunction and the changes that the altered gut microbiota leads to. Future research should address how treatment methods such as healthy diets, exercise, and anti-diabetics affect the gut microbiota and see if they influence sustained changes and reduced hyperglycemia.
Collapse
Affiliation(s)
- Ethan Slouha
- Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Atbeen Rezazadah
- Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Kiana Farahbod
- Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Andrew Gerts
- Pharmacology, St. George's University School of Medicine, St. George, GRD
| | - Lucy A Clunes
- Pharmacology, St. George's University, St. George's, GRD
| | - Theofanis F Kollias
- Microbiology, Immunology and Pharmacology, St. George's University School of Medicine, St. George's, GRD
| |
Collapse
|
53
|
Gupta SK, Vyavahare S, Duchesne Blanes IL, Berger F, Isales C, Fulzele S. Microbiota-derived tryptophan metabolism: Impacts on health, aging, and disease. Exp Gerontol 2023; 183:112319. [PMID: 37898179 DOI: 10.1016/j.exger.2023.112319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The intricate interplay between gut microbiota and the host is pivotal in maintaining homeostasis and health. Dietary tryptophan (TRP) metabolism initiates a cascade of essential endogenous metabolites, including kynurenine, kynurenic acid, serotonin, and melatonin, as well as microbiota-derived Trp metabolites like tryptamine, indole propionic acid (IPA), and other indole derivatives. Notably, tryptamine and IPA, among the indole metabolites, exert crucial roles in modulating immune, metabolic, and neuronal responses at both local and distant sites. Additionally, these metabolites demonstrate potent antioxidant and anti-inflammatory activities. The levels of microbiota-derived TRP metabolites are intricately linked to the gut microbiota's health, which, in turn, can be influenced by age-related changes. This review aims to comprehensively summarize the cellular and molecular impacts of tryptamine and IPA on health and aging-related complications. Furthermore, we explore the levels of tryptamine and IPA and their corresponding bacteria in select diseased conditions, shedding light on their potential significance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ian L Duchesne Blanes
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ford Berger
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
54
|
Chu Z, Hu Z, Luo Y, Zhou Y, Yang F, Luo F. Targeting gut-liver axis by dietary lignans ameliorate obesity: evidences and mechanisms. Crit Rev Food Sci Nutr 2023; 65:243-264. [PMID: 37870876 DOI: 10.1080/10408398.2023.2272269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An imbalance between energy consumption and energy expenditure causes obesity. It is characterized by increased adipose accumulation and accompanied by chronic low-grade inflammation. Many studies have suggested that the gut microbiota of the host mediates the relationship between high-fat diet consumption and the development of obesity. Diet and nutrition of the body are heavily influenced by gut microbiota. The alterations in the microbiota in the gut may have effects on the homeostasis of the host's energy levels, systemic inflammation, lipid metabolism, and insulin sensitivity. The liver is an important organ for fat metabolism and gut-liver axis play important role in the fat metabolism. Gut-liver axis is a bidirectional relationship between the gut and its microbiota and the liver. As essential plant components, lignans have been shown to have different biological functions. Accumulating evidences have suggested that lignans may have lipid-lowering properties. Lignans can regulate the level of the gut microbiota and their metabolites in the host, thereby affecting signaling pathways related to fat synthesis and metabolism. These signaling pathways can make a difference in inhibiting fat accumulation, accelerating energy metabolism, affecting appetite, and inhibiting chronic inflammation. It will provide the groundwork for future studies on the lipid-lowering impact of lignans and the creation of functional meals based on those findings.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| |
Collapse
|
55
|
Yu Y, Hao H, Kong L, Zhang J, Bai F, Guo F, Wei P, Chen R, Hu W. A metabolomics-based analysis of the metabolic pathways associated with the regulation of branched-chain amino acids in rats fed a high-fructose diet. Endocr Connect 2023; 12:e230079. [PMID: 37522853 PMCID: PMC10503218 DOI: 10.1530/ec-23-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Previous studies have shown that the elevated levels of circulating branched-chain amino acids (BCAAs) are associated with the development of insulin resistance and its complications, including obesity, type 2 diabetes, cardiovascular disease and some cancers. However, animal models that can mimic the metabolic state of chronically elevated BCAAs in humans are rare. Therefore, the aim of this study was to establish the above animal model and analyse the metabolic changes associated with high BCAA levels. Sixteen 8-week-old Sprague-Dawley (SD) rats were randomly divided into two groups and given either a high fructose diet or a normal diet. BCAA levels as well as blood glucose and lipid levels were measured at different time points of feeding. The mRNA expression levels of two key enzymes of BCAA catabolism, ACAD (acyl-CoA dehydrogenase) and BCKDH (branched-chain α-keto acid dehydrogenase), were measured by qPCR, and the protein expression levels of these two enzymes were analysed by immunohistochemistry. Finally, the metabolite expression differences between the two groups were analysed by Q300 metabolomics technology. Our study confirms that defects in the catabolic pathways of BCAAs lead to increased levels of circulating BCAAs, resulting in disorders of glucose and lipid metabolism characterized by insulin resistance by affecting metabolic pathways associated with amino acids and bile acids.
Collapse
Affiliation(s)
- Yang Yu
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Hairong Hao
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Linghui Kong
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Feng Bai
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Fei Guo
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Pan Wei
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Rui Chen
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Wen Hu
- Department of Endocrinology and Metabolism, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| |
Collapse
|
56
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
57
|
Yuan X, Yang J, Huang Y, Li J, Li Y. Gut Microbiota Metabolite 3-Indolepropionic Acid Directly Activates Hepatic Stellate Cells by ROS/JNK/p38 Signaling Pathways. Biomolecules 2023; 13:1464. [PMID: 37892146 PMCID: PMC10604901 DOI: 10.3390/biom13101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
There has been a growing interest in studying the communication of gut microbial metabolites between the gut and the liver as liver fibrosis progresses. Although 3-Indolepropionic acid (IPA) is regarded as a clinically valuable gut metabolite for the treatment of certain chronic diseases, the effects of oral administration of IPA on hepatic fibrosis in different animal models have been conflicting. While some mechanisms have been proposed to explain these contradictory effects, the direct impact of IPA on hepatic fibrosis remains unclear. In this study, we found that IPA could directly activate LX-2 human hepatic stellate cells in vitro. IPA upregulated the expression of fibrogenic marker genes and promoted the features associated with HSCs activation, including proliferation and contractility. IPA also increased reactive oxygen species (ROS) in mitochondria and the expression of inflammation-related genes in LX-2 cells. However, when a ROS-blocking agent was used, these effects were reduced. p38 and JNK, the downstream signaling cascades of ROS, were found to be required for the activation of LX-2 induced by IPA. These findings suggest that IPA can directly activate hepatic stellate cells through ROS-induced JNK and p38 signaling pathways.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (J.Y.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junting Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (J.Y.); (Y.H.)
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian 116024, China
| | - Yuling Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (J.Y.); (Y.H.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (J.Y.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (J.Y.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
58
|
Nordin E, Hellström PM, Vuong E, Ribbenstedt A, Brunius C, Landberg R. IBS randomized study: FODMAPs alter bile acids, phenolic- and tryptophan metabolites, while gluten modifies lipids. Am J Physiol Regul Integr Comp Physiol 2023; 325:R248-R259. [PMID: 37399002 DOI: 10.1152/ajpregu.00016.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/10/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Diet is considered a culprit for symptoms in irritable bowel syndrome (IBS), although the mechanistic understanding of underlying causes is lacking. Metabolomics, i.e., the analysis of metabolites in biological samples may offer a diet-responsive fingerprint for IBS. Our aim was to explore alterations in the plasma metabolome after interventions with fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) or gluten versus control in IBS, and to relate such alterations to symptoms. People with IBS (n = 110) were included in a double-blind, randomized, crossover study with 1-wk provocations of FODMAPs, gluten, or placebo. Symptoms were evaluated with the IBS severity scoring system (IBS-SSS). Untargeted metabolomics was performed on plasma samples using LC-qTOF-MS. Discovery of metabolite alterations by treatment was performed using random forest followed by linear mixed modeling. Associations were studied using Spearman correlation. The metabolome was affected by FODMAP [classification rate (CR) 0.88, P < 0.0001], but less by gluten intake CR 0.72, P = 0.01). FODMAP lowered bile acids, whereas phenolic-derived metabolites and 3-indolepropionic acid (IPA) were higher compared with placebo. IPA and some unidentified metabolites correlated weakly to abdominal pain and quality of life. Gluten affected lipid metabolism weakly, but with no interpretable relationship to IBS. FODMAP affected gut microbial-derived metabolites relating to positive health outcomes. IPA and unknown metabolites correlated weakly to IBS severity. Minor symptom worsening by FODMAP intake must be weighed against general positive health aspects of FODMAP. The gluten intervention affected lipid metabolism weakly with no interpretable association to IBS severity. Registration: www.clinicaltrials.gov as NCT03653689.NEW & NOTEWORTHY In irritable bowel syndrome (IBS), fermentable oligo-, di-, monosaccharides, and polyols (FODMAPs) affected microbial-derived metabolites relating to positive health outcomes such as reduced risk of colon cancer, inflammation, and type 2 diabetes, as shown in previous studies. The minor IBS symptom induction by FODMAP intake must be weighed against the positive health aspects of FODMAP consumption. Gluten affected lipids weakly with no association to IBS severity.
