51
|
Ferreira IL, Costa S, Moraes BJ, Costa A, Fokt O, Marinho D, Alves V, Baptista IP, Rego AC. Mitochondrial and Redox Changes in Periodontitis and Type 2 Diabetes Human Blood Mononuclear Cells. Antioxidants (Basel) 2023; 12:antiox12020226. [PMID: 36829785 PMCID: PMC9952049 DOI: 10.3390/antiox12020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Periodontitis (PDT) and type 2 diabetes (T2D) have demonstrated a bidirectional relationship and imbalanced oxidative stress linked to mitochondrial dysfunction. Therefore, we investigated mitochondrial and redox (de)regulation in peripheral blood mononuclear cells (PBMCs) in comorbid T2D-PDT, compared to PDT, T2D patients, and control individuals. PBMCs were analyzed for mitochondrial respiration, reactive oxygen species, antioxidant proteins, and expression of Nrf2-target genes. PDT and T2D-PDT patients exhibited altered periodontal clinical markers, while T2D and T2D-PDT patients displayed increased blood HbA1c. Decreased oxygen consumption and ATP production were observed in the PDT patient's PBMCs. PDT and T2D-PDT PBMCs also evidenced increased H2O2 levels and reduced catalase levels (also detected in T2D patients), whereas a compromised glutathione cycle was observed in T2D-PDT patients. PBMCs from both T2D or T2D-PDT patients showed increased Nrf2 protein levels, enhanced GCL activity and GCL-catalytic subunit protein levels, and maintained GCLc, GST, and HO-1 mRNA levels. In contrast, the expressions of Nrf2-target genes were significantly diminished in the PDT patient's PBMCs. Decreased SOD1 and GST mRNA levels were also observed in CD3+CD8+-lymphocytes derived from PDT and T2D-PDT patients. In conclusion, PBMCs from T2D-PDT patients showed major redox changes, while mononuclear cells from PDT patients showed mitochondrial deregulation and reduced expression of Nrf2-target genes.
Collapse
Affiliation(s)
- Ildete L. Ferreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Solange Costa
- Institute of Periodontology, Dentistry Department, Faculty of Medicine, University of Coimbra, Avenida Bissaya Barreto, 3000-075 Coimbra, Portugal
| | - Bruno J. Moraes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Costa
- Institute of Periodontology, Dentistry Department, Faculty of Medicine, University of Coimbra, Avenida Bissaya Barreto, 3000-075 Coimbra, Portugal
| | - Olga Fokt
- Institute of Periodontology, Dentistry Department, Faculty of Medicine, University of Coimbra, Avenida Bissaya Barreto, 3000-075 Coimbra, Portugal
| | - Daniela Marinho
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Vera Alves
- Institute of Immunology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel P. Baptista
- Institute of Periodontology, Dentistry Department, Faculty of Medicine, University of Coimbra, Avenida Bissaya Barreto, 3000-075 Coimbra, Portugal
- Correspondence: (I.P.B.); or (A.C.R.); Tel.: +351-239-820190 (A.C.R.); Fax: +351-239-822776 (A.C.R.)
| | - A. Cristina Rego
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Correspondence: (I.P.B.); or (A.C.R.); Tel.: +351-239-820190 (A.C.R.); Fax: +351-239-822776 (A.C.R.)
| |
Collapse
|
52
|
Topete MV, Andrade S, Bernardino RL, Guimarães M, Pereira AM, Oliveira SB, Costa MM, Nora M, Monteiro MP, Pereira SS. Visceral Adipose Tissue Bioenergetics Varies According to Individuals' Obesity Class. Int J Mol Sci 2023; 24:ijms24021679. [PMID: 36675195 PMCID: PMC9863201 DOI: 10.3390/ijms24021679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Obesity is associated with complex adipose tissue energy metabolism remodeling. Whether AT metabolic reprogramming differs according to body mass index (BMI) and across different obesity classes is unknown. This study’s purpose was to evaluate and compare bioenergetics and energy substrate preference of visceral adipose tissue (VAT) pertaining to individuals with obesity class 2 and class 3. VAT obtained from patients with obesity (n = 15) class 2 (n = 7; BMI 37.53 ± 0.58 kg/m2) or class 3 (n = 8; BMI 47.79 ± 1.52 kg/m2) was used to assess oxygen consumption rate (OCR) bioenergetics and mitochondrial substrate preferences. VAT of patients with obesity class 3 presented significantly higher non-mitochondrial oxygen consumption (p < 0.05). In VAT of patients with obesity class 2, inhibition of pyruvate and glutamine metabolism significantly decreased maximal respiration and spare respiratory capacity (p < 0.05), while pyruvate and fatty acid metabolism inhibition, which renders glutamine the only available substrate, increased the proton leak with a protective role against oxidative stress (p < 0.05). In conclusion, VAT bioenergetics of patients with obesity class 2 depicts a greater dependence on glucose/pyruvate and glutamine metabolism, suggesting that patients within this BMI range are more likely to be responsive to interventions based on energetic substrate modulation for obesity treatment.
