51
|
Pan Q, Xie L, Cai P, Wu D, Zhu H, Xu L, Liu R, Luo K, He B, Pu Y. Acid-Resistant Nano-antioxidants Based on Epigallocatechin Gallate Alleviate Acute Intestinal and Kidney Inflammation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46090-46101. [PMID: 39174346 DOI: 10.1021/acsami.4c09901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Epigallocatechin gallate (EGCG)-based nanosystems have garnered significant attention for their ability to alleviate inflammation due to their excellent anti-inflammatory properties and enhanced drug delivery capabilities. However, the degradation of EGCG in strongly acidic environments poses a challenge for potential administration, particularly in oral formulations, where gastric resistance is essential. In this study, we develop a "disintegration and reorganization" strategy to create acid-resistant antioxidant nanoparticles (EGA NPs) based on EGCG and 5-aminosalicylic acid (5-ASA) for mitigating inflammation in colitis and acute kidney injury. At acidic pH, the ester bond in EGCG breaks down, producing two building blocks. These, together with 5-ASA and formaldehyde, form oligomers through a combination of phenol-aldehyde condensation and the Mannich reaction. The resulting oligomers self-assemble into EGA NPs, which exhibit significant stability under both acidic and neutral pH conditions. This stability makes them suitable for oral administration, allowing them to withstand harsh gastric conditions, as well as for intravenous injection. Importantly, these oligomers retain the antioxidant and anti-inflammatory properties of EGCG, effectively scavenging reactive oxygen species and reducing intracellular oxidative stress. Additionally, EGA shows potential as a drug carrier, efficiently loading the anti-inflammatory agent curcumin (Cur) to form Cur@EGA NPs. In vivo studies demonstrate the efficacy of Cur@EGA and EGA in alleviating acute colitis and kidney injury following oral and intravenous administration, respectively. These nanoparticulate formulations exhibit superior inflammation reduction compared to free Cur in vivo. Overall, our findings introduce a novel acid-resistant nanoplatform based on EGCG for the treatment of acute inflammation.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Pingyang Cai
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Kui Luo
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
52
|
Kieserling H, de Bruijn WJC, Keppler J, Yang J, Sagu ST, Güterbock D, Rawel H, Schwarz K, Vincken JP, Schieber A, Rohn S. Protein-phenolic interactions and reactions: Discrepancies, challenges, and opportunities. Compr Rev Food Sci Food Saf 2024; 23:e70015. [PMID: 39245912 DOI: 10.1111/1541-4337.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Although noncovalent interactions and covalent reactions between phenolic compounds and proteins have been investigated across diverse scientific disciplines, a comprehensive understanding and identification of their products remain elusive. This review will initially outline the chemical framework and, subsequently, delve into unresolved or debated chemical and functional food-related implications, as well as forthcoming challenges in this topic. The primary objective is to elucidate the multiple aspects of protein-phenolic interactions and reactions, along with the underlying overwhelming dynamics and possibilities of follow-up reactions and potential crosslinking between proteins and phenolic compounds. The resulting products are challenging to identify and characterize analytically, as interactions and reactions occur concurrently, mutually influencing each other. Moreover, they are being modulated by various conditions such as the reaction parameters and, obviously, the chemical structure. Additionally, this review delineates the resulting discrepancies and challenges of properties and attributes such as color, taste, foaming, emulsion and gel formation, as well as effects on protein digestibility and allergenicity. Ultimately, this review is an opinion paper of a group of experts, dealing with these challenges for quite a while and aiming at equipping researchers with a critical and systematic approach to address current research gaps concerning protein-phenolic interactions and reactions.
Collapse
Affiliation(s)
- Helena Kieserling
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, Berlin, Germany
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Julia Keppler
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
| | - Jack Yang
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, The Netherlands
| | | | - Daniel Güterbock
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, Berlin, Germany
| | - Harshadrai Rawel
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Andreas Schieber
- Agricultural Faculty, Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Bonn, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
53
|
Yılmaz E, Baltaci SB, Mogulkoc R, Baltaci AK. The impact of flavonoids and BDNF on neurogenic process in various physiological/pathological conditions including ischemic insults: a narrative review. Nutr Neurosci 2024; 27:1025-1041. [PMID: 38151886 DOI: 10.1080/1028415x.2023.2296165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae thus, it has recently attracted considerable attention in the field of medical research. Neurogenesis is the process of formation of new neurons in the brain, including the human brain, from neural stem/progenitor cells [NS/PCs] which reside in neurogenic niches that contain the necessary substances for NS/PC proliferation, differentiation, migration, and maturation into functioning neurons which can integrate into a pre-existing neural network.Neurogenesis can be modulated by many exogenous and endogenous factors, pathological conditions. Both brain-derived neurotrophic factor, and flavonoids can modulate the neurogenic process in physiological conditions and after various pathological conditions including ischemic insults. AIM This review aims to discuss neurogenesis after ischemic insults and to determine the role of flavonoids and BDNF on neurogenesis under physiological and pathological conditions with a concentration on ischemic insults to the brain in particular. METHOD Relevant articles assessing the impact of flavonoids and BDNF on neurogenic processes in various physiological/pathological conditions including ischemic insults within the timeline of 1965 until 2023 were searched using the PubMed database. CONCLUSIONS The selected studies have shown that ischemic insults to the brain induce NS/PC proliferation, differentiation, migration, and maturation into functioning neurons integrating into a pre-existing neural network. Flavonoids and BDNF can modulate neurogenesis in the brain in various physiological/pathological conditions including ischemic insults. In conclusion, flavonoids and BDNF may be involved in post-ischemic brain repair processes through enhancing endogenous neurogenesis.
Collapse
Affiliation(s)
- Esen Yılmaz
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | | - Rasim Mogulkoc
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | |
Collapse
|
54
|
Cano R, Bermúdez V, Galban N, Garrido B, Santeliz R, Gotera MP, Duran P, Boscan A, Carbonell-Zabaleta AK, Durán-Agüero S, Rojas-Gómez D, González-Casanova J, Díaz-Vásquez W, Chacín M, Angarita Dávila L. Dietary Polyphenols and Gut Microbiota Cross-Talk: Molecular and Therapeutic Perspectives for Cardiometabolic Disease: A Narrative Review. Int J Mol Sci 2024; 25:9118. [PMID: 39201807 PMCID: PMC11354808 DOI: 10.3390/ijms25169118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The intricate interplay between the gut microbiota and polyphenols has emerged as a captivating frontier in understanding and potentially harnessing the therapeutic potential of these bioactive compounds. Phenolic compounds, renowned for their antioxidant, anti-inflammatory, antidiabetic, and anticancer properties, are subject to intricate transformations within the gut milieu, where the diverse microbial ecosystem exerts profound effects on their metabolism and bioavailability. Conversely, polyphenols exhibit a remarkable capacity to modulate the composition and activity of the gut microbiota, fostering a bidirectional relationship that extends beyond mere nutrient processing. This symbiotic interaction holds significant implications for human health, particularly in cardiometabolic diseases such as diabetes mellitus, metabolic-dysfunction-associated steatotic liver disease, and cardiovascular disease. Through a comprehensive exploration of molecular interactions, this narrative review elucidates the reciprocal dynamics between the gut microbiota and polyphenols, unveiling novel avenues for therapeutic intervention in cardiometabolic disorders. By unravelling the intricate cross-talk between these two entities, this review underscores the multifaceted roles of polyphenols in overall health and the pivotal role of gut microbiota modulation as a promising therapeutic strategy in mitigating the burden of cardiometabolic diseases.
Collapse
Affiliation(s)
- Raquel Cano
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Nestor Galban
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Bermary Garrido
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Raquel Santeliz
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Maria Paula Gotera
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Pablo Duran
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Arturo Boscan
- Escuela de Medicina, Facultad de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela;
| | | | - Samuel Durán-Agüero
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile;
| | - Jorge González-Casanova
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Waldo Díaz-Vásquez
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| |
Collapse
|
55
|
Grainger EM, Jiang K, Webb MZ, Kennedy AJ, Chitchumroonchokchai C, Riedl KM, Manubolu M, Clinton SK. Bioactive (Poly)phenol Concentrations in Plant-Based Milk Alternatives in the US Market. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18638-18648. [PMID: 39165162 DOI: 10.1021/acs.jafc.3c09063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Plant-based milk alternatives (PBMAs) are increasingly consumed as a dairy alternative [Olson, S. Milk and Non-Dairy Milk - US - 2021, 2021.]. Plant foods are rich sources of (poly)phenols, but concentrations of these bioactive phytochemicals in processed PBMAs are not well documented. We procured twenty-seven PBMA products of 6 types (almond, coconut, oat, pea, rice, and soy) for (poly)phenol analysis. Samples were analyzed via ultra high-performance liquid chromatography-diode array with mass spectrometry. The (poly)phenol content of PBMAs varies and is dependent on plant source, brand, and added flavorings. Soy milk had the highest concentration and rice milk had the lowest (91.9 ± 2.7 and 0.9 ± 0.2 mean mg ± SD/cup serving, respectively). Almond milk, the most widely consumed PBMA, averaged 12.1 ± 8.2 mg/cup serving, but the majority of (poly)phenols are derived from added flavorings. PBMAs contain a wide range of potentially bioactive (poly)phenols and may contribute significantly to overall dietary (poly)phenol intake with the potential to impact health outcomes.