Collapse
Affiliation(s)
- Elise Nordin
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Uppsala, Sweden
| | - Eddie Vuong
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Anton Ribbenstedt
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Carl Brunius
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
59
|
Tang H, Zha Z, Tan Y, Li Y, Jiao Y, Yang B, Xiong Q, Yin H, Wang H. Extraction and characterization of polysaccharide from fermented mycelia of Coriolus versicolor and its efficacy for treating nonalcoholic fatty liver disease. Int J Biol Macromol 2023; 248:125951. [PMID: 37499724 DOI: 10.1016/j.ijbiomac.2023.125951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Coriolus versicolor, a popular traditional Chinese medicinal herb, is widely used in China to treat spleen and liver diseases; however, the beneficial effects of C. versicolor polysaccharides (CVPs) on nonalcoholic fatty liver disease (NAFLD) remain elusive. Herein we isolated and purified a novel CVP (molecular weight, 17,478 Da) from fermented mycelium powder. This CVP was composed of mannose, galacturonic acid, glucose, galactose, xylose, and fucose at a molar ratio of 22:1:8:15:10:3. Methylation, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses indicated that the CVP backbone consisted of →1)-β-D-Man-(6,4→1)-α-D-Gal-(3→1)-α-D-Man-(4→1)-α-D-Gal-(6→, with branches of →1)-α-D-Glc-(6→1)-α-D-Man-(4,3→1)-β-D-Xyl-(2→1)-β-D-Glc on the O-6 position of →1)-β-D-Man-(6,4→ of the main chain. The secondary branches linked to the O-4 position of →1)-α-D-Man-(4,3→ with the chain of →1)-α-D-Fuc-(4→1)-α-D-Man. Further, CVP treatment alleviated the symptoms of NAFLD in an HFD-induced mice model. CVP altered gut microbiota, predominantly suppressing microbes associated with bile acids both in the serum and cecal contents. In vitro data showed that CVP reduced HFD-induced hyperlipidemia via farnesoid X receptor. Our results improve our understanding of the mechanisms underlying the cholesterol- and lipid-lowering effects of CVP and indicate that CVP is a promising candidate for NAFLD therapy.
Collapse
Affiliation(s)
- Huiling Tang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yanfang Tan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuan Li
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Yuzhi Jiao
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Baowei Yang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
60
|
Herbert C, Luies L, Loots DT, Williams AA. The metabolic consequences of HIV/TB co-infection. BMC Infect Dis 2023; 23:536. [PMID: 37592227 PMCID: PMC10436461 DOI: 10.1186/s12879-023-08505-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The synergy between the human immunodeficiency virus (HIV) and Mycobacterium tuberculosis during co-infection of a host is well known. While this synergy is known to be driven by immunological deterioration, the metabolic mechanisms that contribute to the associated disease burden experienced during HIV/tuberculosis (TB) co-infection remain poorly understood. Furthermore, while anti-HIV treatments suppress viral replication, these therapeutics give rise to host metabolic disruption and adaptations beyond that induced by only infection or disease. METHODS In this study, the serum metabolic profiles of healthy controls, untreated HIV-negative TB-positive patients, untreated HIV/TB co-infected patients, and HIV/TB co-infected patients on antiretroviral therapy (ART), were measured using two-dimensional gas chromatography time-of-flight mass spectrometry. Since no global metabolic profile for HIV/TB co-infection and the effect of ART has been published to date, this pilot study aimed to elucidate the general areas of metabolism affected during such conditions. RESULTS HIV/TB co-infection induced significant changes to the host's lipid and protein metabolism, with additional microbial product translocation from the gut to the blood. The results suggest that HIV augments TB synergistically, at least in part, contributing to increased inflammation, oxidative stress, ART-induced mitochondrial damage, and its detrimental effects on gut health, which in turn, affects energy availability. ART reverses these trends to some extent in HIV/TB co-infected patients but not to that of healthy controls. CONCLUSION This study generated several new hypotheses that could direct future metabolic studies, which could be combined with other research techniques or methodologies to further elucidate the underlying mechanisms of these changes.
Collapse
Affiliation(s)
- Chandré Herbert
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
61
|
Ismael S, Rodrigues C, Santos GM, Castela I, Barreiros-Mota I, Almeida MJ, Calhau C, Faria A, Araújo JR. IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells. Nutr Res Pract 2023; 17:616-630. [PMID: 37529264 PMCID: PMC10375328 DOI: 10.4162/nrp.2023.17.4.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Shámila Ismael
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina Rodrigues
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Gilberto Maia Santos
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Castela
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Barreiros-Mota
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria João Almeida
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Conceição Calhau
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Unidade Universitária Lifestyle Medicine José de Mello Saúde by NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Ana Faria
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - João Ricardo Araújo
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
62
|
Kim S, Li H, Jin Y, Armad J, Gu H, Mani S, Cui JY. Maternal PBDE exposure disrupts gut microbiome and promotes hepatic proinflammatory signaling in humanized PXR-transgenic mouse offspring over time. Toxicol Sci 2023; 194:209-225. [PMID: 37267213 PMCID: PMC10375318 DOI: 10.1093/toxsci/kfad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Developmental exposure to the persistent environmental pollutant, polybrominated diphenyl ethers (PBDEs), is associated with increased diabetes prevalence. The microbial tryptophan metabolite, indole-3-propionic acid (IPA), is associated with reduced risk of type 2 diabetes and lower-grade inflammation and is a pregnane X receptor (PXR) activator. To explore the role of IPA in modifying the PBDE developmental toxicity, we orally exposed humanized PXR-transgenic (hPXR-TG) mouse dams to vehicle, 0.1 mg/kg/day DE-71 (an industrial PBDE mixture), DE-71+IPA (20 mg/kg/day), or IPA, from 4 weeks preconception to the end of lactation. Pups were weaned at 21 days of age and IPA supplementation continued in the corresponding treatment groups. Tissues were collected at various ages until 6 months of age (n = 5 per group). In general, the effect of maternal DE-71 exposure on the gut microbiome of pups was amplified over time. The regulation of hepatic cytokines and prototypical xenobiotic-sensing transcription factor target genes by DE-71 and IPA was age- and sex-dependent, where DE-71-mediated mRNA increased selected cytokines (Il10, Il12p40, Il1β [both sexes], and [males]). The hepatic mRNA of the aryl hydrocarbon receptor (AhR) target gene Cyp1a2 was increased by maternal DE-71 and DE-71+IPA exposure at postnatal day 21 but intestinal Cyp1a1 was not altered by any of the exposures and ages. Maternal DE-71 exposure persistently increased serum indole, a known AhR ligand, in age- and sex-dependent manner. In conclusion, maternal DE-71 exposure produced a proinflammatory signature along the gut-liver axis, including gut dysbiosis, dysregulated tryptophan microbial metabolism, attenuated PXR signaling, and elevated AhR signaling in postweaned hPXR-TG pups over time, which was partially corrected by IPA supplementation.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Hao Li
- Departments of Medicine, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987-2352, USA
| | - Jasmine Armad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987-2352, USA
| | - Sridhar Mani
- Departments of Medicine, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
63
|
Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1169624. [PMID: 37560311 PMCID: PMC10407565 DOI: 10.3389/fendo.2023.1169624] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.
Collapse
Affiliation(s)
| | - Van B. Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
64
|
Nordin E, Hellström PM, Dicksved J, Pelve E, Landberg R, Brunius C. Effects of FODMAPs and Gluten on Gut Microbiota and Their Association with the Metabolome in Irritable Bowel Syndrome: A Double-Blind, Randomized, Cross-Over Intervention Study. Nutrients 2023; 15:3045. [PMID: 37447371 DOI: 10.3390/nu15133045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND A mechanistic understanding of the effects of dietary treatment in irritable bowel syndrome (IBS) is lacking. Our aim was therefore to investigate how fermentable oligo- di-, monosaccharides, and polyols (FODMAPs) and gluten affected gut microbiota and circulating metabolite profiles, as well as to investigate potential links between gut microbiota, metabolites, and IBS symptoms. METHODS We used data from a double-blind, randomized, crossover study with week-long provocations of FODMAPs, gluten, and placebo in participants with IBS. To study the effects of the provocations on fecal microbiota, fecal and plasma short-chain fatty acids, the untargeted plasma metabolome, and IBS symptoms, we used Random Forest, linear mixed model and Spearman correlation analysis. RESULTS FODMAPs increased fecal saccharolytic bacteria, plasma phenolic-derived metabolites, 3-indolepropionate, and decreased isobutyrate and bile acids. Gluten decreased fecal isovalerate and altered carnitine derivatives, CoA, and fatty acids in plasma. For FODMAPs, modest correlations were observed between microbiota and phenolic-derived metabolites and 3-indolepropionate, previously associated with improved metabolic health, and reduced inflammation. Correlations between molecular data and IBS symptoms were weak. CONCLUSIONS FODMAPs, but not gluten, altered microbiota composition and correlated with phenolic-derived metabolites and 3-indolepropionate, with only weak associations with IBS symptoms. Thus, the minor effect of FODMAPs on IBS symptoms must be weighed against the effect on microbiota and metabolites related to positive health factors.