Collapse
Affiliation(s)
- Marcelo V. Topete
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Sara Andrade
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Raquel L. Bernardino
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Marta Guimarães
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
| | - Ana M. Pereira
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Sofia B. Oliveira
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Madalena M. Costa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Mário Nora
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Mariana P. Monteiro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Sofia S. Pereira
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Correspondence:
| |
Collapse
|
53
|
Scully T, Ettela A, Kase N, LeRoith D, Gallagher EJ. Unregulated LDL cholesterol uptake is detrimental to breast cancer cells. Endocr Relat Cancer 2023; 30:ERC-22-0234. [PMID: 36256855 DOI: 10.1530/erc-22-0234] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Tumor uptake of exogenous cholesterol has been associated with the proliferation of various cancers. Previously, we and others have shown that hypercholesterolemia promotes tumor growth and silencing of the LDL receptor (LDLR) in high LDLR-expressing tumors reduces growth. To advance understanding of how LDL uptake promotes tumor growth, LDLR expression was amplified in breast cancer cell lines with endogenously low LDLR expression. Murine (Mvt1) and human (MDA-MB-468) breast cancer cell lines were transduced to overexpress human LDLR (LDLROE). Successful transduction was confirmed by RNA and protein analysis. Fluorescence-labeled LDL uptake was increased in both Mvt1 and MDA-MD-468 LDLROE cells. The expression of the cholesterol-metabolizing genes, ABCA1 and ABCG1, was increased, while HMGCR was decreased in the MDA-MB-468 LDLROE cells. In contrast, Mvt1 LDLROE cells showed no differences in Abca1 and Abcg1 expression and increased Hmgcr expression. Using a Seahorse analyzer, Mvt1 LDLROE cells showed increased respiration (ATP-linked and maximal) relative to controls, while no statistically significant changes in respiration in MDA-MB-468 LDLROE cells were observed. Growth of LDLROE cells was reduced in culture and in hypercholesterolemic mice by two-fold. However, the expression of proliferation-associated markers (Ki67, PCNA and BrdU-label incorporation) was not decreased in the Mvt1 LDLROE tumors and cells. Caspase-3 cleavage, which is associated with apoptosis, was increased in both the Mvt1 and MDA-MB-468 LDLROE cells relative to controls, with the Mvt1 LDLROE cells also showing decreased phosphorylation of p44/42MAPK. Taken together, our work suggests that while additional LDL can promote tumor growth, unregulated and prolonged LDL uptake is detrimental.
Collapse
Affiliation(s)
- Tiffany Scully
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abora Ettela
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan Kase
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Jane Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
54
|
Alzaydi MM, Abdul-Salam VB, Whitwell HJ, Russomanno G, Glynos A, Capece D, Szabadkai G, Wilkins MR, Wojciak-Stothard B. Intracellular Chloride Channels Regulate Endothelial Metabolic Reprogramming in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2023; 68:103-115. [PMID: 36264759 PMCID: PMC9817916 DOI: 10.1165/rcmb.2022-0111oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial fission and a metabolic switch from oxidative phosphorylation to glycolysis are key features of vascular pathology in pulmonary arterial hypertension (PAH) and are associated with exuberant endothelial proliferation and apoptosis. The underlying mechanisms are poorly understood. We describe the contribution of two intracellular chloride channel proteins, CLIC1 and CLIC4, both highly expressed in PAH and cancer, to mitochondrial dysfunction and energy metabolism in PAH endothelium. Pathological overexpression of CLIC proteins induces mitochondrial fragmentation, inhibits mitochondrial cristae formation, and induces metabolic shift toward glycolysis in human pulmonary artery endothelial cells, consistent with changes observed in patient-derived cells. Interactions of CLIC proteins with structural components of the inner mitochondrial membrane offer mechanistic insights. Endothelial CLIC4 excision and mitofusin 2 supplementation have protective effects in human PAH cells and preclinical PAH. This study is the first to demonstrate the key role of endothelial intracellular chloride channels in the regulation of mitochondrial structure, biogenesis, and metabolic reprogramming in expression of the PAH phenotype.
