51
|
Individual and Binary Mixture Toxicity of Five Nanoparticles in Marine Microalga Heterosigma akashiwo. Int J Mol Sci 2022; 23:ijms23020990. [PMID: 35055175 PMCID: PMC8780840 DOI: 10.3390/ijms23020990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The investigation of the combined toxic action of different types of nanoparticles (NPs) and their interaction between each other and with aquatic organisms is an important problem of modern ecotoxicology. In this study, we assessed the individual and mixture toxicities of cadmium and zinc sulfides (CdS and ZnS), titanium dioxide (TiO2), and two types of mesoporous silicon dioxide (with no inclusions (SMB3) and with metal inclusions (SMB24)) by a microalga growth inhibition bioassay. The counting and size measurement of microalga cells and NPs were performed by flow cytometry. The biochemical endpoints were measured by a UV-VIS microplate spectrophotometer. The highest toxicity was observed for SMB24 (EC50, 3.6 mg/L) and CdS (EC50, 21.3 mg/L). A combined toxicity bioassay demonstrated that TiO2 and the SMB3 NPs had a synergistic toxic effect in combinations with all the tested samples except SMB24, probably caused by a “Trojan horse effect”. Sample SMB24 had antagonistic toxic action with CdS and ZnS, which was probably caused by metal ion scavenging.
Collapse
|
52
|
Landi C, Liberatori G, Cotugno P, Sturba L, Vannuccini ML, Massari F, Miniero DV, Tursi A, Shaba E, Behnisch PA, Carleo A, Di Giuseppe F, Angelucci S, Bini L, Corsi I. First Attempt to Couple Proteomics with the AhR Reporter Gene Bioassay in Soil Pollution Monitoring and Assessment. TOXICS 2021; 10:toxics10010009. [PMID: 35051051 PMCID: PMC8779689 DOI: 10.3390/toxics10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022]
Abstract
A topsoil sample obtained from a highly industrialized area (Taranto, Italy) was tested on the DR-CALUX® cell line and the exposed cells processed with proteomic and bioinformatics analyses. The presence of polyhalogenated compounds in the topsoil extracts was confirmed by GC-MS/MS analysis. Proteomic analysis of the cells exposed to the topsoil extracts identified 43 differential proteins. Enrichment analysis highlighted biological processes, such as the cellular response to a chemical stimulus, stress, and inorganic substances; regulation of translation; regulation of apoptotic process; and the response to organonitrogen compounds in light of particular drugs and compounds, extrapolated by bioinformatics all linked to the identified protein modifications. Our results confirm and reflect the complex epidemiological situation occurring among Taranto inhabitants and underline the need to further investigate the presence and sources of inferred chemicals in soils. The combination of bioassays and proteomics reveals a more complex scenario of chemicals able to affect cellular pathways and leading to toxicities rather than those identified by only bioassays and related chemical analysis. This combined approach turns out to be a promising tool for soil risk assessment and deserves further investigation and developments for soil monitoring and risk assessment.
Collapse
Affiliation(s)
- Claudia Landi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
| | - Giulia Liberatori
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
| | - Pietro Cotugno
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Lucrezia Sturba
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
| | - Maria Luisa Vannuccini
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
| | - Federica Massari
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Daniela Valeria Miniero
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Angelo Tursi
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy; (P.C.); (F.M.); (D.V.M.); (A.T.)
| | - Enxhi Shaba
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
| | - Peter A. Behnisch
- BioDetection System BV (BDS) Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, 30625 Hannover, Germany;
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology and Proteomics Unit, Centre of Advanced Studies and Technology, “G. D’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology and Proteomics Unit, Centre of Advanced Studies and Technology, “G. D’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.L.); (E.S.)
- Correspondence: (L.B.); (I.C.); Tel.: +39-0577-234938 (L.B.); +39-0577-232169 (I.C.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.L.); (L.S.); (M.L.V.)
- Correspondence: (L.B.); (I.C.); Tel.: +39-0577-234938 (L.B.); +39-0577-232169 (I.C.)
| |
Collapse
|
53
|
Remote Sensing Detection of Algal Blooms in a Lake Impacted by Petroleum Hydrocarbons. REMOTE SENSING 2021. [DOI: 10.3390/rs14010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to combine all available information on the state of Lake Pertusillo (Basilicata, Italy), both in the field and published, which included Sentinel-2A satellite data, to understand algal blooms in a lacustrine environment impacted by petroleum hydrocarbons. Sentinel-2A data was retrospectively used to monitor the state of the lake, which is located near the largest land-based oil extraction plant in Europe, with particular attention to chlorophyll a during algal blooms and petroleum hydrocarbons. In winter 2017, a massive dinoflagellate bloom (10.4 × 106 cell/L) of Peridinium umbonatum and a simultaneous presence of hydrocarbons were observed at the lake surface. Furthermore, a recent study using metagenomic analyses carried out three months later identified a hydrocarbonoclastic microbial community specialized in the degradation aromatic and nitroaromatic hydrocarbons. In this study, Sentinel-2A imagery was able to detect the presence of chlorophyll a in the waters, while successfully distinguishing the signal from that of hydrocarbons. Remotely sensed results confirmed surface reference measurements of lacustrine phytoplankton, chlorophyll a, and the presence of hydrocarbons during algal blooms, thereby explaining the presence of the hydrocarbonoclastic microbial community found in the lake three months after the oil spill event. The combination of emerging methodologies such as satellite systems and metagenomics represent an important support methodology for describing complex contaminations in diverse ecosystems.
Collapse
|
54
|
Cristale J, Oliveira Santos I, Umbuzeiro GDA, Fagnani E. Occurrence and risk assessment of organophosphate esters in urban rivers from Piracicaba watershed (Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59244-59255. [PMID: 32748359 DOI: 10.1007/s11356-020-10150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate esters (OPEs) are substances globally used as flame retardants and plasticizers that have been detected in all environmental compartments. This study aimed to evaluate the occurrence and sources of ten OPEs in the Piracicaba River Basin (Brazil). Twelve sampling sites were selected in five rivers with different pollution sources; six sampling campaigns were performed encompassing dry and wet seasons. ΣOPEs ranged from 0.12 to 6.2 μg L-1; the levels in urban areas were higher than in rural and non-urban areas, but no overall tendency concerning the seasonal effect on OPEs concentrations was observed. Tris(2-butoxyethyl) phosphate (TBOEP), tris(2-chloroisopropyl) phosphate (TCIPP), and tris(1,3-dichloroisopropyl) phosphate (TDCIPP) were the most abundant and frequently detected compounds. Nine OPEs were detected at higher concentrations in a site affected by effluents from textile industries. An acute toxicity test using Daphnia similis was performed for tris(2-ethylhexyl) phosphate (TEHP) for the calculation of a preliminary predicted no effect concentration (PNEC). The risk quotient (RQ) approach was applied and risk to aquatic environment related to TEHP levels was observed in areas adjacent to textile industries, but more toxicity studies are required for the determination of a more reliable PNEC.
Collapse
Affiliation(s)
- Joyce Cristale
- School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil.
| | - Izabela Oliveira Santos
- School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
| | - Gisela de Aragão Umbuzeiro
- School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
| | - Enelton Fagnani
- School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
| |
Collapse
|
55
|
Naidu R, Biswas B, Willett IR, Cribb J, Kumar Singh B, Paul Nathanail C, Coulon F, Semple KT, Jones KC, Barclay A, Aitken RJ. Chemical pollution: A growing peril and potential catastrophic risk to humanity. ENVIRONMENT INTERNATIONAL 2021; 156:106616. [PMID: 33989840 DOI: 10.1016/j.envint.2021.106616] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 05/14/2023]
Abstract
Anthropogenic chemical pollution has the potential to pose one of the largest environmental threats to humanity, but global understanding of the issue remains fragmented. This article presents a comprehensive perspective of the threat of chemical pollution to humanity, emphasising male fertility, cognitive health and food security. There are serious gaps in our understanding of the scale of the threat and the risks posed by the dispersal, mixture and recombination of chemicals in the wider environment. Although some pollution control measures exist they are often not being adopted at the rate needed to avoid chronic and acute effects on human health now and in coming decades. There is an urgent need for enhanced global awareness and scientific scrutiny of the overall scale of risk posed by chemical usage, dispersal and disposal.
Collapse
Affiliation(s)
- Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Bhabananda Biswas
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ian R Willett
- School of Agriculture & Food Systems, The University of Melbourne, VIC 3052, Australia
| | - Julian Cribb
- Australian National Centre for the Public Awareness of Science (as an adjunct), Australian National University, Canberra 0200, Australia
| | - Brajesh Kumar Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | | | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, United Kingdom
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Adam Barclay
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Robert John Aitken
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
56
|
Molnar E, Maasz G, Pirger Z. Environmental risk assessment of pharmaceuticals at a seasonal holiday destination in the largest freshwater shallow lake in Central Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59233-59243. [PMID: 32666449 PMCID: PMC8541981 DOI: 10.1007/s11356-020-09747-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/15/2020] [Indexed: 05/19/2023]
Abstract
The presence of pharmacologically active compounds (PhACs) in surface waters poses an environmental risk of chronic exposure to nontarget organisms, which is a well-established and serious concern worldwide. Our aim was to determine the temporal changes in ecological risk quotient (RQ) based on the concentrations of 42 PhACs from six sampling sites on seven sampling dates in the water of a freshwater lake in Central Europe preferentially visited by tourists. Our hypothesis was that the environmental risk increases during the summer holiday season due to the influence of tourists. Different experimental toxicological threshold concentrations and seasonal measured environmental concentrations of 16 PhACs were applied to ecological risk assessment. RQs of 4 dominant PhACs (diclofenac, estrone [E1], estradiol [E2], and caffeine) indicated high ecological risk (RQ > 1) for freshwater ecosystems. Additionally, our results confirmed the assumptions that the high tourist season had a significant impact on the calculated RQ; however, these results are mainly due to the concentration and temporal change of particular PhACs, including diclofenac (5.3-419.4 ng/L), E1 (0.1-5.5 ng/L), and E2 (0.1-19.6 ng/L). The seasonal dependent highest RQs changed as follows: 9.80 (June 2017; E2), 1.23 (August 2017; E1), 0.43 (November 2017; E1), 0.51 (April 2018; E1), 5.58 (June 2018, diclofenac), 39.50 (August 2018; diclofenac), and 30.60 (October 2018; diclofenac).
Collapse
Affiliation(s)
- Eva Molnar
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, 8237, Hungary
| | - Gabor Maasz
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, 8237, Hungary.
| | - Zsolt Pirger
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, 8237, Hungary
| |
Collapse
|
57
|
Concentrations, Source Characteristics, and Health Risk Assessment of Toxic Heavy Metals in PM 2.5 in a Plateau City (Kunming) in Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111004. [PMID: 34769524 PMCID: PMC8583458 DOI: 10.3390/ijerph182111004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
To explore the mass concentration levels and health risks of heavy metals in the air in dense traffic environments, PM2.5 samples were collected at three sites in the city of Kunming in April and October 2013, and January and May 2014. Ten heavy metals––V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb––were analyzed by ICP–MS, and the results showed PM2.5 concentrations significantly higher in spring and winter than in summer and autumn, especially for Zn and Pb. The concentration of heavy metals on working days is significantly higher, indicating that vehicle emissions are significant contributors. An enrichment factor analysis showed that Cr, Mn, Ni, Cu, Zn, As, Cd and Pb come mainly from anthropogenic sources, while V and Co may be both anthropogenic and natural. The correlation and principal component analysis (PCA) showed that Ni, Cu, Zn, Cd and Pb mainly come from vehicles emissions and metallurgical industries; Cr and Mn, from vehicles emissions and road dust; and As, mainly from coal combustion. The health risk assessment shows that the non-carcinogenic risk thresholds of the heavy metals in PM2.5 to children and adult men and women are all less than 1. The carcinogenic risk of Cr for men and women in traffic-intensive areas exceeds 10−4, reaching 1.64 × 10−4 and 1.4 × 10−4, respectively.