Collapse
Affiliation(s)
- Elise Nordin
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Erik Pelve
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Carl Brunius
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
65
|
Liu J, Liu J, Zhang J, Liu C, Qu C, Na L. Vitamin D deficiency in early life regulates gut microbiome composition and leads to impaired glucose tolerance in adult and offspring rats. Food Funct 2023. [PMID: 37285306 DOI: 10.1039/d3fo00503h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vitamin D has been found to be involved in glucose metabolism in recent years. Its deficiency is very common, especially in children. Whether vitamin D deficiency in early life affects adult diabetes risk is unknown. In this study, a rat model of early life vitamin D deficiency (F1 Early-VDD) was established by depriving it of vitamin D from the 0 to the 8th week. Further, some rats were switched to normal feeding conditions and sacrificed at the 18th week. Other rats were mated randomly to generate offspring rats (F2 Early-VDD), and F2 rats were fed under normal conditions and sacrificed at the 8th week. Serum 25(OH)D3 level decreased in F1 Early-VDD at the 8th week and returned to normal at the 18th week. Serum 25(OH)D3 level in F2 Early-VDD at the 8th week was also lower than that in control rats. Impaired glucose tolerance was observed in F1 Early-VDD at the 8th week and 18th week and also in F2 Early-VDD at the 8th week. The gut microbiota composition in F1 Early-VDD at the 8th week significantly changed. Among the top ten genera with a rich difference, Desulfovibrio, Roseburia, Ruminiclostridium, Lachnoclostridium, A2, GCA-900066575, Peptococcus, Lachnospiraceae_FCS020_ group, and Bilophila increased owing to vitamin D deficiency, whereas Blautia decreased. There were 108 significantly changed metabolites in F1 Early-VDD at the 8th week, of which 63 were enriched in known metabolic pathways. Correlations between gut microbiota and metabolites were analyzed. Blautia was positively related to 2-picolinic acid, whereas Bilophila was negatively related to indoleacetic acid. Moreover, some of the changes in microbiota, metabolites, and enriched metabolic pathways still existed in F1 Early-VDD rats at the 18th week and F2 Early-VDD rats at the 8th week. In conclusion, vitamin D deficiency in early life leads to impaired glucose tolerance in adult and offspring rats. This effect may be partly achieved by regulating gut microbiota and their co-metabolites.
Collapse
Affiliation(s)
- Jing Liu
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Junyi Liu
- Department of Clinical Nutrition, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jingyi Zhang
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Chunyan Liu
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Chunbo Qu
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Lixin Na
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Collaborative Innovation Center of Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
66
|
Frankowski R, Kobierecki M, Wittczak A, Różycka-Kosmalska M, Pietras T, Sipowicz K, Kosmalski M. Type 2 Diabetes Mellitus, Non-Alcoholic Fatty Liver Disease, and Metabolic Repercussions: The Vicious Cycle and Its Interplay with Inflammation. Int J Mol Sci 2023; 24:ijms24119677. [PMID: 37298632 DOI: 10.3390/ijms24119677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence of metabolic-related disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (DM2), has been increasing. Therefore, developing improved methods for the prevention, treatment, and detection of these two conditions is also necessary. In this study, our primary focus was on examining the role of chronic inflammation as a potential link in the pathogenesis of these diseases and their interconnections. A comprehensive search of the PubMed database using keywords such as "non-alcoholic fatty liver disease", "type 2 diabetes mellitus", "chronic inflammation", "pathogenesis", and "progression" yielded 177 relevant papers for our analysis. The findings of our study revealed intricate relationships between the pathogenesis of NAFLD and DM2, emphasizing the crucial role of inflammatory processes. These connections involve various molecular functions, including altered signaling pathways, patterns of gene methylation, the expression of related peptides, and up- and downregulation of several genes. Our study is a foundational platform for future research into the intricate relationship between NAFLD and DM2, allowing for a better understanding of the underlying mechanisms and the potential for introducing new treatment standards.
Collapse
Affiliation(s)
- Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Mateusz Kobierecki
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Andrzej Wittczak
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kasper Sipowicz
- Department of Interdisciplinary Disability Studies, The Maria Grzegorzewska University in Warsaw, 02-353 Warsaw, Poland
| | - Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
67
|
Ismael S, Vaz C, Durão C, Silvestre MP, Calhau C, Teixeira D, Marques C. The impact of Hafnia alvei HA4597™ on weight loss and glycaemic control after bariatric surgery - study protocol for a triple-blinded, blocked randomized, 12-month, parallel-group, placebo-controlled clinical trial. Trials 2023; 24:362. [PMID: 37248499 PMCID: PMC10226263 DOI: 10.1186/s13063-023-07383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Subjects with obesity exhibit changes in gut microbiota composition and function (i.e. dysbiosis) that contribute to metabolic dysfunction, including appetite impairment. Although bariatric surgery is an effective treatment for obesity with a great impact on weight loss, some subjects show weight regain due to increased energy intake after the surgery. This surgery involves gut microbiota changes that promote appetite control, but it seems insufficient to completely restore the obesity-associated dysbiosis - a possible contributor for weight regain. Thus, modulating gut microbiota with probiotics that could improve appetite regulation as a complementary approach to post-operative diet (i.e. Hafnia alvei HA4597™), may accentuate post-surgery weight loss and insulin sensitivity. METHODS This is a protocol of a triple-blinded, blocked-randomized, parallel-group, placebo-controlled clinical trial designed to determine the effect of Hafnia alvei HA4597™ supplementation on weight loss and glycaemic control 1 year after bariatric surgery. Patients of Hospital CUF Tejo, Lisbon, that undergo Roux-en-Y gastric bypass are invited to participate in this study. Men and women between 18 and 65 years old, with a BMI ≥ 35 kg/m2 and at least one severe obesity-related comorbidity, or with a BMI ≥ 40 kg/m2, and who are willing to take 2 capsules of Hafnia alvei HA4597™ probiotic supplements (equivalent to 5 × 107 CFU) vs. placebo per day for 90 days are included in this study. Assessments are carried out at baseline, 3, 6, 9, and 12 months after the surgery. Loss of weight in excess and glycated haemoglobin are considered primary outcomes. In addition, changes in other metabolic and inflammatory outcomes, gut microbiota composition and metabolites, as well as gastrointestinal quality of life are also being assessed during the trial. DISCUSSION The evidence obtained in this study will provide relevant information regarding the profile of the intestinal microbiota of individuals with severe obesity and the identification of the risk/benefit ratio of the use of Hafnia alvei HA4597™ as an adjunctive treatment in the maintenance of metabolic and weight control one year after the surgical intervention. TRIAL REGISTRATION ClinicalTrials.gov NCT05170867. Registered on 28 December 2021.
Collapse
Affiliation(s)
- Shámila Ismael
- Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Carlos Vaz
- Obesity and Metabolic Surgery Unit, Hospital CUF Tejo, Lisbon, Portugal
| | - Catarina Durão
- Obesity and Metabolic Surgery Unit, Hospital CUF Tejo, Lisbon, Portugal
- EPIUnit - Institute of Public Health, Universidade Do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Marta P Silvestre
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Conceição Calhau
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Unidade Universitária Lifestyle Medicine José de Mello Saúde By NOVA Medical School, 1169-056, Lisbon, Portugal
| | - Diana Teixeira
- Nutrition & Metabolism, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - Cláudia Marques
- Nutition & Metabolism, CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
68
|
Kim CS, Jung S, Hwang GS, Shin DM. Gut microbiota indole-3-propionic acid mediates neuroprotective effect of probiotic consumption in healthy elderly: A randomized, double-blind, placebo-controlled, multicenter trial and in vitro study. Clin Nutr 2023; 42:1025-1033. [PMID: 37150125 DOI: 10.1016/j.clnu.2023.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND & AIMS The beneficial effects of probiotic consumption on age-related decline in cerebral function have been previously reported in the literature; however, the mechanistic link between gut and brain interactions has not yet been fully elucidated. Therefore, this study aimed to identify the role of gut microbiota-derived metabolites in gut-brain interactions via blood metabolomic profiling analysis in clinical trials and in vitro mechanistic studies. METHODS A randomized, double-blind, placebo-controlled, multicenter clinical trial was conducted in 63 healthy elderly individuals (≥65 years of age). Participants were administered either placebo (placebo group, N = 31) or probiotic capsules (Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI; probiotics group, N = 32) for 12 weeks. Global and targeted metabolomic profiling analyses of their blood samples were then performed using 1H nuclear magnetic resonance and liquid chromatography-mass spectrometry methods, both at baseline and at the end of the trial. Gut microbial analysis was conducted using the 16S ribosomal ribonucleic acid gene sequencing method. Subsequently, microglial BV2 cells were treated in vitro with indole-3-propionic acid (IPA) following lipopolysaccharide stimulation, and neuronal SH-SY5Y cells were treated with conditioned media from the BV2 cells. Finally, the levels of pro-inflammatory cytokines in BV2 cells and neurotrophins in SH-SY5Y cells were quantified using a real-time polymerase chain reaction or enzyme-linked immunosorbent assay. RESULTS The metabolomic profiling analyses showed that probiotic consumption significantly altered the levels of metabolites involved in tryptophan metabolism (P < 0.01). Among these metabolites, gut microbiota-produced IPA had a 1.91-fold increase in the probiotics group (P < 0.05) and showed a significant relation to gut bacterial profiles (P < 0.01). Elevated IPA levels were also positively associated with the level of serum brain-derived neurotropic factor (BDNF) in the probiotics group (r = 0.28, P < 0.05), showing an inverse trend compared to the placebo group. In addition, in vitro treatment with IPA (5 μM) significantly reduced the concentration of proinflammatory TNF-α in activated microglia (P < 0.05), and neuronal cells cultured with conditioned media from IPA-treated microglia showed a significant increase in BDNF and nerve growth factor production (P < 0.05). CONCLUSIONS These results show that gut microbiota-produced IPA plays a role in protecting the microglia from inflammation, thus promoting neuronal function. Therefore, this suggests that IPA is a significant mediator linking the interaction between the gut and the brain in the elderly with probiotic supplementation.
