51
|
Liu Y, Ye S, Li XN, Li WG. Memory Trace for Fear Extinction: Fragile yet Reinforceable. Neurosci Bull 2024; 40:777-794. [PMID: 37812300 PMCID: PMC11178705 DOI: 10.1007/s12264-023-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 10/10/2023] Open
Abstract
Fear extinction is a biological process in which learned fear behavior diminishes without anticipated reinforcement, allowing the organism to re-adapt to ever-changing situations. Based on the behavioral hypothesis that extinction is new learning and forms an extinction memory, this new memory is more readily forgettable than the original fear memory. The brain's cellular and synaptic traces underpinning this inherently fragile yet reinforceable extinction memory remain unclear. Intriguing questions are about the whereabouts of the engram neurons that emerged during extinction learning and how they constitute a dynamically evolving functional construct that works in concert to store and express the extinction memory. In this review, we discuss recent advances in the engram circuits and their neural connectivity plasticity for fear extinction, aiming to establish a conceptual framework for understanding the dynamic competition between fear and extinction memories in adaptive control of conditioned fear responses.
Collapse
Affiliation(s)
- Ying Liu
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Shuai Ye
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
52
|
Marazziti D, Foresi Crowther L, Arone A. An overview of the differences in the pharmacological management of post-traumatic stress disorder between women and men. Expert Rev Neurother 2024; 24:575-584. [PMID: 38771657 DOI: 10.1080/14737175.2024.2355259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD) is a disabling psychiatric condition with a worldwide prevalence between 6% and 9%, and more common in the female than in the male sex. The aim of this paper is to review and comment on the different factors that might explain the discrepancies in the pharmacological management of women and men. AREAS COVERED The available literature shows that there exists a vulnerability of women to develop PTSD that may depend on neurobiological as well as environmental/cultural factors. These variables might influence the clinical picture, the outcome and the response to specific treatments, given their consequences on the pharmacokinetics of commonly prescribed drugs. Women suffering from PTSD are more prone to consult and receive more prescriptions of psychotropic drugs than men. However, it is evident that the particular stages of a women's life such as pregnancy or breastfeeding might require a specific evaluation and care. EXPERT OPINION It is necessary to explore the pharmacokinetics of compounds highlighting sex-related differences, and their safety during pregnancy and lactation. Taking care of differences between women and men should represent a main focus of research, while being a primary target towards a really tailored pharmacological treatment of PTSD.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Lara Foresi Crowther
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| |
Collapse
|
53
|
Marano G, Mazza M. Eros and Thanatos between individual wounds and social lacerations: Caring the Traumatized Self. JOURNAL OF LOSS & TRAUMA 2024; 29:474-477. [DOI: 10.1080/15325024.2023.2264771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 07/25/2024]
Affiliation(s)
- Giuseppe Marano
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marianna Mazza
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
54
|
Antunes GF, Gouveia FV, Kuroki MA, Oliveira Martins D, Pagano RDL, Pinheiro Campos AC, Martinez RCR. Neuroinflammation in the prefrontal-amygdala-hippocampus network is associated with maladaptive avoidance behaviour. Heliyon 2024; 10:e30427. [PMID: 38694029 PMCID: PMC11061725 DOI: 10.1016/j.heliyon.2024.e30427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Maladaptive avoidance behaviour is often observed in patients suffering from anxiety and trauma- and stressor-related disorders. The prefrontal-amygdala-hippocampus network is implicated in learning and memory consolidation. Neuroinflammation in this circuitry alters network dynamics, resulting in maladaptive avoidance behaviour. The two-way active avoidance test is a well-established translational model for assessing avoidance responses to stressful situations. While some animals learn the task and show adaptive avoidance (AA), others show strong fear responses to the test environment and maladaptive avoidance (MA). Here, we investigated if a distinct neuroinflammation pattern in the prefrontal-amygdala-hippocampus network underlies the behavioural difference observed in these animals. Wistar rats were tested 8 times and categorized as AA or MA based on behaviour. Brain recovery followed for the analysis of neuroinflammatory markers in this network. AA and MA presented distinct patterns of neuroinflammation, with MA showing increased astrocyte, EAAT-2, IL-1β, IL-17 and TNF-ɑ in the amygdala. This neuroinflammatory pattern may underlie these animals' fear response and maladaptive avoidance. Further studies are warranted to determine the specific contributions of each inflammatory factor, as well as the possibility of treating maladaptive avoidance behaviour in patients with psychiatric disorders with anti-inflammatory drugs targeting the amygdala.
Collapse
Affiliation(s)
| | - Flavia Venetucci Gouveia
- Division of Neuroscience, Hospital Sirio-Libanes, Sao Paulo, Brazil
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sirio-Libanes, Sao Paulo, Brazil
- LIM/23, Institute of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| |
Collapse
|
55
|
Haris EM, Bryant RA, Korgaonkar MS. Structural covariance, topological organization, and volumetric features of amygdala subnuclei in posttraumatic stress disorder. Neuroimage Clin 2024; 42:103619. [PMID: 38744025 PMCID: PMC11108976 DOI: 10.1016/j.nicl.2024.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The amygdala is divided into functional subnuclei which have been challenging to investigate due to functional magnetic resonance imaging (MRI) limitations in mapping small neural structures. Hence their role in the neurobiology of posttraumatic stress disorder (PTSD) remains poorly understood. Examination of covariance of structural MRI measures could be an alternate approach to circumvent this issue. T1-weighted anatomical scans from a 3 T scanner from non-trauma-exposed controls (NEC; n = 71, 75 % female) and PTSD participants (n = 67, 69 % female) were parcellated into 105 brain regions. Pearson's r partial correlations were computed for three and nine bilateral amygdala subnuclei and every other brain region, corrected for age, sex, and total brain volume. Pairwise correlation comparisons were performed to examine subnuclei covariance profiles between-groups. Graph theory was employed to investigate subnuclei network topology. Volumetric measures were compared to investigate structural changes. We found differences between amygdala subnuclei in covariance with the hippocampus for both groups, and additionally with temporal brain regions for the PTSD group. Network topology demonstrated the importance of the right basal nucleus in facilitating network communication only in PTSD. There were no between-group differences for any of the three structural metrics. These findings are in line with previous work that has failed to find structural differences for amygdala subnuclei between PTSD and controls. However, differences between amygdala subnuclei covariance profiles observed in our study highlight the need to investigate amygdala subnuclei functional connectivity in PTSD using higher field strength fMRI for better spatial resolution.
Collapse
Affiliation(s)
- Elizabeth M Haris
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia.
| | - Richard A Bryant
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia; Department of Radiology, Western Sydney Local Health District, Westmead, NSW, Australia.
| |
Collapse
|
56
|
Foilb AR, Taylor-Yeremeeva EM, Schmidt BD, Ressler KJ, Carlezon WA. Acute sleep deprivation reduces fear memories in male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577985. [PMID: 38766105 PMCID: PMC11100624 DOI: 10.1101/2024.01.30.577985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Sleep problems are a prominent feature of mental health conditions including post-traumatic stress disorder (PTSD). Despite its potential importance, the role of sleep in the development of and/or recovery from trauma-related illnesses is not understood. Interestingly, there are reports that sleep deprivation immediately after a traumatic experience can reduce fear memories, an effect that could be utilized therapeutically in humans. While the mechanisms of this effect are not completely understood, one possible explanation for these findings is that immediate sleep deprivation interferes with consolidation of fear memories, rendering them weaker and more sensitive to intervention. Here, we allowed fear-conditioned mice to sleep immediately after fear conditioning during a time frame (18 hr) that includes and extends beyond periods typically associated with memory consolidation before subjecting them to 6 hr of sleep deprivation. Mice deprived of sleep with this delayed regimen showed dramatic reductions in fear during tests conducted immediately after sleep deprivation, as well as 24 hr later. This sleep deprivation regimen also increased levels of mRNA encoding brain-derived neurotrophic factor (BDNF), a molecule implicated in neuroplasticity, in the basolateral amygdala (BLA), a brain area implicated in fear and its extinction. These findings raise the possibility that the effects of our delayed sleep deprivation regimen are not due to disruption of memory consolidation, but instead are caused by BDNF-mediated neuroadaptations within the BLA that actively suppress expression of fear. Treatments that safely reduce expression of fear memories would have considerable therapeutic potential in the treatment of conditions triggered by trauma.
Collapse
Affiliation(s)
- Allison R Foilb
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| | - Elisa M Taylor-Yeremeeva
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| | - Brett D Schmidt
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| | - William A Carlezon
- Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, Belmont MA, USA
| |
Collapse
|
57
|
Kang SG, Kim JW, Kang HJ, Jang H, Kim JC, Lee JY, Kim SW, Shin IS, Kim JM. Differential predictors of early- and delayed-onset post-traumatic stress disorder following physical injury: a two-year longitudinal study. Front Psychiatry 2024; 15:1367661. [PMID: 38751413 PMCID: PMC11094222 DOI: 10.3389/fpsyt.2024.1367661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
Objectives This study aimed to investigate the predictors of both early- and delayed-onset PTSD over a 2-year period following physical injuries. Methods Patients were recruited from a trauma center at a university hospital in South Korea (June 2015 ~ January 2021). At baseline, 1142 patients underwent comprehensive assessments including socio-demographic, pre-trauma, trauma-related, and peri-trauma evaluations. Diagnoses of acute stress disorder (ASD) and subthreshold ASD were also determined using the Clinician-administered PTSD Scale (CAPS). Follow-up assessments at three months included diagnoses of PTSD and subthreshold PTSD using CAPS, and stressful life events (SLEs), with additional evaluations at 6, 12, and 24 months. The analyzed sample comprised 1014 patients followed up at least once after the baseline and 3-month evaluations. PTSD diagnoses were categorized into early-onset (within the first six months after trauma) and delayed-onset (more than six months after trauma). Logistic regression models identified predictors for each group. Results Early-onset and delayed-onset PTSD were diagnosed in 79 and 35 patients, respectively. Early-onset PTSD was predicted by previous psychiatric disorders, previous traumatic events, ASD and subthreshold ASD diagnoses, and higher anxiety levels. In contrast, delayed-onset PTSD was linked to higher education, higher injury severity, and subthreshold PTSD and SLEs at 3-month follow-up. Conclusion Distinct predictors were found for early-onset and delayed-onset PTSD. The findings underscore the heterogeneous factors influencing the temporal development of PTSD post-trauma, and may provide valuable guidance for more targeted interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Sung-Gil Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyunseok Jang
- Division of Trauma, Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jung-Chul Kim
- Division of Trauma, Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
58
|
Nievergelt CM, Maihofer AX, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Daskalakis NP, Duncan LE, Polimanti R, Aaronson C, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegoviç E, Babić D, Bacanu SA, Baker DG, Batzler A, Beckham JC, Belangero S, Benjet C, Bergner C, Bierer LM, Biernacka JM, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Brandolino A, Breen G, Bressan RA, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Bækvad-Hansen M, Børglum AD, Børte S, Cahn L, Calabrese JR, Caldas-de-Almeida JM, Chatzinakos C, Cheema S, Clouston SAP, Colodro-Conde L, Coombes BJ, Cruz-Fuentes CS, Dale AM, Dalvie S, Davis LK, Deckert J, Delahanty DL, Dennis MF, Desarnaud F, DiPietro CP, Disner SG, Docherty AR, Domschke K, Dyb G, Kulenović AD, Edenberg HJ, Evans A, Fabbri C, Fani N, Farrer LA, Feder A, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Gelernter J, Geuze E, Gillespie CF, Goleva SB, Gordon SD, Goçi A, Grasser LR, Guindalini C, Haas M, Hagenaars S, Hauser MA, Heath AC, Hemmings SMJ, Hesselbrock V, Hickie IB, Hogan K, Hougaard DM, Huang H, Huckins LM, Hveem K, Jakovljević M, Javanbakht A, Jenkins GD, Johnson J, Jones I, Jovanovic T, Karstoft KI, Kaufman ML, Kennedy JL, Kessler RC, Khan A, Kimbrel NA, King AP, Koen N, Kotov R, Kranzler HR, Krebs K, Kremen WS, Kuan PF, Lawford BR, Lebois LAM, Lehto K, Levey DF, Lewis C, Liberzon I, Linnstaedt SD, Logue MW, Lori A, Lu Y, Luft BJ, Lupton MK, Luykx JJ, Makotkine I, Maples-Keller JL, Marchese S, Marmar C, Martin NG, Martínez-Levy GA, McAloney K, McFarlane A, McLaughlin KA, McLean SA, Medland SE, Mehta D, Meyers J, Michopoulos V, Mikita EA, Milani L, Milberg W, Miller MW, Morey RA, Morris CP, Mors O, Mortensen PB, Mufford MS, Nelson EC, Nordentoft M, Norman SB, Nugent NR, O'Donnell M, Orcutt HK, Pan PM, Panizzon MS, Pathak GA, Peters ES, Peterson AL, Peverill M, Pietrzak RH, Polusny MA, Porjesz B, Powers A, Qin XJ, Ratanatharathorn A, Risbrough VB, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero KJ, Rung A, Runz H, Rutten BPF, de Viteri SS, Salum GA, Sampson L, Sanchez SE, Santoro M, Seah C, Seedat S, Seng JS, Shabalin A, Sheerin CM, Silove D, Smith AK, Smoller JW, Sponheim SR, Stein DJ, Stensland S, Stevens JS, Sumner JA, Teicher MH, Thompson WK, Tiwari AK, Trapido E, Uddin M, Ursano RJ, Valdimarsdóttir U, Van Hooff M, Vermetten E, Vinkers CH, Voisey J, Wang Y, Wang Z, Waszczuk M, Weber H, Wendt FR, Werge T, Williams MA, Williamson DE, Winsvold BS, Winternitz S, Wolf C, Wolf EJ, Xia Y, Xiong Y, Yehuda R, Young KA, Young RM, Zai CC, Zai GC, Zervas M, Zhao H, Zoellner LA, Zwart JA, deRoon-Cassini T, van Rooij SJH, van den Heuvel LL, Stein MB, Ressler KJ, Koenen KC. Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder. Nat Genet 2024; 56:792-808. [PMID: 38637617 PMCID: PMC11396662 DOI: 10.1038/s41588-024-01707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.