Collapse
|
58
|
Bottalico LN, Korlyakova J, Weljie AM, Habibi HR. Seasonally Related Disruption of Metabolism by Environmental Contaminants in Male Goldfish ( Carassius auratus). FRONTIERS IN TOXICOLOGY 2021; 3:750870. [PMID: 35295106 PMCID: PMC8915895 DOI: 10.3389/ftox.2021.750870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Endocrine disrupting chemicals mimic or disrupt action of the natural hormones, adversely impacting hormonal function as well as cardiovascular, reproductive, and metabolic health. Goldfish are seasonal breeders with an annual reproductive cycle regulated by neuroendocrine signaling which involves allocation of metabolic energy to sustain growth and reproduction. We hypothesize that seasonal changes in physiology alter overall vulnerability of goldfish to metabolic perturbation induced by environmental contaminants. In this study, we assess effects of endogenous hormones, individual contaminants and their mixture on metabolism of goldfish at different reproductive stages. Exposure effects were assessed using 1H-NMR metabolomics profiling of male goldfish midbrain, gonad and liver harvested during early recrudescence (October), mid-recrudescence (February) and late recrudescence (June). Compounds assessed include bisphenol A, nonylphenol, bis(2-ethylhexyl) phthalate, fucosterol and a tertiary mixture (DEHP + NP + FS). Metabolome-level responses induced by contaminant exposure across tissues and seasons were benchmarked against responses induced by 17β-estradiol, testosterone and thyroid hormone (T3). We observe a clear seasonal dependence to metabolome-level alteration induced by hormone or contaminant exposures, with February (mid-recrudescence) the stage at which male goldfish are most vulnerable to metabolic perturbation. Responses induced by contaminant exposures differed from those induced by the natural hormones in a season-specific manner. Exposure to the tertiary mixture induced a functional gain at the level of biochemical pathways modeling over responses induced by individual components in select tissues and seasons. We demonstrate the importance of seasonally driven changes in physiology altering overall vulnerability of goldfish to metabolic perturbation induced by environmental contaminants, the relevance of which likely extends to other seasonally-breeding species.
Collapse
Affiliation(s)
- Lisa N. Bottalico
- Department of Systems Pharmacology and Translational Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia Korlyakova
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada,*Correspondence: Hamid R Habibi,
| |
Collapse
|
59
|
Environmental Risk Characterization of an Antiretroviral (ARV) Lamivudine in Ecosystems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168358. [PMID: 34444108 PMCID: PMC8391970 DOI: 10.3390/ijerph18168358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022]
Abstract
Antiretroviral drugs for the treatment of human immunodeficiency virus (HIV) and other viral infections are among the emerging contaminants considered for ecological risk assessment. These compounds have been reported to be widely distributed in water bodies and other aquatic environments, while data concerning the risk they may pose to unintended non-target species in a different ecosystem (environment) is scanty. In South Africa and other developing countries, lamivudine is one of the common antiretrovirals applied. Despite this, little is known about its environmental impacts as an emerging contaminant. The present study employed a battery of ecotoxicity bioassays to assess the environmental threat lamivudine poses to aquatic fauna and flora. Daphnia magna (filter feeders), the Ames bacterial mutagenicity test, Lactuca sativa (lettuce) germination test, and the Allium cepa root tip assay were conducted, testing lamivudine at two concentrations (10 and 100 µg/L), with environmental relevance. The Daphnia magna toxicity test revealed a statistically significant response (p << 0.05) with a mortality rate of 85% on exposure to 100 µg/L lamivudine in freshwater, which increased to 100% at 48-h exposure. At lower concentrations of 10 µg/L lamivudine, 90% and 55% survival rates were observed at 24 h and 48 h, respectively. No potential mutagenic effects were observed from the Ames test at both concentrations of lamivudine. Allium cepa bioassays revealed a noticeable adverse impact on the root lengths on exposure to 100 µg/L lamivudine. This impact was further investigated through microscopic examination, revealing some chromosomal aberration in the exposed Allium cepa root tips. The Lactuca sativa bioassay showed a slight adverse impact on both the germination rate of the seeds and their respective hypocotyl lengths compared to the control. Overall, this indicates that lamivudine poses an ecological health risk at different trophic levels, to both flora and fauna, at concentrations previously found in the environment.
Collapse
|
60
|
Taghizadeh SF, Azizi M, Rezaee R, Giesy JP, Karimi G. Polycyclic aromatic hydrocarbons, pesticides, and metals in olive: analysis and probabilistic risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39723-39741. [PMID: 33759105 DOI: 10.1007/s11356-021-13348-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
In the present study, levels of 22 pesticides, eight metals, and 16 polycyclic aromatic hydrocarbons (PAHs) in 1800 Iranian olive samples (20 cultivars from six different cultivation zones), were determined; then, health risk posed by oral consumption of the olive samples to Iranian consumers was assessed. Quantification of PAHs and pesticides was done by chromatography-mass spectrometry (GC-MS), and metal levels were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). There were no significant differences among the cultivars and zones in terms of the levels of the tested compounds. Target hazard quotients (THQ) were <1.0 for all pesticides, and total hazard indices (HI) indicated di minimis risk. At the 25th or 95th centiles, Incremental Life Time Cancer Risks (ILCRs) for carcinogenic elements, arsenic, and lead and noncarcinogenic metals did not exhibit a significant hazard (HI <1.0 for both cases). At the 25th or 95th centiles, ILCR and margins of exposure (MoE) for PAHs indicated di minimis risk. Sensitivity analysis showed that concentrations of contaminants had the most significant effect on carcinogenic and noncarcinogenic risks.
Collapse
Affiliation(s)
- Seyedeh Faezeh Taghizadeh
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P. O. Box, 1365-91775, Mashhad, Iran
| | - Majid Azizi
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Environmental Sciences, Baylor University, Waco, TX, USA
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P. O. Box, 1365-91775, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
61
|
Chen KF, Tsai YP, Lai CH, Xiang YK, Chuang KY, Zhu ZH. Human health-risk assessment based on chronic exposure to the carbonyl compounds and metals emitted by burning incense at temples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40640-40652. [PMID: 32743699 DOI: 10.1007/s11356-020-10313-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Health effects resulting from the smoke of carbonyl compounds (aldehydes and ketones) and metal-containing incense particles at temples during incense burning periods were evaluated at temple A (without incense reduction activities) and B (with incense reduction activities), Nantou County, in 2018. The predominant size fractions of particles were PM1, PM1-2.5, and PM2.5-10 at both temples. The total particle mass at temple A was approximately 1.1 times that of temple B due to incense reduction at temple B. The most abundant metal elements in all particle size fractions at both temples were Fe, Al, and Zn. Metal species of incense smoke are divided into three groups by hierarchical cluster analysis and heatmaps, showing higher metal contents in groups PM1, PM18-10, and PM18-2.5 at temple A. In contrast, higher metal contents were observed in PM18-10 and PM2.5-1 at temple B. Most of the carbonyl species were formaldehyde and acetaldehyde, released during incense burning periods, with concentrations ranging from 6.20 to 13.05 μg/m3 at both temples. The total deposited fluxes of particle-bound metals at temples A and B were determined to be 83.00% and 84.82% using the International Commission on Radiological Protection (ICRP) model. Health-risk assessments revealed that the risk values of metals and carbonyls were above recommended guidelines (10-6) at temple A. Since worshippers and staff are exposed to incense burning environments with poor ventilation over a long period, these toxic organic compounds and metals increase health risks in the respiratory tract. Therefore, incense reduction is important to achieve healthy temple environments.