Collapse
Affiliation(s)
- Elizabeth M Grainger
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
| | - Kaitlyn Jiang
- Pharmaceutical Sciences, The Ohio State University College of Pharmacy, 217 Lloyd M. Parks Hall, 500 West 12th Ave., Columbus, Ohio 43210, United States
| | - Maxine Z Webb
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
| | - Ashley J Kennedy
- The Ohio State University Interdisciplinary PhD in Nutrition Program, The Ohio State University, 301 Wiseman Hall, 400 W. 12th Avenue, Columbus, Ohio 43210, United States
| | - Chureeporn Chitchumroonchokchai
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
| | - Ken M Riedl
- Nutrient and Phytochemical Analytic Shared Resource, The Ohio State University Comprehensive Cancer Center, 260 Parker Food Science & Technology Building, 2015 Fyffe Ct., Columbus, Ohio 43210, United States
| | - Manjunath Manubolu
- Nutrient and Phytochemical Analytic Shared Resource, The Ohio State University Comprehensive Cancer Center, 260 Parker Food Science & Technology Building, 2015 Fyffe Ct., Columbus, Ohio 43210, United States
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
- Nutrient and Phytochemical Analytic Shared Resource, The Ohio State University Comprehensive Cancer Center, 260 Parker Food Science & Technology Building, 2015 Fyffe Ct., Columbus, Ohio 43210, United States
| |
Collapse
|
56
|
Peña-Portillo GC, Acuña-Nelson SM, Bastías-Montes JM. From Waste to Wealth: Exploring the Bioactive Potential of Wine By-Products-A Review. Antioxidants (Basel) 2024; 13:992. [PMID: 39199237 PMCID: PMC11351921 DOI: 10.3390/antiox13080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The present paper explores the biological potential of bioactive compounds present in wine industry wastes, highlighting their valorization to promote sustainability and circular economy. Wine by-products, such as grape pomace and vine shoots, contain a high concentration of polyphenols, flavonoids, anthocyanins and other phytochemicals with antioxidant, anti-inflammatory and anticarcinogenic properties. Both conventional extraction methods, such as solid-liquid extraction, and emerging technologies, including enzyme-assisted extraction, ultrasound-assisted extraction, supercritical fluid extraction, microwave-assisted extraction, pressurized liquid extraction, high-hydrostatic-pressure extraction, and deep natural solvent-assisted extraction (NaDES), are discussed. In addition, the preservation of polyphenolic extracts by microencapsulation, a key technique to improve the stability and bioavailability of bioactive compounds, is addressed. The combination of advanced extraction methods and innovative preservation techniques offers a promising perspective for the valorization of bioactive compounds from wine residues, driving sustainability and innovation in the industry.
Collapse
Affiliation(s)
| | - Sergio-Miguel Acuña-Nelson
- Departamento de Ingeniería en Alimentos, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, Chile; (G.-C.P.-P.); (J.-M.B.-M.)
| | | |
Collapse
|
57
|
Huang YH, Huang CY. Anti-Skin Aging and Cytotoxic Effects of Methanol-Extracted Solanum betaceum Red Fruit Seed Extract on Ca9-22 Gingival Carcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:2215. [PMID: 39204651 PMCID: PMC11360763 DOI: 10.3390/plants13162215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The tamarillo, or Solanum betaceum, recognized for its comprehensive nutritional profile, has long been valued for its diverse ethnobotanical uses. This study delves into the potential therapeutic applications of S. betaceum by analyzing its polyphenolic content (TPC), total flavonoid content (TFC), anti-skin aging activities against key enzymes like elastase, tyrosinase, and hyaluronidase, and its cytotoxic effects on oral carcinoma cells. Extracts from the seeds, pulp, and peel of red and yellow fruits were prepared using methanol, ethanol, and acetone. The highest TPC was found in the methanol extract from red fruit seeds (9.89 mg GAE/g), and the highest TFC was found in the methanol extract of yellow fruit peel (3.02 mg QUE/g). Some of these extracts significantly inhibited skin aging-associated enzymes with the red fruit seed extract (100 μg/mL) showing up to 50.4% inhibition of tyrosinase. Additionally, the red fruit seed extract obtained using methanol demonstrated potential anticancer effects against Ca9-22 oral carcinoma cells by inhibiting cell survival, migration, and proliferation as well as inducing apoptosis. These results underscore the potential of S. betaceum fruit extracts, especially from red fruit seeds, as promising agents for anti-skin aging and anticancer applications, meriting further exploration for therapeutic uses.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
58
|
Huang YH, Huang CY. Anti-Skin Aging Potential, Antibacterial Activity, Inhibition of Single-Stranded DNA-Binding Protein, and Cytotoxic Effects of Acetone-Extracted Passiflora edulis (Tainung No. 1) Rind Extract on Oral Carcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:2194. [PMID: 39204630 PMCID: PMC11359509 DOI: 10.3390/plants13162194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The passion fruit, Passiflora edulis, recognized for its rich nutritional properties, has long been used for its varied ethnobotanical applications. This study investigates the therapeutic potential of P. edulis var. Tainung No. 1 rind extracts by examining their polyphenolic content (TPC), total flavonoid content (TFC), anti-skin aging activities against key enzymes such as elastase, tyrosinase, and hyaluronidase, and their ability to inhibit bacterial growth, single-stranded DNA-binding protein (SSB), and their cytotoxic effects on oral carcinoma cells. The acetone extract from the rind exhibited the highest levels of TPC, TFC, anti-SSB, and antibacterial activities. The antibacterial effectiveness of the acetone-extracted rind was ranked as follows: Escherichia coli > Pseudomonas aeruginosa > Staphylococcus aureus. A titration curve for SSB inhibition showed an IC50 value of 313.2 μg/mL, indicating the potency of the acetone extract in inhibiting SSB. It also significantly reduced the activity of enzymes associated with skin aging, particularly tyrosinase, with a 54.5% inhibition at a concentration of 100 μg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis tentatively identified several major bioactive compounds in the acetone extract, including stigmast-5-en-3-ol, vitamin E, palmitic acid, stigmasterol, linoleic acid, campesterol, and octadecanoic acid. Molecular docking studies suggested some of these compounds as potential inhibitors of tyrosinase and SSB. Furthermore, the extract demonstrated anticancer potential against Ca9-22 oral carcinoma cells by inhibiting cell survival, migration, and proliferation and inducing apoptosis. These results underscore the potential of P. edulis (Tainung No. 1) rind as a promising candidate for anti-skin aging, antibacterial, and anticancer applications, meriting further therapeutic investigation.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
59
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
60
|
Li L, Zhang X, Li D, Su H, He Y, Xu Z, Zhao Y, Hong Y, Li Q, Xu P, Hong G. CsPHRs-CsJAZ3 incorporates phosphate signaling and jasmonate pathway to regulate catechin biosynthesis in Camellia sinensis. HORTICULTURE RESEARCH 2024; 11:uhae178. [PMID: 39161738 PMCID: PMC11331543 DOI: 10.1093/hr/uhae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024]
Abstract
Catechins constitute abundant metabolites in tea and have potential health benefits and high economic value. Intensive study has shown that the biosynthesis of tea catechins is regulated by environmental factors and hormonal signals. However, little is known about the coordination of phosphate (Pi) signaling and the jasmonic acid (JA) pathway on biosynthesis of tea catechins. We found that Pi deficiency caused changes in the content of catechins and modulated the expression levels of genes involved in catechin biosynthesis. Herein, we identified two transcription factors of phosphate signaling in tea, named CsPHR1 and CsPHR2, respectively. Both regulated catechin biosynthesis by activating the transcription of CsANR1 and CsMYB5c. We further demonstrated CsSPX1, a Pi pathway repressor, suppressing the activation by CsPHR1/2 of CsANR1 and CsMYB5c. JA, one of the endogenous plant hormones, has been reported to be involved in the regulation of secondary metabolism. Our work demonstrated that the JA signaling repressor CsJAZ3 negatively regulated catechin biosynthesis via physical interaction with CsPHR1 and CsPHR2. Thus, the CsPHRs-CsJAZ3 module bridges the nutrition and hormone signals, contributing to targeted cultivation of high-quality tea cultivars with high fertilizer efficiency.
Collapse
Affiliation(s)
- Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Hui Su
- Department of Tea Science, Zhejiang University, No. 886 Yuhangtang Road, Xihu District, Hangzhou 310058, China
- Department of Tea Science, College of Horticulture, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Zelong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Yiyi Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, No. 886 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Shangcheng District, Hangzhou 310021, China
| |
Collapse
|
61
|
Arancibia-Riveros C, Domínguez-López I, Laveriano-Santos EP, Parilli-Moser I, Tresserra-Rimbau A, Ruiz-León AM, Sacanella E, Casas R, Estruch R, Bodega P, de Miguel M, de Cos-Gandoy A, Martínez-Gómez J, Santos-Beneit G, Fernández-Alvira JM, Fernández-Jiménez R, Lamuela-Raventós RM. Unlocking the power of polyphenols: A promising biomarker of improved metabolic health and anti-inflammatory diet in adolescents. Clin Nutr 2024; 43:1865-1871. [PMID: 38964203 DOI: 10.1016/j.clnu.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS) in adolescence is a risk factor for future cardiovascular disease. The chronic inflammation associated with MetS can be attenuated by the anti-inflammatory effect of polyphenols. We aimed to evaluate total urinary polyphenols as a biomarker of anti-inflammatory diets and their effect on MetS in adolescents. METHODS In this retrospective analysis of a longitudinal cohort study, the relationship between total polyphenol excretion (TPE) in urine, the inflammatory potential of the diet measured through the Children's Dietary Inflammatory Index (C-DII), and the presence of metabolic syndrome was evaluated. The study population consisted of adolescents enrolled in the SI! Program for Secondary Schools trial, who had completed all the study forms and provided urine samples at baseline and at the two-year follow-up. Multivariate linear regression and multinominal logistic regression models were generated to evaluate the relationship of changes in TPE with changes in the C-DII score and changes in MetS status, respectively. An analysis of the ROC curve was performed to assess the potential of TPE as a biomarker of an anti-inflammatory diet. RESULTS This study included 662 adolescents, 51.2% were males, and 48.8% were females, with a mean age of 12 (0.38) years at baseline. The relationship between changes in TPE and changes in the C-DII score was stratified by sex with a p-value <0.001 for the interaction. TPE and C-DII were inversely associated in males (-0.13 mg GAE/g creatinine [-0.26; -0.01] per 1-SD increase, p-value = 0.037). In addition, an increase in changes in TPE levels were associated with a reversal in MetS status in all adolescents (1.30 [1.27; 1.34] per 1-SD increase, p-value<0.001). The ROC curve showed that urinary TPE levels can predict dietary inflammatory potential with an AUC = 0.793 (0.725; 0.863) in males. CONCLUSION Polyphenols excreted in urine are a potential biomarker of anti-inflammatory diets in males and are associated with a reversal of MetS status in adolescents. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, Identifier: NCT03504059, https://clinicaltrials.gov/study/NCT03504059.