Collapse
Affiliation(s)
- Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chia-Yen Chen
- Biogen Inc.,Translational Sciences, Cambridge, MA, USA
| | - Karmel W Choi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan R I Coleman
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Cindy Aaronson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Soren B Andersen
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
| | - Ole A Andreassen
- Oslo University Hospital, Division of Mental Health and Addiction, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Paul A Arbisi
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | | | - S Bryn Austin
- Boston Children's Hospital, Division of Adolescent and Young Adult Medicine, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Esmina Avdibegoviç
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dragan Babić
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jean C Beckham
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Sintia Belangero
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
| | - Corina Benjet
- Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Center for Global Mental Health, Mexico City, Mexico
| | - Carisa Bergner
- Medical College of Wisconsin, Comprehensive Injury Center, Milwaukee, WI, USA
| | - Linda M Bierer
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Jonathan I Bisson
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elizabeth A Bolger
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Amber Brandolino
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gerome Breen
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King's College London, NIHR Maudsley BRC, London, UK
| | - Rodrigo Affonseca Bressan
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard A Bryant
- University of New South Wales, School of Psychology, Sydney, New South Wales, Australia
| | - Angela C Bustamante
- Department of Internal Medicine, University of Michigan Medical School, Division of Pulmonary and Critical Care Medicine, Ann Arbor, MI, USA
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Sigrid Børte
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Leah Cahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Joseph R Calabrese
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Psychiatry, University Hospitals, Cleveland, OH, USA
| | | | - Chris Chatzinakos
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Sheraz Cheema
- University of Toronto, CanPath National Coordinating Center, Toronto, Ontario, Canada
| | - Sean A P Clouston
- Stony Brook University, Family, Population, and Preventive Medicine, Stony Brook, NY, USA
- Stony Brook University, Public Health, Stony Brook, NY, USA
| | - Lucía Colodro-Conde
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Carlos S Cruz-Fuentes
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Anders M Dale
- Department of Radiology, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Shareefa Dalvie
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Lea K Davis
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Jürgen Deckert
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | | | - Michelle F Dennis
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Frank Desarnaud
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Christopher P DiPietro
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anna R Docherty
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katharina Domschke
- University of Freiburg, Faculty of Medicine, Centre for Basics in Neuromodulation, Freiburg, Denmark
- Department of Psychiatry and Psychotherapy, University of Freiburg, Faculty of Medicine, Freiburg, Denmark
| | - Grete Dyb
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Alma Džubur Kulenović
- Department of Psychiatry, University Clinical Center of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Howard J Edenberg
- Indiana University School of Medicine, Biochemistry and Molecular Biology, Indianapolis, IN, USA
- Indiana University School of Medicine, Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Alexandra Evans
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Chiara Fabbri
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Adriana Feder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Norah C Feeny
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Janine D Flory
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Forbes
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, USA
| | - Melanie E Garrett
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Gelernter
- VA Connecticut Healthcare Center, Psychiatry Service, West Haven, CT, USA
- Department of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, The Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Slavina B Goleva
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
- National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Aferdita Goçi
- Department of Psychiatry, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Lana Ruvolo Grasser
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Camila Guindalini
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Saskia Hagenaars
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Michael A Hauser
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Andrew C Heath
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Victor Hesselbrock
- University of Connecticut School of Medicine, Psychiatry, Farmington, CT, USA
| | - Ian B Hickie
- University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Kelleigh Hogan
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - David Michael Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Laura M Huckins
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kristian Hveem
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
| | - Miro Jakovljević
- Department of Psychiatry, University Hospital Center of Zagreb, Zagreb, Croatia
| | - Arash Javanbakht
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Gregory D Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jessica Johnson
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ian Jones
- Cardiff University, National Centre for Mental Health, Cardiff University Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karen-Inge Karstoft
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - James L Kennedy
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Alaptagin Khan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Nathan A Kimbrel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, USA
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kristi Krebs
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Bruce R Lawford
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Kelli Lehto
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - Daniel F Levey
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Catrin Lewis
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Mark W Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michelle K Lupton
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Iouri Makotkine
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Shelby Marchese
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Marmar
- New York University, Grossman School of Medicine, New York City, NY, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Genetics, Brisbane, Queensland, Australia
| | - Gabriela A Martínez-Levy
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Kerrie McAloney
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Alexander McFarlane
- University of Adelaide, Discipline of Psychiatry, Adelaide, South Australia, Australia
| | | | - Samuel A McLean
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
- Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Divya Mehta
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Jacquelyn Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Elizabeth A Mikita
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Lili Milani
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Rajendra A Morey
- Duke University School of Medicine, Duke Brain Imaging and Analysis Center, Durham, NC, USA
| | - Charles Phillip Morris
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University Hospital-Psychiatry, Psychosis Research Unit, Aarhus, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus University, Centre for Integrated Register-Based Research, Aarhus, Denmark
- Aarhus University, National Centre for Register-Based Research, Aarhus, Denmark
| | - Mary S Mufford
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Elliot C Nelson
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- University of Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Sonya B Norman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- National Center for Post Traumatic Stress Disorder, Executive Division, White River Junction, VT, USA
| | - Nicole R Nugent
- Department of Emergency Medicine, Alpert Brown Medical School, Providence, RI, USA
- Department of Pediatrics, Alpert Brown Medical School, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Brown Medical School, Providence, RI, USA
| | - Meaghan O'Donnell
- Department of Psychiatry, University of Melbourne, Phoenix Australia, Melbourne, Victoria, Australia
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Pedro M Pan
- Universidade Federal de São Paulo, Psychiatry, São Paulo, Brazil
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gita A Pathak
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Edward S Peters
- University of Nebraska Medical Center, College of Public Health, Omaha, NE, USA
| | - Alan L Peterson
- South Texas Veterans Health Care System, Research and Development Service, San Antonio, TX, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, West Haven, CT, USA
| | - Melissa A Polusny
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Care Delivery and Outcomes Research (CCDOR), Minneapolis, MN, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York City, NY, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex O Rothbaum
- Department of Psychological Sciences, Emory University, Atlanta, GA, USA
- Department of Research and Outcomes, Skyland Trail, Atlanta, GA, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Peter Roy-Byrne
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Kenneth J Ruggiero
- Department of Nursing, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Ariane Rung
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Heiko Runz
- Biogen Inc., Research & Development, Cambridge, MA, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | | | - Giovanni Abrahão Salum
- Child Mind Institute, New York City, NY, USA
- Instituto Nacional de Psiquiatria de Desenvolvimento, São Paulo, Brazil
| | - Laura Sampson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sixto E Sanchez
- Department of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Marcos Santoro
- Universidade Federal de São Paulo, Departamento de Bioquímica-Disciplina de Biologia Molecular, São Paulo, Brazil
| | - Carina Seah
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Stellenbosch University, SAMRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Julia S Seng
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Women's and Gender Studies, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Institute for Research on Women and Gender, Ann Arbor, MI, USA
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
| | - Andrey Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christina M Sheerin
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Derrick Silove
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Synne Stensland
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin H Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Developmental Biopsychiatry Research Program, Belmont, MA, USA
| | - Wesley K Thompson
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, Denmark
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA
| | - Arun K Tiwari
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Edward Trapido
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Unnur Valdimarsdóttir
- Karolinska Institutet, Unit of Integrative Epidemiology, Institute of Environmental Medicine, Stockholm, Sweden
- University of Iceland, Faculty of Medicine, Center of Public Health Sciences, School of Health Sciences, Reykjavik, Iceland
| | - Miranda Van Hooff
- University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Eric Vermetten
- ARQ Nationaal Psychotrauma Centrum, Psychotrauma Research Expert Group, Diemen, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University School of Medicine, New York City, NY, USA
| | - Christiaan H Vinkers
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joanne Voisey
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Yunpeng Wang
- Department of Psychology, University of Oslo, Lifespan Changes in Brain and Cognition (LCBC), Oslo, Norway
| | - Zhewu Wang
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Mental Health, Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Monika Waszczuk
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Heike Weber
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Copenhagen University Hospital, Institute of Biological Psychiatry, Mental Health Services, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- University of Copenhagen, The Globe Institute, Lundbeck Foundation Center for Geogenetics, Copenhagen, Denmark
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas E Williamson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
| | - Bendik S Winsvold
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Christiane Wolf
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yan Xia
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Ying Xiong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Mental Health, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Keith A Young
- Central Texas Veterans Health Care System, Research Service, Temple, TX, USA
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, Queensland, Australia
- University of the Sunshine Coast, The Chancellory, Sippy Downs, Queensland, Australia
| | - Clement C Zai
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Gwyneth C Zai
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, General Adult Psychiatry and Health Systems Division, Toronto, Ontario, Canada
| | - Mark Zervas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Lori A Zoellner
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - John-Anker Zwart
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Terri deRoon-Cassini
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| |
Collapse
|
59
|
Yao Y, Guo D, Lu TS, Liu FL, Huang SH, Diao MQ, Li SX, Zhang XJ, Kosten TR, Shi J, Bao YP, Lu L, Han Y. Efficacy and safety of psychedelics for the treatment of mental disorders: A systematic review and meta-analysis. Psychiatry Res 2024; 335:115886. [PMID: 38574699 DOI: 10.1016/j.psychres.2024.115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
We aim to systematically review and meta-analyze the effectiveness and safety of psychedelics [psilocybin, ayahuasca (active component DMT), LSD and MDMA] in treating symptoms of various mental disorders. Web of Science, Embase, EBSCO, and PubMed were searched up to February 2024 and 126 articles were finally included. Results showed that psilocybin has the largest number of articles on treating mood disorders (N = 28), followed by ayahuasca (N = 7) and LSD (N = 6). Overall, psychedelics have therapeutic effects on mental disorders such as depression and anxiety. Specifically, psilocybin (Hedges' g = -1.49, 95% CI [-1.67, -1.30]) showed the strongest therapeutic effect among four psychedelics, followed by ayahuasca (Hedges' g = -1.34, 95% CI [-1.86, -0.82]), MDMA (Hedges' g = -0.83, 95% CI [-1.33, -0.32]), and LSD (Hedges' g = -0.65, 95% CI [-1.03, -0.27]). A small amount of evidence also supports psychedelics improving tobacco addiction, eating disorders, sleep disorders, borderline personality disorder, obsessive-compulsive disorder, and body dysmorphic disorder. The most common adverse event with psychedelics was headache. Nearly a third of the articles reported that no participants reported lasting adverse effects. Our analyses suggest that psychedelics reduce negative mood, and have potential efficacy in other mental disorders, such as substance-use disorders and PTSD.