Collapse
Affiliation(s)
- Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, Taiwan
| | - Yung-Pin Tsai
- Department of Civil Engineering, National Chi Nan University, Nantou, Taiwan
| | - Chia-Hsiang Lai
- Department of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| | - Yao-Kai Xiang
- Institute of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Kuen-Yuan Chuang
- Department of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Zhen-Hong Zhu
- Department of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
62
|
Santos D, Félix L, Luzio A, Parra S, Bellas J, Monteiro SM. Single and combined acute and subchronic toxic effects of microplastics and copper in zebrafish (Danio rerio) early life stages. CHEMOSPHERE 2021; 277:130262. [PMID: 33773317 DOI: 10.1016/j.chemosphere.2021.130262] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 05/11/2023]
Abstract
The evaluation of the interaction between microplastics (MPs) and heavy metals is of special importance for risk assessment. In this study, zebrafish (Danio rerio) were exposed to MPs (2 mg/L), two sub-lethal concentrations of copper (Cu, 60 and 125 μg/L) and their mixtures (Cu60 + MPs, Cu125 + MPs), from 2-h post-fertilization (hpf) until 14-days post-fertilization (dpf). Lethal and sublethal endpoints were evaluated, along with a set of biochemical and genetic biomarkers between 2 and 14 dpf. Exposure to MPs and Cu, single or combined, induced high mortality and oxidative stress in zebrafish larvae, with data showing that the antioxidant enzymes were inhibited at 6 dpf, increasing thereafter until 14 dpf, due to the accumulation of reactive oxygen species. MPs and Cu, single or combined, caused neurotoxicity in larvae by inhibiting acetylcholinesterase activity. There was an increased and significant effect of Cu + MPs groups on the evaluated biomarkers, concerning the corresponding Cu groups, suggesting that MPs may have a synergistic effect in relation to Cu. The Integrated Biomarker Response (IBR) evidenced that a higher degree of stress occurred at the larval period. Our findings highlight that MPs can act as a vector for heavy metals, therefore, influencing their bioavailability and toxicity in the organisms.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Laboratory Animal Science, Instituto de Biologia Molecular e Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen, Nº 208, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação Em Saúde (i3s), Universidade Do Porto, Rua Alfredo Allen, Nº 208, 4200-135, Porto, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Susana Parra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Department of Biology and Environment; University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| |
Collapse
|
63
|
Gosset A, Wiest L, Fildier A, Libert C, Giroud B, Hammada M, Hervé M, Sibeud E, Vulliet E, Polomé P, Perrodin Y. Ecotoxicological risk assessment of contaminants of emerging concern identified by "suspect screening" from urban wastewater treatment plant effluents at a territorial scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146275. [PMID: 33714835 DOI: 10.1016/j.scitotenv.2021.146275] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Urban wastewater treatment plants (WWTP) are a major vector of highly ecotoxic contaminants of emerging concern (CECs) for urban and sub-urban streams. Ecotoxicological risk assessments (ERAs) provide essential information to public environmental authorities. Nevertheless, ERAs are mainly performed at very local scale (one or few WWTPs) and on pre-selected list of CECs. To cope with these limits, the present study aims to develop a territorial-scale ERA on CECs previously identified by a "suspect screening" analytical approach (LC-QToF-MS) and quantified in the effluents of 10 WWTPs of a highly urbanized territory during three periods of the year. Among CECs, this work focused on pharmaceutical residue and pesticides. ERA was conducted following two complementary methods: (1) a single substance approach, based on the calculation for each CEC of risk quotients (RQs) by the ratio of Predicted Environmental Concentration (PEC) and Predicted No Effect Concentration (PNEC), and (2) mixture risk assessment ("cocktail effect") based on a concentration addition model (CA), summing individual RQs. Chemical results led to an ERA for 41 CEC (37 pharmaceuticals and 4 pesticides) detected in treated effluents. Single substance ERA identified 19 CECs implicated in at least one significant risk for streams, with significant risks for DEET, diclofenac, lidocaine, atenolol, terbutryn, atorvastatin, methocarbamol, and venlafaxine (RQs reaching 39.84, 62.10, 125.58, 179.11, 348.24, 509.27, 1509.71 and 3097.37, respectively). Mixture ERA allowed the identification of a risk (RQmix > 1) for 9 of the 10 WWTPs studied. It was also remarked that CECs leading individually to a negligible risk could imply a significant risk in a mixture. Finally, the territorial ERA showed a diversity of risk situations, with the highest concerns for 3 WWTPs: the 2 biggest of the territory discharging into a large French river, the Rhône, and for the smallest WWTP that releases into a small intermittent stream.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France; Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France; Ecole Urbaine de Lyon, Institut Convergences, Commissariat général aux investissements d'avenir, Bât. Atrium, 43 Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christine Libert
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Myriam Hammada
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Matthieu Hervé
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Elisabeth Sibeud
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Philippe Polomé
- Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France
| | - Yves Perrodin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| |
Collapse
|
64
|
Butrimavičienė L, Nalivaikienė R, Kalcienė V, Rybakovas A. Impact of copper and zinc mixture on haematological parameters of rainbow trout (Oncorhynchus mykiss): acute exposure and recovery. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:873-884. [PMID: 33851333 DOI: 10.1007/s10646-021-02404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Significant changes in composition of rainbow trout Oncorhynchus mykiss blood cells types were induced after 4-days exposure with mixture of Cu2+ and Zn2+ at 0.25, 0.125 and 0.06 parts of LC50 in comparison to control group. The highest concentration of metal mixture (0.25 of LC50) significantly induced elevation of the number of monocytes and poly-segmented neutrophils. Treatment with 0.125 parts of LC50 concentration increased the number of thrombocytes, monocytes and non-segmented neutrophils. The most diluted mixture resulted in significant induction of thrombocytes, monocytes, non- and poly segmented neutrophils. Analysis of leucocyte cell types in the O. mykiss blood samples after 4-days of exposure at all applied mixture parts showed signs of monocytosis and neutrophilia. Comparison of different types of leucocytes' percentages (leukogram) in fish after 4-days exposure to metal mixture and after 4, 8, and 12-days recovery periods showed that, values of neutrophils even after the 12-days recovery period at all tested parts of LC50, and monocytes after exposure with the highest (0.25) used part of LC50 were not restored to control group levels. Depuration and recovery processes in treated fish are concentration and recovery period dependent.
Collapse
Affiliation(s)
- Laura Butrimavičienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania.
| | - Reda Nalivaikienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Virginija Kalcienė
- Vilnius University, Life Sciences Center, Institute of Biosciences, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania
| | - Aleksandras Rybakovas
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| |
Collapse
|
65
|
Taghizadeh SF, Rezaee R, Azizi M, Hayes AW, Giesy JP, Karimi G. Pesticides, metals, and polycyclic aromatic hydrocarbons in date fruits: A probabilistic assessment of risk to health of Iranian consumers. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Occurrence and Human Health Risk Assessment of Pharmaceuticals and Hormones in Drinking Water Sources in the Metropolitan Area of Turin in Italy. TOXICS 2021; 9:toxics9040088. [PMID: 33923920 PMCID: PMC8073697 DOI: 10.3390/toxics9040088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/03/2022]
Abstract
Pharmaceuticals and hormones (PhACs) enter the aquatic environment in multiple ways, posing potential adverse effects on non-target organisms. They have been widely detected in drinking water sources, challenging water companies to reassure good quality drinking water. The aim of this study was to evaluate the concentration of sixteen PhACs in both raw and treated drinking water sources in the Metropolitan Area of Turin—where Società Metropolitana Acque Torino (SMAT) is the company in charge of the water cycle management—and evaluate the potential human health risks associated to these compounds. Multivariate spatial statistical analysis techniques were used in order to characterize the areas at higher risk of pollution, taking into account the already existing SMAT sampling points’ network. Health risks were assessed considering average detected concentrations and provisional guideline values for individual compounds as well as their combined mixture. As reported in the just-issued Drinking Water Directive 2020/2184/UE, in order to establish priority substances, a risk assessment of contaminants present in raw drinking water sources is required for monitoring, identifying potential health risks and, if necessary, managing their removal. The results showed negligibly low human health risks in both raw water sources and treated water.
Collapse
|
67
|
Hernández-Mesa M, Le Bizec B, Dervilly G. Metabolomics in chemical risk analysis – A review. Anal Chim Acta 2021; 1154:338298. [DOI: 10.1016/j.aca.2021.338298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
|
68
|
Wei F, Wang D, Li H, You J. Joint toxicity of imidacloprid and azoxystrobin to Chironomus dilutus at organism, cell, and gene levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105783. [PMID: 33662881 DOI: 10.1016/j.aquatox.2021.105783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Pesticides occur in the environment as mixtures, yet the joint toxicity of pesticide mixtures remains largely under-explored and is usually overlooked in ecological risk assessment. In the current study, joint toxicity of a neonicotinoid insecticide (imidacloprid, IMI) and a strobilurin fungicide (azoxystrobin, AZO) was investigated with Chironomus dilutus over a wide range of concentrations and at different effect levels (organism, cell, and gene levels). The two pesticides, both individually and in combination, were found to induce oxidative stress and cause lethality in C. dilutus. Median lethal concentrations for IMI and AZO were 3.98 ± 1.17 and 52.9 ± 1.1 μg/L, respectively. Mixtures of the two pesticides presented synergetic effects at environmentally relevant concentrations whilst antagonistic effects at high concentrations, showing concentration-dependent joint toxicity. Investigation on the expressions of 12 genes (cyt b, coi, cox1, cyp4, cyp12m1, cyp9au1, cyp6fv1, cyp315, gst, Zn/Cu-sod, Mn-sod, and cat) revealed that the two pesticides impaired mitochondrial respiration, detoxification, and antioxidant system of C. dilutus, and the joint effects of the two pesticides were likely due to an interplay between their respective influences on these physiological processes. Collectively, the synergistic effects of the two pesticides at environmentally relevant concentrations highlight the importance to incorporate combined toxicity studies into ecological risk assessment of pesticides.
Collapse
Affiliation(s)
- Fenghua Wei
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China
| | - Dali Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Huizhen Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
69
|
Liu SZ, Luo YH, Morais CLM, Ma XJ, Yang LJ, Tan DC, Li JB, Liao BY, Wei YF, Martin FL, Pang WY. Spectrochemical determination of effects on rat liver of binary exposure to benzo[a]pyrene and 2,2',4,4'-tetrabromodiphenyl ether. J Appl Toxicol 2021; 41:1816-1825. [PMID: 33759217 DOI: 10.1002/jat.4165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/10/2022]
Abstract
Benzo[a]pyrene (B[a]P) and polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants. The effects in organisms of exposures to binary mixtures of such contaminants remain obscure. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy is a label-free, non-destructive analytical technique allowing spectrochemical analysis of macromolecular components, and alterations thereof, within tissue samples. Herein, we employed ATR-FTIR spectroscopy to identify biomolecular changes in rat liver post-exposure to B[a]P and BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) congener mixtures. Our results demonstrate that significant separation occurs between spectra of tissue samples derived from control versus exposure categories (accuracy = 87%; sensitivity = 95%; specificity = 79%). Additionally, there is significant spectral separation between exposed categories (accuracy = 91%; sensitivity = 98%; specificity = 90%). Segregation between control and all exposure categories were primarily associated with wavenumbers ranging from 1600 to 1700 cm-1 . B[a]P and BDE-47 alone, or in combination, induces liver damage in female rats. However, it is suggested that binary exposure apparently attenuates the toxic effects in rat liver of the individual contaminants. This is supported by morphological observations of liver tissue architecture on hematoxylin and eosin (H&E)-stained liver sections. Such observations highlight the difficulties in predicting the endpoint effects in target tissues of exposures to mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Shu-Zhen Liu
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - You-Hong Luo
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China.,Hengyang Central Hospital, Hengyang, China
| | | | - Xiao-Jun Ma
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Li-Jun Yang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - De-Chan Tan
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jin-Bo Li
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Bao-Yi Liao
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Yuan-Feng Wei
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | | | - Wei-Yi Pang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
70
|
Gao Y, Bao X, Meng L, Liu H, Wang J, Zheng N. Aflatoxin B1 and Aflatoxin M1 Induce Compromised Intestinal Integrity through Clathrin-Mediated Endocytosis. Toxins (Basel) 2021; 13:184. [PMID: 33801329 PMCID: PMC8002210 DOI: 10.3390/toxins13030184] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/08/2023] Open
Abstract
With the growing diversity and complexity of diet, humans are at risk of simultaneous exposure to aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1), which are well-known contaminants in dairy and other agricultural products worldwide. The intestine represents the first barrier against external contaminants; however, evidence about the combined effect of AFB1 and AFM1 on intestinal integrity is lacking. In vivo, the serum biochemical parameters related to intestinal barrier function, ratio of villus height/crypt depth, and distribution pattern of claudin-1 and zonula occluden-1 were significantly affected in mice exposed to 0.3 mg/kg b.w. AFB1 and 3.0 mg/kg b.w. AFM1. In vitro results on differentiated Caco-2 cells showed that individual and combined AFB1 (0.5 and 4 μg/mL) and AFM1 (0.5 and 4 μg/mL) decreased cell viability and trans-epithelial electrical resistance values as well as increased paracellular permeability of fluorescein isothiocyanate-dextran in a dose-dependent manner. Furthermore, AFM1 aggravated AFB1-induced compromised intestinal barrier, as demonstrated by the down-regulation of tight junction proteins and their redistribution, particularly internalization. Adding the inhibitor chlorpromazine illustrated that clathrin-mediated endocytosis partially contributed to the compromised intestinal integrity. Synergistic and additive effects were the predominant interactions, suggesting that these toxins are likely to have negative effects on human health.