Collapse
Affiliation(s)
- Mai M. Alzaydi
- National Heart and Lung Institute,,National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Vahitha B. Abdul-Salam
- National Heart and Lung Institute,,Centre for Cardiovascular Medicine and Device Innovation, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Harry J. Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, and,Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, and
| | - Giusy Russomanno
- National Heart and Lung Institute,,Medical Research Council (MRC) Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Angelos Glynos
- Mitochondrial Biology Unit, Medical Research Council, University of Cambridge, Cambridge, United Kingdom; and
| | - Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Gyorgy Szabadkai
- Cell and Developmental Biology, University College London, London, United Kingdom
| | | | | |
Collapse
|
55
|
Münz F, Wolfschmitt EM, Zink F, Abele N, Hogg M, Hoffmann A, Gröger M, Calzia E, Waller C, Radermacher P, Merz T. Porcine blood cell and brain tissue energy metabolism: Effects of "early life stress". Front Mol Biosci 2023; 10:1113570. [PMID: 37138659 PMCID: PMC10150084 DOI: 10.3389/fmolb.2023.1113570] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Early Life Stress (ELS) may exert long-lasting biological effects, e.g., on PBMC energy metabolism and mitochondrial respiration. Data on its effect on brain tissue mitochondrial respiration is scarce, and it is unclear whether blood cell mitochondrial activity mirrors that of brain tissue. This study investigated blood immune cell and brain tissue mitochondrial respiratory activity in a porcine ELS model. Methods: This prospective randomized, controlled, animal investigation comprised 12 German Large White swine of either sex, which were weaned at PND (postnatal day) 28-35 (control) or PND21 (ELS). At 20-24 weeks, animals were anesthetized, mechanically ventilated and surgically instrumented. We determined serum hormone, cytokine, and "brain injury marker" levels, superoxide anion (O2 •¯) formation and mitochondrial respiration in isolated immune cells and immediate post mortem frontal cortex brain tissue. Results: ELS animals presented with higher glucose levels, lower mean arterial pressure. Most determined serum factors did not differ. In male controls, TNFα and IL-10 levels were both higher than in female controls as well as, no matter the gender in ELS animals. MAP-2, GFAP, and NSE were also higher in male controls than in the other three groups. Neither PBMC routine respiration and brain tissue oxidative phosphorylation nor maximal electron transfer capacity in the uncoupled state (ETC) showed any difference between ELS and controls. There was no significant relation between brain tissue and PBMC, ETC, or brain tissue, ETC, and PBMC bioenergetic health index. Whole blood O2 •¯ concentrations and PBMC O2 •¯ production were comparable between groups. However, granulocyte O2 •¯ production after stimulation with E. coli was lower in the ELS group, and this effect was sex-specific: increased O2 •¯ production increased upon stimulation in all control animals, which was abolished in the female ELS swine. Conclusion: This study provides evidence that ELS i) may, gender-specifically, affect the immune response to general anesthesia as well as O2 •¯ radical production at sexual maturity, ii) has limited effects on brain and peripheral blood immune cell mitochondrial respiratory activity, and iii) mitochondrial respiratory activity of peripheral blood immune cells and brain tissue do not correlate.
Collapse
Affiliation(s)
- Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nadja Abele
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Tamara Merz,
| |
Collapse
|
56
|
de Jong TA, Semmelink JF, Denis SW, van de Sande MGH, Houtkooper RHL, van Baarsen LGM. Altered lipid metabolism in synovial fibroblasts of individuals at risk of developing rheumatoid arthritis. J Autoimmun 2023; 134:102974. [PMID: 36512907 DOI: 10.1016/j.jaut.2022.102974] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Fibroblast-like synoviocytes (FLS) can augment the inflammatory process observed in synovium of patients with rheumatoid arthritis (RA). A recent transcriptomic study in synovial biopsies revealed changes in metabolic pathways before disease onset in absence of synovial tissue inflammation. This raises the question whether alterations in cellular metabolism in tissue resident FLS underlie disease pathogenesis. MATERIALS AND METHODS To study this, we compared the metabolic profile of FLS isolated from synovial biopsies from individuals with arthralgia who were autoantibody positive but without any evidence of arthritis (RA-risk individuals, n = 6) with FLS from patients with RA (n = 6), osteoarthritis (OA, n = 6) and seronegative controls (n = 6). After synovial digestion, FLS were cultured in vitro and cellular metabolism was assessed using quantitative PCR, flow cytometry, XFe96 Seahorse Analyzer and tritium-labelled oleate oxidation assays. RESULTS Real-time metabolic profiling revealed that basal (p < 0.0001) and maximum mitochondrial respiration (p = 0.0024) were significantly lower in RA FLS compared with control FLS. In all donors, basal respiration was largely dependent on fatty acid oxidation while glucose was only highly used by FLS from RA patients. Moreover, we showed that RA-risk and RA FLS are less metabolically flexible. Strikingly, mitochondrial fatty acid β-oxidation was significantly impaired in RA-risk (p = 0.001) and RA FLS (p < 0.0001) compared with control FLS. CONCLUSION Overall, this study showed several metabolic alterations in FLS even in absence of synovial inflammation, suggesting that these alterations already start before clinical manifestation of disease and may drive disease pathogenesis.