Collapse
Affiliation(s)
- Yuan Yao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dan Guo
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tang-Sheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Fang-Lin Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shi-Hao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Meng-Qi Diao
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Xiu-Jun Zhang
- School of Psychology, College of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, China
| | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No.2018RU006).
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
60
|
Heller AS. Adding to the neuroimmune network model: A commentary on Nusslock et al. (2024). J Child Psychol Psychiatry 2024; 65:733-735. [PMID: 38491727 DOI: 10.1111/jcpp.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Work by many groups demonstrate links between peripheral markers of inflammation and symptoms of depression. Here, Nusslock and colleagues present an update to their neuroimmune network model to incorporate a developmental lens. They propose that specific neural circuits may be responsible for causing heightened inflammation. One principal circuit includes the amygdala and prefrontal cortex and is proposed to be involved in threat detection. Thus, heightened threat sensitivity resulting from early life stress is suggested to cause increases in inflammatory signaling. Second, the authors suggest that reward circuits, including the striatum, may be targets of increased inflammation leading to symptoms of anhedonia. In this commentary, I add context to the model proposed by Nusslock et al., suggesting that taking a learning perspective and considering additional circuits, including the hippocampus and midline structures may be necessary to more fully account for the phenomena described by the authors.
Collapse
Affiliation(s)
- Aaron S Heller
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
61
|
Jeong M, Jang JH, Oh SJ, Park J, Lee J, Hwang S, Oh YS. Maladaptation of dentate gyrus mossy cells mediates contextual discrimination deficit after traumatic stress. Cell Rep 2024; 43:114000. [PMID: 38527063 DOI: 10.1016/j.celrep.2024.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
Fear overgeneralization is a maladaptive response to traumatic stress that is associated with the inability to discriminate between threat and safety contexts, a hallmark feature of post-traumatic stress disorder (PTSD). However, the neural mechanisms underlying this deficit remain unclear. Here, we show that traumatic stress exposure impairs contextual discrimination between threat and safety contexts in the learned helplessness (LH) model. Mossy cells (MCs) in the dorsal hippocampus are suppressed in response to traumatic stress. Bidirectional manipulation of MC activity in the LH model reveals that MC inhibition is causally linked to impaired contextual discrimination. Mechanistically, MC inhibition increases the number of active granule cells in a given context, significantly overlapping context-specific ensembles. Our study demonstrates that maladaptive inhibition of MCs after traumatic stress is a substantial mechanism underlying fear overgeneralization with contextual discrimination deficit, suggesting a potential therapeutic target for cognitive symptoms of PTSD.
Collapse
Affiliation(s)
- Minseok Jeong
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Seo-Jin Oh
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jeongrak Park
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Junseop Lee
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Sehyeon Hwang
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea; Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu 41062, Republic of Korea.
| |
Collapse
|
62
|
Fetterhoff D, Costa M, Hellerstedt R, Johannessen R, Imbach L, Sarnthein J, Strange BA. Neuronal population representation of human emotional memory. Cell Rep 2024; 43:114071. [PMID: 38592973 PMCID: PMC11063625 DOI: 10.1016/j.celrep.2024.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Understanding how emotional processing modulates learning and memory is crucial for the treatment of neuropsychiatric disorders characterized by emotional memory dysfunction. We investigate how human medial temporal lobe (MTL) neurons support emotional memory by recording spiking activity from the hippocampus, amygdala, and entorhinal cortex during encoding and recognition sessions of an emotional memory task in patients with pharmaco-resistant epilepsy. Our findings reveal distinct representations for both remembered compared to forgotten and emotional compared to neutral scenes in single units and MTL population spiking activity. Additionally, we demonstrate that a distributed network of human MTL neurons exhibiting mixed selectivity on a single-unit level collectively processes emotion and memory as a network, with a small percentage of neurons responding conjointly to emotion and memory. Analyzing spiking activity enables a detailed understanding of the neurophysiological mechanisms underlying emotional memory and could provide insights into how emotion alters memory during healthy and maladaptive learning.
Collapse
Affiliation(s)
- Dustin Fetterhoff
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain.
| | - Manuela Costa
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
| | - Robin Hellerstedt
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
| | - Rebecca Johannessen
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland; Department of Psychology, University of Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Johannes Sarnthein
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain; Reina Sofia Centre for Alzheimer's Research, Madrid, Spain
| |
Collapse
|
63
|
Kobelt M, Waldhauser GT, Rupietta A, Heinen R, Rau EMB, Kessler H, Axmacher N. The memory trace of an intrusive trauma-analog episode. Curr Biol 2024; 34:1657-1669.e5. [PMID: 38537637 DOI: 10.1016/j.cub.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Intrusive memories are a core symptom of posttraumatic stress disorder. Compared with memories of everyday events, they are characterized by several seemingly contradictory features: intrusive memories contain distinct sensory and emotional details of the traumatic event and can be triggered by various perceptually similar cues, but they are poorly integrated into conceptual memory. Here, we conduct exploratory whole-brain analyses to investigate the neural representations of trauma-analog experiences and how they are reactivated during memory intrusions. We show that trauma-analog movies induce excessive processing and generalized representations in sensory areas but decreased blood-oxygen-level-dependent (BOLD) responses and highly distinct representations in conceptual/semantic areas. Intrusive memories activate generalized representations in sensory areas and reactivate memory traces specific to trauma-analog events in the anterior cingulate cortex. These findings provide the first evidence of how traumatic events could distort memory representations in the human brain, which may form the basis for future confirmatory research on the neural representations of traumatic experiences.
Collapse
Affiliation(s)
- M Kobelt
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany.
| | - G T Waldhauser
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany.
| | - A Rupietta
- Department of Clinical Psychology and Psychotherapy, Ruhr-Universität Bochum, Bochum 44787, North Rhine-Westphalia, Germany
| | - R Heinen
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany
| | - E M B Rau
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany
| | - H Kessler
- Department of Psychosomatic Medicine and Psychotherapy, Campus Fulda, Universität Marburg, Marburg 35032, Hessen, Germany; Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr-Universität Bochum, Bochum 44791, North Rhine-Westphalia, Germany
| | - N Axmacher
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany.
| |
Collapse
|
64
|
Bommaraju S, Dhokne MD, Arun EV, Srinivasan K, Sharma SS, Datusalia AK. An insight into crosstalk among multiple signalling pathways contributing to the pathophysiology of PTSD and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110943. [PMID: 38228244 DOI: 10.1016/j.pnpbp.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Post-traumatic stress disorder (PTSD) and depressive disorders represent two significant mental health challenges with substantial global prevalence. These are debilitating conditions characterized by persistent, often comorbid, symptoms that severely impact an individual's quality of life. Both PTSD and depressive disorders are often precipitated by exposure to traumatic events or chronic stress. The profound impact of PTSD and depressive disorders on individuals and society necessitates a comprehensive exploration of their shared and distinct pathophysiological features. Although the activation of the stress system is essential for maintaining homeostasis, the ability to recover from it after diminishing the threat stimulus is also equally important. However, little is known about the main reasons for individuals' differential susceptibility to external stressful stimuli. The solution to this question can be found by delving into the interplay of stress with the cognitive and emotional processing of traumatic incidents at the molecular level. Evidence suggests that dysregulation in these signalling cascades may contribute to the persistence and severity of PTSD and depressive symptoms. The treatment strategies available for this disorder are antidepressants, which have shown good efficiency in normalizing symptom severity; however, their efficacy is limited in most individuals. This calls for the exploration and development of innovative medications to address the treatment of PTSD. This review delves into the intricate crosstalk among multiple signalling pathways implicated in the development and manifestation of these mental health conditions. By unravelling the complexities of crosstalk among multiple signalling pathways, this review aims to contribute to the broader knowledge base, providing insights that could inform the development of targeted interventions for individuals grappling with the challenges of PTSD and depressive disorders.
Collapse
Affiliation(s)
- Sumadhura Bommaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - E V Arun
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Uttar Pradesh (UP) 226002, India.
| |
Collapse
|
65
|
Granger SJ, May V, Hammack SE, Akman E, Jobson SA, Olson EA, Pernia CD, Daskalakis NP, Ravichandran C, Carlezon WA, Ressler KJ, Rauch SL, Rosso IM. Circulating PACAP levels are associated with altered imaging measures of entorhinal cortex neurite density in posttraumatic stress disorder. Eur J Psychotraumatol 2024; 15:2335793. [PMID: 38590134 PMCID: PMC11005872 DOI: 10.1080/20008066.2024.2335793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction: Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates plasticity in brain systems underlying arousal and memory and is associated with posttraumatic stress disorder (PTSD). Research in animal models suggests that PACAP modulates entorhinal cortex (EC) input to the hippocampus, contributing to impaired contextual fear conditioning. In PTSD, PACAP is associated with higher activity of the amygdala to threat stimuli and lower functional connectivity of the amygdala and hippocampus. However, PACAP-affiliated structural alterations of these regions have not been investigated in PTSD. Here, we examined whether peripheral PACAP levels were associated with neuronal morphology of the amygdala and hippocampus (primary analyses), and EC (secondary) using Neurite Orientation Dispersion and Density Imaging.Methods: Sixty-four (44 female) adults (19 to 54 years old) with DSM-5 Criterion A trauma exposure completed the Clinician-Administered PTSD Scale (CAPS-5), a blood draw, and magnetic resonance imaging. PACAP38 radioimmunoassay was performed and T1-weighted and multi-shell diffusion-weighted images were acquired. Neurite Density Index (NDI) and Orientation Dispersion Index (ODI) were quantified in the amygdala, hippocampus, and EC. CAPS-5 total score and anxious arousal score were used to test for clinical associations with brain structure.Results: Higher PACAP levels were associated with greater EC NDI (β = 0.0099, q = 0.032) and lower EC ODI (β = -0.0073, q = 0.047), and not hippocampal or amygdala measures. Neither EC NDI nor ODI was associated with clinical measures.Conclusions: Circulating PACAP levels were associated with altered neuronal density of the EC but not the hippocampus or amygdala. These findings strengthen evidence that PACAP may impact arousal-associated memory circuits in PTSD.