Collapse
Affiliation(s)
- Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Bao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (X.B.); (L.M.); (H.L.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection, Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
71
|
Hao Y, Zheng S, Wang P, Sun H, Matsiko J, Li W, Li Y, Zhang Q, Jiang G. Ecotoxicology of persistent organic pollutants in birds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:400-416. [PMID: 33660728 DOI: 10.1039/d0em00451k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Considering the explosive growth of the list of persistent organic pollutants (POPs), the scientific community is combatting increasing challenges to protect humans and wildlife from the potentially negative consequences of POPs. Herein, we characterize the main aspects and progress in the ecotoxicology of POPs in avian species since 2000. The majority of previous efforts has revealed the global occurrence of high levels of various POPs in birds. Laboratory research and epidemiological studies imply that POPs exert a broad-spectrum of side-effects on birds by interfering with their endocrine, immune and neural system, reproduction, and development, and growth. However, inconsistent results suggest that the potential effects of POP exposure on the physiological parameters in birds are multifactorial, involving a multitude of biological processes, species-specific differences, gender, age and types of compounds. Great progress has been achieved in identifying the species-specific sensitivity to dioxin-like compounds, which is attributed to different amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor. Besides the conventional concentration additivity, several studies have suggested that different classes of POPs possibly act synergistically or antagonistically based on their concentration. However, ecotoxicology information is still recorded in a scattered and inadequate manner, including lack of enough avian species, limited number of POPs investigated, and insufficient geographical representation, and thus our understanding of the effects of POPs on birds remains rudimentary, although mechanistic understanding of their mode of action is progressing. Particularly, research on what happens to wild bird populations and their ecosystems under POP stress is still unavailable. Thus, our aim is to predict and trace the effects POPs at different biological organization levels, especially from the molecular, cellular and individual levels to the population, community and ecosystem levels because of the limited and scattered information, as mentioned above.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Fabrello J, Masiero L, Finos L, Marin MG, Matozzo V. Effects of a mixture of glyphosate, 17α-ethynylestradiol and amyl salicylate on cellular and biochemical parameters of the mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2021; 165:105247. [PMID: 33429113 DOI: 10.1016/j.marenvres.2020.105247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
In this study the effects of a mixture of glyphosate (herbicide), 17a-ethinylestradiol (synthetic estrogen) and amyl salicylate (fragrance) to the mussel Mytilus galloprovincialis were evaluated. Mussels were exposed for 7 days to two realistic concentrations of the mixture (10 and 100 ng/L) and the effects on total haemocyte counts, haemocyte diameter and volume, haemocyte proliferation, haemolymph lactate dehydrogenase activity and haemocyte lysate lysozyme activity were measured. In addition, superoxide dismutase, catalase, acetylcholinesterase, glutathione-S-transferase and glutathione reductase activities were measured in gills and digestive gland. The survival-in-air test was also performed. Results demonstrated that the mixture affected both cellular and biochemical biomarkers, but not tolerance to aerial exposure of M. galloprovincialis. The negative effects recorded in this study suggested that more efforts should be done to assess the ecotoxicological risks posed by contaminant mixture to aquatic invertebrates.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, 35131, Padova, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
73
|
Lin L, Pratt S, Crick O, Xia J, Duan H, Ye L. Salinity effect on freshwater Anammox bacteria: Ionic stress and ion composition. WATER RESEARCH 2021; 188:116432. [PMID: 33068907 DOI: 10.1016/j.watres.2020.116432] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/04/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The biggest challenge to apply Anammox to treat wastewater with elevated salt content is the inhibitory effect of salinity on freshwater Anammox bacteria (FAB). Most of the research into salinity inhibition has focused on the osmotic pressure effect, while the inhibitory effect and its mechanisms induced by ion composition are poorly understood. In this study, the individual and combined effect of NaCl, KCl and Na2SO4 on FAB (>99% belonging to Ca. Brocadia genera) were systematically investigated by batch tests. The corresponding responses of mRNA abundance of three functional genes (including nitrite reductase gene (nirS), hydrazine synthase gene (hzsB) and hydrazine dehydrogenase gene (hdh)) under different salt conditions were analyzed. The results indicated that NaCl, KCl and Na2SO4 have different inhibition effects, with the 50% inhibition at 0.106, 0.096 and 0.063 M, respectively. The combined inhibition of NaCl+KCl and NaCl+Na2SO4 on FAB were both synergistic; while the combined inhibition of NaCl+KCl+Na2SO4 was additive. The responses of mRNA (of genes: nirS, hzsB and hdh) suggested NaCl inhibited the transport of ammonium; Na2SO4 inhibited both nitrite and ammonium transport; high salinity inhibited functional enzyme activity. These results suggest both ionic stress and ion composition contributed to the observed inhibition.
Collapse
Affiliation(s)
- Limin Lin
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Oliver Crick
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Xia
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
74
|
Omaiye EE, Luo W, McWhirter KJ, Pankow JF, Talbot P. Electronic Cigarette Refill Fluids Sold Worldwide: Flavor Chemical Composition, Toxicity, and Hazard Analysis. Chem Res Toxicol 2020; 33:2972-2987. [PMID: 33225688 PMCID: PMC8166200 DOI: 10.1021/acs.chemrestox.0c00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Flavor chemicals in electronic cigarette (EC) fluids, which may negatively impact human health, have been studied in a limited number of countries/locations. To gain an understanding of how the composition and concentrations of flavor chemicals in ECs are influenced by product sale location, we evaluated refill fluids manufactured by one company (Ritchy LTD) and purchased worldwide. Flavor chemicals were identified and quantified using gas chromatography/mass spectrometry (GC/MS). We then screened the fluids for their effects on cytotoxicity (MTT assay) and proliferation (live-cell imaging) and tested authentic standards of specific flavor chemicals to identify those that were cytotoxic at concentrations found in refill fluids. A total of 126 flavor chemicals were detected in 103 bottles of refill fluid, and their number per/bottle ranged from 1-50 based on our target list. Two products had none of the flavor chemicals on our target list, nor did they have any nontargeted flavor chemicals. A total of 28 flavor chemicals were present at concentrations ≥1 mg/mL in at least one product, and 6 of these were present at concentrations ≥10 mg/mL. The total flavor chemical concentration was ≥1 mg/mL in 70% of the refill fluids and ≥10 mg/mL in 26%. For sub-brand duplicate bottles purchased in different countries, flavor chemical concentrations were similar and induced similar responses in the in vitro assays (cytotoxicity and cell growth inhibition). The levels of furaneol, benzyl alcohol, ethyl maltol, ethyl vanillin, corylone, and vanillin were significantly correlated with cytotoxicity. The margin of exposure calculations showed that pulegone and estragole levels were high enough in some products to present a nontrivial calculated risk for cancer. Flavor chemical concentrations in refill fluids often exceeded concentrations permitted in other consumer products. These data support the regulation of flavor chemicals in EC products to reduce their potential for producing both cancer and noncancer toxicological effects.
Collapse
Affiliation(s)
- Esther E. Omaiye
- Environmental Toxicology Graduate Program, University of California Riverside, California, USA
- Department of Molecular, Cell, and Systems Biology. University of California, Riverside, California, USA
| | - Wentai Luo
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
- Department of Chemistry Portland State University. Portland, Oregon, USA
| | - Kevin J. McWhirter
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
| | - James F. Pankow
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
- Department of Chemistry Portland State University. Portland, Oregon, USA
| | - Prue Talbot
- Department of Molecular, Cell, and Systems Biology. University of California, Riverside, California, USA
| |
Collapse
|
75
|
Etchie AT, Etchie TO, Elemile OO, Boladale O, Oni T, Akanno I, Bankole DT, Ibitoye OO, Pillarisetti A, Sivanesan S, Afolabi TY, Krishnamurthi K, Swaminathan N. Burn to kill: Wood ash a silent killer in Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141316. [PMID: 32814289 DOI: 10.1016/j.scitotenv.2020.141316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Aside the emissions, burning of wood in traditional cookstoves (TCs) also generates substantial amount of ash containing hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) and toxic metals. But, their concentrations in the ash, particularly in Africa where over 70% of the population utilize TCs, remain unknown. Here, we determined concentrations of sixteen PAHs and eleven heavy metals in ashes from twelve different African TCs, comprising six three-stone fires (TSFs) and six built-in-place cookstoves (BIPCs), burning common African wood species under real world situation. For each TC, ash samples were collected for six consecutive days (Monday-Saturday), and a total of seventy-two daily samples were collected from January-June 2019. Ash yields were measured gravimetrically, and concentrations of the pollutants were determined following standard analytical protocols. The results were used alongside secondary data (annual fuelwood consumption, African fuelwood densities, population proportion using fuelwood and surface human population density) to estimate annual tonnage, exposure potential and risk to health in Africa, using Monte Carlo simulation technique. The ash yields from all TCs studied exceeded 1% on dry weight basis, indicating that ash is a major waste by-product of wood combustion in TCs. TSFs produced more ash (5.7 ± 0.7%) than BIPCs (3.4 ± 1.0%). Concentrations of As, Cd, Hg and Pb in ashes were significantly higher (α = 0.05) for TSFs than BIPCs. In contrast, concentrations of PAHs were higher in ashes from BIPCs than TSFs. Assuming ash consumption rates range from 250 to 500 mg/day for young children weighing 10 to 30 kg, the upper dose (μg/kg-day) of Pb (0.2-3.9) or Σ16PAHs (0.02-0.34), for instance, surpasses the 0.3 μg/kg-day of Pb or PAH recognized as causing adverse effects in children, indicating a concern. The top five countries with the highest annual tonnage or exposure potential to toxic pollutants are Nigeria>Ethiopia>DR-Congo>Tanzania>Uganda, or Rwanda>Burundi>Uganda>Nigeria>Guinea-Bissau, respectively.
Collapse
Affiliation(s)
| | | | | | - Oluwatobi Boladale
- Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria.
| | - Timileyin Oni
- Department of Civil Engineering, Landmark University, Omu-Aran, Nigeria.
| | - Ifeanyi Akanno
- Department of Civil Engineering, Landmark University, Omu-Aran, Nigeria.
| | | | | | - Ajay Pillarisetti
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| | - Saravanadevi Sivanesan
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | | - Kannan Krishnamurthi
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | |
Collapse
|
76
|
Chushak Y, Gearhart JM, Ott D. In Silico Assessment of Acute Oral Toxicity for Mixtures. Chem Res Toxicol 2020; 34:345-354. [PMID: 33206501 DOI: 10.1021/acs.chemrestox.0c00256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
While exposure of humans to environmental hazards often occurs with complex chemical mixtures, the majority of existing toxicity data are for single compounds. The Globally Harmonized System of chemical classification (GHS) developed by the Organization for Economic Cooperation and Development uses the additivity formula for acute oral toxicity classification of mixtures, which is based on the acute toxicity estimate of individual ingredients. We evaluated the prediction of GHS category classifications for mixtures using toxicological data collected in the Integrated Chemical Environment (ICE) developed by the National Toxicology Program (United States Department of Health and Human Services). The ICE database contains in vivo acute oral toxicity data for ∼10,000 chemicals and for 582 mixtures with one or multiple active ingredients. By using the available experimental data for individual ingredients, we were able to calculate a GHS category for only half of the mixtures. To expand a set of components with acute oral toxicity data, we used the Collaborative Acute Toxicity Modeling Suite (CATMoS) implemented in the Open Structure-Activity/Property Relationship App to make predictions for active ingredients without available experimental data. As a result, we were able to make predictions for 503 mixtures/formulations with 72% accuracy for the GHS classification. For 186 mixtures with two or more active ingredients, the accuracy rate was 76%. The structure-based analysis of the misclassified mixtures did not reveal any specific structural features associated with the mispredictions. Our results demonstrate that CATMoS together with an additivity formula can be used to predict the GHS category for chemical mixtures.