Collapse
Affiliation(s)
- Chong-Su Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunhee Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
69
|
Dong R, Denier-Fields DN, Van Hulle CA, Kollmorgen G, Suridjan I, Wild N, Lu Q, Anderson RM, Zetterberg H, Blennow K, Carlsson CM, Johnson SC, Engelman CD. Identification of plasma metabolites associated with modifiable risk factors and endophenotypes reflecting Alzheimer's disease pathology. Eur J Epidemiol 2023; 38:559-571. [PMID: 36964431 PMCID: PMC11070200 DOI: 10.1007/s10654-023-00988-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/05/2023] [Indexed: 03/26/2023]
Abstract
Modifiable factors can influence the risk for Alzheimer's disease (AD) and serve as targets for intervention; however, the biological mechanisms linking these factors to AD are unknown. This study aims to identify plasma metabolites associated with modifiable factors for AD, including MIND diet, physical activity, smoking, and caffeine intake, and test their association with AD endophenotypes to identify their potential roles in pathophysiological mechanisms. The association between each of the 757 plasma metabolites and four modifiable factors was tested in the wisconsin registry for Alzheimer's prevention cohort of initially cognitively unimpaired, asymptomatic middle-aged adults. After Bonferroni correction, the significant plasma metabolites were tested for association with each of the AD endophenotypes, including twelve cerebrospinal fluid (CSF) biomarkers, reflecting key pathophysiologies for AD, and four cognitive composite scores. Finally, causal mediation analyses were conducted to evaluate possible mediation effects. Analyses were performed using linear mixed-effects regression. A total of 27, 3, 23, and 24 metabolites were associated with MIND diet, physical activity, smoking, and caffeine intake, respectively. Potential mediation effects include beta-cryptoxanthin in the association between MIND diet and preclinical Alzheimer cognitive composite score, hippurate between MIND diet and immediate learning, glutamate between physical activity and CSF neurofilament light, and beta-cryptoxanthin between smoking and immediate learning. Our study identified several plasma metabolites that are associated with modifiable factors. These metabolites can be employed as biomarkers for tracking these factors, and they provide a potential biological pathway of how modifiable factors influence the human body and AD risk.
Collapse
Affiliation(s)
- Ruocheng Dong
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Diandra N Denier-Fields
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Nutrition Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Carol A Van Hulle
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | | | | | - Norbert Wild
- Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, S-43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1H 0AL, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, S-43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180, Mölndal, Sweden
| | - Cynthia M Carlsson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Sterling C Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Geriatric Research Education and Clinical Center, William. S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA.
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA.
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53719, USA.
| |
Collapse
|
70
|
Anderson GM. Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva. Metabolites 2023; 13:metabo13050602. [PMID: 37233643 DOI: 10.3390/metabo13050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The microbial metabolite indolepropionic acid (IPA) and related indolic metabolites, including indolecarboxylic acid (ICA), indolelactic acid (ILA), indoleacetic acid (IAA), indolebutyric acid (IBA), indoxylsulfate (ISO4), and indole, were determined in human plasma, plasma ultrafiltrate (UF), and saliva. The compounds were separated on a 150 × 3 mm column of 3 μm Hypersil C18 eluted with a mobile phase of 80% pH 5 0.01 M sodium acetate containing 1.0 g/L of tert-butylammonium chloride/20% acetonitrile and then detected fluorometrically. Levels of IPA in human plasma UF and of ILA in saliva are reported for the first time. The determination of IPA in plasma UF enables the first report of free plasma IPA, the presumed physiologically active pool of this important microbial metabolite of tryptophan. Plasma and salivary ICA and IBA were not detected, consistent with the absence of any prior reported values. Observed levels or limits of detection for other indolic metabolites usefully supplement limited prior reports.
Collapse
Affiliation(s)
- George M Anderson
- Department of Laboratory Medicine, The Child Study Center, Yale University School of Medicine, 230 S. Frontage Rd., New Haven, CT 06519, USA
| |
Collapse
|
71
|
Chen X, de Vos P. Structure-function relationship and impact on the gut-immune barrier function of non-digestible carbohydrates and human milk oligosaccharides applicable for infant formula. Crit Rev Food Sci Nutr 2023; 64:8325-8345. [PMID: 37035930 DOI: 10.1080/10408398.2023.2199072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Human milk oligosaccharides (hMOs) in mothers' milk play a crucial role in guiding the colonization of microbiota and gut-immune barrier development in infants. Non-digestible carbohydrates (NDCs) such as synthetic single hMOs, galacto-oligosaccharides (GOS), inulin-type fructans and pectin oligomers have been added to infant formula to substitute some hMOs' functions. HMOs and NDCs can modulate the gut-immune barrier, which is a multiple-layered functional unit consisting of microbiota, a mucus layer, gut epithelium, and the immune system. There is increasing evidence that the structures of the complex polysaccharides may influence their efficacy in modulating the gut-immune barrier. This review focuses on the role of different structures of individual hMOs and commonly applied NDCs in infant formulas in (i) direct regulation of the gut-immune barrier in a microbiota-independent manner and in (ii) modulation of microbiota composition and microbial metabolites of these polysaccharides in a microbiota-dependent manner. Both have been shown to be essential for guiding the development of an adequate immune barrier, but the effects are very dependent on the structural features of hMO or NDC. This knowledge might lead to tailored infant formulas for specific target groups.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
72
|
Noerman S, Landberg R. Blood metabolite profiles linking dietary patterns with health-Toward precision nutrition. J Intern Med 2023; 293:408-432. [PMID: 36484466 DOI: 10.1111/joim.13596] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diet is one of the most important exposures that may affect health throughout life span. Investigations on dietary patterns rather than single food components are gaining in popularity because they take the complexity of the whole dietary context into account. Adherence to such dietary patterns can be measured by using metabolomics, which allows measurements of thousands of molecules simultaneously. Derived metabolite signatures of dietary patterns may reflect the consumption of specific groups of foods or their constituents originating from the dietary pattern per se, or the physiological response toward the food-derived metabolites, their interaction with endogenous metabolism, and exogenous factors such as gut microbiota. Here, we review and discuss blood metabolite fingerprints of healthy dietary patterns. The plasma concentration of several food-derived metabolites-such as betaines from whole grains and n - 3 polyunsaturated fatty acids and furan fatty acids from fish-seems to consistently reflect the intake of common foods of several healthy dietary patterns. The metabolites reflecting shared features of different healthy food indices form biomarker panels for which specific, targeted assays could be developed. The specificity of such biomarker panels would need to be validated, and proof-of-concept feeding trials are needed to evaluate to what extent the panels may mediate the effects of dietary patterns on disease risk indicators or if they are merely food intake biomarkers. Metabolites mediating health effects may represent novel targets for precision prevention strategies of clinical relevance to be verified in future studies.
Collapse
Affiliation(s)
- Stefania Noerman
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
73
|
Yan T, Liu T, Shi L, Yan L, Li Z, Zhang X, Dai X, Sun X, Yang X. Integration of microbial metabolomics and microbiomics uncovers a novel mechanism underlying the antidiabetic property of stachyose. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
74
|
Safari-Alighiarloo N, Emami Z, Rezaei-Tavirani M, Alaei-Shahmiri F, Razavi S. Gut Microbiota and Their Associated Metabolites in Diabetes: A Cross Talk Between Host and Microbes-A Review. Metab Syndr Relat Disord 2023; 21:3-15. [PMID: 36301254 DOI: 10.1089/met.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the gut microbiota's composition and function is important in developing insulin resistance and diabetes. Diabetes has also been linked to changes in the circulating and fecal metabolites. Evidence suggests the associations between the gut microbiota and the aberrant diabetes-related metabolome. Metabolites play a crucial role in the host-microbiota interactions. Researchers have used a combination of metagenomic and metabolomic approaches to investigate the relationships between gut microbial dysbiosis and metabolic abnormalities in diabetes. We summarized current discoveries on the associations between the gut microbiota and metabolites in type 1 diabetes, type 2 diabetes, and gestational diabetes mellitus in the scoping review. According to research, the gut microbiota changes might involve in the development of diabetes through modulating the host's metabolic pathways such as immunity, energy metabolism, lipid metabolism, and amino acid metabolism. These results add to our understanding of the interplay between the host and gut microbiota metabolism.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Emami
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Alaei-Shahmiri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
75
|
Yang J, Lee R, Schulz Z, Hsu A, Pai J, Yang S, Henning SM, Huang J, Jacobs JP, Heber D, Li Z. Mixed Nuts as Healthy Snacks: Effect on Tryptophan Metabolism and Cardiovascular Risk Factors. Nutrients 2023; 15:569. [PMID: 36771274 PMCID: PMC9921623 DOI: 10.3390/nu15030569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
We recently demonstrated that the consumption of mixed tree nuts (MTNs) during caloric restriction decreased cardiovascular risk factors and increased satiety. Tryptophan (Trp) metabolism has been indicated as a factor in cardiovascular disease. Here, we investigated the effect of MTNs on Trp metabolism and the link to cardiovascular risk markers. Plasma and stool were collected from 95 overweight individuals who consumed either MTNs (or pretzels) daily as part of a hypocaloric weight loss diet for 12 weeks followed by an isocaloric weight maintenance program for an additional 12 weeks. Plasma and fecal samples were evaluated for Trp metabolites by LC-MS and for gut microbiota by 16S rRNA sequencing. Trp-kynurenine metabolism was reduced only in the MTNs group during weight loss (baseline vs. week 12). Changes in Trp-serotonin (week 24) and Trp-indole (week 12) metabolism from baseline were increased in the MTNs group compared to the pretzel group. Intergroup analysis between MTN and pretzel groups does not identify significant microbial changes as indicated by alpha diversity and beta diversity. Changes in the relative abundance of genus Paludicola during intervention are statistically different between the MTNs and pretzel group with p < 0.001 (q = 0.07). Our findings suggest that consumption of MTNs affects Trp host and microbial metabolism in overweight and obese subjects.
Collapse
Affiliation(s)
- Jieping Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rupo Lee
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Zachary Schulz
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Albert Hsu
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan Pai
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scarlet Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Susanne M. Henning
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jianjun Huang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - David Heber
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| |
Collapse
|
76
|
Distinct subsets of neutrophils crosstalk with cytokines and metabolites in patients with sepsis. iScience 2023; 26:105948. [PMID: 36756375 PMCID: PMC9900520 DOI: 10.1016/j.isci.2023.105948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Despite continued efforts to understand the pathophysiology of sepsis, no effective therapies are currently available. While singular components of the aberrant immune response have been investigated, comprehensive studies linking different data layers are lacking. Using an integrated systems immunology approach, we evaluated neutrophil phenotypes and concomitant changes in cytokines and metabolites in patients with sepsis. Our findings identify differentially expressed mature and immature neutrophil subsets in patients with sepsis. These subsets correlate with various proteins, metabolites, and lipids, including pentraxin-3, angiopoietin-2, and lysophosphatidylcholines, in patients with sepsis. These results enabled the construction of a statistical model based on weighted multi-omics linear regression analysis for sepsis biomarker identification. These findings could help inform early patient stratification and treatment options, and facilitate further mechanistic studies targeting the trifecta of surface marker expression, cytokines, and metabolites.