Collapse
Affiliation(s)
- Camila Arancibia-Riveros
- Polyphenol Research Group, Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain.
| | - Inés Domínguez-López
- Polyphenol Research Group, Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Emily P Laveriano-Santos
- Polyphenol Research Group, Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Isabella Parilli-Moser
- Polyphenol Research Group, Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Anna Tresserra-Rimbau
- Polyphenol Research Group, Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ana María Ruiz-León
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Emilio Sacanella
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Rosa Casas
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ramón Estruch
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Patricia Bodega
- Foundation for Science, Health and Education (SHE), Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mercedes de Miguel
- Foundation for Science, Health and Education (SHE), Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Amaya de Cos-Gandoy
- Foundation for Science, Health and Education (SHE), Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Gloria Santos-Beneit
- Foundation for Science, Health and Education (SHE), Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Department of Cardiology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
62
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
63
|
Leto L, Favari C, Agosti A, Del Vecchio L, Di Fazio A, Bresciani L, Mena P, Guarrasi V, Cirlini M, Chiancone B. Evaluation of In Vitro-Derived Hop Plantlets, cv. Columbus and Magnum, as Potential Source of Bioactive Compounds. Antioxidants (Basel) 2024; 13:909. [PMID: 39199155 PMCID: PMC11351401 DOI: 10.3390/antiox13080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The demand for bioactive secondary metabolites of natural origin is increasing every day. Micropropagation could be a strategy to respond more quickly to market demands, regardless of seasonality. This research aims to evaluate in vitro-grown plants of two hop varieties, namely Columbus and Magnum, as a potential source of bioactive compounds. The extracts were characterized in terms of total phenolic content by a Folin-Ciocalteu assay and antioxidant capacity by DPPH•, ABTS+, and FRAP assays. The bioactive compound profile of the extracts from both varieties was determined by using UPLC-ESI-QqQ-MS/MS. The results confirmed richness in (poly)phenols and other secondary metabolites of the in vitro-grown hop plantlets. Thirty-two compounds belonging to the major families of phytochemicals characteristic of the species were identified, and twenty-six were quantified, mainly flavonoids, including xanthohumol and isoxanthohumol, phenolic acids, as well as α- and β-acids. This study confirms the validity of in vitro-derived hop plantlets as source of bioactive compounds to be used in the nutraceutical, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Leandra Leto
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Claudia Favari
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Anna Agosti
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Lorenzo Del Vecchio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Andrea Di Fazio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Letizia Bresciani
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Pedro Mena
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Valeria Guarrasi
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Benedetta Chiancone
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| |
Collapse
|
64
|
Armari M, Zavattaro E, Trejo CF, Galeazzi A, Grossetti A, Veronese F, Savoia P, Azzimonti B. Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update. Antibiotics (Basel) 2024; 13:697. [PMID: 39199997 PMCID: PMC11350673 DOI: 10.3390/antibiotics13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well.
Collapse
Affiliation(s)
- Marta Armari
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | | | - Alice Galeazzi
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Alessia Grossetti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| |
Collapse
|
65
|
Zupo R, Castellana F, Lisco G, Corbo F, Crupi P, Sardone R, Panza F, Lozupone M, Rondanelli M, Clodoveo ML. Dietary Intake of Polyphenols and All-Cause Mortality: A Systematic Review with Meta-Analysis. Metabolites 2024; 14:404. [PMID: 39195500 DOI: 10.3390/metabo14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Polyphenols are secondary metabolites found in plants, foods, and drinks, occurring in small quantities and showcasing antioxidant and anti-inflammatory qualities. The primary polyphenols consist of flavonoids, phenolic acids, stilbenes, and lignans. However, there is currently no comprehensive quantitative analysis of epidemiological data on overall death rates. This systematic review with meta-analysis aims to identify the exposure-response relationship between dietary polyphenol intake and all-cause mortality. The literature was reviewed from its earliest study to May 2024, utilizing six distinct electronic databases. No specific criteria were used to choose participants based on the recruiting environment, their general health condition, country, or ethnicity. The inclusion criteria for studies were as follows: a longitudinal design, exposure to dietary polyphenols, all-cause mortality as the outcome, and hazard risk (HR) as the impact measure. The Newcastle-Ottawa Scale was used to evaluate the methodological rigor of the study. The hazard risks (HRs) and 95% confidence intervals (CIs) were estimated by pooling data using common effects models. A protocol has been registered on PROSPERO with the identification number CRD42024545524. The meta-analysis comprised seven cohort studies that involved 178,657 adult people aged 18 years and older. These studies examined the relationship between total dietary polyphenol consumption and the risk of all-cause death. The recruitment settings exclusively used community-based approaches, with a preference for Europe (71%) in terms of geographic distribution. The study's quality was assessed to be moderate to high. The meta-analysis showed consistent evidence that increased dietary exposure to polyphenols reduces the risk of all-cause mortality by 7% (HR 0.93, 95% CI 0.91-0.95, I2: 48%). Pooled data from the available evidence consistently show that individuals exposed to an antioxidant diet rich in polyphenol sources may be at lower risk of all-cause mortality.
Collapse
Affiliation(s)
- Roberta Zupo
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Fabio Castellana
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Giuseppe Lisco
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Pasquale Crupi
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, 74121 Taranto, Italy
| | - Francesco Panza
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy
| | - Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, 70121 Bari, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maria Lisa Clodoveo
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70100 Bari, Italy
| |
Collapse
|
66
|
Stepaniak U, Grosso G, Polak M, Gradowicz-Prajsnar B, Kozela M, Bobak M, Sanchez-Niubo A, Stefler D, Haro JM, Pająk A. Association between dietary (poly)phenol intake and the ATHLOS Healthy Ageing Scale in the Polish arm of the HAPIEE study. GeroScience 2024:10.1007/s11357-024-01275-0. [PMID: 38985401 DOI: 10.1007/s11357-024-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Inverse association between (poly)phenol intake and age-related disorders has been demonstrated; however, little is known whether they affect comprehensively assessed healthy aging. The aim of this study was to evaluate the associations between the intake of (poly)phenol (including selected classes and subclasses) and healthy aging scores related to biopsychosocial aspects of health and functioning. A cross-sectional study was performed using data on 9774 randomly selected citizens of Krakow (Poland) who were 45-69 years of age. Dietary (poly)phenol intake was evaluated using a food frequency questionnaire and matching food consumption data with the Phenol-Explorer database. The healthy aging scores were estimated from the ATHLOS Healthy Ageing Scale (HAS) developed by the Ageing Trajectories of Health-Longitudinal Opportunities and Synergies (ATHLOS) consortium. Beta coefficients were calculated using multivariable linear regression models. In multivariable adjusted models, there were significant positive associations between the ATHLOS HAS score and intake of total (poly)phenols (b per increase of 100 mg/day = 0.081; 95% CI, 0.050; 0.112) and among main classes of (poly)phenols with phenolic acids (b = 0.139; 95% CI, 0.098; 0.180). Intake of remaining classes of (poly)phenols (flavonoids, lignans, stilbenes, and others) was not related to the ATHLOS HAS score. Among individual classes studied, hydroxycinnamic acids, flavonols, flavones, and dihydrochalcones were associated with better healthy aging. The findings suggest the beneficial effect of total dietary (poly)phenol and some classes and subclasses of (poly)phenol intake in terms of healthy aging in Poland. These findings should be confirmed in other settings and with prospective data.
Collapse
Affiliation(s)
- Urszula Stepaniak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland.
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| | - Barbara Gradowicz-Prajsnar
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| | - Magdalena Kozela
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| | - Martin Bobak
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Albert Sanchez-Niubo
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
- Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Denes Stefler
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Josep Maria Haro
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Andrzej Pająk
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Skawinska Street 8, 31-066, Krakow, Poland
| |
Collapse
|
67
|
Pawluś P, Kolniak-Ostek J. Innovative Analogs of Unpasteurized Kombucha Beverages: Comparative Analysis of Mint/Nettle Kombuchas, Considering Their Health-Promoting Effect, Polyphenolic Compounds and Chemical Composition. Int J Mol Sci 2024; 25:7572. [PMID: 39062813 PMCID: PMC11277028 DOI: 10.3390/ijms25147572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing demand for functional beverages is attracting consumers' attention and driving research to expand our knowledge of fermentation using symbiotic culture of bacteria and yeast (SCOBY) and demonstrate the health effects of consuming kombucha. The objective of this study was to develop innovative recipes for unpasteurized mint/nettle kombucha analogs, and to compare the products obtained under varying conditions in terms of chemical composition, bioactive polyphenols and health-promoting activity. Four variants of kombucha beverages (K1-K4), differing in the addition of sucrose and fermentation temperature, were formulated. The fermentation process provided data indicating the increase of antidiabetic, anti-inflammatory and anticholinergic properties, while a decrease in antioxidant capacity was observed. The content of polyphenolics was the highest on the seventh day of fermentation. A higher fermentation temperature and a larger amount of sucrose accelerated the fermentation process, which may be crucial for shortening the production time of kombucha drinks.
Collapse
Affiliation(s)
| | - Joanna Kolniak-Ostek
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chelmonskiego Street, 51-630 Wroclaw, Poland;
| |
Collapse
|
68
|
Li W, Zhan M, Wen Y, Chen Y, Zhang Z, Wang S, Tian D, Tian S. Recent Progress of Oral Functional Nanomaterials for Intestinal Microbiota Regulation. Pharmaceutics 2024; 16:921. [PMID: 39065618 PMCID: PMC11280463 DOI: 10.3390/pharmaceutics16070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota is closely associated with human health, and alterations in gut microbiota can influence various physiological and pathological activities in the human body. Therefore, microbiota regulation has become an important strategy in current disease treatment, albeit facing numerous challenges. Nanomaterials, owing to their excellent protective properties, drug release capabilities, targeting abilities, and good biocompatibility, have been widely developed and utilized in pharmaceuticals and dietary fields. In recent years, significant progress has been made in research on utilizing nanomaterials to assist in regulating gut microbiota for disease intervention. This review explores the latest advancements in the application of nanomaterials for microbiota regulation and offers insights into the future development of nanomaterials in modulating gut microbiota.