Collapse
Affiliation(s)
- Yaroslav Chushak
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Jeffery M Gearhart
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Darrin Ott
- Warfighter Medical Optimization Division, 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| |
Collapse
|
77
|
Hodson PV, Wallace SJ, de Solla SR, Head SJ, Hepditch SLJ, Parrott JL, Thomas PJ, Berthiaume A, Langlois VS. Polycyclic aromatic compounds (PACs) in the Canadian environment: The challenges of ecological risk assessments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115165. [PMID: 32827982 DOI: 10.1016/j.envpol.2020.115165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Ecological risk assessments (ERAs) of polycyclic aromatic compounds (PACs), as single congeners or in mixtures, present technical challenges that raise concerns about their accuracy and validity for Canadian environments. Of more than 100,000 possible PAC structures, the toxicity of fewer than 1% have been tested as individual compounds, limiting the assessment of complex mixtures. Because of the diversity in modes of PAC action, the additivity of mixtures cannot be assumed, and mixture compositions change rapidly with weathering. In vertebrates, PACs are rapidly oxygenated by cytochrome P450 enzymes, often to metabolites that are more toxic than the parent compound. The ability to predict the ecological fate, distribution and effects of PACs is limited by toxicity data derived from tests of a few responses with a limited array of test species, under optimal laboratory conditions. Although several models are available to predict PAC toxicity and rank species sensitivity, they were developed with data biased by test methods, and the reported toxicities of many PACs exceed their solubility limits. As a result, Canadian Environmental Quality Guidelines for a few individual PACs provide little support for ERAs of complex mixtures in emissions and at contaminated sites. These issues are illustrated by reviews of three case studies of PAC-contaminated sites relevant to Canadian ecosystems. Interactions among ecosystem characteristics, the behaviour, fate and distribution of PACs, and non-chemical stresses on PAC-exposed species prevented clear associations between cause and effect. The uncertainties of ERAs can only be reduced by estimating the toxicity of a wider array of PACs to species typical of Canada's diverse geography and environmental conditions. Improvements are needed to models that predict toxicity, and more field studies of contaminated sites in Canada are needed to understand the ecological effects of PAC mixtures.
Collapse
Affiliation(s)
- P V Hodson
- School of Environmental Studies, Queen's University, Kingston, ON, Canada.
| | - S J Wallace
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec City, QC, Canada
| | - S R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - S J Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - S L J Hepditch
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec City, QC, Canada
| | - J L Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada
| | - P J Thomas
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - A Berthiaume
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - V S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec City, QC, Canada
| |
Collapse
|
78
|
Hawrot-Paw M, Koniuszy A, Zając G, Szyszlak-Bargłowicz J. Ecotoxicity of soil contaminated with diesel fuel and biodiesel. Sci Rep 2020; 10:16436. [PMID: 33009483 PMCID: PMC7532453 DOI: 10.1038/s41598-020-73469-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Fuels and their components accumulate in soil, and many soil organisms are exposed to this pollution. Compared to intensive research on the effect of conventional fuel on soil, very few studies have been conducted on soil ecotoxicity of biofuels. Considering the limited information available, the present study evaluated the changes caused by the presence of biodiesel and diesel fuel in soil. The reaction of higher plants and soil organisms (microbial communities and invertebrates) was analysed. Conventional diesel oil and two types of biodiesel (commercial and laboratory-made) were introduced into the soil. Two levels of contamination were applied-5 and 15% (w/w per dry matter of soil). The plate method was used to enumerate microorganisms from soil contaminated with biodiesel and diesel fuel. Phytotoxicity tests were conducted by a 3-day bioassay based on the seed germination and root growth of higher plant species (Sorghum saccharatum and Sinapis alba). Fourteen-day ecotoxicity tests on earthworm were performed using Eisenia fetida. Based on the results of the conducted tests it was found out that the organisms reacted to the presence of fuels in a diverse manner. As to the microorganisms, both the growth and reduction of their number were noted. The reaction depended on the group of microorganisms, type of fuel and dose of contamination. The lipolytic and amylolytic microorganisms as well as Pseudomonas fluorescens bacteria were particularly sensitive to the presence of fuels, especially biodiesel. Fuels, even at a high dose, stimulated the growth of fungi. Monocotyledonous sugar sorghum plants were more sensitive to the presence of fuels than dicotyledonous white mustard. There was also a significant negative impact of contamination level on plant growth and development. Biodiesel, to a greater extent than conventional fuel, adversely affected the survival and volume of earthworms.
Collapse
Affiliation(s)
- Małgorzata Hawrot-Paw
- Department of Renewable Energy Engineering, West Pomeranian University of Technology, Pawla VI 1, 71-459, Szczecin, Poland.
| | - Adam Koniuszy
- Department of Renewable Energy Engineering, West Pomeranian University of Technology, Pawla VI 1, 71-459, Szczecin, Poland
| | - Grzegorz Zając
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Gleboka 28, 20-612, Lublin, Poland
| | - Joanna Szyszlak-Bargłowicz
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, Gleboka 28, 20-612, Lublin, Poland
| |
Collapse
|
79
|
García-Galán MJ, Monllor-Alcaraz LS, Postigo C, Uggetti E, López de Alda M, Díez-Montero R, García J. Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114579. [PMID: 32806438 DOI: 10.1016/j.envpol.2020.114579] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/20/2020] [Accepted: 04/09/2020] [Indexed: 05/27/2023]
Abstract
The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in summer (July) to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% in average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated to the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and <1 (meaning low risk) for the remaining compounds diuron, linuron and MCPA. The PBR treatment yielded variable removals depending on the compound, similarly to conventional wastewater treatment plants. This study provides new data on the capacity of microalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions.
Collapse
Affiliation(s)
- María Jesús García-Galán
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| | - Luis Simón Monllor-Alcaraz
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Enrica Uggetti
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Rubén Díez-Montero
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Joan García
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| |
Collapse
|
80
|
Battaglin W, Duncker J, Terrio P, Bradley P, Barber L, DeCicco L. Evaluating the potential role of bioactive chemicals on the distribution of invasive Asian carp upstream and downstream from river mile 278 in the Illinois waterway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139458. [PMID: 32470670 DOI: 10.1016/j.scitotenv.2020.139458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Two non-native carp species have invaded the Illinois Waterway and are a threat to Great Lakes ecosystems. Poor water quality in the upper Illinois Waterway may be a factor contributing to the stalling of the carp population front near river mile 278. In 2015, the U.S. Geological Survey collected 4 sets of water samples from two sites upstream and 4 sites downstream from river mile 278, and one tributary. Each sample was analyzed for up to 649 unique constituents of which 287 were detected including 96 pesticides, 62 pharmaceuticals, 39 wastewater indicator chemicals, 29 metals, 19 volatile organic compounds (VOCs), 6 disinfection by-products (DBPs), 5 hormones, and 5 carboxylic acids. Potential for bioactivity was estimated by comparing chemical concentrations to aquatic life or human health criteria and to in-vitro bioactivity screening results in the U.S Environmental Protection Agency ToxCast™ database. The resulting hazard quotients and exposure-activity ratios (EARs) are toxicity indexes that can be used to rank potential bioactivity of individual chemicals and chemical mixtures. This analysis indicates that several bioactive chemicals (BCs) including: carbendazim, 2,4-D, metolachlor, terbuthylazine, and acetochlor (pesticides); 1,4-dioxane (VOC); metformin, diphenhydramine, sulfamethoxazole, tramadol, fexofenadine, and the anti-depressants (pharmaceuticals); bisphenol A, 4-nonylphenol, galaxolide, 4-tert-octylphenol (wastewater indicator chemical); lead and boron (metals); and estrone (hormone) all occur in the upper Illinois Waterway at concentrations that produce elevated EARs values and may be adversely affecting carp reproduction and health. The clear differences in water quality upstream and downstream from river mile 278 with higher contaminant concentrations and potential bioactivity upstream could represent a barrier to carp range expansion.
Collapse
Affiliation(s)
- William Battaglin
- U.S. Geological Survey, Colorado Water Science Center, Lakewood, CO, United States of America.
| | - James Duncker
- U.S. Geological Survey, Central Midwest Water Science Center, Urbana, IL, United States of America
| | - Paul Terrio
- U.S. Geological Survey, Central Midwest Water Science Center, Urbana, IL, United States of America
| | - Paul Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC, United States of America
| | - Larry Barber
- U.S. Geological Survey, Water Mission Area, Boulder, CO, United States of America
| | - Laura DeCicco
- U.S. Geological Survey, Upper Midwest Science Center, Middleton, WI, United States of America
| |
Collapse
|
81
|
Macêdo AKS, Santos KPED, Brighenti LS, Windmöller CC, Barbosa FAR, Ribeiro RIMDA, Santos HBD, Thomé RG. Histological and molecular changes in gill and liver of fish (Astyanax lacustris Lütken, 1875) exposed to water from the Doce basin after the rupture of a mining tailings dam in Mariana, MG, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139505. [PMID: 32480153 DOI: 10.1016/j.scitotenv.2020.139505] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The effects of the rupture of a mining tailings dam were investigated using the gills and liver of Astyanax lacustris as a proxy for environmental quality. The fish were exposed for seven days to water sampled forming four groups: upstream of the dam rupture (P1), and 22 km (P2); 48 km (P3); and 70 km (P4) downstream from the dam rupture in the Doce River basin. The control group received dechlorinated tap water. The dissolved concentrations of metals were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). We evaluated the histology of the gills and liver, as well as, immunohistochemistry for HSP70 and Na+/K+ ATPase (NKA) in the gills, and for P-gp in liver. In all sites we observed a mix of metals, with higher concentrations of Mn, Cd, As, and Cu/Cr in P1, P2, P3, and P4, respectively. All treatments groups showed histological changes in gills and liver, with the highest amount of these alterations found in the P2 group. Disorganization of the secondary lamellae, epithelial lifting, and mitochondria-rich cells (MRC) were observed in the gills. The parenchyma of the liver was rather disorganized, and hepatocytes and nuclei showed hypertrophy, vacuolization and cytoplasmic degeneration. A higher immunoreaction of HSP70 in P2 when compared with the other groups and lower labeling of HSP70 in the P4 was registered. In P2 and P3, NKA-positive cells were observed with hypertrophy and disorganization. Morphometric analyses of the liver revealed that all treatment groups presented a lower immunolabeling of P-gp when compared with the control group. Thus, the experimental approach revealed that the water from Doce basin can promote histological alterations in fish's liver and gills, as well as modulation of disruption of ionic balance, cellular responses to stress, and cell detoxification pathways.