Collapse
|
77
|
Yan T, Shi L, Liu T, Zhang X, Yang M, Peng W, Sun X, Yan L, Dai X, Yang X. Diet-rich in wheat bran modulates tryptophan metabolism and AhR/IL-22 signalling mediated metabolic health and gut dysbacteriosis: A novel prebiotic-like activity of wheat bran. Food Res Int 2023; 163:112179. [PMID: 36596122 DOI: 10.1016/j.foodres.2022.112179] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Tryptophan metabolism has shown to involve in pathogenesis of various metabolic diseases. Gut microbiota-orientated diets hold great potentials to improve metabolic health via regulating tryptophan metabolism. The present study showed that the 6-week high fat diet (HFD) disturbed tryptophan metabolism accompanied with gut dysbacteriosis, also influenced the dietary tryptophan induced changes in cecum microbiome and serum metabolome in mice. The colonic expressions of aryl hydrocarbon receptor (AhR) and interleukin-22 (IL-22) were significantly reduced in mice fed on HFD. Notably, a diet- rich in wheat bran effectively inhibited transformation of tryptophan to kynurenine-pathway metabolites, while increased melatonin and microbial catabolites, i.e. indole-3-propionic acid, indole-3-acetaldehyde and 5-hydroxy-indole-3-acetic acid. Such regulatory effects were accompanied with reduced fasting glucose and total triglycerides, and promoted AhR and IL-22 levels in HFD mice. Wheat bran increased the abundance of health promoting bacteria (e.g., Akkermansia and Lactobacillus), which were significantly correlated with tryptophan derived indolic metabolites. Additionally, beneficial modulatory effects of wheat bran on indolic metabolites in associations with gut dysbacteriosis from type 2 diabetes patients were confirmed in vitro fecal fermentation experiment. Our study proves the detrimental effects of HFD induced gut dysbacteriosis on tryptophan metabolism that may influence immune modulation, and provides novel insights in the mechanisms by which wheat bran could induce health benefits.
Collapse
Affiliation(s)
- Tao Yan
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiangnan Zhang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Minmin Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wen Peng
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining, Qinghai 810016, China
| | - Xiaomin Sun
- Global Health Institute, Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lijing Yan
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, Guangdong 518083, China.
| | - Xinbing Yang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
78
|
Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients 2022; 15:nu15010151. [PMID: 36615808 PMCID: PMC9824871 DOI: 10.3390/nu15010151] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that metabolites produced by the gut microbiota play a crucial role in host-microbe interactions. Dietary tryptophan ingested by the host enters the gut, where indole-like metabolites such as indole propionic acid (IPA) are produced under deamination by commensal bacteria. Here, we summarize the IPA-producing bacteria, dietary patterns on IPA content, and functional roles of IPA in various diseases. IPA can not only stimulate the expression of tight junction (TJ) proteins to enhance gut barrier function and inhibit the penetration of toxic factors, but also modulate the immune system to exert anti-inflammatory and antioxidant effects to synergistically regulate body physiology. Moreover, IPA can act on target organs through blood circulation to form the gut-organ axis, which helps maintain systemic homeostasis. IPA shows great potential for the diagnosis and treatment of various clinical diseases, such as NAFLD, Alzheimer's disease, and breast cancer. However, the therapeutic effect of IPA depends on dose, target organ, or time. In future studies, further work should be performed to explore the effects and mechanisms of IPA on host health and disease to further improve the existing treatment program.
Collapse
|
79
|
Badawy AB. Tryptophan metabolism and disposition in cancer biology and immunotherapy. Biosci Rep 2022; 42:BSR20221682. [PMID: 36286592 PMCID: PMC9653095 DOI: 10.1042/bsr20221682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 08/31/2023] Open
Abstract
Tumours utilise tryptophan (Trp) and its metabolites to promote their growth and evade host defences. They recruit Trp through up-regulation of Trp transporters, and up-regulate key enzymes of Trp degradation and down-regulate others. Thus, Trp 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase 1 (IDO1), IDO2, N'-formylkynurenine formamidase (FAMID) and Kyn aminotransferase 1 (KAT1) are all up-regulated in many cancer types, whereas Kyn monooxygenase (KMO), kynureninase (KYNU), 2-amino-3-carboxymuconic acid-6-semialdehyde decarboxylase (ACMSD) and quinolinate phosphoribosyltransferase (QPRT) are up-regulated in a few, but down-regulated in many, cancers. This results in accumulation of the aryl hydrocarbon receptor (AhR) ligand kynurenic acid and in depriving the host of NAD+ by blocking its synthesis from quinolinic acid. The host loses more NAD+ by up-regulation of the NAD+-consuming poly (ADP-ribose) polymerases (PARPs) and the protein acetylaters SIRTs. The nicotinamide arising from PARP and SIRT activation can be recycled in tumours to NAD+ by the up-regulated key enzymes of the salvage pathway. Up-regulation of the Trp transporters SLC1A5 and SLC7A5 is associated mostly with that of TDO2 = FAMID > KAT1 > IDO2 > IDO1. Tumours down-regulate enzymes of serotonin synthesis, thereby removing competition for Trp from the serotonin pathway. Strategies for combating tumoral immune escape could involve inhibition of Trp transport into tumours, inhibition of TDO and IDOs, inhibition of FAMID, inhibition of KAT and KYNU, inhibition of NMPRT and NMNAT, inhibition of the AhR, IL-4I1, PARPs and SIRTs, and by decreasing plasma free Trp availability to tumours by albumin infusion or antilipolytic agents and inhibition of glucocorticoid induction of TDO by glucocorticoid antagonism.
Collapse
Affiliation(s)
- Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K
| |
Collapse
|
80
|
Belkadi A, Thareja G, Abbaszadeh F, Badii R, Fauman E, Albagha OM, Suhre K. Identification of PCSK9-like human gene knockouts using metabolomics, proteomics, and whole-genome sequencing in a consanguineous population. CELL GENOMICS 2022; 3:100218. [PMID: 36777185 PMCID: PMC9903797 DOI: 10.1016/j.xgen.2022.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/16/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Natural human knockouts of genes associated with desirable outcomes, such as PCSK9 with low levels of LDL-cholesterol, can lead to the discovery of new drug targets and treatments. Rare loss-of-function variants are more likely to be found in the homozygous state in consanguineous populations, and deep molecular phenotyping of blood samples from homozygous carriers can help to discriminate between silent and functional variants. Here, we combined whole-genome sequencing with proteomics and metabolomics for 2,935 individuals from the Qatar Biobank (QBB) to evaluate the power of this approach for finding genes of clinical and pharmaceutical interest. As proof-of-concept, we identified a homozygous carrier of a very rare PCSK9 variant with extremely low circulating PCSK9 levels and low LDL. Our study demonstrates that the chances of finding such variants are about 168 times higher in QBB compared with GnomAD and emphasizes the potential of consanguineous populations for drug discovery.
Collapse
Affiliation(s)
- Aziz Belkadi
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA
| | - Gaurav Thareja
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Omar M.E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar,Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, USA,Corresponding author
| |
Collapse
|
81
|
Indolepropionic Acid, a Gut Bacteria-Produced Tryptophan Metabolite and the Risk of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14214695. [PMID: 36364957 PMCID: PMC9653718 DOI: 10.3390/nu14214695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
An intricate relationship between gut microbiota, diet, and the human body has recently been extensively investigated. Gut microbiota and gut-derived metabolites, especially, tryptophan derivatives, modulate metabolic and immune functions in health and disease. One of the tryptophan derivatives, indolepropionic acid (IPA), is increasingly being studied as a marker for the onset and development of metabolic disorders, including type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). The IPA levels heavily depend on the diet, particularly dietary fiber, and show huge variations among individuals. We suggest that these variations could partially be explained using genetic variants known to be associated with specific diseases such as T2D. In this narrative review, we elaborate on the beneficial effects of IPA in the mitigation of T2D and NAFLD, and further study the putative interactions between IPA and well-known genetic variants (TCF7L2, FTO, and PPARG), known to be associated with the risk of T2D. We have investigated the long-term preventive value of IPA in the development of T2D in the Finnish prediabetic population and the correlation of IPA with phytosterols in obese individuals from an ongoing Kuopio obesity surgery study. The diversity in IPA-linked mechanisms affecting glucose metabolism and liver fibrosis makes it a unique small metabolite and a promising candidate for the reversal or management of metabolic disorders, mainly T2D and NAFLD.