Collapse
Affiliation(s)
- T A de Jong
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands
| | - J F Semmelink
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands
| | - S W Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - M G H van de Sande
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands
| | - R H L Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - L G M van Baarsen
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
57
|
Petrovskaya AV, Tverskoi AM, Barykin EP, Varshavskaya KB, Dalina AA, Mitkevich VA, Makarov AA, Petrushanko IY. Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood-Brain Barrier Endothelium. Int J Mol Sci 2022; 24:ijms24010183. [PMID: 36613623 PMCID: PMC9820675 DOI: 10.3390/ijms24010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The Alzheimer's disease (AD)-associated breakdown of the blood-brain barrier (BBB) promotes the accumulation of beta-amyloid peptide (Aβ) in the brain as the BBB cells provide Aβ transport from the brain parenchyma to the blood, and vice versa. The breakdown of the BBB during AD may be caused by the emergence of blood-borne Aβ pathogenic forms, such as structurally and chemically modified Aβ species; their effect on the BBB cells has not yet been studied. Here, we report that the effects of Aβ42, Aβ42, containing isomerized Asp7 residue (iso-Aβ42) or phosphorylated Ser8 residue (p-Aβ42) on the mitochondrial potential and respiration are closely related to the redox status changes in the mouse brain endothelial cells bEnd.3. Aβ42 and iso-Aβ42 cause a significant increase in nitric oxide, reactive oxygen species, glutathione, cytosolic calcium and the mitochondrial potential after 4 h of incubation. P-Aβ42 either does not affect or its effect develops after 24 h of incubation. Aβ42 and iso-Aβ42 activate mitochondrial respiration compared to p-Aβ42. The isomerized form promotes a greater cytotoxicity and mitochondrial dysfunction, causing maximum oxidative stress. Thus, Aβ42, p-Aβ42 and iso-Aβ42 isoforms differently affect the BBBs' cell redox parameters, significantly modulating the functioning of the mitochondria. The changes in the level of modified Aβ forms can contribute to the BBBs' breakdown during AD.
Collapse
|
58
|
Franzini M, Valdenassi L, Pandolfi S, Ricevuti G, Tirelli U, Vaiano F, Chirumbolo S. Comments on the optimal use of medical ozone in clinics versus the Ozone High Dose Therapy (OHT) approach. TRANSLATIONAL MEDICINE COMMUNICATIONS 2022; 7:26. [PMID: 36533116 PMCID: PMC9734312 DOI: 10.1186/s41231-022-00132-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Affiliation(s)
- Marianno Franzini
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Luigi Valdenassi
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Sergio Pandolfi
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | | | - Umberto Tirelli
- Department of Drug Science, University of Pavia, Pavia, Italy
- Tirelli Clinical Group, Pordenone, Italy
| | - Francesco Vaiano
- International Scientific Society of Oxygen Ozone Therapy (SIOOT), Gorle, BG Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Unit of Human Anatomy, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
59
|
Ponzetti M, Ucci A, Puri C, Giacchi L, Flati I, Capece D, Zazzeroni F, Cappariello A, Rucci N, Falone S. Effects of osteoblast-derived extracellular vesicles on aggressiveness, redox status and mitochondrial bioenergetics of MNNG/HOS osteosarcoma cells. Front Oncol 2022; 12:983254. [PMID: 36544705 PMCID: PMC9762506 DOI: 10.3389/fonc.2022.983254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy. The crosstalk between osteosarcoma and the surrounding tumour microenvironment (TME) drives key events that lead to metastasization, one of the main obstacles for definitive cure of most malignancies. Extracellular vesicles (EVs), lipid bilayer nanoparticles used by cells for intercellular communication, are emerging as critical biological mediators that permit the interplay between neoplasms and the tumour microenvironment, modulating re-wiring of energy metabolism and redox homeostatic processes. We previously showed that EVs derived from the human osteosarcoma cells influence bone cells, including osteoblasts. We here investigated whether the opposite could also be true, studying how osteoblast-derived EVs (OB-EVs) could alter tumour phenotype, mitochondrial energy metabolism, redox status and oxidative damage in MNNG/HOS osteosarcoma cells.These were treated with EVs obtained from mouse primary osteoblasts, and the following endpoints were investigated: i) cell viability and proliferation; ii) apoptosis; iii) migration and invasive capacity; iv) stemness features; v) mitochondrial function and energy metabolism; vi) redox status, antioxidant capacity and oxidative molecular damage. OB-EVs decreased MNNG/HOS metabolic activity and viability, which however was not accompanied by impaired proliferation nor by increased apoptosis, with respect to control. In addition, OB-EV-treated cells exhibited a significant reduction of motility and in vitro invasion as compared to untreated cells. Although the antioxidant N-acetyl-L-cysteine reverted the cytotoxic effect of OB-EVs, no evidence of oxidative stress was observed