Collapse
Affiliation(s)
- Anderson Kelvin Saraiva Macêdo
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Keiza Priscila Enes Dos Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Ludmila Silva Brighenti
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Av. Paraná, 3001, 35501-170 Divinópolis, Minas Gerais, Brazil; Universidade Federal de Minas Gerais Instituto de Ciências Biológicas ICB, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia Carvalhinho Windmöller
- Universidade Federal de Minas Gerais Departamento de Química, ICEX, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Antônio Rodrigues Barbosa
- Universidade Federal de Minas Gerais Instituto de Ciências Biológicas ICB, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | | | - Hélio Batista Dos Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Ralph Gruppi Thomé
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
82
|
Thiagarajan V, Seenivasan R, Jenkins D, Chandrasekaran N, Mukherjee A. Combined effects of nano-TiO 2 and hexavalent chromium towards marine crustacean Artemia salina. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105541. [PMID: 32574931 DOI: 10.1016/j.aquatox.2020.105541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
There has been a significant increased concern of the impact of the toxicity of multiple contaminants in the marine environment. Thus, this study was aimed at determining whether the interaction between nano-TiO2 and Cr(VI) would modulate their toxic effects with the marine crustacean, Artemia salina. Nano-TiO2 agglomerated in artificial sea water (ASW) and readily formed micron-sized particles that settled down in the medium. The addition of Cr(VI) to nano-TiO2 aggravated their agglomeration through sorption of Cr(VI) onto nano-TiO2. This was reflected by a decrease in the residual concentration of Cr in the suspension. Acute toxicity tests performed using pristine nano-TiO2 (0.25, 0.5, 1, 2, and 4 mg/L) and Cr(VI) (0.125, 0.25, 0.5, and 1 mg/L) displayed a concentration dependent rise in the mortality of Artemia salina. To examine the effects of mixtures of nano-TiO2 and Cr(VI) on Artemia salina, two groups of experiments were designed. The former group studied the toxic effect of nano-TiO2 (0.5, 1, 2, and 4 mg/L) with a fixed concentration (0.125 mg/L) of Cr(VI). While the latter group studied the toxicity of Cr(VI) (0.25, 0.5, and 1 mg/L) with a fixed concentration (0.25 mg/L) of nano-TiO2. The toxic effects of nano-TiO2 was not significantly reduced at a fixed concentration of Cr(VI) but in contrast, a significant reduction in the Cr(VI) toxicity by fixed concentration of nano-TiO2 was observed. Toxicity data was well supported by an independent action model that proved the mode of action between nano-TiO2 and Cr(VI) to be antagonistic. Furthermore, ROS generation and measurement of antioxidant enzyme activities were also in line with toxicity results. From this study, the modification of Cr(VI) toxicity at fixed concentration of nano-TiO2 could have a huge impact on the reduction in Cr(VI) toxicity across trophic levels.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - R Seenivasan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, PL4 8AA, UK
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
83
|
Torrinha Á, Oliveira TMBF, Ribeiro FW, Correia AN, Lima-Neto P, Morais S. Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1268. [PMID: 32610509 PMCID: PMC7408367 DOI: 10.3390/nano10071268] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/13/2023]
Abstract
Pharmaceuticals, as a contaminant of emergent concern, are being released uncontrollably into the environment potentially causing hazardous effects to aquatic ecosystems and consequently to human health. In the absence of well-established monitoring programs, one can only imagine the full extent of this problem and so there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. Carbon-based nanomaterials are the most used nanostructures in (bio)sensors construction attributed to their facile and well-characterized production methods, commercial availability, reduced cost, high chemical stability, and low toxicity. However, most importantly, their relatively good conductivity enabling appropriate electron transfer rates-as well as their high surface area yielding attachment and extraordinary loading capacity for biomolecules-have been relevant and desirable features, justifying the key role that they have been playing, and will continue to play, in electrochemical (bio)sensor development. The present review outlines the contribution of carbon nanomaterials (carbon nanotubes, graphene, fullerene, carbon nanofibers, carbon black, carbon nanopowder, biochar nanoparticles, and graphite oxide), used alone or combined with other (nano)materials, to the field of environmental (bio)sensing, and more specifically, to pharmaceutical pollutants analysis in waters and aquatic species. The main trends of this field of research are also addressed.
Collapse
Affiliation(s)
- Álvaro Torrinha
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, 1639, Cidade Universitária, 63048-080 Juazeiro do Norte, CE, Brazil;
| | - Francisco W.P. Ribeiro
- Instituto de Formação de Educadores, Universidade Federal do Cariri, Rua Olegário Emídio de Araújo, S/N, Centro, 63260-000 Brejo Santo - CE, Brazil;
| | - Adriana N. Correia
- GELCORR, Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Bloco 940, Campus do Pici, 60455-970 Fortaleza-CE, Brazil; (A.N.C.); (P.L.-N.)
| | - Pedro Lima-Neto
- GELCORR, Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Bloco 940, Campus do Pici, 60455-970 Fortaleza-CE, Brazil; (A.N.C.); (P.L.-N.)
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| |
Collapse
|
84
|
Jegede OO, Awuah KF, Renaud MJ, Cousins M, Hale BA, Siciliano SD. Single metal and metal mixture toxicity of five metals to Oppia nitens in five different Canadian soils. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122341. [PMID: 32092659 DOI: 10.1016/j.jhazmat.2020.122341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/18/2019] [Accepted: 02/15/2020] [Indexed: 05/24/2023]
Abstract
Metal mixture toxicity across soil types is a daunting challenge to risk assessment. Here, we evaluated metal mixture toxicity in Oppia nitens, using ten fixed metal mixture ratios in five Canadian soils that closely matched some of the EU PNEC reference soils. Soils were dosed with five metals (Cu, Zn, Pb, Co, Ni) as single metals (ten concentrations) and as mixtures (eight concentrations). Synchronized adult mites were exposed to metals, with survival and reproduction assessed after 28 days. We found out that (i) the differences among soils in mite sensitivity and single metals were not consistent when mites were exposed to metal mixtures, (ii) assuming concentration addition, the mixture interaction factor (MIF) showed that single metal low effect levels excessively underestimated low level metal mixture effects (iii) Zn emerged as a protective metal in most mixtures, and (iv) Soil properties such as CEC, independent of effects on metal speciation, explained more of the variation than measured metals. This study suggests that metal risk assessment should be done on a case by case basis. Further work is needed to ensure that by protecting soil-dwelling organisms from single metals, the risk from metal mixtures is appropriately protected for.
Collapse
Affiliation(s)
- Olukayode O Jegede
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada.
| | - Kobby F Awuah
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Mathieu J Renaud
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada 8 Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Mark Cousins
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Beverley A Hale
- Department of Land Resource Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Steven D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
85
|
Price PS, Jarabek AM, Burgoon LD. Organizing mechanism-related information on chemical interactions using a framework based on the aggregate exposure and adverse outcome pathways. ENVIRONMENT INTERNATIONAL 2020; 138:105673. [PMID: 32217427 PMCID: PMC8268396 DOI: 10.1016/j.envint.2020.105673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
This paper presents a framework for organizing and accessing mechanistic data on chemical interactions. The framework is designed to support the assessment of risks from combined chemical exposures. The framework covers interactions between chemicals that occur over the entire source-to-outcome continuum including interactions that are studied in the fields of chemical transport, environmental fate, exposure assessment, dosimetry, and individual and population-based adverse outcomes. The framework proposes to organize data using a semantic triple of a chemical (subject), has impact (predicate), and a causal event on the source-to-outcome continuum of a second chemical (object). The location of the causal event on the source-to-outcome continuum and the nature of the impact are used as the basis for a taxonomy of interactions. The approach also builds on concepts from the Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP). The framework proposes the linking of AEPs of multiple chemicals and the AOP networks relevant to those chemicals to form AEP-AOP networks that describe chemical interactions that cannot be characterized using AOP networks alone. Such AEP-AOP networks will aid the construction of workflows for both experimental design and the systematic review or evaluation performed in risk assessments. Finally, the framework is used to link the constructs of existing component-based approaches for mixture toxicology to specific categories in the interaction taxonomy.
Collapse
Affiliation(s)
- Paul S Price
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States.
| | - Annie M Jarabek
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Lyle D Burgoon
- Environmental Laboratory, US Army Engineer Research and Development Center, Research Triangle Park, NC, United States
| |
Collapse
|
86
|
Sauliutė G, Markuckas A, Stankevičiūtė M. Response patterns of biomarkers in omnivorous and carnivorous fish species exposed to multicomponent metal (Cd, Cr, Cu, Ni, Pb and Zn) mixture. Part III. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:258-274. [PMID: 32052347 DOI: 10.1007/s10646-020-02170-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Toxicity to fish of multicomponent metal mixtures at maximum-permissible-concentrations (MPC: Cd-0.005, Cr-0.01, Cu-0.01, Ni-0.01, Pb-0.005 and Zn-0.1 mg/L) set for EU inland waters was evaluated using the whole-mixture approach. An extended follow-up study on the biological effects of multicomponent metal mixtures on three ecologically different fish species, i.e. Perca fluviatilis, Rutilus rutilus, and Salmo salar is reported. The aim of this study was to assess response patterns of biomarkers (erythrocytic nuclear abnormalities (ENAs), metal accumulation and metallothioneins) in tissues of fish species after 14-day treatment with multicomponent metal mixtures at MPC and metal mixtures with one of its components at reduced MPC (↓). After treatments with Cu↓ and Cr↓, the lowest amount of Ni was found in all tissues (except the liver) of all fish species tested. After Zn↓ and Pb↓ treatments, the amount of Ni in muscle of all the tested fish species significantly decreased. The highest amounts of Cr in gills and Pb in muscle were detected in all fish species after treatments with Ni↓ and Cd↓ mixtures, respectively. R. rutilus accumulated significantly larger amounts of metals than P. fluviatilis and S. salar. The data obtained show that tissues of the omnivorous R. rutilus exposed to metal mixtures accumulated higher amounts of Cr, Cu, Ni and Zn, while tissues of carnivorous S. salar and P. fluviatilis higher amounts of Cd and Pb. The analysis of ENAs revealed concentration-dependent responses, indicating Cu↓ and Cr↓ treatments as causes of higher geno- and cytotoxicity levels.
Collapse
Affiliation(s)
- Gintarė Sauliutė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania.
| | - Arvydas Markuckas
- Department of Biochemistry and Molecular Biology, Vilnius University, Life Sciences Center, Saulėtekio av. 7, LT-10223, Vilnius, Lithuania
| | | |
Collapse
|
87
|
Effects of Mixtures of Engineered Nanoparticles and Metallic Pollutants on Aquatic Organisms. ENVIRONMENTS 2020. [DOI: 10.3390/environments7040027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In aquatic environment, engineered nanoparticles (ENPs) are present as complex mixtures with other pollutants, such as trace metals, which could result in synergism, additivity or antagonism of their combined effects. Despite the fact that the toxicity and environmental risk of the ENPs have received extensive attention in the recent years, the interactions of ENPs with other pollutants and the consequent effects on aquatic organisms represent an important challenge in (nano)ecotoxicology. The present review provides an overview of the state-of-the-art and critically discusses the existing knowledge on combined effects of mixtures of ENPs and metallic pollutants on aquatic organisms. The specific emphasis is on the adsorption of metallic pollutants on metal-containing ENPs, transformation and bioavailability of ENPs and metallic pollutants in mixtures. Antagonistic, additive and synergistic effects observed in aquatic organisms co-exposed to ENPs and metallic pollutants are discussed in the case of “particle-proof” and “particle-ingestive” organisms. This knowledge is important in developing efficient strategies for sound environmental impact assessment of mixture exposure in complex environments.