Collapse
Affiliation(s)
- Wanneng Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Zhongchao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
69
|
Hon KW, Naidu R. Synergistic Mechanisms of Selected Polyphenols in Overcoming Chemoresistance and Enhancing Chemosensitivity in Colorectal Cancer. Antioxidants (Basel) 2024; 13:815. [PMID: 39061884 PMCID: PMC11273411 DOI: 10.3390/antiox13070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Despite significant advances in medical treatment, chemotherapy as monotherapy can lead to substantial side effects and chemoresistance. This underscores the need for therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Polyphenols represent a diverse group of natural compounds that can target multiple signaling pathways in cancer cells to induce anti-cancer effects. Additionally, polyphenols have been shown to work synergistically with chemotherapeutics and other natural compounds in cancer cells. This review aims to provide a comprehensive insight into the synergistic mechanisms of selected polyphenols as chemosensitizers in CRC cells. Further research and clinical trials are warranted to fully harness the synergistic mechanisms of selected polyphenols combined with chemotherapy or natural compounds in improving cancer treatment outcomes.
Collapse
Affiliation(s)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
70
|
Jiang YR, Liu RJ, Tang J, Li MQ, Zhang DK, Pei ZQ, Fan SH, Xu RC, Huang HZ, Lin JZ. The health benefits of dietary polyphenols on pediatric intestinal diseases: Mechanism of action, clinical evidence and future research progress. Phytother Res 2024; 38:3782-3800. [PMID: 38839050 DOI: 10.1002/ptr.8218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 06/07/2024]
Abstract
Pediatric intestinal development is immature, vulnerable to external influences and produce a variety of intestinal diseases. At present, breakthroughs have been made in the treatment of pediatric intestinal diseases, but there are still many challenges, such as toxic side effects, drug resistance, and the lack of more effective treatments and specific drugs. In recent years, dietary polyphenols derived from plants have become a research hotspot in the treatment of pediatric intestinal diseases due to their outstanding pharmacological activities such, as anti-inflammatory, antibacterial, antioxidant and regulation of intestinal flora. This article reviewed the mechanism of action and clinical evidence of dietary polyphenols in the treatment of pediatric intestinal diseases, and discussed the influence of physiological characteristics of children on the efficacy of polyphenols, and finally prospected the new dosage forms of polyphenols in pediatrics.
Collapse
Affiliation(s)
- Yu-Rou Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Jie Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Qi Li
- Department of Pharmacy, Sichuan Nursing Vocational College, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao-Qing Pei
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - San-Hu Fan
- Sanajon Pharmaceutical Group, Chengdu, China
| | - Run-Chun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
71
|
Wanyo P, Chamsai T, Toontom N, Nghiep LK, Tudpor K. Differential Effects of In Vitro Simulated Digestion on Antioxidant Activity and Bioaccessibility of Phenolic Compounds in Purple Rice Bran Extracts. Molecules 2024; 29:2994. [PMID: 38998946 PMCID: PMC11243717 DOI: 10.3390/molecules29132994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Pigmented rice varieties are abundant in phenolic compounds. Antioxidant activity and bioaccessibility of phenolic compounds are modified in the gastrointestinal tract. After in vitro simulated digestion, changes in antioxidant activity and bioaccessibility of phenolic compounds (phenolic acids, flavonoids, and anthocyanins) in purple rice brans (Hom Nil and Riceberry) were compared with undigested crude extracts. The digestion method was conducted following the INFOGEST protocol. Antioxidant activity was determined using the ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assays. The bioaccessibility index (BI) was calculated from the ratio of digested to undigested soluble phenolic content. Overall results showed that the in vitro simulated digested rice brans had lower antioxidant activity and lower total phenolic, flavonoid, and anthocyanin contents. However, the concentration of sinapic acid was stable, while other phenolic acids (gallic, protocatechuic, vanillic, ρ-coumaric, and ferulic acids) degraded after the oral, gastric, and intestinal phases. The BI of sinapic, gallic, vanillic, and ferulic acids remained stable, and the BI of quercetin was resistant to digestion. Conversely, anthocyanins degraded during the intestinal phase. In conclusion, selective phenolic compounds are lost along the gastrointestinal tract, suggesting that controlled food delivery is of further interest.
Collapse
Affiliation(s)
- Pitchaporn Wanyo
- Department of Food Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46230, Thailand
| | - Tossaporn Chamsai
- Department of Mechanical Engineering, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin Campus, Surin 32000, Thailand
| | - Nitchara Toontom
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham 44150, Thailand
- Faculty of Public Health, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Le Ke Nghiep
- Vinh Long Department of Health, Vĩnh Long 85000, Vietnam
| | - Kukiat Tudpor
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham 44150, Thailand
- Faculty of Public Health, Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
72
|
Poljuha D, Sladonja B, Uzelac Božac M, Šola I, Damijanić D, Weber T. The Invasive Alien Plant Solidago canadensis: Phytochemical Composition, Ecosystem Service Potential, and Application in Bioeconomy. PLANTS (BASEL, SWITZERLAND) 2024; 13:1745. [PMID: 38999585 PMCID: PMC11244460 DOI: 10.3390/plants13131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Solidago canadensis L. (Canadian goldenrod) is a widely distributed invasive herb from the Asteraceae family. It contains compounds that can change the soil structure and its nutritional components and thus affect indigenous species' growth, germination, and survival. Consequently, it can pose a major ecological threat to biodiversity. On the other hand, many studies show that this species, due to its chemical properties, can be used for many positive purposes in pharmacy, agriculture, medicine, cosmetic industry, etc. S. canadensis contains a diverse array of bioactive compounds that may be responsible for antioxidant, antimicrobial, and anticancer activities. Many studies have discussed the invasiveness of S. canadensis, and several chemical and genetic differences between this plant in native and introduced environments have been discovered. Previous ecological and environmental evaluations of the potential of S. canadensis as an ecosystem services provider have come out with four promising groups of its products: active extracts, essential oil, fuel, and others. Although identified, there is a need for detailed validation and prioritisation of ecosystem services. This article aims to overview the S. canadensis invasive features, emphasising chemical characterisation and its potential for providing ecosystem services. Moreover, it identifies scenarios and proposes a methodology for estimating S. canadensis use in bioeconomy.
Collapse
Affiliation(s)
- Danijela Poljuha
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (B.S.); (M.U.B.); (D.D.)
| | - Barbara Sladonja
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (B.S.); (M.U.B.); (D.D.)
| | - Mirela Uzelac Božac
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (B.S.); (M.U.B.); (D.D.)
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Danijela Damijanić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (B.S.); (M.U.B.); (D.D.)
| | - Tim Weber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;
| |
Collapse
|
73
|
Sánchez-Rosales AI, Posadas-Calleja JG, Serralde-Zúñiga AE, Quiroz-Olguín G. Nutritional interventions as modulators of the disease activity for idiopathic inflammatory myopathies: a scoping review. J Hum Nutr Diet 2024; 37:772-787. [PMID: 38324396 DOI: 10.1111/jhn.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Idiopathic inflammatory myopathies (IIMs) are chronic, autoimmune connective tissue diseases associated with significant morbidity and disability. Nutrients can activate the immune system and contribute to chronic low-grade inflammation (LGI). Chronic muscle inflammation leads to imbalanced pro-inflammatory and anti-inflammatory cytokines, causing inadequate nutrition, weight loss and muscle weakness during a negative cycle. Owing to its potential to modulate LGI in various diseases, the Mediterranean diet (Med Diet) has been extensively studied. This scoping review explores the nutritional implications and recommendations of the Med Diet as a treatment for immune-mediated diseases, focusing on the gaps in IIM nutritional interventions. A comprehensive literature search of the MEDLINE and EBSCO databases between September 2018 and December 2022 was performed. We identified that the Med Diet and its specific components, such as omega-3 (nω3) fatty acids, vitamin D and antioxidants, play a role in the dietary treatment of connective tissue-related autoimmune diseases. Nutritional interventions have demonstrated potential for modulating disease activity and warrant further exploration of IIMs through experimental studies. This review introduces a dietary therapeutic approach using the Med Diet and related compounds to regulate chronic inflammatory processes in IIMs. However, further clinical studies are required to evaluate the efficacy of the Med Diet in patients with IIMs. Emphasising a clinical-nutritional approach, this study encourages future research on the anti-inflammatory effects of the Med Diet on IIMs. This review highlights potential insights for managing and treating these conditions using a holistic approach.
Collapse
Affiliation(s)
- Abril I Sánchez-Rosales
- School of Public Health, Instituto Nacional de Salud Pública, Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, Cuernavaca, Morelos, Mexico
| | | | - Aurora E Serralde-Zúñiga
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Quiroz-Olguín
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| |
Collapse
|
74
|
De Cristofaro GA, Paolucci M, Pappalardo D, Pagliarulo C, Sessini V, Lo Re G. Interface interactions driven antioxidant properties in olive leaf extract/cellulose nanocrystals/poly(butylene adipate-co-terephthalate) biomaterials. Int J Biol Macromol 2024; 272:132509. [PMID: 38843608 DOI: 10.1016/j.ijbiomac.2024.132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
Functional packaging represents a new frontier for research on food packaging materials. In this context, adding antioxidant properties to packaging films is of interest. In this study, poly(butylene adipate-co-terephthalate) (PBAT) and olive leaf extract (OLE) have been melt-compounded to obtain novel biomaterials suitable for applications which would benefit from the antioxidant activity. The effect of cellulose nanocrystals (CNC) on the PBAT/OLE system was investigated, considering the interface interactions between PBAT/OLE and OLE/CNC. The biomaterials' physical and antioxidant properties were characterized. Morphological analysis corroborates the full miscibility between OLE and PBAT and that OLE favours CNC dispersion into the polymer matrix. Tensile tests show a stable plasticizer effect of OLE for a month in line with good interface PBAT/OLE interactions. Simulant food tests indicate a delay of OLE release from the 20 wt% OLE-based materials. Antioxidant activity tests prove the antioxidant effect of OLE depending on the released polyphenols, prolonged in the system at 20 wt% of OLE. Fluorescence spectroscopy demonstrates the nature of the non-covalent PBAT/OLE interphase interactions in π-π stacking bonds. The presence of CNC in the biomaterials leads to strong hydrogen bonding interactions between CNC and OLE, accelerating OLE released from the PBAT matrix.