in treated cells. However, the redox balance of glutathione was significantly shifted towards a pro-oxidant state, even though the major antioxidant enzymatic protection did not respond to the pro-oxidant challenge. We did not find strong evidence of mitochondrial involvement or major energy metabolic switches induced by OB-EVs, but a trend of reduction in seahorse assay basal respiration was observed, suggesting that OB-EVs could represent a mild metabolic challenge for osteosarcoma cells. In summary, our findings suggest that OB-EVs could serve as important means through which TME and osteosarcoma core cross-communicate. For the first time, we proved that OB-EVs reduced osteosarcoma cells' aggressiveness and viability through redox-dependent signalling pathways, even though mitochondrial dynamics and energy metabolism did not appear as processes critically needed to respond to OB-EVs.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Argia Ucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Chiara Puri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luca Giacchi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy,*Correspondence: Nadia Rucci,
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
60
|
Domínguez-Mozo MI, García-Frontini Nieto MC, Gómez-Calcerrada MI, Pérez-Pérez S, García-Martínez MÁ, Villar LM, Villarrubia N, Costa-Frossard L, Arroyo R, Alvarez-Lafuente R. Mitochondrial Impairments in Peripheral Blood Mononuclear Cells of Multiple Sclerosis Patients. BIOLOGY 2022; 11:1633. [PMID: 36358334 PMCID: PMC9687791 DOI: 10.3390/biology11111633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
Although impaired mitochondrial function has been proposed as a hallmark of multiple sclerosis (MS) disease, few studies focus on the mitochondria of immune cells. We aimed to compare the mitochondrial function of the peripheral blood mononuclear cells (PBMCs) from MS patients with (M+) and without (M-) lipid-specific oligoclonal immunoglobulin M bands (LS-OCMB), and healthydonors (HD). We conducted an exploratory cross-sectional study with 19 untreated MS patients (M+ = 9 and M- = 10) and 17 HDs. Mitochondrial superoxide anion production and mitochondrial mass in PBMCs were assessed without and with phytohemagglutinin by flow cytometry. The PBMCs' mitochondrial function was analyzed using Seahorse technology. Superoxide anion production corrected by the mitochondrial mass was higher in MS patients compared with HDs (p = 0.011). Mitochondrial function from M+ patients showed some impairments compared with M- patients. Without stimulus, we observed higher proton leak (p = 0.041) but lower coupling efficiency (p = 0.041) in M+ patients; and under stimulation, lower metabolic potential ECAR (p = 0.011), and lower stressed OCR/ECAR in the same patients. Exclusively among M+ patients, we described a higher mitochondrial dysfunction in the oldest ones. The mitochondrial impairments found in the PBMCs from MS patients, specifically in M+ patients, could help to better understand the disease's physiopathology.
Collapse
Affiliation(s)
- María Inmaculada Domínguez-Mozo
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Celeste García-Frontini Nieto
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Isabel Gómez-Calcerrada
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Silvia Pérez-Pérez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Ángel García-Martínez
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Luisa María Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain
| | | | - Rafael Arroyo
- Department of Neurology, Hospital Universitario Quironsalud Madrid, 28223 Madrid, Spain
| | - Roberto Alvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
61
|
Ilha M, Meira Martins LA, da Silveira Moraes K, Dias CK, Thomé MP, Petry F, Rohden F, Borojevic R, Trindade VMT, Klamt F, Barbé‐Tuana F, Lenz G, Guma FCR. Caveolin-1 influences mitochondrial plasticity and function in hepatic stellate cell activation. Cell Biol Int 2022; 46:1787-1800. [PMID: 35971753 PMCID: PMC9804617 DOI: 10.1002/cbin.11876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/21/2022] [Accepted: 05/26/2022] [Indexed: 01/05/2023]
Abstract
Caveolin-1 (Cav-1) is an integral membrane protein present in all organelles, responsible for regulating and integrating multiple signals as a platform. Mitochondria are extremely adaptable to external cues in chronic liver diseases, and expression of Cav-1 may affect mitochondrial flexibility in hepatic stellate cells (HSCs) activation. We previously demonstrated that exogenous expression of Cav-1 was sufficient to increase some classical markers of activation in HSCs. Here, we aimed to evaluate the influence of exogenous expression and knockdown of Cav-1 on regulating the mitochondrial plasticity, metabolism, endoplasmic reticulum (ER)-mitochondria distance, and lysosomal activity in HSCs. To characterize the mitochondrial, lysosomal morphology, and ER-mitochondria distance, we perform transmission electron microscope analysis. We accessed mitochondria and lysosomal networks and functions through a confocal microscope and flow cytometry. The expression of mitochondrial machinery fusion/fission genes was examined by real-time polymerase chain reaction. Total and mitochondrial cholesterol content was measured using Amplex Red. To define energy metabolism, we used the Oroboros system in the cells. We report that GRX cells with exogenous expression or knockdown of Cav-1 changed mitochondrial morphometric parameters, OXPHOS metabolism, ER-mitochondria distance, lysosomal activity, and may change the activation state of HSC. This study highlights that Cav-1 may modulate mitochondrial function and structural reorganization in HSC activation, being a potential candidate marker for chronic liver diseases and a molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana Ilha