Collapse
Affiliation(s)
- Steven J. Granger
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Victor May
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Eylül Akman
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Sydney A. Jobson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A. Olson
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Cameron D. Pernia
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikos P. Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caitlin Ravichandran
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - William A. Carlezon
- Basic Neuroscience Division, McLean Hospital, Belmont, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kerry J. Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L. Rauch
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M. Rosso
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
66
|
Ren S, Zhang C, Yue F, Tang J, Zhang W, Zheng Y, Fang Y, Wang N, Song Z, Zhang Z, Zhang X, Qin H, Wang Y, Xia J, Jiang C, He C, Luo F, Hu Z. A midbrain GABAergic circuit constrains wakefulness in a mouse model of stress. Nat Commun 2024; 15:2722. [PMID: 38548744 PMCID: PMC10978901 DOI: 10.1038/s41467-024-46707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Enhancement of wakefulness is a prerequisite for adaptive behaviors to cope with acute stress, but hyperarousal is associated with impaired behavioral performance. Although the neural circuitries promoting wakefulness in acute stress conditions have been extensively identified, less is known about the circuit mechanisms constraining wakefulness to prevent hyperarousal. Here, we found that chemogenetic or optogenetic activation of GAD2-positive GABAergic neurons in the midbrain dorsal raphe nucleus (DRNGAD2) decreased wakefulness, while inhibition or ablation of these neurons produced an increase in wakefulness along with hyperactivity. Surprisingly, DRNGAD2 neurons were paradoxically wakefulness-active and were further activated by acute stress. Bidirectional manipulations revealed that DRNGAD2 neurons constrained the increase of wakefulness and arousal level in a mouse model of stress. Circuit-specific investigations demonstrated that DRNGAD2 neurons constrained wakefulness via inhibition of the wakefulness-promoting paraventricular thalamus. Therefore, the present study identified a wakefulness-constraining role DRNGAD2 neurons in acute stress conditions.
Collapse
Affiliation(s)
- Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
- No. 953 Army Hospital, Shigatse, Tibet Autonomous Region, 857000, China.
| | - Cai Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Faguo Yue
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Jinxiang Tang
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yue Zheng
- Department of Anesthesiology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Na Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaolong Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Han Qin
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Chenggang Jiang
- Psychology Department, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
67
|
Berthail B, Trousselard M, Lecouvey G, Le Roy B, Fraisse F, Peschanski D, Eustache F, Gagnepain P, Dayan J. Differences in predictive factors for post-traumatic stress disorder encompassing partial PTSD and full PTSD: a cross-sectional study among individuals exposed to the November 13, 2015 Paris attacks. Front Psychiatry 2024; 15:1351695. [PMID: 38606406 PMCID: PMC11007703 DOI: 10.3389/fpsyt.2024.1351695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Background When faced with a surge of physically injured individuals, especially following a traumatic event like an attack, frontline practitioners prioritize early triage. Detecting potential psychological injuries soon after such events remains challenging. Some individuals might develop post-traumatic stress disorder (PTSD) according to DSM-V criteria. Others may exhibit PTSD symptoms without meeting full diagnostic criteria, termed partial or sub-syndromal PTSD, a less-explored area in literature. This study aims to identify predictive factors for both full and partial PTSD. Method In a cohort of victims of the 2015 Paris attacks, multinomial logistic regressions explored predictive factors for partial or full PTSD status 8 to 18 months post-attacks. Analyses considered pre, peri, and posttraumatic factors chosen from literature review and univariate analysis within each group. Results Within the cohort, 50 individuals showed no signs of PTSD, 35 experienced partial PTSD, and 30 presented with full PTSD. After logistic regression, risk factors associated with full PTSD included a history of trauma (OR = 1.30, CI [1.02-1.66], p < 0.05), the intensity of peri-traumatic physical reactions (OR = 1.22, CI [1.09-1.36], p < 0.001), the difficulties in suppressing intrusive thoughts (OR = 1.11, CI [1.02-1.21], p < 0.013). Only the intensity of peri-traumatic physical reactions emerged as a risk factor for partial PTSD (OR = 1.13, [CI 1.02-1.24], p < 0.001). Discussion This study revealed that a history of trauma, the intensity of peri-traumatic physical reactions (e.g., tachycardia, trembling, flushes, numbness.), and the difficulties in suppressing intrusive thoughts constitute risk factors for the development of full PTSD. Moreover, the study identified that only the intensity of peri-traumatic physical reactions emerged as a risk factor for partial PTSD. These findings seem to underscore the significance of peri-traumatic experiences in influencing the development of post-traumatic stress symptoms. Conclusion This study emphasizes the significance of examining peri-traumatic reactions in PTSD development, suggesting its potential as a straightforward screening tool for post-traumatic stress disorder. It also underscores the influence of prior traumatic experiences, before de novo traumatization, in shaping vulnerability to PTSD and illuminates the crucial role of compromised control of intrusive thoughts that could perpetuate PTSD.
Collapse
Affiliation(s)
- Benoit Berthail
- French Military Health Service Academy, Ecole du Val de Grace, 1 Place Alphonse Laveran, Paris, France
- Neuropsychology and Imaging of Human Memory (NIMH) Research Unit, GIP Cyceron, INSERM U1077, Caen University Hospital, PSL, EPHE, Caen University, Caen, France
| | - Marion Trousselard
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
- University of Lorraine, Inserm, INSPIIRE UMR 1319, F-54000, Nancy, France
| | - Gregory Lecouvey
- Neuropsychology and Imaging of Human Memory (NIMH) Research Unit, GIP Cyceron, INSERM U1077, Caen University Hospital, PSL, EPHE, Caen University, Caen, France
| | - Barbara Le Roy
- Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Florence Fraisse
- Neuropsychology and Imaging of Human Memory (NIMH) Research Unit, GIP Cyceron, INSERM U1077, Caen University Hospital, PSL, EPHE, Caen University, Caen, France
| | - Denis Peschanski
- Paris I Pantheon Sorbonne University, HESAM University , EHESS, CNRS, UMR8209, Paris, France
| | - Francis Eustache
- Neuropsychology and Imaging of Human Memory (NIMH) Research Unit, GIP Cyceron, INSERM U1077, Caen University Hospital, PSL, EPHE, Caen University, Caen, France
| | - Pierre Gagnepain
- Neuropsychology and Imaging of Human Memory (NIMH) Research Unit, GIP Cyceron, INSERM U1077, Caen University Hospital, PSL, EPHE, Caen University, Caen, France
| | - Jacques Dayan
- Neuropsychology and Imaging of Human Memory (NIMH) Research Unit, GIP Cyceron, INSERM U1077, Caen University Hospital, PSL, EPHE, Caen University, Caen, France
- Child and Adolescent Psychiatry University Hospital Pole, Guillaume Régnier Hospital Center, Rennes 1 University, 35700 Rennes, France
| |
Collapse
|
68
|
Kordel P, Rządeczka M, Studenna-Skrukwa M, Kwiatkowska-Moskalewicz K, Goncharenko O, Moskalewicz M. Acute Stress Disorder among 2022 Ukrainian war refugees: a cross-sectional study. Front Public Health 2024; 12:1280236. [PMID: 38550313 PMCID: PMC10976942 DOI: 10.3389/fpubh.2024.1280236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
Introduction Fleeing from war can be terrifying and result in Acute Stress Disorder (ASD), a mental health condition that can occur in the first month after a traumatic event. The study aimed to identify the prevalence of ASD among Ukrainian refugees and identify its risk factors to create a profile of the most vulnerable refugees. Methods This cross-sectional study of 637 Ukrainian war-displaced persons and refugees in 2022 used the Acute Stress Disorder Scale. Results The prevalence of ASD among participants was high (93.5%). Several factors increasing the risk of developing ASD in the sample were identified, e.g., witnessing Russian attacks (OR 2.92, 95% CI 1.26-6.78), insufficient financial resources (OR 3.56, 95% CI 1.61-7.91), and feeling of loneliness in the host country (OR 3.07, 95% CI 1.58-8.69). Pre-existing depression and the death of a close person, among others, were found to significantly (p < 0.05) exacerbate the ASD symptoms. At the same time, neither age, the distance traveled, time spent on fleeing the country, nor the type of companionship during refuge (escaping alone, with children, pets or the older adults) correlate with the severity of symptoms. Conclusion The study shows extreme levels of trauma among Ukrainian war refugees and displaced persons. Knowledge regarding ASD vulnerabilities in the present conflict may facilitate prompt and adequate psychological help. Since ASD can be an antecedent of PTSD and several autoimmune disorders, these results may also serve as a predictor of future challenges for Ukrainian society.
Collapse
Affiliation(s)
- Piotr Kordel
- Philosophy of Mental Health Unit, Department of Social Sciences and the Humanities, Poznan University of Medical Sciences, Poznań, Poland
| | - Marcin Rządeczka
- Institute of Philosophy, Marie Curie-Sklodowska University, Lublin, Poland
- IDEAS NCBR, Warsaw, Poland
| | | | | | - Olga Goncharenko
- Faculty of Social Sciences and Social Technologies, National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Marcin Moskalewicz
- Philosophy of Mental Health Unit, Department of Social Sciences and the Humanities, Poznan University of Medical Sciences, Poznań, Poland
- Institute of Philosophy, Marie Curie-Sklodowska University, Lublin, Poland
- IDEAS NCBR, Warsaw, Poland
- Psychiatric Clinic, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
69
|
Seriès P, Veerapa E, Jardri R. Can computational models help elucidate the link between complex trauma and hallucinations? Schizophr Res 2024; 265:66-73. [PMID: 37268452 DOI: 10.1016/j.schres.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Recently, a number of predictive coding models have been proposed to account for post-traumatic stress disorder (PTSD)'s symptomatology, including intrusions, flashbacks and hallucinations. These models were usually developed to account for traditional/type-1 PTSD. We here discuss whether these models also apply or can be translated to the case of complex/type-2 PTSD and childhood trauma (cPTSD). The distinction between PTSD and cPTSD is important because the disorders differ in terms of symptomatology and potential mechanisms, how they relate to developmental stages, but also in terms of illness trajectory and treatment. Models of complex trauma could give us insights on hallucinations in physiological/pathological conditions or more generally on the development of intrusive experiences across diagnostic classes.
Collapse
Affiliation(s)
- Peggy Seriès
- IANC, Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK.
| | - Emilie Veerapa
- Université de Lille, INSERM U-1172, Lille Neurosciences & Cognition Centre, Plasticity and Subjectivity Team, Lille, France; Department of Psychiatry, CHU Lille, F-59000 Lille, France
| | - Renaud Jardri
- Université de Lille, INSERM U-1172, Lille Neurosciences & Cognition Centre, Plasticity and Subjectivity Team, Lille, France; CURE Platform, Psychiatric Investigation Centre, Fontan Hospital, CHU Lille, France; Laboratoire de Neurosciences Cognitives & Computationnelles (LNC(2)), ENS, INSERM U-960, PSL Research University, Paris, France.