Collapse
|
82
|
Ho KJ, Ramirez JL, Kulkarni R, Harris KG, Helenowski I, Xiong L, Ozaki CK, Grenon SM. Plasma Gut Microbe-Derived Metabolites Associated with Peripheral Artery Disease and Major Adverse Cardiac Events. Microorganisms 2022; 10:microorganisms10102065. [PMID: 36296342 PMCID: PMC9609963 DOI: 10.3390/microorganisms10102065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are associated with gut dysbiosis, but the role of microbe-derived metabolites as biomarkers or modulators of cardiovascular disease are not well understood. This is a targeted metabolomics study to investigate the association of nine microbe-derived metabolites with lower extremity peripheral artery disease (PAD), a form of atherosclerosis, and major adverse cardiac events (MACE). The study cohort consists of individuals with intermittent claudication and ankle-brachial index (ABI) < 0.9 (N = 119) and controls without clinically-apparent atherosclerosis (N = 37). The primary endpoint was MACE, a composite endpoint of myocardial infarction, coronary revascularization, stroke, transient ischemic attack, or cardiac-related death. Plasma metabolite concentrations differed significantly between the PAD and control groups. After adjustment for traditional atherosclerosis risk factors, kynurenine, hippuric acid, indole-3-propionic acid (IPA), and indole-3-aldehyde (I3A) concentrations were negatively associated with PAD, whereas indoxyl sulfate and 3-hydroxyanthranilic acid were positively associated. Hippuric acid, IPA, and I3A correlated with ABI, a surrogate for atherosclerotic disease burden. Those in the highest I3A concentration quartile had significantly improved freedom from MACE during follow-up compared to those in the lowest quartile. This study identifies specific indole- and phenyl-derived species impacted by gut microbial metabolic pathways that could represent novel microbiome-related biomarkers of PAD.
Collapse
Affiliation(s)
- Karen J. Ho
- Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence:
| | - Joel L. Ramirez
- Division of Vascular & Endovascular Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rohan Kulkarni
- Division of Vascular Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Irene Helenowski
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Liqun Xiong
- Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - C. Keith Ozaki
- Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - S. Marlene Grenon
- Division of Vascular & Endovascular Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
83
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
84
|
Li Q, You Y, Zeng Y, Wang X, Pan Z, Pang J, Chen Q, Zhou Y, Jin Y, Yang Y, Ling W. Associations between plasma tryptophan and indole-3-propionic acid levels and mortality in patients with coronary artery disease. Am J Clin Nutr 2022; 116:1070-1077. [PMID: 35728041 DOI: 10.1093/ajcn/nqac170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Indole-3-propionic acid (IPA), a microbiota-produced tryptophan metabolite, has been shown to exhibit cardioprotective effects in animal models. However, the relation of IPA with cardiovascular risk in humans is currently unknown. OBJECTIVES This prospective study aimed to investigate whether plasma tryptophan and IPA levels are associated with decreased risks of mortality. METHODS Ultra-HPLC-MS/MS was used to measure plasma tryptophan and IPA levels in 1829 patients with coronary artery disease (CAD). Cox proportional hazards regression models were used to estimate the associations between tryptophan and IPA levels and the risks of cardiovascular and all-cause mortality. RESULTS During the median 9.2-year follow-up, 424 all-cause deaths occurred, of which 272 were cardiovascular deaths. Plasma tryptophan and IPA levels were significantly associated with reduced risks of cardiovascular and all-cause mortality. Patients with CAD with the highest quartiles of tryptophan and IPA levels had multivariable-adjusted HRs of 0.62 (95% CI, 0.43-0.89) and 0.71 (95% CI, 0.50-0.99), respectively, for cardiovascular mortality and 0.67 (95% CI, 0.50-0.90) and 0.75 (95% CI, 0.57-0.99), respectively, for all-cause mortality compared with those in patients with CAD in the lowest quartile. After multivariable adjustments, 1-SD increases in the continuous plasma tryptophan and IPA levels were associated with 16% and 14% decreases, respectively, in the risks of cardiovascular mortality and with 13% and 14% decreases, respectively, in the risks of all-cause mortality. Restricted cubic splines displayed linear associations between plasma tryptophan and IPA levels and cardiovascular and all-cause mortality among patients with CAD. CONCLUSIONS Our findings suggest that plasma tryptophan and IPA levels are significantly associated with decreased risks of cardiovascular and all-cause mortality in patients with CAD. Further studies are needed to determine the clinical diagnostic and therapeutic values of tryptophan and IPA levels on the risks of mortality among patients with CAD.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China
| | - Yiran You
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China
| | - Xu Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China
| | - Qian Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, China.,Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province, China
| |
Collapse
|
85
|
Cao Y, Aquino-Martinez R, Hutchison E, Allayee H, Lusis AJ, Rey FE. Role of gut microbe-derived metabolites in cardiometabolic diseases: Systems based approach. Mol Metab 2022; 64:101557. [PMID: 35870705 PMCID: PMC9399267 DOI: 10.1016/j.molmet.2022.101557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gut microbiome influences host physiology and cardiometabolic diseases by interacting directly with intestinal cells or by producing molecules that enter the host circulation. Given the large number of microbial species present in the gut and the numerous factors that influence gut bacterial composition, it has been challenging to understand the underlying biological mechanisms that modulate risk of cardiometabolic disease. SCOPE OF THE REVIEW Here we discuss a systems-based approach that involves simultaneously examining individuals in populations for gut microbiome composition, molecular traits using "omics" technologies, such as circulating metabolites quantified by mass spectrometry, and clinical traits. We summarize findings from landmark studies using this approach and discuss future applications. MAJOR CONCLUSIONS Population-based integrative approaches have identified a large number of microbe-derived or microbe-modified metabolites that are associated with cardiometabolic traits. The knowledge gained from these studies provide new opportunities for understanding the mechanisms involved in gut microbiome-host interactions and may have potentially important implications for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Cao
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
| | - Ruben Aquino-Martinez
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Evan Hutchison
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aldons J Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA.
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| |
Collapse
|
86
|
Zarei I, Koistinen VM, Kokla M, Klåvus A, Babu AF, Lehtonen M, Auriola S, Hanhineva K. Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition. Sci Rep 2022; 12:15018. [PMID: 36056162 PMCID: PMC9440220 DOI: 10.1038/s41598-022-19327-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.
Collapse
Affiliation(s)
- Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland
| | - Marietta Kokla
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Ambrin Farizah Babu
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland.
| |
Collapse
|
87
|
Lin K, Zhu L, Yang L. Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm (Beijing) 2022; 3:e171. [PMID: 36092861 PMCID: PMC9437302 DOI: 10.1002/mco2.171] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Obesity is often associated with the risk of chronic inflammation and other metabolic diseases, such as diabetes, cardiovascular disease, and cancer. The composition and activity of the gut microbiota play an important role in this process, affecting a range of physiological processes, such as nutrient absorption and energy metabolism. The active gut microbiota can produce a large number of physiologically active substances during the process of intestinal metabolism and reproduction, including short-chain/long-chain fatty acids, secondary bile acids, and tryptophan metabolites with beneficial effects on metabolism, as well as negative metabolites, including trimethylamine N-oxide, delta-valerobetaine, and imidazole propionate. How gut microbiota specifically affect and participate in metabolic and immune activities, especially the metabolites directly produced by gut microbiota, has attracted extensive attention. So far, some animal and human studies have shown that gut microbiota metabolites are correlated with host obesity, energy metabolism, and inflammation. Some pathways and mechanisms are slowly being discovered. Here, we will focus on the important metabolites of gut microbiota (beneficial and negative), and review their roles and mechanisms in obesity and related metabolic diseases, hoping to provide a new perspective for the treatment and remission of obesity and other metabolic diseases from the perspective of metabolites.
Collapse
Affiliation(s)
- Ke Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lixin Zhu
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseSixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Colorectal SurgerySixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
88
|
Xue H, Chen X, Yu C, Deng Y, Zhang Y, Chen S, Chen X, Chen K, Yang Y, Ling W. Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease. Circ Res 2022; 131:404-420. [PMID: 35893593 DOI: 10.1161/circresaha.122.321253] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accumulating evidence has shown that disorders in the gut microbiota and derived metabolites affect the development of atherosclerotic cardiovascular disease (ASCVD). However, which and how specific gut microbial metabolites contribute to the progression of atherosclerosis and the clinical relevance of their alterations remain unclear. METHODS We performed integrated microbiome-metabolome analysis of 30 patients with coronary artery disease (CAD) and 30 age- and sex-matched healthy controls to identify CAD-associated microbial metabolites, which were then assessed in an independent population of patients with ASCVD and controls (n=256). We further investigate the effect of CAD-associated microbial metabolites on atherosclerosis and the mechanisms of the action. RESULTS Indole-3-propionic acid (IPA), a solely microbially derived tryptophan metabolite, was the most downregulated metabolite in patients with CAD. Circulating IPA was then shown in an independent population to be associated with risk of prevalent ASCVD and correlated with the ASCVD severity. Dietary IPA supplementation alleviates atherosclerotic plaque development in ApoE-/- mice. In murine- and human-derived macrophages, administration of IPA promoted cholesterol efflux from macrophages to ApoA-I through an undescribed miR-142-5p/ABCA1 (ATP-binding cassette transporter A1) signaling pathway. Further in vivo studies demonstrated that IPA facilitates macrophage reverse cholesterol transport, correlating with the regulation of miR-142-5p/ABCA1 pathway, whereas reduced IPA production contributed to the aberrant overexpression of miR-142-5p in macrophages and accelerated the progression of atherosclerosis. Moreover, the miR-142-5p/ABCA1/reverse cholesterol transport axis in macrophages were dysregulated in patients with CAD, and correlated with the changes in circulating IPA levels. CONCLUSIONS Our study identify a previously unknown link between specific gut microbiota-derived tryptophan metabolite and ASCVD. The microbial metabolite IPA/miR-142-5p/ABCA1 pathway may represent a promising therapeutic target for ASCVD.
Collapse
Affiliation(s)
- Hongliang Xue
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, China (H.X., Y.Y., W.L.).,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.)
| | - Xu Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.).,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder (Xu Chen)
| | - Chao Yu
- Center for Health Examination, the 3 Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (C.Y.)
| | - Yuqing Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China (Y.D.)
| | - Yuan Zhang
- Department of Geriatrics, The Third Affiliated Hospital of Guangzhou Medical University, China (Y.Z.).,Department of Cardiology, General Hospital of Guangzhou Military Command of People's Liberation Army, China (Y.Z.)
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.)