- Programa de Pós‐Graduação em Ciências Biológicas‐Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto AlegreRio Grande do SulBrasil,Department of Clinical Nutrition, Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Leo A. Meira Martins
- Programa de Pós‐Graduação em Ciências Biológicas‐Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto AlegreRio Grande do SulBrasil,Departamento de Fisiologia, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto AlegreRio Grande do SulBrasil
| | - Ketlen da Silveira Moraes
- Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto AlegreRio Grande do SulBrasil
| | - Camila K. Dias
- Programa de Pós‐Graduação em Ciências Biológicas‐Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto AlegreRio Grande do SulBrasil
| | - Marcos P. Thomé
- Departamento de Biofísica e Centro de BiotecnologiaUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto AlegreRio Grande do SulBrasil
| | - Fernanda Petry
- Programa de Pós‐Graduação em Ciências Biológicas‐Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto AlegreRio Grande do SulBrasil
| | - Francieli Rohden
- Programa de Pós‐Graduação em Ciências Biológicas‐Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul – UFRGSPorto AlegreRio Grande do SulBrasil
| | - Radovan Borojevic
- Centro de Medicina RegenerativaFaculdade Arthur Sa Earp Neto ‐ Faculdade de Medicina de PetrópolisRio de JaneiroBrasil
| | - Vera M. T. Trindade
- Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto AlegreRio Grande do SulBrasil
| | - Fábio Klamt
- Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto AlegreRio Grande do SulBrasil
| | - Florência Barbé‐Tuana
- Programa de Pós‐Graduação em Biologia Celular e MolecularEscola de Ciências da Pontifícia Universidade Católica do Rio Grande do Sul‐ PUCRSPorto AlegreRio Grande do SulBrasil
| | - Guido Lenz
- Departamento de Biofísica e Centro de BiotecnologiaUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto AlegreRio Grande do SulBrasil
| | - Fátima C. R. Guma
- Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto AlegreRio Grande do SulBrasil,Centro de Microscopia e MicroanáliseUniversidade Federal do Rio Grande do Sul ‐ UFRGSPorto AlegreRio Grande do SulBrasil
| |
Collapse
|
62
|
De Vitis C, Capalbo C, Torsello A, Napoli C, Salvati V, Loffredo C, Blandino G, Piaggio G, Auciello FR, Pelliccia F, Salerno G, Simmaco M, Di Magno L, Canettieri G, Coluzzi F, Mancini R, Rocco M, Sciacchitano S. Opposite Effect of Thyroid Hormones on Oxidative Stress and on Mitochondrial Respiration in COVID-19 Patients. Antioxidants (Basel) 2022; 11:antiox11101998. [PMID: 36290721 PMCID: PMC9598114 DOI: 10.3390/antiox11101998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Thyroid hormones (TH)s are master regulators of mitochondrial activity and biogenesis. Nonthyroidal illness syndrome (NTIS) is generally considered an adaptative response to reduced energy that is secondary to critical illness, including COVID-19. COVID-19 has been associated with profound changes in the cell energy metabolism, especially in the cells of the immune system, with a central role played by the mitochondria, considered the power units of every cell. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects and alters mitochondrial functions, both to influence its intracellular survival and to evade host immunity. Aim of the study: This study was undertaken to analyze the oxidative balance and mitochondrial respiration in COVID-19 patients with and without NTIS to elucidate the role that thyroid hormones (TH)s play in this context. Methods: In our cohort of 54 COVID-19 patients, admitted to our University Hospital during the COVID-19 pandemic, we evaluated the generation of reactive oxygen species (ROS) by measuring the serum levels of derivatives of reactive oxygen metabolites (dROMs), and we analyzed the antioxidant capacity by measuring the serum biological antioxidant potential (BAP). We then analyzed the mitochondrial respiration in peripheral blood mononuclear cells (PBMC)s of 28 of our COVID-19 patients, using the seahorse instrument (Agilent). Results were correlated with the serum levels of THs and, in particular, of FT3. In addition, the role of T3 on bioelectrical impedance analysis (BIA) and mitochondrial respiration parameters was directly evaluated in two COVID-19 patients with NTIS, in which treatment with synthetic liothyronine (LT3) was given both in vivo and in vitro. Results: In our COVID-19 patients with NTIS, the dROMs values were significantly lower and the BAP values were significantly