| |
Collapse
|
70
|
Xiao H, Xi K, Wang K, Zhou Y, Dong B, Xie J, Xie Y, Zhang H, Ma G, Wang W, Feng D, Guo B, Wu S. Restoring the Function of Thalamocortical Circuit Through Correcting Thalamic Kv3.2 Channelopathy Normalizes Fear Extinction Impairments in a PTSD Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305939. [PMID: 38102998 PMCID: PMC10916658 DOI: 10.1002/advs.202305939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Impaired extinction of fear memory is one of the most common symptoms in post-traumatic stress disorder (PTSD), with limited therapeutic strategies due to the poor understanding of its underlying neural substrates. In this study, functional screening is performed and identified hyperactivity in the mediodorsal thalamic nucleus (MD) during fear extinction. Furthermore, the encoding patterns of the hyperactivated MD is investigated during persistent fear responses using multiple machine learning algorithms. The anterior cingulate cortex (ACC) is also identified as a functional downstream region of the MD that mediates the extinction of fear memory. The thalamocortical circuit is comprehensively analyzed and found that the MD-ACC parvalbumin interneurons circuit is preferentially enhanced in PTSD mice, disrupting the local excitatory and inhibitory balance. It is found that decreased phosphorylation of the Kv3.2 channel contributed to the hyperactivated MD, primarily to the malfunctioning thalamocortical circuit. Using a lipid nanoparticle-based RNA therapy strategy, channelopathy is corrected via a methoxylated siRNA targeting the protein phosphatase 6 catalytic subunit and restored fear memory extinction in PTSD mice. These findings highlight the function of the thalamocortical circuit in PTSD-related impaired extinction of fear memory and provide therapeutic insights into Kv3.2-targeted RNA therapy for PTSD.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaiwen Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Kaifang Wang
- Department of AnesthesiologyTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Yongsheng Zhou
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Eastern Theater Air Force Hospital of PLANanjing210000China
| | - Baowen Dong
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Jinyi Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Yuqiao Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Haifeng Zhang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Guaiguai Ma
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wenting Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'an710032China
| | - Baolin Guo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
71
|
Gao Y, Gao D, Zhang H, Zheng D, Du J, Yuan C, Mingxi Ma, Yin Y, Wang J, Zhang X, Wang Y. BLA DBS improves anxiety and fear by correcting weakened synaptic transmission from BLA to adBNST and CeL in a mouse model of foot shock. Cell Rep 2024; 43:113766. [PMID: 38349792 DOI: 10.1016/j.celrep.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
Deep brain stimulation (DBS) in the basal lateral amygdala (BLA) has been established to correct symptoms of refractory post-traumatic stress disorder (PTSD). However, how BLA DBS operates in correcting PTSD symptoms and how the BLA elicits pathological fear and anxiety in PTSD remain unclear. Here, we discover that excitatory synaptic transmission from the BLA projection neurons (PNs) to the adBNST, and lateral central amygdala (CeL) is greatly suppressed in a mouse PTSD model induced by foot shock (FS). BLA DBS revises the weakened inputs from the BLA to these two areas to improve fear and anxiety. Optogenetic manipulation of the BLA-adBNST and BLA-CeL circuits shows that both circuits are responsible for anxiety but the BLA-CeL for fear in FS mice. Our results reveal that synaptic transmission dysregulation of the BLA-adBNST or BLA-CeL circuits is reversed by BLA DBS, which improves anxiety and fear in the FS mouse model.
Collapse
Affiliation(s)
- Yan Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Dawen Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Zhang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Danhao Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Jun Du
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chao Yuan
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Mingxi Ma
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yao Yin
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yizheng Wang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
72
|
Merlo SA, Belluscio MA, Pedreira ME, Merlo E. Memory persistence: from fundamental mechanisms to translational opportunities. Transl Psychiatry 2024; 14:98. [PMID: 38355584 PMCID: PMC10867010 DOI: 10.1038/s41398-024-02808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Memory persistence is a double edge sword. Persistence of adaptive memories is essential for survival and even determines who we are. Neurodegenerative conditions with significant memory loss such as Alzheimer's disease, testify how defects of memory persistence have severe and irreversible effects on personality, among other symptoms. Yet, maintenance of overly strong maladaptive memories underlies highly debilitating psychiatric conditions including post-traumatic stress disorder, specific phobia, substance dependence and binge eating disorder. Here we review the neurobiological mechanisms supporting memory formation, persistence, inhibition and forgetting. We then shift the focus to how such mechanisms have been exploited to alter the persistence of laboratory-generated memories in human healthy volunteers as a proof of concept. Finally, we review the effect of behavioural and pharmacological interventions in anxiety and addiction disorder patients, highlighting key findings, gaps, and future directions for basic and translational research.
Collapse
Affiliation(s)
- Santiago Abel Merlo
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio Bases Neuronales del Comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Andrés Belluscio
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio Bases Neuronales del Comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Eugenia Pedreira
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
73
|
Liu Q, Ding X, Wang Y, Chu H, Guan Y, Li M, Sun K. Artemisinin reduces PTSD-like symptoms, improves synaptic plasticity, and inhibits apoptosis in rats subjected to single prolonged stress. Front Pharmacol 2024; 15:1303123. [PMID: 38379899 PMCID: PMC10876839 DOI: 10.3389/fphar.2024.1303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a chronic mental disorder characterized by symptoms of panic and anxiety, depression, impaired cognitive functioning, and difficulty in social interactions. While the effect of the traditional Chinese medicine artemisinin (AR) on PTSD is unknown, its therapeutic benefits have been demonstrated by studies on models of multiple neurological disorders. This study aimed to extend such findings by investigating the effects of AR administration on a rat model of PTSD induced by a regimen of single prolonged stress (SPS). After rats were subjected to the SPS protocol, AR was administered and its impact on PTSD-like behaviors was evaluated. In the present study, rats were subjected to a multitude of behavioral tests to evaluate behaviors related to anxiety, memory function, and social interactions. The expression of hippocampal synaptic plasticity-related proteins was detected using Western blot and immunofluorescence. The ultrastructure of synapses was observed under transmission electron microscopy. The apoptosis of hippocampal neurons was examined with Western blot, TUNEL staining, and HE staining. The results showed that AR administration alleviated the PTSD-like phenotypes in SPS rats, including behavior indicative of anxiety, cognitive deficits, and diminished sociability. AR administration was further observed to improve synaptic plasticity and inhibit neuronal apoptosis in SPS rats. These findings suggest that administering AR after the onset of severe traumatic events may alleviate anxiety, cognitive deficits, and impaired social interaction, improve synaptic plasticity, and diminish neuronal apoptosis. Hence, the present study provides evidence for AR's potential as a multi-target agent in the treatment of PTSD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kuisheng Sun
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
74
|
Devignes Q, Ren B, Clancy KJ, Howell K, Pollmann Y, Martinez-Sanchez L, Beard C, Kumar P, Rosso IM. Trauma-related intrusive memories and anterior hippocampus structural covariance: an ecological momentary assessment study in posttraumatic stress disorder. Transl Psychiatry 2024; 14:74. [PMID: 38307849 PMCID: PMC10837434 DOI: 10.1038/s41398-024-02795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Trauma-related intrusive memories (TR-IMs) are hallmark symptoms of posttraumatic stress disorder (PTSD), but their neural correlates remain partly unknown. Given its role in autobiographical memory, the hippocampus may play a critical role in TR-IM neurophysiology. The anterior and posterior hippocampi are known to have partially distinct functions, including during retrieval of autobiographical memories. This study aimed to investigate the relationship between TR-IM frequency and the anterior and posterior hippocampi morphology in PTSD. Ninety-three trauma-exposed adults completed daily ecological momentary assessments for fourteen days to capture their TR-IM frequency. Participants then underwent anatomical magnetic resonance imaging to obtain measures of anterior and posterior hippocampal volumes. Partial least squares analysis was applied to identify a structural covariance network that differentiated the anterior and posterior hippocampi. Poisson regression models examined the relationship of TR-IM frequency with anterior and posterior hippocampal volumes and the resulting structural covariance network. Results revealed no significant relationship of TR-IM frequency with hippocampal volumes. However, TR-IM frequency was significantly negatively correlated with the expression of a structural covariance pattern specifically associated with the anterior hippocampus volume. This association remained significant after accounting for the severity of PTSD symptoms other than intrusion symptoms. The network included the bilateral inferior temporal gyri, superior frontal gyri, precuneus, and fusiform gyri. These novel findings indicate that higher TR-IM frequency in individuals with PTSD is associated with lower structural covariance between the anterior hippocampus and other brain regions involved in autobiographical memory, shedding light on the neural correlates underlying this core symptom of PTSD.
Collapse
Affiliation(s)
- Quentin Devignes
- Center for Depression, Anxiety and Stress Disorders, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatric Biostatistics Laboratory, McLean Hospital, Belmont, MA, USA
| | - Kevin J Clancy
- Center for Depression, Anxiety and Stress Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kristin Howell
- Center for Depression, Anxiety and Stress Disorders, McLean Hospital, Belmont, MA, USA
| | - Yara Pollmann
- Center for Depression, Anxiety and Stress Disorders, McLean Hospital, Belmont, MA, USA
| | | | - Courtney Beard
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Poornima Kumar
- Center for Depression, Anxiety and Stress Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- Center for Depression, Anxiety and Stress Disorders, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
75
|
Palchaudhuri S, Osypenko D, Schneggenburger R. Fear Learning: An Evolving Picture for Plasticity at Synaptic Afferents to the Amygdala. Neuroscientist 2024; 30:87-104. [PMID: 35822657 DOI: 10.1177/10738584221108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unraveling the neuronal mechanisms of fear learning might allow neuroscientists to make links between a learned behavior and the underlying plasticity at specific synaptic connections. In fear learning, an innocuous sensory event such as a tone (called the conditioned stimulus, CS) acquires an emotional value when paired with an aversive outcome (unconditioned stimulus, US). Here, we review earlier studies that have shown that synaptic plasticity at thalamic and cortical afferents to the lateral amygdala (LA) is critical for the formation of auditory-cued fear memories. Despite the early progress, it has remained unclear whether there are separate synaptic inputs that carry US information to the LA to act as a teaching signal for plasticity at CS-coding synapses. Recent findings have begun to fill this gap by showing, first, that thalamic and cortical auditory afferents can also carry US information; second, that the release of neuromodulators contributes to US-driven teaching signals; and third, that synaptic plasticity additionally happens at connections up- and downstream of the LA. Together, a picture emerges in which coordinated synaptic plasticity in serial and parallel circuits enables the formation of a finely regulated fear memory.
Collapse
Affiliation(s)
- Shriya Palchaudhuri
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
76
|
Cai Y, Ge J, Pan ZZ. The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats. Front Neurosci 2024; 18:1331864. [PMID: 38327845 PMCID: PMC10847313 DOI: 10.3389/fnins.2024.1331864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Brain circuits between medial prefrontal cortex (mPFC) and amygdala have been implicated in cortical control of emotion, especially anxiety. Studies in recent years focus on differential roles of subregions of mPFC and amygdala, and reciprocal pathways between mPFC and amygdala in regulation of emotional behaviors. It has been shown that, while the projection from ventral mPFC to basomedial amygdala has an anxiolytic effect, the reciprocal projections between dorsal mPFC (dmPFC) and basolateral amygdala (BLA) are generally involved in an anxiogenic effect in various conditions with increased anxiety. However, the function of the projection from dmPFC to BLA in regulation of general emotional behaviors under normal conditions remains unclear. In this study, we used optogenetic analysis to identify how this dmPFC-BLA pathway regulates various emotional behaviors in normal rats. We found that optogenetic stimulation of the dmPFC-BLA pathway promoted a behavioral state of negative emotion, increasing anxiety-like and depressive-like behaviors and producing aversive behavior of place avoidance. Conversely, optogenetic inhibition of this pathway produced opposite effects, reducing anxiety-like and depressive-like behaviors, and inducing behaviors of place preference of reward. These findings suggest that activity of the dmPFC-BLA pathway is sufficient to drive a negative emotion state and the mPFC-amygdala circuit is tonically active in cortical regulation of emotional behaviors.