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany (Xuechen Chen)
| | - Ke Chen
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China (K.C.)
| | - Yan Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, China (H.X., Y.Y., W.L.).,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.).,Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China (Y.Y.)
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, China (H.X., Y.Y., W.L.).,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China (H.X., X.C., S.C., Y.Y., W.L.)
| |
Collapse
|
89
|
Cai Y, Li X, Zhou H, Zhou J. The serotonergic system dysfunction in diabetes mellitus. Front Cell Neurosci 2022; 16:899069. [PMID: 35910256 PMCID: PMC9331500 DOI: 10.3389/fncel.2022.899069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Most peripheral serotonin (5-HT) is synthesized in enterochromaffin cells, and most circulating 5-HT is stored in platelets. As a monoamine, 5-HT has several functions in various non-neuronal and neuronal systems. In the central nervous system, it functions as a neurotransmitter to modulate feeding behavior and mood. Numerous clinical trials have focused on increasing 5-HT activation in the central nervous system, including those involving anti-obesity drugs currently in the market, although severe side effects on peripheral system can lead to the withdrawal of certain drugs. Recent studies have revealed that both the peripheral and central serotonergic systems play a vital role in diabetes and its complications. This review summarizes the roles of the serotonergic system in blood glucose regulation, diabetic macroangiopathy, diabetic peripheral neuropathy, and diabetic encephalopathy, indicating its potential clinical significance as a therapeutic target for the treatment of diabetes and its complications.
Collapse
|
90
|
Kang JW, Tang X, Walton CJ, Brown MJ, Brewer RA, Maddela RL, Zheng JJ, Agus JK, Zivkovic AM. Multi-Omic Analyses Reveal Bifidogenic Effect and Metabolomic Shifts in Healthy Human Cohort Supplemented With a Prebiotic Dietary Fiber Blend. Front Nutr 2022; 9:908534. [PMID: 35782954 PMCID: PMC9248813 DOI: 10.3389/fnut.2022.908534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Dietary fiber, a nutrient derived mainly from whole grains, vegetables, fruits, and legumes, is known to confer a number of health benefits, yet most Americans consume less than half of the daily recommended amount. Convenience and affordability are key factors determining the ability of individuals to incorporate fiber-rich foods into their diet, and many Americans struggle to access, afford, and prepare foods rich in fiber. The objective of this clinical study was to test the changes in microbial community composition, human metabolomics, and general health markers of a convenient, easy to use prebiotic supplement in generally healthy young participants consuming a diet low in fiber. Twenty healthy adults participated in this randomized, placebo-controlled, double-blind, crossover study which was registered at clinicaltrials.gov as NCT03785860. During the study participants consumed 12 g of a prebiotic fiber supplement and 12 g of placebo daily as a powder mixed with water as part of their habitual diet in randomized order for 4 weeks, with a 4-week washout between treatment arms. Fecal microbial DNA was extracted and sequenced by shallow shotgun sequencing on an Illumina NovaSeq. Plasma metabolites were detected using liquid chromatography–mass spectrometry with untargeted analysis. The phylum Actinobacteria, genus Bifidobacterium, and several Bifidobacterium species (B. bifidum, B. adolescentis, B. breve, B. catenulatum, and B. longum) significantly increased after prebiotic supplementation when compared to the placebo. The abundance of genes associated with the utilization of the prebiotic fiber ingredients (sacA, xfp, xpk) and the production of acetate (poxB, ackA) significantly changed with prebiotic supplementation. Additionally, the abundance of genes associated with the prebiotic utilization (xfp, xpk), acetate production (ackA), and choline to betaine oxidation (gbsB) were significantly correlated with changes in the abundance of the genus Bifidobacterium in the prebiotic group. Plasma concentrations of the bacterially produced metabolite indolepropionate significantly increased. The results of this study demonstrate that an easy to consume, low dose (12 g) of a prebiotic powder taken daily increases the abundance of beneficial bifidobacteria and the production of health-promoting bacteria-derived metabolites in healthy individuals with a habitual low-fiber diet.
Collapse
Affiliation(s)
- Jea Woo Kang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | | | - Mark J. Brown
- USANA Health Sciences, Inc., Salt Lake City, UT, United States
| | | | | | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joanne K. Agus
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Angela M. Zivkovic
| |
Collapse
|
91
|
Shelkey E, Oommen D, Stirling ER, Soto-Pantoja DR, Cook KL, Lu Y, Votanopoulos KI, Soker S. Immuno-reactive cancer organoid model to assess effects of the microbiome on cancer immunotherapy. Sci Rep 2022; 12:9983. [PMID: 35705580 PMCID: PMC9200712 DOI: 10.1038/s41598-022-13930-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has demonstrated good efficacy in many cancer types. In cancers such as non-resectable advanced or metastatic triple-negative breast cancer (TNBC), it has recently been approved as a promising treatment. However, clinical data shows overall response rates (ORRs) from ~ 3-40% in breast cancer patients, depending on subtype, previous treatments, and mutation status. Composition of the host-microbiome has a significant role in cancer development and therapeutic responsiveness. Some bacterial families are conducive to oncogenesis and progression, while others aid innate and therapeutically induced anti-tumor immunity. Modeling microbiome effects on anti-tumor immunity in ex vivo systems is challenging, forcing the use of in vivo models, making it difficult to dissect direct effects on immune cells from combined effects on tumor and immune cells. We developed a novel immune-enhanced tumor organoid (iTO) system to study factors affecting ICB response. Using the 4T1 TNBC murine cell line and matched splenocytes, we demonstrated ICB-induced response. Further administration of bacterial-derived metabolites from species found in the immunomodulatory host-microbiome significantly increased ICB-induced apoptosis of tumor cells and altered immune cell receptor expression. These outcomes represent a method to isolate individual factors that alter ICB response and streamline the study of microbiome effects on ICB efficacy.
Collapse
Affiliation(s)
- Ethan Shelkey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA
- Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - David Oommen
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA
- Current Address: Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | | | | | | | - Yong Lu
- Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Current Address: Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA.
- Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
92
|
Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases. Metabolites 2022; 12:metabo12060514. [PMID: 35736447 PMCID: PMC9227929 DOI: 10.3390/metabo12060514] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and therefore is its burden of disease as NALFD is a risk factor for cirrhosis and is associated with other metabolic conditions such as type II diabetes, obesity, dyslipidaemia and atherosclerosis. Linking these cardiometabolic diseases is a state of low-grade inflammation, with higher cytokines and c-reactive protein levels found in individuals with NAFLD, obesity and type II diabetes. A possible therapeutic target to decrease this state of low-grade inflammation is the metabolism of the essential amino-acid tryptophan. Its three main metabolic pathways (kynurenine pathway, indole pathway and serotonin/melatonin pathway) result in metabolites such as kynurenic acid, xanturenic acid, indole-3-propionic acid and serotonin/melatonin. The kynurenine pathway is regulated by indoleamine 2,3-dioxygenase (IDO), an enzyme that is upregulated by pro-inflammatory molecules such as INF, IL-6 and LPS. Higher activity of IDO is associated with increased inflammation and fibrosis in NAFLD, as well with increased glucose levels, obesity and atherosclerosis. On the other hand, increased concentrations of the indole pathway metabolites, regulated by the gut microbiome, seem to result in more favorable outcomes. This narrative review summarizes the interactions between tryptophan metabolism, the gut microbiome and the immune system as potential drivers of cardiometabolic diseases in NAFLD.
Collapse
|
93
|
Qi Q, Li J, Yu B, Moon JY, Chai JC, Merino J, Hu J, Ruiz-Canela M, Rebholz C, Wang Z, Usyk M, Chen GC, Porneala BC, Wang W, Nguyen NQ, Feofanova EV, Grove ML, Wang TJ, Gerszten RE, Dupuis J, Salas-Salvadó J, Bao W, Perkins DL, Daviglus ML, Thyagarajan B, Cai J, Wang T, Manson JE, Martínez-González MA, Selvin E, Rexrode KM, Clish CB, Hu FB, Meigs JB, Knight R, Burk RD, Boerwinkle E, Kaplan RC. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 2022; 71:1095-1105. [PMID: 34127525 PMCID: PMC8697256 DOI: 10.1136/gutjnl-2021-324053] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Tryptophan can be catabolised to various metabolites through host kynurenine and microbial indole pathways. We aimed to examine relationships of host and microbial tryptophan metabolites with incident type 2 diabetes (T2D), host genetics, diet and gut microbiota. METHOD We analysed associations between circulating levels of 11 tryptophan metabolites and incident T2D in 9180 participants of diverse racial/ethnic backgrounds from five cohorts. We examined host genome-wide variants, dietary intake and gut microbiome associated with these metabolites. RESULTS Tryptophan, four kynurenine-pathway metabolites (kynurenine, kynurenate, xanthurenate and quinolinate) and indolelactate were positively associated with T2D risk, while indolepropionate was inversely associated with T2D risk. We identified multiple host genetic variants, dietary factors, gut bacteria and their potential interplay associated with these T2D-relaetd metabolites. Intakes of fibre-rich foods, but not protein/tryptophan-rich foods, were the dietary factors most strongly associated with tryptophan metabolites. The fibre-indolepropionate association was partially explained by indolepropionate-associated gut bacteria, mostly fibre-using Firmicutes. We identified a novel association between a host functional LCT variant (determining lactase persistence) and serum indolepropionate, which might be related to a host gene-diet interaction on gut Bifidobacterium, a probiotic bacterium significantly associated with indolepropionate independent of other fibre-related bacteria. Higher milk intake was associated with higher levels of gut Bifidobacterium and serum indolepropionate only among genetically lactase non-persistent individuals. CONCLUSION Higher milk intake among lactase non-persistent individuals, and higher fibre intake were associated with a favourable profile of circulating tryptophan metabolites for T2D, potentially through the host-microbial cross-talk shifting tryptophan metabolism toward gut microbial indolepropionate production.