higher. Consequently, the oxidative stress index (OSi), measured as BAP/dROMs ratio was reduced compared to that observed in COVID-19 patients without NTIS, indicating a protective role exerted by NTIS on oxidative stress. In our COVID-19 patients, the mitochondrial respiration, measured in PBMCs, was reduced compared to healthy controls. Those with NTIS showed a reduced maximal respiratory capacity and a reduced proton leak, compared to those with normal FT3 serum values. Such lowered mitochondrial respiratory capacity makes the cells more vulnerable to bioenergetic exhaustion. In a pilot study involving two COVID-19 patients with NTIS, we could reinforce our previous observation regarding the role of T3 in the maintenance of adequate peripheral hydroelectrolytic balance. In addition, in these two patients, we demonstrated that by treating their PBMCs with LT3, both in vitro and in vivo, all mitochondrial respiration parameters significantly increased. Conclusions: Our results regarding the reduction in the serum levels of the reactive oxygen species (ROS) of COVID-19 patients with NTIS support the hypothesis that NTIS could represent an adaptative response to severe COVID-19. However, beside this beneficial effect, we demonstrate that, in the presence of an acute reduction of FT3 serum levels, the mitochondrial respiration is greatly impaired, with a consequent establishment of a hypoenergetic state of the immune cells that may hamper their capacity to react to massive viral infection.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Carlo Capalbo
- Department of Medical Oncology, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Alessandra Torsello
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Christian Napoli
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00181 Rome, Italy
| | - Valentina Salvati
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Chiara Loffredo
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Francesca Romana Auciello
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Flaminia Pelliccia
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Gerardo Salerno
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, 00161 Rome, Italy
| | - Flaminia Coluzzi
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Monica Rocco
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00181 Rome, Italy
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Correspondence:
| |
Collapse
|
63
|
Akulenko MV, Kosyakova NI. Energy Status of Lymphocytes in Children with Bronchial Asthma of Various Severity in Comparison with Frequently Ill and Healthy Children. Bull Exp Biol Med 2022; 173:723-729. [DOI: 10.1007/s10517-022-05619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 11/11/2022]
|
64
|
Blazer A, Qian Y, Schlegel MP, Algasas H, Buyon JP, Cadwell K, Cammer M, Heffron SP, Liang FX, Mehta-Lee S, Niewold T, Rasmussen SE, Clancy RM. APOL1 variant-expressing endothelial cells exhibit autophagic dysfunction and mitochondrial stress. Front Genet 2022; 13:769936. [PMID: 36238153 PMCID: PMC9551299 DOI: 10.3389/fgene.2022.769936] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/16/2022] [Indexed: 12/09/2022] Open
Abstract
Polymorphisms in the Apolipoprotein L1 (APOL1) gene are common in ancestrally African populations, and associate with kidney injury and cardiovascular disease. These risk variants (RV) provide an advantage in resisting Trypanosoma brucei, the causal agent of African trypanosomiasis, and are largely absent from non-African genomes. Clinical associations between the APOL1 high risk genotype (HRG) and disease are stronger in those with comorbid infectious or immune disease. To understand the interaction between cytokine exposure and APOL1 cytotoxicity, we established human umbilical vein endothelial cell (HUVEC) cultures representing each APOL1 genotype. Untreated HUVECs were compared to IFNɣ-exposed; and APOL1 expression, mitochondrial function, lysosome integrity, and autophagic flux were measured. IFNɣ increased median APOL1 expression across all genotypes 22.1 (8.3 to 29.8) fold (p=0.02). Compared to zero risk variant-carrying HUVECs (0RV), HUVECs carrying 2 risk variant copies (2RV) showed both depressed baseline and maximum mitochondrial oxygen consumption (p<0.01), and impaired mitochondrial networking on MitoTracker assays. These cells also demonstrated a contracted lysosomal compartment, and an accumulation of autophagosomes suggesting a defect in autophagic flux. Upon blocking autophagy with non-selective lysosome inhibitor, hydroxychloroquine, autophagosome accumulation between 0RV HUVECs and untreated 2RV HUVECs was similar, implicating lysosomal dysfunction in the HRG-associated autophagy defect. Compared to 0RV and 2RV HUVECs, HUVECs carrying 1 risk variant copy (1RV) demonstrated intermediate mitochondrial respiration and autophagic flux phenotypes, which were exacerbated with IFNɣ exposure. Taken together, our data reveal that IFNɣ induces APOL1 expression, and that each additional RV associates with mitochondrial dysfunction and autophagy inhibition. IFNɣ amplifies this phenotype even in 1RV HUVECs, representing the first description of APOL1 pathobiology in variant heterozygous cell cultures.