Collapse
Affiliation(s)
- Giuseppa Anna De Cristofaro
- University of Sannio - Department of Science and Technology, Via Francesco De Sanctis snc, 82100 Benevento, Italy.
| | - Marina Paolucci
- University of Sannio - Department of Science and Technology, Via Francesco De Sanctis snc, 82100 Benevento, Italy.
| | - Daniela Pappalardo
- University of Sannio - Department of Science and Technology, Via Francesco De Sanctis snc, 82100 Benevento, Italy.
| | - Caterina Pagliarulo
- University of Sannio - Department of Science and Technology, Via Francesco De Sanctis snc, 82100 Benevento, Italy.
| | - Valentina Sessini
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain.
| | - Giada Lo Re
- Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden; Wallenberg Wood Science Centre, Chalmers University of Technology, Kemigården 4, 41258 Gothenburg, Sweden.
| |
Collapse
|
75
|
Ramos-Escudero F, Rojas-García A, Cádiz-Gurrea MDLL, Segura-Carretero A. High potential extracts from cocoa byproducts through sonotrode optimal extraction and a comprehensive characterization. ULTRASONICS SONOCHEMISTRY 2024; 106:106887. [PMID: 38696912 PMCID: PMC11070619 DOI: 10.1016/j.ultsonch.2024.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Cocoa pod husk (CPH) and cocoa bean shell (CBS) are by-products obtained during pre-processing and processing of cocoa beans. Several bioactive compounds have been identified in these by-products that can be used for commercial applications as a way to promote the circular economy. Therefore, the objective of this paper was to recover bioactive compounds from CPH and CBS by sonoextraction process, to determine the type, content, and antioxidant activity in optimized extracts. To achieve our purpose, an optimization strategy using Box-Behnken Design coupled response surface methodology (MRS) was applied. The extraction conditions were optimized. The results obtained for CBS were: TPC (193 mg GAE/g), TEAC (1.02 mmol TE/g), FRAP (1.02 mmol FeSO4/g) and ORAC (2.6 mmol TE/g), while for CPH, the reported values were: TPC (48 mg GAE/g), TEAC (0.30 mmol TE/g), FRAP (0.35 mmol FeSO4/g) and ORAC (0.43 mmol TE/g) under the optimized conditions: Time (XA): 15 min, Amplitude (XB): 80 %, Ethanol (XC): 50 %. The LC-ESI-qTOF-MS analysis results allowed the identification of 79 compounds, of which 39 represent the CBS extract, while 40 compounds were identified in CPH extract. To conclude, sonotrode based extraction could be considered as an efficient and fast alternative for the recovery of bioactive substances from CBS and CPH.
Collapse
Affiliation(s)
- Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 550 15024 Lima, Perú; Carrera de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Av. La Fontana 550 15024 Lima, Perú.
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Fuentenueva s/n 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Fuentenueva s/n 18071 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Fuentenueva s/n 18071 Granada, Spain
| |
Collapse
|
76
|
Irmak E, Tunca Sanlier N, Sanlier N. Could polyphenols be an effective treatment in the management of polycystic ovary syndrome? INT J VITAM NUTR RES 2024; 94:422-433. [PMID: 38229476 DOI: 10.1024/0300-9831/a000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS), is a health problem observed in women of reproductive age. Different diets, physical activity recommendations and lifestyle changes can be effective in dealing with the symptoms of PCOS. Nutrition is indeed an essential part of the treatment of the disease as it directly affects body weight loss, insulin resistance, lipid profile, hormones, and dermatological complaints such as acne. Polyphenols, simply classified as flavonoids and non-flavonoids, are bioactive components found in plant-based foods. The most common polyphenols in the diet are flavanols, flavonols, flavanone, anthocyanins. In particular, polyphenols which are compounds naturally found in foods, have antioxidant, anticancer, anti-inflammatory, antimutagenic benefits along with many other ones. In the treatment of PCOS, polyphenols may help reduce the symptoms, improve insulin resistance and poor lipid profile, and cure hormonal disorders. It has been reported that polyphenols are influential in menstrual cycle disorders and enable a decrease in body weight, hyperandrogenism, estrogen, testosterone, luteinizing hormone (LH)/follicle stimulating hormone (FSH) ratios and LH. For adequate daily intake of polyphenols, which are found in high amounts in fruits and vegetables, at least 5 portions of fruits and vegetables should be consumed in addition to a healthy nutrition pattern. In this review, the effects of various polyphenols on polycystic ovary syndrome are discussed.
Collapse
Affiliation(s)
- Esra Irmak
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| | - Nazli Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara Bilkent City Hospital, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| |
Collapse
|
77
|
Zhao J, Xu Y, Li H, An W, Yin Y, Wang B, Wang L, Wang B, Duan L, Ren X, Liang X, Wang Y, Wan R, Huang T, Zhang B, Li Y, Luo J, Cao Y. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1435-1452. [PMID: 38194521 PMCID: PMC11123438 DOI: 10.1111/pbi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd.UrumchiChina
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bin Wang
- Wuhan Matware Biotechnology Co., Ltd.WuhanChina
| | - Liping Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Bi Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaoyue Ren
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yajun Wang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yanlong Li
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jie Luo
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| |
Collapse
|
78
|
Lu L, Li J, Liu L, Wang C, Xie Y, Yu X, Tian L. Grape seed extract prevents oestrogen deficiency-induced bone loss by modulating the gut microbiota and metabolites. Microb Biotechnol 2024; 17:e14485. [PMID: 38850270 PMCID: PMC11162104 DOI: 10.1111/1751-7915.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024] Open
Abstract
Proanthocyanidin-rich grape seed extract (GSE) has been shown to have the potential to protect bones, although the underlying mechanism remains unknown. The current study aims to explore GSE's preventive and therapeutic impact on bone loss induced by oestrogen deficiency and the underlying mechanism through the gut microbiota (GM) and metabolomic responses. In oestrogen-deficient ovariectomized (OVX) mice, GSE ameliorated bone loss by inhibiting the expansion of bone marrow adipose tissue (BMAT), restoring BMAT lipolysis and promoting bone formation. GSE regulated OVX-induced GM dysbiosis by reducing the abundance of opportunistic pathogenic bacteria, such as Alistipes, Turicibacter and Romboutsia, while elevating the abundance of beneficial bacteria, such as Bifidobacterium. The modified GM primarily impacted lipid and amino acid metabolism. Furthermore, the serum metabolites of GSE exhibited a significant enrichment in lipid metabolism. In summary, GSE shows potential as a functional food for preventing oestrogen deficiency-induced bone loss by modulating GM and metabolite-mediated lipid metabolism.
Collapse
Affiliation(s)
- Lingyun Lu
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China HospitalSichuan UniversityChengduChina
| | - Jiao Li
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China HospitalSichuan UniversityChengduChina
| | - Lu Liu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Cui Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
79
|
Baptista F, Paié-Ribeiro J, Almeida M, Barros AN. Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review. Molecules 2024; 29:2576. [PMID: 38893451 PMCID: PMC11173950 DOI: 10.3390/molecules29112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a formidable global health concern, affecting one in six adults over 25. This review explores the potential of phenolic compounds in managing CKD and its complications. By examining the existing research, we highlight their diverse biological activities and potential to combat CKD-related issues. We analyze the nutritional benefits, bioavailability, and safety profile of these compounds. While the clinical evidence is promising, preclinical studies offer valuable insights into underlying mechanisms, optimal dosages, and potential side effects. Further research is crucial to validate the therapeutic efficacy of phenolic compounds for CKD. We advocate for continued exploration of their innovative applications in food, pharmaceuticals, and nutraceuticals. This review aims to catalyze the scientific community's efforts to leverage phenolic compounds against CKD-related challenges.
Collapse
Affiliation(s)
- Filipa Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| | - Jessica Paié-Ribeiro
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Mariana Almeida
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, 5000-801 Vila Real, Portugal
| |
Collapse
|
80
|
Li S, Yang D, Ci X, Lu X, Guo Y. Curative effect of the total saponins of Panax japonicus (TSPJ) on type 2 diabetes: Focusing on VEGFA. Gene 2024; 909:148305. [PMID: 38403172 DOI: 10.1016/j.gene.2024.148305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The objective of this study was to assess the impact of the total saponins of Panax japonicus (TSPJ) on Type 2 diabetes mellitus (T2DM). RESULTS The intervention of TSPJ was found to have the ability to reverse physiological indicators associated with T2DM, while also enhancing the expression of genes involved in glucose metabolism and intestinal homeostasis. Additionally, alterations in the composition of the gut microbiota were observed. Based on the findings of experimental results and network pharmacology analysis, it is evident that vascular endothelial growth factor A (VEGFA) serves as a prominent shared target between TSPJ and diabetes. The outcomes observed in T2DM mice overexpressing VEGFA align with those observed in T2DM mice treated with TSPJ. CONCLUSIONS TSPJ administration and VEGFA overexpression yield similar effects on T2DM in mice. Thus, in terms of mechanism, by upregulating the expression of VEGFA, TSPJ may ameliorate metabolic imbalance, preserve intestinal homeostasis, and lessen the symptoms of type 2 diabetes. The findings demonstrated the viability of using VEGFA as a type 2 diabetes therapy option and offered important insights into the therapeutic mechanisms by TSPJ in the management of T2DM. To determine the exact mechanisms behind the effects of TSPJ and VEGFA and to assess their potential therapeutic uses, more research efforts are necessary.