Collapse
|
88
|
A Generic Method for Predicting Environmental Concentrations of Hydraulic Fracturing Chemicals in Soil and Shallow Groundwater. WATER 2020. [DOI: 10.3390/w12040941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Source-pathway-receptor analyses involving solute migration pathways through soil and shallow groundwater are typically undertaken to assess how people and the environment could come into contact with chemicals associated with coal seam gas operations. For the potential short-term and long-term release of coal seam gas fluids from storage ponds, solute concentration and dilution factors have been calculated using a water flow and solute transport modelling framework for an unsaturated zone-shallow groundwater system. Uncertainty about dilution factors was quantified for a range of system parameters: (i) leakage rates from storage ponds combined with recharge rates, (ii) a broad combination of soil and groundwater properties, and (iii) a series of increasing travel distances through soil and groundwater. Calculated dilution factors in the soil increased from sand to loam soil and increased with an increasing recharge rate, while dilution decreased for a decreasing leak rate and leak duration. In groundwater, dilution factors increase with increasing aquifer hydraulic conductivity and riverbed conductance. For a hypothetical leak duration of three years, the combined soil and groundwater dilution factors are larger than 6980 for more than 99.97% of bores that are likely to be farther than 100 m from the source. Dilution factors were more sensitive to uncertainty in leak rates than recharge rates. Based on this dilution factor, a comparison of groundwater predicted environmental concentrations and predicted no-effect concentrations for a subset of hydraulic fracturing chemicals used in Australia revealed that for all but two of the evaluated chemicals the estimated groundwater concentration (for a hypothetical water bore at 100 m from the solute source) is smaller than the no-effect concentration for the protection of aquatic ecosystems.
Collapse
|
89
|
O'Brien AM, Yu ZH, Luo DY, Laurich J, Passeport E, Frederickson ME. Resilience to multiple stressors in an aquatic plant and its microbiome. AMERICAN JOURNAL OF BOTANY 2020; 107:273-285. [PMID: 31879950 DOI: 10.1002/ajb2.1404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/09/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Outcomes of species interactions, especially mutualisms, are notoriously dependent on environmental context, and environments are changing rapidly. Studies have investigated how mutualisms respond to or ameliorate anthropogenic environmental changes, but most have focused on nutrient pollution or climate change and tested stressors one at a time. Relatively little is known about how mutualisms may be altered by or buffer the effects of multiple chemical contaminants, which differ fundamentally from nutrient or climate stressors and are especially widespread in aquatic habitats. METHODS We investigated the impacts of two contaminants on interactions between the duckweed Lemna minor and its microbiome. Sodium chloride (salt) and benzotriazole (a corrosion inhibitor) often co-occur in runoff to water bodies where duckweeds reside. We tested three L. minor genotypes with and without the culturable portion of their microbiome across field-realistic gradients of salt (3 levels) and benzotriazole (4 levels) in a fully factorial experiment (24 treatments, tested on each genotype) and measured plant and microbial growth. RESULTS Stressors had conditional effects. Salt decreased both plant and microbial growth and decreased plant survival more as benzotriazole concentrations increased. In contrast, benzotriazole did not affect microbial abundance and even benefited plants when salt and microbes were absent, perhaps due to biotransformation into growth-promoting compounds. Microbes did not ameliorate duckweed stressors; microbial inoculation increased plant growth, but not at high salt concentrations. CONCLUSIONS Our results suggest that multiple stressors matter when predicting responses of mutualisms to global change and that beneficial microbes may not always buffer hosts against stress.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto
| | - Zhu Hao Yu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto
| | - Dian-Ya Luo
- Department of Ecology and Evolutionary Biology, University of Toronto
| | - Jason Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto
| | - Elodie Passeport
- Department of Chemical Engineering and Applied Chemistry, University of Toronto
- Department of Civil and Mineral Engineering, University of Toronto
| | | |
Collapse
|
90
|
Lin L, Pratt S, Rattier M, Ye L. Individual and combined effect of salinity and nitrite on freshwater Anammox bacteria (FAB). WATER RESEARCH 2020; 169:114931. [PMID: 31669901 DOI: 10.1016/j.watres.2019.114931] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonium oxidation (Anammox) based technology has potential for nitrogen removal from wastewater with high salinity, but both salt and nitrite (a substrate for Anammox) have negative effect on microbial activity. In order to achieve Anammox in saline wastewater treatment, it is essential to understand the combined effect of these two components. In this study, the individual and combined effect of salinity and nitrite on fixed film freshwater Anammox bacteria (FAB, mainly belonging to the Ca. Brocadia genus), enriched on carriers from a 1500 L pilot scale one-stage (PN/Anammox) moving bed bioreactor (MBBR), were systematically investigated by 57 pre-designed batch tests. The combined inhibition of nitrite and salinity was determined by comparing with additive and independent inhibition models. With salinity only, the specific Anammox activity (SAA) decreased with increasing salinity: 14.6 mS/cm (about 9.1 g NaCl/L) of salinity caused 50% inhibition (IC50). With nitrite only, SAA started to decrease when nitrite concentration was above 450 mg N/L (threshold) and decreased with increased nitrite (IC50 = 666 mg N/L) thereafter. Significantly, when both salinity and nitrite were elevated, both the threshold and IC50 of nitrite were reduced, with inhibition enhanced. Analysis showed that at high salinity (>14.6 mS/cm) and nitrite concentration (>666 mg N/L), inhibition was close to that predicted by simulation of additive and independent inhibition models. Within a salinity range of 4-14.6 mS/cm and nitrite concentration range of 50-666 mg N/L, the combined inhibition was more severe than prediction (p < 0.05) based on the additive and independent inhibition models and therefore it was determined to be synergistic inhibition.
Collapse
Affiliation(s)
- Limin Lin
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Maxime Rattier
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
91
|
Heavy metal and pesticide exposure: A mixture of potential toxicity and carcinogenicity. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
92
|
Buica GO, Stoian AB, Manole C, Demetrescu I, Pirvu C. Zr/ZrO2 nanotube electrode for detection of heavy metal ions. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2019.106614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
93
|
Assessing possible influence of structuring effects in solution on cytotoxicity of ionic liquid systems. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
94
|
Zheng L, Zhang Q, Li Z, Sun R, Zhong G. Exposure risk assessment of nine metal elements in Chongqing hotpot seasoning. RSC Adv 2020; 10:1971-1980. [PMID: 35494615 PMCID: PMC9048104 DOI: 10.1039/c9ra10028h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/01/2020] [Indexed: 11/21/2022] Open
Abstract
Atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS) were used to analyze the contents of nine metal elements (Pb, As, Hg, Cd, Cr, Fe, Mn, Cu, Zn) in 100 groups of Chongqing hotpot seasoning (CHS). Meanwhile, Crystal Ball software based on Monte Carlo simulation technology was used to assess the exposure risk of the nine metal elements in CHS for people of different ages in Chongqing. In general, the average Hazard Index (HI) of the nine metal elements is 0.306 < 1, indicating no non-carcinogenic risks from these nine elements for inhabitants of Chongqing under the current consumption level of CHS. Children (ages 7–13) and adult women have higher chronic daily intake (CDI) than adult males. The carcinogenic risk of Pb, As and Cd are within the acceptable risk level (10−6 to 10−4). The sensitivity analysis suggests that the contents of the nine metal elements and daily intake (PIR) in CHS were positively correlated with the risk index, while the body weight was negatively correlated with the risk index. This study provides a scientific basis for guiding the safe consumption of Chongqing hotpot, and provides a theoretical basis for the development of safety-compliant CHS quality standards. Atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS) were used to analyze the contents of nine metal elements (Pb, As, Hg, Cd, Cr, Fe, Mn, Cu, Zn) in 100 groups of Chongqing hotpot seasoning (CHS).![]()
Collapse
Affiliation(s)
- Lianji Zheng
- College of Food Science
- Southwest University
- Chongqing 400715
- PR China
- Food Industry Research Institute of Chongqing
| | - Qi Zhang
- College of Food Science
- Southwest University
- Chongqing 400715
- PR China
| | - Zhi Li
- Food Industry Research Institute of Chongqing
- Chongqing 400042
- PR China
| | - Rui Sun
- College of Food Science
- Southwest University
- Chongqing 400715
- PR China
| | - Geng Zhong
- College of Food Science
- Southwest University
- Chongqing 400715
- PR China
| |
Collapse
|
95
|
Carnesecchi E, Svendsen C, Lasagni S, Grech A, Quignot N, Amzal B, Toma C, Tosi S, Rortais A, Cortinas-Abrahantes J, Capri E, Kramer N, Benfenati E, Spurgeon D, Guillot G, Dorne JLCM. Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment. ENVIRONMENT INTERNATIONAL 2019; 133:105256. [PMID: 31683157 DOI: 10.1016/j.envint.2019.105256] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 05/21/2023]
Abstract
Bees are exposed to a wide range of multiple chemicals "chemical mixtures" from anthropogenic (e.g. plant protection products or veterinary products) or natural origin (e.g. mycotoxins, plant toxins). Quantifying the relative impact of multiple chemicals on bee health compared with other environmental stressors (e.g. varroa, viruses, and nutrition) has been identified as a priority to support the development of holistic risk assessment methods. Here, extensive literature searches and data collection of available laboratory studies on combined toxicity data for binary mixtures of pesticides and non-chemical stressors has been performed for honey bees (Apis mellifera), wild bees (Bombus spp.) and solitary bee species (Osmia spp.). From 957 screened publications, 14 publications provided 218 binary mixture toxicity data mostly for acute mortality (lethal dose: LD50) after contact exposure (61%), with fewer studies reporting chronic oral toxicity (20%) and acute oral LC50 values (19%). From the data collection, available dose response data for 92 binary mixtures were modelled using a Toxic Unit (TU) approach and the MIXTOX modelling tool to test assumptions of combined toxicity i.e. concentration addition (CA), and interactions (i.e. synergism, antagonism). The magnitude of interactions was quantified as the Model Deviation Ratio (MDR). The CA model applied to 17% of cases while synergism and antagonism were observed for 72% (MDR > 1.25) and 11% (MDR < 0.83) respectively. Most synergistic effects (55%) were observed as interactions between sterol-biosynthesis-inhibiting (SBI) fungicides and insecticide/acaricide. The mechanisms behind such synergistic effects of binary mixtures in bees are known to involve direct cytochrome P450 (CYP) inhibition, resulting in an increase in internal dose and toxicity of the binary mixture. Moreover, bees are known to have the lowest number of CYP copies and other detoxification enzymes in the insect kingdom. In the light of these findings, occurrence of these binary mixtures in relevant crops (frequency and concentrations) would need to be investigated. Addressing this exposure dimension remains critical to characterise the likelihood and plausibility of such interactions to occur under field realistic conditions. Finally, data gaps and further work for the development of risk assessment methods to assess multiple stressors in bees including chemicals and non-chemical stressors in bees are discussed.