Collapse
Affiliation(s)
| | | | - Zhizhong Z. Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
77
|
Harrison EM, Chung SY, Englert RM, Belding JN. The Effect of Concussion Mechanism of Injury on Sleep Problems in Active Duty Service Members Following Deployment. Mil Med 2024; 189:e141-e147. [PMID: 37279513 DOI: 10.1093/milmed/usad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
INTRODUCTION Sleep disruption is pervasive in the military and is generally exacerbated during deployment, partially due to increases in operational tempo and exposure to stressors and/or trauma. In particular, sleep disruption is a commonly reported symptom following deployment-related traumatic brain injury (TBI), though less is known about the prevalence of sleep disturbance as a function of whether the TBI was induced by high-level blast (HLB) or direct impact to the head. TBI assessment, treatment, and prognosis are further complicated by comorbidity with posttraumatic stress disorder (PTSD), depression, and alcohol misuse. Here, we examine whether concussion mechanism of injury is associated with differences in the prevalence of self-reported sleep disturbance following deployment in a large sample of U.S. Marines while accounting for probable PTSD, depression, and alcohol misuse. MATERIALS AND METHODS This was a retrospective cohort study of active duty enlisted Marines with a probable concussion (N = 5757) who completed the Post-Deployment Health Assessment between 2008 and 2012. Probable concussion was defined as endorsement of a potentially concussive event with corresponding loss or alteration of consciousness. The presence of concussion-related sleep problems was assessed with a dichotomous item. Probable PTSD, depression, and alcohol misuse were assessed using the Primary Care PTSD Screen, the Patient Health Questionnaire-2, and the Alcohol Use Identification Test-Concise, respectively. Logistic regression models investigated the effects of mechanism of injury (HLB vs. impact), PTSD, depression, and alcohol misuse on the presence of sleep problems, adjusting for sex and pay grade. The study was approved by the Naval Health Research Center Institutional Review Board. RESULTS Approximately 41% of individuals with a probable deployment-related concussion reported sleep problems following the event; 79% of concussed individuals reporting both HLB and probable PTSD reported sleep problems. All main effects were significantly associated with sleep disturbance in adjusted models. PTSD showed the strongest association with sleep disturbance (adjusted odds ratio [AOR] = 2.84), followed by depression (AOR = 2.43), HLB exposure (AOR = 2.00), female sex (AOR = 1.63), alcohol misuse (AOR = 1.14), and pay grade (AOR = 1.10). A significant HLB × PTSD interaction emerged (AOR = 1.58), which suggests that sleep disturbance was elevated among those with both HLB-induced (vs. impact-induced) concussions and presence (vs. absence) of PTSD. No other significant interactions emerged. CONCLUSION To our knowledge, this is the first study to examine the prevalence of concussion-related sleep complaints following deployment as a function of the mechanism of injury in individuals with and without probable PTSD and depression. Individuals with HLB-induced concussion were twice as likely to report sleep problems as those with an impact-induced concussion. Future work should examine these effects longitudinally with validated measures that assess greater precision of exposure and outcome assessment (e.g., blast intensity and type of sleep disturbance).
Collapse
Affiliation(s)
- Elizabeth M Harrison
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA 92106, USA
- Leidos, Inc., San Diego, CA 92106, USA
| | - Samuel Y Chung
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA 92106, USA
- Leidos, Inc., San Diego, CA 92106, USA
| | - Robyn M Englert
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA 92106, USA
- Leidos, Inc., San Diego, CA 92106, USA
| | - Jennifer N Belding
- Health and Behavioral Sciences Department, Naval Health Research Center, San Diego, CA 92106, USA
- Leidos, Inc., San Diego, CA 92106, USA
| |
Collapse
|
78
|
Zhang K, Shen D, Huang S, Iqbal J, Huang G, Si J, Xue Y, Yang JL. The sexually divergent cFos activation map of fear extinction. Heliyon 2024; 10:e23748. [PMID: 38205315 PMCID: PMC10777019 DOI: 10.1016/j.heliyon.2023.e23748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Objective Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that can develop after experiencing or witnessing a traumatic event. Exposure therapy is a common treatment for PTSD, but it has varying levels of efficacy depending on sex. In this study, we aimed to compare the sexual dimorphism in brain activation during the extinction of fear conditioning in male and female rats by detecting the c-fos levels in the whole brain. Methods Thirty-two rats (Male: n = 16; Female: n = 16) were randomly separated into the extinction group as well as the non-extinction group, and fear conditioning was followed by extinction and non-extinction, respectively. Subsequently, brain sections from the sacrificed animal were performed immunofluorescence and the collected data were analyzed by repeated two-way ANOVAs as well as Pearson Correlation Coefficient. Results Our findings showed that most brain areas activated during extinction were similar in both male and female rats, except for the reuniens thalamic nucleus and ventral hippocampi. Furthermore, we found differences in the correlation between c-fos activation levels and freezing behavior during extinction between male and female rats. Specifically, in male rats, c-fos activation in the anterior cingulate cortex was negatively correlated with the freezing level, while c-fos activation in the retrosplenial granular cortex was positively correlated with the freezing level; but in female rats did not exhibit any correlation between c-fos activation and freezing level. Finally, the functional connectivity analysis revealed differences in the neural networks involved in extinction learning between male and female rats. In male rats, the infralimbic cortex and insular cortex, anterior cingulate cortex and retrosplenial granular cortex, and dorsal dentate gyrus and dCA3 were strongly correlated after extinction. In female rats, prelimbic cortex and basolateral amygdala, insular cortex and dCA3, and anterior cingulate cortex and dCA1 were significantly correlated. Conclusion These results suggest divergent neural networks involved in extinction learning in male and female rats and provide a clue for improving the clinical treatment of exposure therapy based on the sexual difference.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Dan Shen
- Xinxiang Medical University, 601 Jinsui Dadao, Hongqi District, Xinxiang City, Henan Province, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Javed Iqbal
- Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Shenzhen, 518118, China
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Gengdi Huang
- Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Shenzhen, 518118, China
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jijian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, 100191, Beijing, China
- Xinxiang Medical University, 601 Jinsui Dadao, Hongqi District, Xinxiang City, Henan Province, China
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Medical University, Tianjin, China
| |
Collapse
|
79
|
Wang F, Liu CB, Wang Y, Wang XX, Yang YY, Jiang CY, Le QM, Liu X, Ma L, Wang FF. Morphine- and foot shock-responsive neuronal ensembles in the VTA possess different connectivity and biased GPCR signaling pathway. Theranostics 2024; 14:1126-1146. [PMID: 38250036 PMCID: PMC10797299 DOI: 10.7150/thno.90792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Background: Neurons in the ventral tegmental area (VTA) are sensitive to stress and their maladaptation have been implicated in the psychiatric disorders such as anxiety and addiction, etc. The cellular properties of the VTA neurons in response to different stressors related to different emotional processing remain to be investigated. Methods: By combining immediate early gene (IEG)-dependent labeling, rabies virus tracing, ensemble-specific transcriptomic analysis and fiber photometry recording in the VTA of male mice, the spatial distribution, brain-wide connectivity and cellular signaling pathways in the VTA neuronal ensembles in response to morphine (Mor-Ens) or foot shock (Shock-Ens) stimuli were investigated. Results: Optogenetic activation of the Mor-Ens drove approach behavior, whereas chemogenetic activation of the Shock-Ens increased the anxiety level in mice. Mor-Ens were clustered and enriched in the ventral VTA, contained a higher proportion of dopaminergic neurons, received more inputs from the dorsal medial striatum and the medial hypothalamic zone, and exhibited greater axonal arborization in the zona incerta and ventral pallidum. Whereas Shock-Ens were more dispersed, contained a higher proportion of GABAergic neurons, and received more inputs from the ventral pallidum and the lateral hypothalamic area. The downstream targets of the G protein and β-arrestin pathways, PLCβ3 and phosphorylated AKT1Thr308, were relatively enriched in the Mor-Ens and Shock-Ens, respectively. Cariprazine, the G-protein-biased agonist for the dopamine D2 receptor, increased the response of Mor-Ens to sucrose water and decreased the anxiety-like behavior during morphine withdrawal, whereas the β-arrestin-biased agonist UNC9994 decreased the response of Shock-Ens to tail suspension. Conclusions: Taken together, these findings reveal the heterogeneous connectivity and signaling pathways of the VTA neurons in response to morphine and foot shock, providing new insights for development of specific interventions for psychiatric disorders caused by various stressors associated with different VTA neuronal functions.
Collapse
Affiliation(s)
- Fan Wang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Chao-bao Liu
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Wang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xi-xi Wang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yuan-yao Yang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Chang-you Jiang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiu-min Le
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Fei-fei Wang
- School of Basic Medical Sciences, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| |
Collapse
|
80
|
Kim BH, Baek J, Kim O, Kim H, Ko M, Chu SH, Jung YC. North Korean defectors with PTSD and complex PTSD show alterations in default mode network resting-state functional connectivity. BJPsych Open 2024; 10:e25. [PMID: 38179593 PMCID: PMC10790227 DOI: 10.1192/bjo.2023.636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND North Korean defectors (NKDs) have often been exposed to traumatic events. However, there have been few studies of neural alterations in NKDs with post-traumatic stress disorder (PTSD) and complex PTSD (cPTSD). AIMS To investigate neural alterations in NKDs with PTSD and cPTSD, with a specific focus on alterations in resting-state functional connectivity networks, including the default mode network (DMN). METHOD Resting-state functional connectivity was assessed using brain functional magnetic resonance imaging in three groups of NKDs: without PTSD, with PTSD and with cPTSD. Statistical tests were performed, including region of interest (ROI)-to-ROI and ROI-to-voxel analysis, followed by post hoc correlation analysis. RESULTS In the ROI-to-ROI analysis, differences in functional connectivity were found among the components of the DMN, as well as in the thalamus and the basal ganglia. Right hippocampus-left pallidum and right amygdala-left lingual gyrus connectivity differed between groups in the ROI-to-voxel analysis, as did connectivity involving the basal ganglia. The post hoc analysis revealed negative correlations between Coping and Adaptation Processing Scale (CAPS) score and left posterior cingulate cortex-right pallidum connectivity and between CAPS score and right putamen-left angular gyrus connectivity in the control group, which were not observed in other groups. CONCLUSIONS The results suggest that there are alterations in the functional connectivity of the DMN and the limbic system in NKDs with PTSD and cPTSD, and that these alterations involve the basal ganglia. The lower correlations of CAPS score with right basal ganglia-DMN functional connectivity in patients compared with controls further implies that these connectivities are potential targets for treatment of PTSD and cPTSD.
Collapse
Affiliation(s)
- Byung-Hoon Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; and Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Baek
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, South Korea
| | - Ocksim Kim
- Department of Nursing, Yonsei University College of Nursing and Brain Korea 21 FOUR Project, Seoul, South Korea
| | - Hokon Kim
- Department of Nursing, Yonsei University College of Nursing, Seoul, South Korea; and Brain Korea 21 FOUR Project, Seoul, South Korea
| | - Minjeong Ko
- Department of Nursing, Yonsei University College of Nursing, Seoul, South Korea
| | - Sang Hui Chu
- Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, South Korea; and Department of Nursing, Yonsei University College of Nursing, Seoul, South Korea
| | - Young-Chul Jung
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea; and Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
81
|
Rahimi-Danesh M, Samizadeh MA, Sajadi AE, Rezvankhah T, Vaseghi S. Sex difference affects fear extinction but not lithium efficacy in rats following fear-conditioning with respect to the hippocampal level of BDNF. Pharmacol Biochem Behav 2024; 234:173675. [PMID: 37972713 DOI: 10.1016/j.pbb.2023.173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
In rodents, exposure to electrical shock and creating a strong fear memory using fear-conditioning model can induce PTSD-like behavior. In this study, we induced a fear-conditioning model in rats and investigated freezing (PTSD-like) behavior, 21 days after three shocks exposure (0.6 mA, 3 s, 30 seconds interval) in both male and female rats. Lithium was injected intraperitoneally (100 mg/kg) in three protocols: (1) 1 h after fear-conditioning (2) 1 h, 24 h, and 48 h after fear-conditioning (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning. Extinction training (20 sounds without shocks, 75 dB, 3 s, 30 seconds interval) was performed in three protocols: (1) 1 h after fear-conditioning (one session), (2) 1 h, 24 h, and 48 h after fear-conditioning (three sessions), (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning (five sessions). Forced swim test (FST) and hot plate were used to assess behavior. Results showed that lithium in all protocols had no effect on freezing behavior, FST, and pain subthreshold in all rats. Extinction training decreased freezing behavior, with more efficacy in females. In males, only 5-session training was effective, while in females all protocols were effective. Extinction training also altered pain perception and the results of FST, depending on the sessions and was different in males and females. Brain-derived neurotrophic factor (BDNF) mRNA level was increased in females following 3 and 5 sessions, and in males following 5 sessions extinction training. In conclusion, we suggested that there is a sex difference for the effect of extinction training on freezing behavior and BDNF mRNA level in a rat model of fear-conditioning.