Collapse
Affiliation(s)
- Shuxiao Li
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Yang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xin Ci
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaodan Lu
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China.
| | - Yan Guo
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
81
|
Salas-Arias K, Irías-Mata A, Sánchez-Calvo L, Brenes-Zárate MF, Abdelnour-Esquivel A, Villalta-Romero F, Calvo-Castro LA. Eliciting Polyphenols in Strawberry Leaves: Preliminary Experiments in Fragaria × ananassa cv. Festival. Molecules 2024; 29:2467. [PMID: 38893343 PMCID: PMC11173603 DOI: 10.3390/molecules29112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Polyphenols are plant secondary metabolites that function mostly as a general stress-induced protective mechanism. Polyphenols have also gained interest due to their beneficial properties for human health. Strawberry leaves represent an agro-industrial waste material with relevant bioactive polyphenol content, which could be incorporated into circular economy strategies. However, due to the low quantities of polyphenols in plants, their production needs to be improved for cost-effective applications. The objective of this research was to compare polyphenol production in strawberry (Fragaria × ananassa cv. Festival) leaves in plants grown in greenhouse conditions and plants grown in vitro, using three possible elicitor treatments (UV irradiation, cold exposure, and cysteine). General vegetative effects were morphologically evaluated, and specific polyphenolic compounds were quantified by UHPLC-DAD-MS/MS. Gallic acid was the most abundant polyphenol found in the leaves, both in vivo and in vitro. The results showed higher amounts and faster accumulation of polyphenols in the in vitro regenerated plants, highlighting the relevance of in vitro tissue culture strategies for producing compounds such as polyphenols in this species and cultivar.
Collapse
Affiliation(s)
- Karla Salas-Arias
- Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, Cartago P.O. Box 159-7050, Costa Rica;
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Andrea Irías-Mata
- Centro para Investigaciones en Granos y Semillas, Escuela de Agronomía, Universidad de Costa Rica, San José P.O. Box 2060, Costa Rica;
| | - Laura Sánchez-Calvo
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia, San José P.O. Box 474-2050, Costa Rica;
| | - María Fernanda Brenes-Zárate
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Ana Abdelnour-Esquivel
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Fabián Villalta-Romero
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Laura A. Calvo-Castro
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| |
Collapse
|
82
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
83
|
Salah HA, Elsayed AM, Bassuiny RI, Abdel-Aty AM, Mohamed SA. Improvement of phenolic profile and biological activities of wild mustard sprouts. Sci Rep 2024; 14:10528. [PMID: 38719861 PMCID: PMC11078989 DOI: 10.1038/s41598-024-60452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
The current study aimed to assess the effect of the germination process of wild mustard seeds on the phenolic profile, antioxidant, antibacterial, and antidiabetic properties, and some relevant enzyme activities. The total phenolic and flavonoid contents increased 5- and 10-fold, respectively, and were maximized on 5-days sprouts. One new phenolic compound was identified on 5-days sprout extract using HPLC. The concentrations of the identified phenolic compounds increased 1.5-4.3 folds on 5-days sprouts compared with dry seeds. The total antioxidant activity multiplied 17- and 21-fold on 5-days sprouts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, respectively. The activity of carbohydrate-cleaving, phenolic-synthesizing and antioxidant enzymes also increased during germination. On 5-days sprouts, there was a substantial correlation between the highest β-glucosidase and peroxidase activities with highest phenolic and flavonoid levels and maximum antioxidant activity. The phenolic extract of 5-days sprouts exhibited antimicrobial activities against Escherichia coli and Staphylococcus aureus and showed potent antidiabetic activity established by its inhibitory effect against α-amylase and α-glucosidase compared to dry seeds.
Collapse
Affiliation(s)
- Hala A Salah
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
84
|
Terletskaya NV, Shadenova EA, Litvinenko YA, Ashimuly K, Erbay M, Mamirova A, Nazarova I, Meduntseva ND, Kudrina NO, Korbozova NK, Djangalina ED. Influence of Cold Stress on Physiological and Phytochemical Characteristics and Secondary Metabolite Accumulation in Microclones of Juglans regia L. Int J Mol Sci 2024; 25:4991. [PMID: 38732208 PMCID: PMC11084536 DOI: 10.3390/ijms25094991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The current study investigated the impact of cold stress on the morphological, physiological, and phytochemical properties of Juglans regia L. (J. regia) using in vitro microclone cultures. The study revealed significant stress-induced changes in the production of secondary antioxidant metabolites. According to gas chromatography-mass spectrometry (GC-MS) analyses, the stress conditions profoundly altered the metabolism of J. regia microclones. Although the overall spectrum of metabolites was reduced, the production of key secondary antioxidant metabolites significantly increased. Notably, there was a sevenfold (7×) increase in juglone concentration. These findings are crucial for advancing walnut metabolomics and enhancing our understanding of plant responses to abiotic stress factors. Additionally, study results aid in identifying the role of individual metabolites in these processes, which is essential for developing strategies to improve plant resilience and tolerance to adverse conditions.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (A.M.); (N.O.K.); (N.K.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan; (E.A.S.); (Y.A.L.); (K.A.); (N.D.M.)
| | - Elvira A. Shadenova
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan; (E.A.S.); (Y.A.L.); (K.A.); (N.D.M.)
| | - Yuliya A. Litvinenko
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan; (E.A.S.); (Y.A.L.); (K.A.); (N.D.M.)
- Faculty of Chemistry, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan
| | - Kazhybek Ashimuly
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan; (E.A.S.); (Y.A.L.); (K.A.); (N.D.M.)
- Faculty of Chemistry, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan
| | - Malika Erbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (A.M.); (N.O.K.); (N.K.K.)
- Faculty of Chemistry, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan
| | - Aigerim Mamirova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (A.M.); (N.O.K.); (N.K.K.)
| | - Irada Nazarova
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan; (E.A.S.); (Y.A.L.); (K.A.); (N.D.M.)
- Faculty of Chemistry, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan
| | - Nataliya D. Meduntseva
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan; (E.A.S.); (Y.A.L.); (K.A.); (N.D.M.)
| | - Nataliya O. Kudrina
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (A.M.); (N.O.K.); (N.K.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan; (E.A.S.); (Y.A.L.); (K.A.); (N.D.M.)
| | - Nazym K. Korbozova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (A.M.); (N.O.K.); (N.K.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan; (E.A.S.); (Y.A.L.); (K.A.); (N.D.M.)
| | - Erika D. Djangalina
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan; (E.A.S.); (Y.A.L.); (K.A.); (N.D.M.)
| |
Collapse
|
85
|
Kelleher SL, Burkinshaw S, Kuyooro SE. Polyphenols and Lactation: Molecular Evidence to Support the Use of Botanical Galactagogues. Mol Nutr Food Res 2024; 68:e2300703. [PMID: 38676329 DOI: 10.1002/mnfr.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκβ) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Serena Burkinshaw
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Seun Elizabeth Kuyooro
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
86
|
Favari C, Rinaldi de Alvarenga JF, Sánchez-Martínez L, Tosi N, Mignogna C, Cremonini E, Manach C, Bresciani L, Del Rio D, Mena P. Factors driving the inter-individual variability in the metabolism and bioavailability of (poly)phenolic metabolites: A systematic review of human studies. Redox Biol 2024; 71:103095. [PMID: 38428187 PMCID: PMC10912651 DOI: 10.1016/j.redox.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria. Inter-individual differences were mainly related to gut microbiota composition and activity but also to genetic polymorphisms, age, sex, ethnicity, BMI, (patho)physiological status, and physical activity, depending on the (poly)phenol sub-class considered. Most of the IIV has been poorly characterised. Two major types of IIV were observed. One resulted in metabolite gradients that can be further classified into high and low excretors, as seen for all flavonoids, phenolic acids, prenylflavonoids, alkylresorcinols, and hydroxytyrosol. The other type of IIV is based on clusters of individuals defined by qualitative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O-DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali-quantitative metabotypes characterized by different proportions of specific metabolites, as for flavan-3-ols, flavanones, and even isoflavones. Future works are needed to shed light on current open issues limiting our understanding of this phenomenon that likely conditions the health effects of dietary (poly)phenols.
Collapse
Affiliation(s)
- Claudia Favari
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy.
| | | | - Lorena Sánchez-Martínez
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence 'Campus Mare Nostrum', Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de La Arrixaca', Universidad de Murcia, Espinardo, Murcia, Spain
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| |
Collapse
|
87
|
Balykina A, Naida L, Kirkgöz K, Nikolaev VO, Fock E, Belyakov M, Whaley A, Whaley A, Shpakova V, Rukoyatkina N, Gambaryan S. Antiplatelet Effects of Flavonoid Aglycones Are Mediated by Activation of Cyclic Nucleotide-Dependent Protein Kinases. Int J Mol Sci 2024; 25:4864. [PMID: 38732081 PMCID: PMC11084604 DOI: 10.3390/ijms25094864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.