Collapse
Affiliation(s)
- Edoardo Carnesecchi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, the Netherlands; Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156 Milano, Italy
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | | | | | | | | | - Cosimo Toma
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156 Milano, Italy
| | - Simone Tosi
- Epidemiology Unit, European Union Reference Laboratory (EURL) for Honeybee Health, University Paris Est, French Agency for Food, Environmental and Occupational Health and Safety, Paris, France
| | - Agnes Rortais
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Parma, Italy
| | - Jose Cortinas-Abrahantes
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Parma, Italy
| | - Ettore Capri
- Università Cattolica del Sacro Cuore, Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile (DiSTAS), Piacenza, Italy
| | - Nynke Kramer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, the Netherlands
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156 Milano, Italy
| | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Gilles Guillot
- International Prevention Research Institute, Lyon, France
| | - Jean Lou Christian Michel Dorne
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Parma, Italy; School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
96
|
Park J, Lee S, Lee E, Noh H, Seo Y, Lim H, Shin H, Lee I, Jung H, Na T, Kim SD. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109483. [PMID: 31362159 DOI: 10.1016/j.ecoenv.2019.109483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The environment has been continuously exposed to heavy metals by various routes, from both natural and artificial sources. In particular, heavy metals in water can affect aquatic organisms adversely, even at very low concentrations, and can lead to the disturbance of the ecosystem balance and biodiversity. Ecological risk assessments are conducted to protect the environment from such situations, primarily by deriving the predicted no-effect concentration (PNEC) from the species sensitivity distribution (SSD). This study developed the SSDs based on the species living in Korean freshwater for four heavy metals including cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The species compositions of the SSDs were examined, and three types of PNECs were derived by applying different assessment factors (AF). In addition, the occurrence and concentrations of heavy metals in Korean rivers were investigated, and the ecological risk assessment was carried out to compare the SSDs with the environmental concentrations. The SSDs were developed using a sufficient number of species, but the missing data of plants and insects provided an incomplete species composition. The results show that Cd and Pb in the environmental concentrations of rivers would not cause any risk to aquatic organisms from the derived PNEC. However, some organisms might be adversely affected by the concentrations of Zn, and a small amount of risk was expected under the conservative PNEC. The distribution of Cu in the rivers was not considered to be safe for aquatic organisms because the average environmental concentrations potentially affected the proportion of the SSD, and the environmental concentrations exceeded the PNECs. The concentrations of Cu and Zn in industrial waters indicated a considerable risk to aquatic organisms, and the probability of exceeding the PNECs appeared to be quite high. Therefore, this study indicates that additional actions and parallel field studies are required based on the risk posed to aquatic organisms by Cu and Zn in four Korean rivers.
Collapse
Affiliation(s)
- Jinhee Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Sunhong Lee
- Water Quality Research Center, K-water Convergence Institute, 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Eunhee Lee
- Department of Environmental Engineering, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - Hyeran Noh
- Han-river Environment Research Center, National Institute of Environmental Research, 42 Dumulmeori-gil 68beon-gil, Yangseo-myeon, Yangpyeong-gun, Gyeonggi-do, 12585, Republic of Korea
| | - Yongchan Seo
- Department of Environmental Engineering, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - HyunHee Lim
- Drug Abuse Research Center, Kongju National University, 56 Gongjudaehak-ro, Kongju-si, Chungcheongnam-do, 32588, Republic of Korea
| | - HoSang Shin
- Department of Environmental Education, Kongju National University, 56 Gongjudaehak-ro, Kongju-si, Chungcheongnam-do, 32588, Republic of Korea
| | - Injung Lee
- Nakdong River Environment Research Center, National Institute of Environment Research, 24 Pyeongni 1-gil, Dasan-myeon, Goryeong-gun, Gyeongsangbuk-do, 40103, Republic of Korea
| | - Heejung Jung
- Yeongsan River Environment Research Center, 5 Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Taewoong Na
- Yeongsan River Environment Research Center, 5 Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Sang D Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
97
|
Melo A, Ferreira C, Ferreira IMPLVO, Mansilha C. Acute and chronic toxicity assessment of haloacetic acids using Daphnia magna. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:977-989. [PMID: 31607230 DOI: 10.1080/15287394.2019.1676959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Haloacetic acids (HAAs) are undesirable disinfection by-products (DBPs), released into aquatic ecosystems from various anthropogenic and natural sources. The aim of this study was to examine the ecological risk of exposure to three HAAs commonly detected in water, such as monobromoacetic acid (MBA), monochloroacetic acid (MCA), and trichloroacetic acid (TCA), in in vivo acute and chronic toxicity tests using Daphnia magna as a model. Acute tests showed that MBA was the most toxic of these compounds followed by MCA and TCA as evidenced by immobilization. Aquatic organisms in natural conditions might be exposed simultaneously to numerous compounds; thus, binary mixtures of selected HAAs and a ternary mixture of these were tested. Concentration addition (CA) and independent action (IA) models were used for a predictive assessment of mixture toxicity. Data demonstrated that CA appeared to be the most reliable indicator for HAAs binary and ternary mixtures suggestive of an additive behavior. Median effective concentration (EC50) values from the mixed exposure tests were significantly lower than results obtained from single tests for all three HAAs where an increase of toxicity greater than 50%. Multigenerational chronic tests were also performed exposing daphnids to the ternary mixture of HAAs. A markedly decreased sexual maturity and number of offspring and broods per daphnid especially in the second generation were noted.
Collapse
Affiliation(s)
- Armindo Melo
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, 4000-055 Porto, Portugal
- LAQV/REQUIMTE - Universidade do Porto, Porto, Portugal
| | - Cláudia Ferreira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, 4000-055 Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE/Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia - Universidade do Porto, Porto, Portugal
| | - Catarina Mansilha
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, 4000-055 Porto, Portugal
- LAQV/REQUIMTE - Universidade do Porto, Porto, Portugal
| |
Collapse
|
98
|
Matozzo V, Munari M, Masiero L, Finos L, Marin MG. Ecotoxicological hazard of a mixture of glyphosate and aminomethylphosphonic acid to the mussel Mytilus galloprovincialis (Lamarck 1819). Sci Rep 2019; 9:14302. [PMID: 31586082 PMCID: PMC6778070 DOI: 10.1038/s41598-019-50607-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/16/2019] [Indexed: 01/24/2023] Open
Abstract
Assessment of the effects of chemical mixtures is a very important objective of the ecotoxicological risk assessment. This study was aimed at evaluating for the first time the effects of a mixture of glyphosate and its main breakdown product aminomethylphosphonic acid (AMPA) on various biomarkers in the mussel Mytilus galloprovincialis. Mussels were exposed for 7, 14 and 21 days to either 100 µg/L of glyphosate, 100 µg/L of AMPA or a mixture of both (100 + 100 µg/L). Various haemocyte parameters, such as total haemocyte counts, haemocyte diameter and volume, haemocyte proliferation, haemolymph lactate dehydrogenase activity and haemocyte lysate acid phosphatase activities were measured. In addition, the effects of exposure on the activity of antioxidant enzymes, acetylcholinesterase and glutathione-S-transferase were evaluated in gills and digestive gland from mussels. On the whole, this study demonstrated that the variables considered in the experimental plan, namely treatment, exposure time and their interaction, affect significantly biomarker responses in M. galloprovincialis. The effects of the mixture were comparable to those of the individual compounds, whereas their synergistic effects were occasionally observed, under the experimental conditions tested at least.
Collapse
Affiliation(s)
- Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Marco Munari
- Department of Integrative Marine Ecology, Villa Dohrn-Benthic Ecology Center Ischia, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia 8, Padova, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
99
|
Sánchez-Soberón F, Rovira J, Sierra J, Mari M, Domingo JL, Schuhmacher M. Seasonal characterization and dosimetry-assisted risk assessment of indoor particulate matter (PM 10-2.5, PM 2.5-0.25, and PM 0.25) collected in different schools. ENVIRONMENTAL RESEARCH 2019; 175:287-296. [PMID: 31146100 DOI: 10.1016/j.envres.2019.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Inhalation of particulate matter (PM) has been linked to serious adverse health effects, such as asthma, cardiovascular diseases and lung cancer. In the present study, coarse (PM10-2.5), accumulation mode (PM2.5-0.25), and quasi-ultrafine (PM0.25) particulates were collected inside twelve educative centers of Tarragona County (Catalonia, Spain) during two seasons (cold and warm). Chemical characterization of PM, as well as risk assessment were subsequently conducted in order to evaluate respiratory and digestive risks during school time for children. Levels and chemical composition of PM were very different among the 12 centers. Average PM levels were higher during the cold season, as well as the concentrations of most toxic metals. In most schools, PM levels were below the daily PM10 threshold established in the regulation (50 μg/m3), with the exception of school number 1 during the cold season. On average, and regardless of season, coarse PM was highly influenced by mineral matter, while organic matter and elemental carbon were prevalent in quasi-ultrafine PM. The concentrations of the toxic elements considered by the legislation (As, Cd, Pb, and Ni) were below their correspondent regulatory annual limits. Calculated risks were below the safety thresholds, being fine fractions (PM2.5-0.25 and PM0.25) the main contributors to both digestive and respiratory risks.
Collapse
Affiliation(s)
- Francisco Sánchez-Soberón
- Universitat Rovira i Virgili, Chemical Engineering Department, Environmental Analysis and Management Group, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Joaquim Rovira
- Universitat Rovira i Virgili, Chemical Engineering Department, Environmental Analysis and Management Group, Av. Països Catalans 26, 43007, Tarragona, Spain; Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Jordi Sierra
- Universitat Rovira i Virgili, Chemical Engineering Department, Environmental Analysis and Management Group, Av. Països Catalans 26, 43007, Tarragona, Spain; Laboratori d'Edafologia, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain
| | - Montse Mari
- Universitat Rovira i Virgili, Chemical Engineering Department, Environmental Analysis and Management Group, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, IISPV, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Marta Schuhmacher
- Universitat Rovira i Virgili, Chemical Engineering Department, Environmental Analysis and Management Group, Av. Països Catalans 26, 43007, Tarragona, Spain
| |
Collapse
|
100
|
Desalegn A, Bopp S, Asturiol D, Lamon L, Worth A, Paini A. Role of Physiologically Based Kinetic modelling in addressing environmental chemical mixtures - A review. ACTA ACUST UNITED AC 2019; 10:158-168. [PMID: 31218267 PMCID: PMC6559215 DOI: 10.1016/j.comtox.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/24/2018] [Accepted: 09/26/2018] [Indexed: 11/21/2022]
Abstract
The availability and applicability of Physiologically Based Kinetic (PBK) models for mixtures is reviewed. PBK models can support risk assessment of mixtures by incorporating the toxicokinetic processes. Quantitative structure-activity relationship (QSAR) models can be used to fill data gaps in PBK modelling. PBK models for mixtures can be improved by including various types of interactions.
The role of Physiologically Based Kinetic (PBK) modelling in assessing mixture toxicology has been growing for the last three decades. It has been widely used to investigate and address interactions in mixtures. This review describes the current state-of-the-art of PBK models for chemical mixtures and to evaluate the applications of PBK modelling for mixtures with emphasis on their role in chemical risk assessment. A total of 35 mixture PBK models were included after searching web resources (Scopus, PubMed, Web of Science, and Google Scholar), screening for duplicates, and excluding articles based on eligibility criteria. Binary mixtures and volatile organic compounds accounted for two-thirds of the chemical mixtures identified. The most common exposure route and modelled system were found to be inhalation and rats respectively. Twenty two (22) models were for binary mixtures, 5 for ternary mixtures, 3 for quaternary mixtures, and 5 for complex mixtures. Both bottom-up and top-down PBK modelling approaches are described. Whereas bottom-up approaches are based on a series of binary interactions, top-down approaches are based on the lumping of mixture components. Competitive inhibition is the most common type of interaction among the various types of mixtures, and usually becomes a concern at concentrations higher than environmental exposure levels. It leads to reduced biotransformation that either means a decrease in the amount of toxic metabolite formation or an increase in toxic parent chemical accumulation. The consequence is either lower or higher toxicity compared to that estimated for the mixture based on the additivity principle. Therefore, PBK modelling can play a central role in predicting interactions in chemical mixture risk assessment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alicia Paini
- Corresponding author at: European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| |
Collapse
|