Collapse
Affiliation(s)
- Mehrsa Rahimi-Danesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Amir-Ehsan Sajadi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Tara Rezvankhah
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
82
|
Peng X, Chen P, Zhang Y, Wu K, Ji N, Gao J, Wang H, Zhang Y, Xu T, Hua R. MPP2 interacts with SK2 to rescue the excitability of glutamatergic neurons in the BLA and facilitate the extinction of conditioned fear in mice. CNS Neurosci Ther 2024; 30:e14362. [PMID: 37469037 PMCID: PMC10805397 DOI: 10.1111/cns.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
AIMS The basolateral amygdala (BLA) plays an integral role in anxiety disorders (such as post traumatic stress disorder) stem from dysregulated fear memory. The excitability of glutamatergic neurons in the BLA correlates with fear memory, and the afterhyperpolarization current (IAHP ) mediated by small-conductance calcium-activated potassium channel subtype 2 (SK2) dominates the excitability of glutamatergicneurons. This study aimed to explore the effect of MPP2 interacts with SK2 in the excitability of glutamatergic neurons in the BLA and the extinction of conditioned fear in mice. METHODS Fear memory was analyzed via freezing percentage. Western blotting and fluorescence quantitative PCR were used to determine the expression of protein and mRNA respectively. Electrophysiology was employed to measure the excitability of glutamatergic neurons and IAHP . RESULTS Fear conditioning decreased the levels of synaptic SK2 channels in the BLA, which were restored following fear extinction. Notably, reduced expression of synaptic SK2 channels in the BLA during fear conditioning was caused by the increased activity of protein kinase A (PKA), while increased levels of synaptic SK2 channels in the BLA during fear extinction were mediated by interactions with membrane-palmitoylated protein 2 (MPP2). CONCLUSIONS Our results revealed that MPP2 interacts with the SK2 channels and rescues the excitability of glutamatergic neurons by increasing the expression of synaptic SK2 channels in the BLA to promote the normalization of anxiety disorders and provide a new direction for the treatment.
Collapse
Affiliation(s)
- Xiaohan Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Panpan Chen
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
- Anesthesiology DepartmentJiangsu Province HospitalNanjingChina
| | - Yang Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Ningning Ji
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Jinghua Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Hui Wang
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Yong‐mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouChina
| | - Tie Xu
- Emergency Medicine DepartmentThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Rong Hua
- Emergency Medicine DepartmentThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
83
|
Webb EK, Harnett NG. The biological embedding of structural inequities: new insight from neuroscience. Neuropsychopharmacology 2024; 49:337-338. [PMID: 37463977 PMCID: PMC10700559 DOI: 10.1038/s41386-023-01655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- E Kate Webb
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
84
|
Dunn W, Bershad A, Krantz DE, Vermetten E. MDMA for treatment of PTSD and neurorehabilitation in military populations. NeuroRehabilitation 2024; 55:357-368. [PMID: 39331116 PMCID: PMC11612990 DOI: 10.3233/nre-230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/06/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Neurorehabilitation in military populations is complicated by higher rates of PTSD and unique characteristics of military institutions. These factors can adversely impact the patient-therapist therapeutic alliance and engagement with the rehabilitation process leading to poorer outcomes. MDMA is a non-classical psychedelic with pro-social and fear regulating properties. MDMA-assisted therapy is being explored as a novel treatment for PTSD that potentially offers rapid symptom improvement and enhances therapeutic alliance. OBJECTIVE A review of MDMA-assisted therapy for PTSD is provided in the context of neurorehabilitation in military populations. The molecular mechanism of MDMA is outlined and a novel application of MDMA for neurorehabilitation is proposed. METHODS This is an expert review and synthesis of the literature. RESULTS Results from late-stage clinical trials suggest MDMA-assisted therapy for PTSD would be of particular benefit for military populations with PTSD. The unique pro-social properties of MDMA could be leveraged to enhance the therapeutic alliance and patient engagement during neurorehabilitation. CONCLUSION The unique qualities and benefits of MDMA and MDMA-assisted therapy for PTSD suggest relevant application in military personnel undergoing neurorehabilitation. There are many similarities in patient-therapist dynamics in PTSD treatment and neurorehabilitation. The properties of MDMA which enhance therapeutic alliance, downregulate fear, and increase cognitive flexibility would potentially benefit both military personnel with and without PTSD undergoing neurorehabilitation.
Collapse
Affiliation(s)
- Walter Dunn
- Department of Veteran Affairs, VISN-22 Mental Illness Research Education Clinical Center, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, USA
| | - Anya Bershad
- Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, USA
| | - David E Krantz
- Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, USA
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, USA
| | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
85
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
86
|
Grafe L, Miller KE, Ross RJ, Bhatnagar S. The importance of REM sleep fragmentation in the effects of stress on sleep: Perspectives from preclinical studies. Neurobiol Stress 2024; 28:100588. [PMID: 38075023 PMCID: PMC10709081 DOI: 10.1016/j.ynstr.2023.100588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 02/12/2024] Open
Abstract
Psychological stress poses a risk for sleep disturbances. Importantly, trauma-exposed individuals who develop posttraumatic stress disorder (PTSD) frequently report insomnia and recurrent nightmares. Clinical studies have provided insight into the mechanisms of these sleep disturbances. We review polysomnographic findings in PTSD and identify analogous measures that have been made in animal models of PTSD. There is a rich empirical and theoretical literature on rapid eye movement sleep (REMS) substrates of insomnia and nightmares, with an emphasis on REMS fragmentation. For future investigations of stress-induced sleep changes, we recommend a focus on tonic, phasic and other microarchitectural REMS measures. Power spectral density analysis of the sleep EEG should also be utilized. Animal models with high construct validity can provide insight into gender and time following stressor exposure as moderating variables. Ultimately, preclinical studies with translational potential will lead to improved treatment for stress-related sleep disturbances.
Collapse
Affiliation(s)
- Laura Grafe
- Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, USA
| | | | - Richard J. Ross
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
87
|
Gyles TM, Nestler EJ, Parise EM. Advancing preclinical chronic stress models to promote therapeutic discovery for human stress disorders. Neuropsychopharmacology 2024; 49:215-226. [PMID: 37349475 PMCID: PMC10700361 DOI: 10.1038/s41386-023-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
There is an urgent need to develop more effective treatments for stress-related illnesses, which include depression, post-traumatic stress disorder, and anxiety. We view animal models as playing an essential role in this effort, but to date, such approaches have generally not succeeded in developing therapeutics with new mechanisms of action. This is partly due to the complexity of the brain and its disorders, but also to inherent difficulties in modeling human disorders in rodents and to the incorrect use of animal models: namely, trying to recapitulate a human syndrome in a rodent which is likely not possible as opposed to using animals to understand underlying mechanisms and evaluating potential therapeutic paths. Recent transcriptomic research has established the ability of several different chronic stress procedures in rodents to recapitulate large portions of the molecular pathology seen in postmortem brain tissue of individuals with depression. These findings provide crucial validation for the clear relevance of rodent stress models to better understand the pathophysiology of human stress disorders and help guide therapeutic discovery. In this review, we first discuss the current limitations of preclinical chronic stress models as well as traditional behavioral phenotyping approaches. We then explore opportunities to dramatically enhance the translational use of rodent stress models through the application of new experimental technologies. The goal of this review is to promote the synthesis of these novel approaches in rodents with human cell-based approaches and ultimately with early-phase proof-of-concept studies in humans to develop more effective treatments for human stress disorders.
Collapse
Affiliation(s)
- Trevonn M Gyles
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
88
|
Zaretsky TG, Jagodnik KM, Barsic R, Antonio JH, Bonanno PA, MacLeod C, Pierce C, Carney H, Morrison MT, Saylor C, Danias G, Lepow L, Yehuda R. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr Neuropharmacol 2024; 22:636-735. [PMID: 38284341 PMCID: PMC10845102 DOI: 10.2174/1570159x22666231027111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 01/30/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.
Collapse
Affiliation(s)
- Tamar Glatman Zaretsky
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen M. Jagodnik
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Barsic
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josimar Hernandez Antonio
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip A. Bonanno
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn MacLeod
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlotte Pierce
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter Carney
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan T. Morrison
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Saylor
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Danias
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
89
|
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS, Lisboa SF. "NO" Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023; 29:89. [PMID: 38202672 PMCID: PMC10779493 DOI: 10.3390/molecules29010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Bruna F. Ferreira
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Isabela Pavan-Silva
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Francisco S. Guimarães
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Sabrina F. Lisboa
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
90
|
Yu Y, Wu K, Yang X, Long J, Chang C. Terahertz Photons Improve Cognitive Functions in Posttraumatic Stress Disorder. RESEARCH (WASHINGTON, D.C.) 2023; 6:0278. [PMID: 38111677 PMCID: PMC10726292 DOI: 10.34133/research.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/20/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a serious psychosis leading to cognitive impairment. To restore cognitive functions for patients, the main treatments are based on medication or rehabilitation training but with limited effectiveness and strong side effects. Here, we demonstrate a new treatment approach for PTSD by using terahertz (THz) photons stimulating the hippocampal CA3 subregion. We verified that this method can nonthermally restore cognitive function in PTSD rats in vivo. After THz photon irradiation, the PTSD rats' recognitive index improved by about 10% in a novel object recognition test, the PTSD rats' accuracy improved by about 100% in a shuttler box test, the PTSD rats' numbers to identify target box was about 5 times lower in a Barnes maze test, and the rate of staying in new arm increased by approximately 40% in a Y-maze test. Further experimental studies found that THz photon (34.5 THz) irradiation could improve the expression of NR2B (increased by nearly 40%) and phosphorylated NR2B (increased by about 50%). In addition, molecular dynamics simulations showed that THz photons at a frequency of 34.5 THz are mainly absorbed by the pocket of glutamate receptors rather than by glutamate molecules. Moreover, the binding between glutamate receptors and glutamate molecules was increased by THz photons. This study offers a nondrug, nonthermal approach to regulate the binding between the excitatory neurotransmitter (glutamate) and NR2B. By increasing synaptic plasticity, it effectively improves the cognitive function of animals with PTSD, providing a promising treatment strategy for NR2B-related cognitive disorders.