Collapse
Affiliation(s)
- Anna Balykina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
- Faculty of General Medicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Lidia Naida
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia;
| | - Kürsat Kirkgöz
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.K.); (V.O.N.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.K.); (V.O.N.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| | - Michael Belyakov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg 188663, Russia;
| | - Anastasiia Whaley
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
- Department of Pharmacognosy, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia;
| | - Andrei Whaley
- Department of Pharmacognosy, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia;
| | - Valentina Shpakova
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6AS, UK;
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| |
Collapse
|
88
|
Mallamaci R, Conforti F, Statti G, Avato P, Barbarossa A, Meleleo D. Phenolic Compounds from Tropea Red Onion as Dietary Agents for Protection against Heavy Metals Toxicity. Life (Basel) 2024; 14:495. [PMID: 38672765 PMCID: PMC11051521 DOI: 10.3390/life14040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The present study aims to highlight the cell protective effect of Tropea red onion (TRO) hydroalcoholic extract and some of its components against "non-essential" heavy metals. For this purpose, the cytoprotective roles of cyanidin, cyanidin-3-O-glucoside and quercetin against Cd, Hg and Pb and of TRO extract against Hg and Pb have been investigated, and data are reported here. To the best of our knowledge, this is the first detailed evaluation of the protective effect against cell damage induced by "non-essential" heavy metals through the simultaneous administration of cyanidin, cyanidin-3-O-glucoside and quercetin with CdCl2, HgCl2 or PbCl2 and the TRO extract against HgCl2 and PbCl2. Present data are also compared with our previous results from the TRO extract against Cd. The antioxidant capacity of the extract was also determined by the ferric reducing antioxidant power (FRAP) and the bovine brain peroxidation assay. Both of the assays indicated a good antioxidant capacity of the extract. Cell viability and the impact on necrotic cell death were examined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test and lactate dehydrogenase (LDH) release assay. After 24 h of exposure, Caco-2 cell viability decreased by approximately 50% at 0.25 μM for Cd, Hg and Pb and, after 72 h, the ranking order of "non-essential" heavy metal toxicity on cell viability was PbCl2 > CdCl2 > HgCl2. Cell viability was assessed by treating the cells with the biomolecules at doses of 25, 50 and 100 µg/mL for 24 and 72 h. The same analysis was carried out on Caco-2 cells treated with combinations of TRO extract, cyanidin, cyanidin-3-O-glucoside, or quercetin and "non-essential" heavy metals. Treatments with the bioactive metabolites did not significantly improve cell viability. The identical treatment of Caco-2 cells produced instead LDH release, suggesting a decrease in cell viability. Consistently with the finding that TRO extract showed a good antioxidant activity, we suggest that its higher cytotoxicity, compared to that of the individual assayed phytochemicals, may be derived by the combined antioxidant and chelating properties of all the molecules present in the extract. Therefore, from all the acquired experimental evidence, it appears that the TRO extract may be a better promising protective agent against the toxic effect of Cd, Hg and Pb compared to its bioactive metabolites.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria-DFSSN, 87036 Rende, Italy;
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria-DFSSN, 87036 Rende, Italy;
| | - Pinarosa Avato
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.A.); (A.B.)
| | - Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.A.); (A.B.)
| | - Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
89
|
Mohammadi N, Farrell M, O'Sullivan L, Langan A, Franchin M, Azevedo L, Granato D. Effectiveness of anthocyanin-containing foods and nutraceuticals in mitigating oxidative stress, inflammation, and cardiovascular health-related biomarkers: a systematic review of animal and human interventions. Food Funct 2024; 15:3274-3299. [PMID: 38482946 DOI: 10.1039/d3fo04579j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cardiovascular diseases (CVDs) are a group of chronic health disorders prevalent worldwide that claim millions of lives yearly. Inflammation and oxidative stress are intricately associated with myocardial tissue damage, endothelial dysfunction, and increased odds of heart failure. Thus, dietary strategies aimed at decreasing the odds of CVDs are paramount. In this regard, the consumption of anthocyanins, natural pigments found in edible flowers, fruits, and vegetables, has attracted attention due to their potential to promote cardiovascular health. The main mechanisms of action linked with their protective effects on antioxidant and anti-inflammatory activities, serum lipid profile modulation, and other cardiovascular health parameters are explained and exemplified. However, little is known about the dose-dependency nature of the effects, which anthocyanin has better efficiency, and whether anthocyanin-containing foods display better in vivo efficacy than nutraceuticals (i.e., concentrated extracts containing higher levels of anthocyanins than foods). Thus, this systematic review focused on determining the effects of anthocyanin-containing foods and nutraceuticals on biomarkers associated with CVDs using animal studies and human interventions supported by in vitro mechanistic insights. Overall, the results showed that the regular consumption of anthocyanin-containing foods and nutraceuticals improved vascular function, lipid profile, and antioxidant and anti-inflammatory effects. The daily dosage, the participants' health status, and the duration of the intervention also significantly influenced the results.
Collapse
Affiliation(s)
- Nima Mohammadi
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Michelle Farrell
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Laura O'Sullivan
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Andrea Langan
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Marcelo Franchin
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- Federal University of Alfenas, In Vitro and In Vivo Nutritional and Toxicological Analysis Laboratory, Av. Jovino Fernandes Sales, 2600, Bairro Santa Clara - CEP 37133-840, Alfenas, Minas Gerais, Brazil
| | - Daniel Granato
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
90
|
Wu J, Zhang Y, Qiu R, Li L, Zong X. Effects of tea addition on antioxidant capacity, volatiles, and sensory quality of beer. Food Chem X 2024; 21:101193. [PMID: 38357372 PMCID: PMC10865231 DOI: 10.1016/j.fochx.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Green tea has great potential to enhance the quality of beer. In this study, green tea was added at different stages of beer brewing, and evaluated the antioxidant capacity, volatile components, as well as sensory quality. The results showed that the addition of green tea during the start of boiling has great potential for application, and the green tea beer (GTB) had remarkable antioxidant properties (ABTS radical scavenging ability, 8.67 mmol TE/L; DPPH radical scavenging ability, 3.97 mmol TE/L; reducing power, 3.28 mmol TE/L), and an excellent sensory quality (acceptance, 6.09/9). HPLC analysis indicated that the principal phenolics in GTB were catechin and caffeic acid, in addition, the relative amounts of ferulic acid, gallic acid can be used to differentiate between GTB and beer. HS-SPME-GC-MS analyses showed that ethyl caprylate, ethyl nonanoate, ethyl caprate, linalool, and phenethyl alcohol were potentially significant for the aroma profile of GTB.
Collapse
Affiliation(s)
- Jianhang Wu
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
| | - Ye Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
| | - Ran Qiu
- China Resources Snow Breweries Co., Ltd, Bei Jing 100000, China
| | - Li Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
| | - Xuyan Zong
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
| |
Collapse
|
91
|
Balasubramanian P, Kiss T, Gulej R, Nyul Toth A, Tarantini S, Yabluchanskiy A, Ungvari Z, Csiszar A. Accelerated Aging Induced by an Unhealthy High-Fat Diet: Initial Evidence for the Role of Nrf2 Deficiency and Impaired Stress Resilience in Cellular Senescence. Nutrients 2024; 16:952. [PMID: 38612986 PMCID: PMC11013792 DOI: 10.3390/nu16070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
High-fat diets (HFDs) have pervaded modern dietary habits, characterized by their excessive saturated fat content and low nutritional value. Epidemiological studies have compellingly linked HFD consumption to obesity and the development of type 2 diabetes mellitus. Moreover, the synergistic interplay of HFD, obesity, and diabetes expedites the aging process and prematurely fosters age-related diseases. However, the underlying mechanisms driving these associations remain enigmatic. One of the most conspicuous hallmarks of aging is the accumulation of highly inflammatory senescent cells, with mounting evidence implicating increased cellular senescence in the pathogenesis of age-related diseases. Our hypothesis posits that HFD consumption amplifies senescence burden across multiple organs. To scrutinize this hypothesis, we subjected mice to a 6-month HFD regimen, assessing senescence biomarker expression in the liver, white adipose tissue, and the brain. Aging is intrinsically linked to impaired cellular stress resilience, driven by dysfunction in Nrf2-mediated cytoprotective pathways that safeguard cells against oxidative stress-induced senescence. To ascertain whether Nrf2-mediated pathways shield against senescence induction in response to HFD consumption, we explored senescence burden in a novel model of aging: Nrf2-deficient (Nrf2+/-) mice, emulating the aging phenotype. Our initial findings unveiled significant Nrf2 dysfunction in Nrf2+/- mice, mirroring aging-related alterations. HFD led to substantial obesity, hyperglycemia, and impaired insulin sensitivity in both Nrf2+/- and Nrf2+/+ mice. In control mice, HFD primarily heightened senescence burden in white adipose tissue, evidenced by increased Cdkn2a senescence biomarker expression. In Nrf2+/- mice, HFD elicited a significant surge in senescence burden across the liver, white adipose tissue, and the brain. We postulate that HFD-induced augmentation of senescence burden may be a pivotal contributor to accelerated organismal aging and the premature onset of age-related diseases.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tamas Kiss
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- International Training Program in Geroscience, First Department of Pediatrics, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam Nyul Toth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
92
|
Louçano B, Maletti S, Timóteo H, Figueiredo JP, Osório N, Barroca MJ, da Silva AM, Pereira T, Caseiro A. Assessing Sarcocornia as a Salt Substitute: Effects on Lipid Profile and Gelatinase Activity. Nutrients 2024; 16:929. [PMID: 38612961 PMCID: PMC11013238 DOI: 10.3390/nu16070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.
Collapse
Affiliation(s)
- Beatriz Louçano
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
| | - Sara Maletti
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, Faculty of Medicine and Surgery, University of Modena and Reggio Emilia, Policlinico, via del Pozzo, 7141124 Modena, Italy;
| | - Helena Timóteo
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
| | - João Paulo Figueiredo
- Polytechnic Institute of Coimbra, Coimbra Health School, Medical Sciences, Socials and Humans, Rua 5 de Outubro, 3046-854 Coimbra, Portugal;
| | - Nádia Osório
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Maria João Barroca
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Agriculture School of Coimbra, Bencanta, 3040-360 Coimbra, Portugal
| | - Aida Moreira da Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Agriculture School of Coimbra, Bencanta, 3040-360 Coimbra, Portugal
| | - Telmo Pereira
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Coimbra Health School, Clinical Physiology, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF—Research Unit for Sport and Physical Activity, 3000-456 Coimbra, Portugal
| | - Armando Caseiro
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF—Research Unit for Sport and Physical Activity, 3000-456 Coimbra, Portugal
| |
Collapse
|
93
|
Baibuch SY, Schelegueda LI, Bonifazi E, Cabrera G, Mondragón Portocarrero AC, Franco CM, Malec LS, Campos CA. Argentinian Rose Petals as a Source of Antioxidant and Antimicrobial Compounds. Foods 2024; 13:977. [PMID: 38611283 PMCID: PMC11012100 DOI: 10.3390/foods13070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The total phenolic, flavonoid, and anthocyanin contents were evaluated in 11 cultivars of Argentinian roses of different colors. HPLC-ESI-QTOF/MS was used to identify the components where ellagic and quinic acids, quercetin, and kaempferol glycosylated derivatives were found. The phenolic contents ranged from 78.8 ± 3.2 to 203.4 ± 3.1 mg GAE/g dw, the flavonoid content ranged from 19.1 ± 3.8 to 125.9 ± 6.5 mg QE/g dw, and the anthocyanin content ranged from less than 0.01 to 5.8 ± 0.1 mg CE/g dw. The dark red cultivars exhibited the greatest levels of the analyzed compounds and of the antioxidant activities, even higher than those of certain plants known for their high phenolic contents and antioxidant activity. Moreover, the addition of these extracts decreased the population of L. innocua and P. aeruginosa to undetectable levels 24 h after inoculation. Rose petal extracts, mainly those with a dark red color, can be used as natural additives in food, feed, and cosmetics, as they contain a high proportion of bioactive compounds with antioxidant and antimicrobial effects.