Collapse
Affiliation(s)
- Qibin Qi
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Nutrtion, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Jun Li
- Department of Nutrtion, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jin C Chai
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jordi Merino
- Diabetes Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jie Hu
- Division of Women's Health, Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- CIBER Fisiopatologıa de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Casey Rebholz
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Zheng Wang
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mykhaylo Usyk
- Departments of Pediatrics, Microbiology and Immunology, and Gynecology and Women's Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bianca C Porneala
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wenshuang Wang
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
- Department of Mathematics, University of Houston, Houston, Texas, USA
| | - Ngoc Quynh Nguyen
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Elena V Feofanova
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Megan L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Thomas J Wang
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert E Gerszten
- Programs in Metabolism and Medical & Population Genetics, Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jordi Salas-Salvadó
- CIBER Fisiopatologıa de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Universidad Rovira i Virgili Departamento de Medicina y Cirurgía, Reus, Spain
| | - Wei Bao
- Department of Epidemiology, The University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - David L Perkins
- Institute of Minority Health Research, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Martha L Daviglus
- Institute of Minority Health Research, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Division of Preventive Medicine, Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- CIBER Fisiopatologıa de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kathryn M Rexrode
- Division of Women's Health, Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clary B Clish
- Metabolomics Platform, Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine; Center for Microbiome Innovation, Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
- Departments of Pediatrics, Microbiology and Immunology, and Gynecology and Women's Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, Texas, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
94
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
95
|
Chen L, Yang Y, Sun S, Xie Y, Pan C, Li M, Li C, Liu Y, Xu Z, Liu W, Ji M. Indolepropionic acid reduces obesity‐induced metabolic dysfunction through colonic barrier restoration mediated via tuft cell‐derived IL‐25. FEBS J 2022; 289:5985-6004. [DOI: 10.1111/febs.16470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/06/2022] [Accepted: 05/03/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Lu Chen
- Department of Pathogen Biology Nanjing Medical University China
- Jiangsu Province Engineering Research Center of Antibody Drug Nanjing China
| | - Yuxuan Yang
- Department of Pathogen Biology Nanjing Medical University China
| | - Siyu Sun
- Department of Pathogen Biology Nanjing Medical University China
| | - Yuan Xie
- Department of Endocrinology Sir Run Run Hospital Nanjing Medical University China
| | - Cailong Pan
- Department of Pathology School of Basic Medicine Nanjing Medical University China
| | - Maining Li
- Department of Pathogen Biology Nanjing Medical University China
| | - Chen Li
- Department of Pathogen Biology Nanjing Medical University China
| | - Yu Liu
- Department of Endocrinology Sir Run Run Hospital Nanjing Medical University China
| | - Zhipeng Xu
- Department of Pathogen Biology Nanjing Medical University China
| | - Wentao Liu
- Department of Pharmacology School of Basic Medicine Nanjing Medical University China
| | - Minjun Ji
- Department of Pathogen Biology Nanjing Medical University China
- Jiangsu Province Engineering Research Center of Antibody Drug Nanjing China
| |
Collapse
|
96
|
Du L, Li Q, Yi H, Kuang T, Tang Y, Fan G. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus. Biomed Pharmacother 2022; 149:112839. [PMID: 35325852 DOI: 10.1016/j.biopha.2022.112839] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most risk factors threatening human health. Although genetic and environmental factors contribute to the development of T2DM, gut microbiota has also been found to be involved. Gut microbiota-derived metabolites are a key factor in host-microbe crosstalk, and have been revealed to play a central role in the physiology and physiopathology of T2DM. In this review, we provide a timely and comprehensive summary of the microbial metabolites that are protective or causative for T2DM, including some amino acids-derived metabolites, short-chain fatty acids, trimethylamine N-oxide, and bile acids. The mechanisms by which metabolites affect T2DM have been elaborated. Knowing more about these processes will increase our understanding of the causal relationship between gut microbiota and T2DM. Moreover, some frontier therapies that target gut microbes and their metabolites to improve T2DM, including dietary intervention, fecal microbiota transplantation, probiotics, prebiotics or synbiotics intervention, and drugging microbial metabolism, have been critically discussed. This review may provide novel insights for the development of targeted and personalized treatments for T2DM based on gut microbial metabolites. More high-quality clinical trials are needed to accelerate the clinical translation of gut-targeted therapies for T2DM.
Collapse
Affiliation(s)
- Leilei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huan Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Tang
- Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611130, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
97
|
Wang T, Ye Y, Ji J, Yang X, Xu J, Wang JS, Han X, Zhang T, Sun X. Diet composition affects long-term zearalenone exposure on the gut-blood-liver axis metabolic dysfunction in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113466. [PMID: 35390688 DOI: 10.1016/j.ecoenv.2022.113466] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Zearalenone (ZEN), one of the most contaminated Fusarium toxins worldwide, is very common in contaminating wheat, corn oil and other foods. People are more vulnerable to ZEN exposure with more daily caloric intake, yet little is known about the combined effect of different dietary patterns with mycotoxins. This study aimed to compare the effects of long-term ZEN exposure on the overall biochemical landscape of the "gut-blood-liver axis" under normal diet and high-fat diet (HFD) using a combined multi-omics approach. The results indicated that ZEN exposure, possibly via the phenylalanine metabolic pathway, led to dysbiosis of mouse flora, suppression of short-chain fatty acids (SCFAS) metabolism, systemic inflammatory responses, and disturbances in serum and liver metabolism, which were exacerbated in synergy with HFD and ultimately led to a more severe state of lipid metabolism in the liver. We further found that ZEN exposure attenuated the indole-3-propionic acid (IPA) metabolic pathway, enhanced 2-hydroxybutyric acid metabolism in serum, and attenuated β-alanine metabolism in liver which was positively correlated with the abundance of Prevotellaceae UCG-004, Prevotellaceae UCG-001, and Prevotellaceae NK3B31 groups. The results highlighted the damaging effects of ZEN on the gut-blood-liver axis under different dietary patterns, which might serve as a reference for future studies exploring the combined effects of fungal toxins and multiple dietary patterns.
Collapse
Affiliation(s)
- Tingwei Wang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingxing Yang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiayuan Xu
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Xiaomin Han
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Ting Zhang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Xiulan Sun
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
98
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Zhang F, Hua D, Liu J, Yang L, Yao J, Xiong B. Changes in the Profile of Fecal Microbiota and Metabolites as Well as Serum Metabolites and Proteome After Dietary Inulin Supplementation in Dairy Cows With Subclinical Mastitis. Front Microbiol 2022; 13:809139. [PMID: 35479637 PMCID: PMC9037088 DOI: 10.3389/fmicb.2022.809139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of mastitis is linked to dysbiostic gastrointestinal microbiota. Inulin is a dietary prebiotic that improves the profile of intestinal flora. Our previous study showed that inulin supplementation could improve the ruminal microbes of subclinical mastitis (SCM) cows. The current study attempted to further investigate the response of hindgut (fecal) microbiome and metabolites, serum metabolism, and protein expression to inulin in the in SCM cows. Different levels of inulin (0, 100, 200, 300, and 400 g/day per cow) were supplemented in SCM cows. Compared with control group, Bacteroides and Bifidobacteria were increased, and Paeniclostridium, Ruminococcaceae, Coprococcus, and Clostridia were decreased in the feces of inulin groups, and accompanied with elevated propionate and butyrate concentrations, while secondary bile acid (SBA) metabolites were increased and proinflammatory lipid oxidation products were dropped in both feces and serum. In serum, inulin intake suppressed the levels of triglyceride (TG) and low-density lipoprotein (LDL). Serum proteome analysis found that CD44 antigen, phosphatidylinositol-glycan-specific phospholipase D, apolipoprotein A-II, and superoxide dismutase [Cu-Zn] were upregulated, while cathelicidin-1, haptoglobin, serpin A3, inter-alpha-trypsin inhibitor heavy chain H4 were downregulated in inulin groups. These findings suggested further evidence for inulin supplementation in amelioration of inflammatory symptoms in SCM cows, which might provide alternative treatment for mastitis.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
99
|
Xie Y, Zou X, Han J, Zhang Z, Feng Z, Ouyang Q, Hua S, Liu Z, Li C, Cai Y, Zou Y, Tang Y, Jiang X. Indole-3-propionic acid alleviates ischemic brain injury in a mouse middle cerebral artery occlusion model. Exp Neurol 2022; 353:114081. [DOI: 10.1016/j.expneurol.2022.114081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
|
100
|
Yao W, Gong Y, Li L, Hu X, You L. The effects of dietary fibers from rice bran and wheat bran on gut microbiota: An overview. Food Chem X 2022; 13:100252. [PMID: 35498986 PMCID: PMC9040006 DOI: 10.1016/j.fochx.2022.100252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
The physicochemical properties of DFs are related to their digestive behaviors. DFs are degraded in the intestines due to the fermentation of gut microbiota. DFs and their metabolites exert beneficial effects on gut microbiota. The fermentation of DFs improve gut barrier function and immune function.
Whole grain is the primary food providing abundant dietary fibers (DFs) in the human diet. DFs from rice bran and wheat bran have been well documented in modulating gut microbiota. This review aims to summarize the physicochemical properties and digestive behaviors of DFs from rice bran and wheat bran and their effects on host gut microbiota. The physicochemical properties of DFs are closely related to their fermentability and digestive behaviors. DFs from rice bran and wheat bran modulate specific bacteria and promote SAFCs-producing bacteria to maintain host health. Moreover, their metabolites stimulate the production of mucus-associated bacteria to enhance the intestinal barrier and regulate the immune system. They also reduce the level of related inflammatory cytokines and regulate Tregs activation. Therefore, DFs from rice bran and wheat bran will serve as prebiotics, and diets rich in whole grain will be a biotherapeutic strategy for human health.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yufeng Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|