Collapse
Affiliation(s)
- Yun Yu
- School of Life Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Jiangang Long
- School of Life Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics,
Peking University, Beijing 100871, China
| |
Collapse
|
91
|
Sep MSC, Geuze E, Joëls M. Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies. Transl Psychiatry 2023; 13:376. [PMID: 38062029 PMCID: PMC10703817 DOI: 10.1038/s41398-023-02660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Current evidence-based treatments for post-traumatic stress disorder (PTSD) are efficacious in only part of PTSD patients. Therefore, novel neurobiologically informed approaches are urgently needed. Clinical and translational neuroscience point to altered learning and memory processes as key in (models of) PTSD psychopathology. We extended this notion by clarifying at a meta-level (i) the role of information valence, i.e. neutral versus emotional/fearful, and (ii) comparability, as far as applicable, between clinical and preclinical phenotypes. We hypothesized that cross-species, neutral versus emotional/fearful information processing is, respectively, impaired and enhanced in PTSD. This preregistered meta-analysis involved a literature search on PTSD+Learning/Memory+Behavior, performed in PubMed. First, the effect of information valence was estimated with a random-effects meta-regression. The sources of variation were explored with a random forest-based analysis. The analyses included 92 clinical (N = 6732 humans) and 182 preclinical (N = 6834 animals) studies. A general impairment of learning, memory and extinction processes was observed in PTSD patients, regardless of information valence. Impaired neutral learning/memory and fear extinction were also present in animal models of PTSD. Yet, PTSD models enhanced fear/trauma memory in preclinical studies and PTSD impaired emotional memory in patients. Clinical data on fear/trauma memory was limited. Mnemonic phase and valence explained most variation in rodents but not humans. Impaired neutral learning/memory and fear extinction show stable cross-species PTSD phenotypes. These could be targeted for novel PTSD treatments, using information gained from neurobiological animal studies. We argue that apparent cross-species discrepancies in emotional/fearful memory deserve further in-depth study; until then, animal models targeting this phenotype should be applied with utmost care.
Collapse
Affiliation(s)
- Milou S C Sep
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands.
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
- GGZ inGeest Mental Health Care, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands.
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam University Medical Center location Vrije Universiteit, Amsterdam, The Netherlands.
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
92
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
93
|
Haubrich J, Nader K. Network-level changes in the brain underlie fear memory strength. eLife 2023; 12:RP88172. [PMID: 38047914 PMCID: PMC10695559 DOI: 10.7554/elife.88172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
The strength of a fear memory significantly influences whether it drives adaptive or maladaptive behavior in the future. Yet, how mild and strong fear memories differ in underlying biology is not well understood. We hypothesized that this distinction may not be exclusively the result of changes within specific brain regions, but rather the outcome of collective changes in connectivity across multiple regions within the neural network. To test this, rats were fear conditioned in protocols of varying intensities to generate mild or strong memories. Neuronal activation driven by recall was measured using c-fos immunohistochemistry in 12 brain regions implicated in fear learning and memory. The interregional coordinated brain activity was computed and graph-based functional networks were generated to compare how mild and strong fear memories differ at the systems level. Our results show that mild fear recall is supported by a well-connected brain network with small-world properties in which the amygdala is well-positioned to be modulated by other regions. In contrast, this connectivity is disrupted in strong fear memories and the amygdala is isolated from other regions. These findings indicate that the neural systems underlying mild and strong fear memories differ, with implications for understanding and treating disorders of fear dysregulation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill UniversityMontréalCanada
- Department of Neurophysiology, Ruhr-University BochumBochumGermany
| | - Karim Nader
- Department of Psychology, McGill UniversityMontréalCanada
| |
Collapse
|
94
|
Vozella V, Cruz B, Feldman HC, Bullard R, Bianchi PC, Natividad LA, Cravatt BF, Zorrilla EP, Ciccocioppo R, Roberto M. Sexually dimorphic effects of monoacylglycerol lipase inhibitor MJN110 on stress-related behaviour and drinking in Marchigian Sardinian alcohol-preferring rats. Br J Pharmacol 2023; 180:3130-3145. [PMID: 37488777 PMCID: PMC10805956 DOI: 10.1111/bph.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid (eCB) system plays an important homeostatic role in the regulation of stress circuits and has emerged as a therapeutic target to treat stress disorders and alcohol use disorder (AUD). Extensive research has elucidated a role for the eCB anandamide (AEA), but less is known about 2-arachidonoylglycerol (2-AG) mediated signalling. EXPERIMENTAL APPROACH We pharmacologically enhanced eCB signalling by inhibiting the 2-AG metabolizing enzyme, monoacylglycerol lipase (MAGL), in male and female Marchigian Sardinian alcohol-preferring (msP) rats, a model of innate alcohol preference and stress hypersensitivity, and in control Wistar rats. We tested the acute effect of the selective MAGL inhibitor MJN110 in alleviating symptoms of alcohol drinking, anxiety, irritability and fear. KEY RESULTS A single systemic administration of MJN110 increased 2-AG levels in the central amygdala, prelimbic and infralimbic cortex but did not acutely alter alcohol drinking. MAGL inhibition reduced aggressive behaviours in female msPs, and increased defensive behaviours in male msPs, during the irritability test. Moreover, in the novelty-induced hypophagia test, MJN110 selectively enhanced palatable food consumption in females, mitigating stress-induced food suppression. Lastly, msP rats showed increased conditioned fear behaviour compared with Wistar rats, and MJN110 reduced context-associated conditioned fear responses, but not cue-probed fear expression, in male msPs. CONCLUSIONS AND IMPLICATIONS Acute inhibition of MAGL attenuated some stress-related responses in msP rats but not voluntary alcohol drinking. Our results provide new insights into the sex dimorphism documented in stress-induced responses. Sex-specific eCB-based approaches should be considered in the clinical development of therapeutics.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hannah C. Feldman
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paula C. Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil
| | - Luis A. Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, TX 78712, USA
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032 Italy
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
95
|
Wu Y, Chen Y, Xu Y, Ni W, Lin C, Shao X, Shen Z, He X, Wang C, Fang J. Proteomic Analysis of the Amygdala Reveals Dynamic Changes in Glutamate Transporter-1 During Progression of Complete Freund's Adjuvant-Induced Pain Aversion. Mol Neurobiol 2023; 60:7166-7184. [PMID: 37541967 PMCID: PMC10657795 DOI: 10.1007/s12035-023-03415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/31/2023] [Indexed: 08/06/2023]
Abstract
Pain sufferer usually show an aversion to the environment associated with pain, identified as pain aversion. The amygdala, an almond-shaped limbic structure in the medial temporal lobe, exerts a critical effect on emotion and pain formation. However, studies on inflammatory pain-induced aversion are still relatively limited, and the available evidence is not enough to clarify its inherent mechanisms. Proteomics is a high-throughput, comprehensive, and objective study method that compares the similarities and differences of protein expression under different conditions to screen potential targets. The current study aimed to identify potential pivotal proteins in the amygdala of rats after complete Freund's adjuvant (CFA)-induced pain aversion via proteomics analysis. Immunohistochemistry was performed to confirm the expression of glutamate transporter-1 (GLT-1) in the amygdala during different periods of pain aversion. Thirteen proteins were found to be different between the day 2 and day 15 groups. Among the 13 differentially expressed proteins, Q8R64 denotes GLT-1, which utilises synaptic glutamate to remain optimal extracellular glutamic levels, thereby preventing accumulation in the synaptic cleft and consequent excitotoxicity. The variation in GLT-1 expression was correlated with the variation tendency of pain aversion, which implies a potential link between the modulation of pain aversion and the excitability of glutamatergic neurons. This study demonstrated that exposure to inflammatory pain results in aversion induced from pain, leading to extensive biological changes in the amygdala.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuerong Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunyun Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqin Ni
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chalian Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
96
|
McDannald MA. Pavlovian Fear Conditioning Is More than You Think It Is. J Neurosci 2023; 43:8079-8087. [PMID: 38030400 PMCID: PMC10697403 DOI: 10.1523/jneurosci.0256-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
A common neuroscience application of Pavlovian fear conditioning is to manipulate neuron-type activity, pair a cue with foot shock, then measure cue-elicited freezing in a novel context. If the manipulation reduces freezing, the neuron type is implicated in Pavlovian fear conditioning. This application reduces Pavlovian fear conditioning to a single concept. In this Viewpoint, I describe experiments supporting the view that Pavlovian fear conditioning refers to three distinct concepts: procedure, process, and behavior. An experimenter controls procedure, observes behavior, but infers process. Distinguishing these concepts is essential because: (1) a shock-paired cue can engage numerous processes and behaviors; (2) experimenter decisions about procedure influence the processes engaged and behaviors elicited; and (3) many processes are latent, imbuing the cue with properties that only manifest outside of the original conditioning setting. This means we could understand the complete neural basis of freezing, yet know little about the neural basis of fear. Neuroscientists can choose to use a variety of procedures to study a diversity of processes and behaviors. Manipulating neuron-type activity in multiple procedures can reveal specific, general, or complex neuron-type contributions to cue-elicited processes and behaviors. The results will be a broader and more detailed neural basis of fear with greater relevance to the spectrum of symptoms defining anxiety and stressor-related disorders.
Collapse
Affiliation(s)
- Michael A McDannald
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, Massachusetts 02467
| |
Collapse
|
97
|
Katrinli S. The cellular cost of PTSD - From immediate impact to chronic consequences. Brain Behav Immun 2023; 114:193-194. [PMID: 37648001 DOI: 10.1016/j.bbi.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
98
|
Ke S, Hartmann J, Ressler KJ, Liu YY, Koenen KC. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain Behav Immun 2023; 114:360-370. [PMID: 37689277 PMCID: PMC10591863 DOI: 10.1016/j.bbi.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
99
|
Barth AM, Jelitai M, Vasarhelyi-Nagy MF, Varga V. Aversive stimulus-tuned responses in the CA1 of the dorsal hippocampus. Nat Commun 2023; 14:6841. [PMID: 37891171 PMCID: PMC10611787 DOI: 10.1038/s41467-023-42611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Throughout life animals inevitably encounter unforeseen threatening events. Activity of principal cells in the hippocampus is tuned for locations and for salient stimuli in the animals' environment thus forming a map known to be pivotal for guiding behavior. Here, we explored if a code of threatening stimuli exists in the CA1 region of the dorsal hippocampus of mice by recording neuronal response to aversive stimuli delivered at changing locations. We have discovered a rapidly emerging, location independent response to innoxious aversive stimuli composed of the coordinated activation of subgroups of pyramidal cells and connected interneurons. Activated pyramidal cells had higher basal firing rate, more probably participated in ripples, targeted more interneurons than place cells and many of them lacked place fields. We also detected aversive stimulus-coupled assemblies dominated by the activated neurons. Notably, these assemblies could be observed even before the delivery of the first aversive event. Finally, we uncovered the systematic shift of the spatial code from the aversive to, surprisingly, the reward location during the fearful stimulus. Our results uncovered components of the dorsal CA1 circuit possibly key for re-sculpting the spatial map in response to abrupt aversive events.
Collapse
Affiliation(s)
- Albert M Barth
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary.
- Cerebral Cortex Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| | - Marta Jelitai
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | | | - Viktor Varga
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| |
Collapse
|
100
|
Song Q, Tan Y. Knowledge mapping of the relationship between norepinephrine and memory: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1242643. [PMID: 37955010 PMCID: PMC10634421 DOI: 10.3389/fendo.2023.1242643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Memory is a fundamental cognitive function for successful interactions with a complex environment. Norepinephrine (NE) is an essential component of catecholamine induced by emotional arousal, and numerous studies have demonstrated that NE is a key regulator in memory enhancement. We therefore conducted a bibliometric analysis to represent the knowledge pattern of the literature on the theme of NE-memory relationship. Methods The WOSCC database was selected to extract literature published during 2003-2022. The collected data of annual production, global cooperation, research structure and hotspots were analyzed and visualized. Results Our results showed that research on the links between NE and memory displayed a considerable development trend over the last two decades. The USA had a leading position in terms of scientific outputs and collaborations. Meanwhile, University of California Irvine contributed the most publications. Benno Roozendaal and James McGaugh were the most prolific authors in this field, and Neurobiology of Learning and Memory had the highest number of publications on this topic. The research emphasis has evolved from memory-related diseases and brain regions to neural mechanisms for different types of memory at neural circuit levels. Conclusion Our bibliometric analysis systematically analyzed the literature on the links between NE and memory from a bibliometric perspective. The demonstrated results of the knowledge mapping would provide valuable insights into the global research landscape.
Collapse
Affiliation(s)
- Qi Song
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|