Collapse
Affiliation(s)
- Sabrina Y. Baibuch
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.Y.B.); (L.I.S.)
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (E.B.); (G.C.); (L.S.M.)
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1428EGA, Argentina
| | - Laura I. Schelegueda
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.Y.B.); (L.I.S.)
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1428EGA, Argentina
| | - Evelyn Bonifazi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (E.B.); (G.C.); (L.S.M.)
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Gabriela Cabrera
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (E.B.); (G.C.); (L.S.M.)
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Alicia C. Mondragón Portocarrero
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Veterinarias, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (A.C.M.P.); (C.M.F.)
| | - Carlos M. Franco
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Veterinarias, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (A.C.M.P.); (C.M.F.)
| | - Laura S. Malec
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (E.B.); (G.C.); (L.S.M.)
| | - Carmen A. Campos
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (S.Y.B.); (L.I.S.)
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
94
|
Prakash V, Bose C, Sunilkumar D, Cherian RM, Thomas SS, Nair BG. Resveratrol as a Promising Nutraceutical: Implications in Gut Microbiota Modulation, Inflammatory Disorders, and Colorectal Cancer. Int J Mol Sci 2024; 25:3370. [PMID: 38542344 PMCID: PMC10970219 DOI: 10.3390/ijms25063370] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 12/20/2024] Open
Abstract
Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.
Collapse
Affiliation(s)
- Vidhya Prakash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Chinchu Bose
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Damu Sunilkumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Robin Mathew Cherian
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| |
Collapse
|
95
|
Vita AA, Roberts KM, Gundersen A, Farris Y, Zwickey H, Bradley R, Weir TL. Relationships between Habitual Polyphenol Consumption and Gut Microbiota in the INCLD Health Cohort. Nutrients 2024; 16:773. [PMID: 38542685 PMCID: PMC10974568 DOI: 10.3390/nu16060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
While polyphenol consumption is often associated with an increased abundance of beneficial microbes and decreased opportunistic pathogens, these relationships are not completely described for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis, microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption. Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lachnoclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for human health, although out of these taxa, those with previously described pro-inflammatory qualities in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest that higher quantities of habitual polyphenol consumption may support an intestinal environment where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance compared to those with less potentially virulent qualities.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen M. Roberts
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, CA 92037, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
96
|
Spasova M, Stoyanova N, Stoilova O. Electrospun Materials Based on Cellulose Acetate Loaded with Rosmarinic Acid with Antioxidant and Antifungal Properties. Biomimetics (Basel) 2024; 9:152. [PMID: 38534837 DOI: 10.3390/biomimetics9030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Fibrous cellulose acetate (CA) materials loaded with rosmarinic acid (RA) were successfully created by one-pot electrospinning. In order to improve the water solubility of the polyphenolic acid and to facilitate its release from the fibrous materials, the non-ionic water-soluble polyethylene glycol (PEG) was added. Detailed characterization of the fabricated fibrous CA/RA and CA/PEG/RA materials was performed using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), UV-Vis spectroscopy and water contact angle analysis. The optimal ratio between CA, RA and PEG for preparation of defect-free and uniform fibers was accomplished by varying their concentrations. Furthermore, the incorporation of the PEG improved the hydrophilicity and wettability of the fibrous CA materials. Moreover, PEG facilitated the RA release and over 360 min, the amount released from fibrous CA/PEG/RA fibers was 91%, while that released from CA/RA materials was 53%. Both of the RA-containing fibrous materials, with and without PEG, manifested high antioxidant activity as determined by the DPPH free radical-scavenging method. In addition, the electrospun CA/PEG/RA materials displayed good antifungal activity against C. albicans. These features make the fibrous CA/PEG/RA materials promising candidates for treatment of wound infections.
Collapse
Affiliation(s)
- Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nikoleta Stoyanova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Olya Stoilova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| |
Collapse
|
97
|
Lone JK, Pandey R, Gayacharan. Microgreens on the rise: Expanding our horizons from farm to fork. Heliyon 2024; 10:e25870. [PMID: 38390124 PMCID: PMC10881865 DOI: 10.1016/j.heliyon.2024.e25870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Escalating public health concerns necessitate innovative approaches to food sources. Microgreens, nutrient-rich seedlings of vegetables and herbs, have gained recognition as functional foods. This review explores the evolution of microgreens, cultivation methods, biochemical changes during germination, nutritional content, health benefits, and commercial significance. Comprehensive studies have demonstrated that microgreens have an elevated level of various nutrients. Further, in vitro and in vivo research validated their antioxidant, anticancer, antibacterial, anti-inflammatory, anti-obesity, and antidiabetic properties. Microgreens, termed "desert food," show promise for sustainable food production in climate-vulnerable regions. This paper synthesizes recent research on microgreens, addressing challenges and gaps in understanding their nutritional content and health benefits. It contributes valuable insights for future research, fostering sustainable agriculture and enhancing understanding of microgreens in human health and nutrition.
Collapse
Affiliation(s)
- Jafar K. Lone
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| |
Collapse
|
98
|
Wu R, Zhu X, Guan G, Cui Q, Zhu L, Xing Y, Zhao J. Association of dietary flavonoid intakes with prevalence of chronic respiratory diseases in adults. J Transl Med 2024; 22:205. [PMID: 38409037 PMCID: PMC10898189 DOI: 10.1186/s12967-024-04949-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND AND AIMS Flavonoids are a class of secondary plant metabolites that have been shown to have multiple health benefits, including antioxidant and anti-inflammatory. This study was to explore the association between dietary flavonoid consumption and the prevalence of chronic respiratory diseases (CRDs) in adults. METHODS AND RESULTS The six main types of flavonoids, including isoflavones, anthocyanidins, flavan-3-ols, flavanones, flavones, and flavonols, were obtained from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 and 2017-2018 by the two 24-h recall interviews. The prevalence of CRDs, including asthma, emphysema, and chronic bronchitis, was determined through a self-administered questionnaire. The analysis included 15,753 participants aged 18 years or older who had completed a diet history interview. After adjustment for potential confounders, the inverse link was found with total flavonoids, anthocyanidins, flavanones, and flavones, with an OR (95%CI) of 0.86 (0.75-0.98), 0.84 (0.72-0.97), 0.80(0.69-0.92), and 0.85(0.73-0.98) for the highest group compared to the lowest group. WQS regression revealed that the mixture of flavonoids was negatively linked with the prevalence of CRDs (OR = 0.88 [0.82-0.95], P < 0.01), and the largest effect was mainly from flavanones (weight = 0.41). In addition, we found that flavonoid intake was negatively linked with inflammatory markers, and systemic inflammation significantly mediated the associations of flavonoids with CRDs, with a mediation rate of 12.64% for CRP (P < 0.01). CONCLUSION Higher flavonoid intake was related with a lower prevalence of CRDs in adults, and this relationship may be mediated through systemic inflammation.
Collapse
Affiliation(s)
- Runmiao Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710000, Shaanxi, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710000, Shaanxi, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710000, Shaanxi, China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710000, Shaanxi, China.
- Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| | - Yujie Xing
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710000, Shaanxi, China.
| | - Jingsha Zhao
- Department of Intensive Care Unit, The Third People's Hospital of Chengdu, 82 Qinglong Road, Chengdu, Sichuan, China.
| |
Collapse
|
99
|
Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules 2024; 14:221. [PMID: 38397458 PMCID: PMC10887194 DOI: 10.3390/biom14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.); (S.K.); (B.S.)
| |
Collapse
|
100
|
Jiang J, Hou X, Xu K, Ji K, Ji Z, Xi J, Wang X. Bacteria-targeted magnolol-loaded multifunctional nanocomplexes for antibacterial and anti-inflammatory treatment. Biomed Mater 2024; 19:025029. [PMID: 38290149 DOI: 10.1088/1748-605x/ad2406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Natural plant-derived small molecules have shown great potential for their antimicrobial and anti-inflammatory properties. In this study, we successfully developed a nanocomplex consisting of magnolol (Mag), a surfactant with an 18 carbon hydrocarbon chain and multi-amine head groups (C18N3), and a peptide (cyclic 9-amino acid peptide (CARG)) with targeting capabilities forStaphylococcus aureus(S. aureus). The obtained Mag/C18N3/CARG nanocomplexes exhibited strong antibacterial activity againstS. aureus. Furthermore, they demonstrated anti-inflammatory effects by reducing the secretion of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1βfrom macrophage inflammatory cells. This was achieved through downregulating the activation of NF-κB, KEAP1, and NRF2 signaling pathways. In a murine skin infection model, the Mag/C18N3/CARG nanocomplexes effectively suppressed the growth ofS. aureusin the infected area and promoted wound healing. Additionally, in a mouse model of acute kidney injury (AKI), the nanocomplexes significantly reduced the levels of blood urea nitrogen and creatinine, leading to a decrease in mortality rate. These findings demonstrate the potential of combining natural plant-derived small molecules with C18N3/CARG assemblies as a novel approach for the development of effective and safe antibacterial agents.
Collapse
Affiliation(s)
- Jian Jiang
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
- Institute of Translational Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Xuefeng Hou
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
| | - Kangjie Xu
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
| | - Kangkang Ji
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
| | - Zhongkai Ji
- Department of Orthopaedics, Binhai County People's Hospital, Yancheng 224000, People's Republic of China
| | - Juqun Xi
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
- Institute of Translational Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Xin Wang
- Department of Critical Care Medicine, Binhai County People's Hospital, Yancheng 224000, People's Republic of China
| |
Collapse
|