Collapse
Affiliation(s)
- Ashira Blazer
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, United States
| | - Yingzhi Qian
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY, United States
| | - Martin Paul Schlegel
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Huda Algasas
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, United States
| | - Jill P. Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Michael Cammer
- DART Microscopy Laboratory, New York University Grossman School of Medicine, New York University School of Medicine, New York, NY, United States
| | - Sean P. Heffron
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Feng-Xia Liang
- DART Microscopy Laboratory, New York University Grossman School of Medicine, New York University School of Medicine, New York, NY, United States
| | - Shilpi Mehta-Lee
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, United States
| | - Timothy Niewold
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, United States
| | - Sara E. Rasmussen
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, United States
| | - Robert M. Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
65
|
Hadley JB, Kelher MR, Coleman JR, Kelly KK, Dumont LJ, Esparza O, Banerjee A, Cohen MJ, Jones K, Silliman CC. Hormones, age, and sex affect platelet responsiveness in vitro. Transfusion 2022; 62:1882-1893. [PMID: 35929193 PMCID: PMC9464702 DOI: 10.1111/trf.17054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Female sex confers a survival advantage following severe injury in the setting of trauma-induced coagulopathy, with female platelets having heightened responsiveness likely due to estrogen. The effects of testosterone on platelet biology are unknown, and platelets express both estradiol and androgen receptors on the plasma membrane. We hypothesize testosterone decreases platelet responses in vitro, and there are baseline differences in platelet function and metabolism stratified by sex/age. STUDY DESIGN AND METHODS Apheresis platelets were collected from: older males (OM) ≥45 years, younger males (YM) <45 years, older females (OF) ≥54 years, and younger females (YF) <54 years, and testosterone and estradiol were measured. Platelets were incubated with testosterone (5.31 ng/ml), estradiol (105 pg/ml) or vehicle and stimulated with buffer, adenosine diphosphate (20 μM), platelet activating factor (2 μM), or thrombin (0.3 U/ml). Aggregation, CD62P surface expression, fibrinogen receptor surface expression, and platelet mitochondrial metabolism were measured. RESULTS Testosterone significantly inhibited aggregation in OF and OM (p < .05), inhibited CD41a expression in YF, YM, and OM (p < .05), and affected a few of the baseline amounts of CD62P surface expression but not platelet activation to platelet-activating factor and adenosine diphosphate, and variably changed platelet metabolism. DISCUSSION Platelets have sex- and age-specific aggregation, receptor expression, and metabolism. Testosterone decreases platelet function dependent on the stimulus, age, and sex. Similarly, platelet metabolism has varying responses to sex hormones with baseline metabolic differences dependent upon sex and age.
Collapse
Affiliation(s)
- Jamie B Hadley
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Marguerite R Kelher
- The Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| | - Julia R Coleman
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Larry J Dumont
- Vitalant Research Institute, Denver, Colorado, USA
- The Department of Pathology School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Orlando Esparza
- The Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| | - Anirban Banerjee
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Mitchell J Cohen
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Kenneth Jones
- Department of Biostatistics, University of Oklahoma School of Medicine, Oklahoma City, Oklahoma, USA
| | - Christopher C Silliman
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
- The Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| |
Collapse
|
66
|
Simon L, Molina PE. Cellular Bioenergetics: Experimental Evidence for Alcohol-induced Adaptations. FUNCTION 2022; 3:zqac039. [PMID: 36120487 PMCID: PMC9469757 DOI: 10.1093/function/zqac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023] Open
Abstract
At-risk alcohol use is associated with multisystemic effects and end-organ injury, and significantly contributes to global health burden. Several alcohol-mediated mechanisms have been identified, with bioenergetic maladaptation gaining credence as an underlying pathophysiological mechanism contributing to cellular injury. This evidence-based review focuses on the current knowledge of alcohol-induced bioenergetic adaptations in metabolically active tissues: liver, cardiac and skeletal muscle, pancreas, and brain. Alcohol metabolism itself significantly interferes with bioenergetic pathways in tissues, particularly the liver. Alcohol decreases states of respiration in the electron transport chain, and activity and expression of respiratory complexes, with a net effect to decrease ATP content. In addition, alcohol dysregulates major metabolic pathways, including glycolysis, the tricarboxylic acid cycle, and fatty acid oxidation. These bioenergetic alterations are influenced by alcohol-mediated changes in mitochondrial morphology, biogenesis, and dynamics. The review highlights similarities and differences in bioenergetic adaptations according to tissue type, pattern of (acute vs. chronic) alcohol use, and energy substrate availability. The compromised bioenergetics synergizes with other critical pathophysiological mechanisms, including increased oxidative stress and accelerates cellular dysfunction, promoting senescence, programmed cell death, and end-organ injury.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
67
|
König B, Lahodny J. Ozone high dose therapy (OHT) improves mitochondrial bioenergetics in peripheral blood mononuclear cells. TRANSLATIONAL MEDICINE COMMUNICATIONS 2022; 7:17. [PMID: 35880042 PMCID: PMC9301618 DOI: 10.1186/s41231-022-00123-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/08/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The worldwide increasing number of people with chronic diseases is pushing conventional therapy to its limits. The so-called Major AutoHaemo Therapy (MAH) has been used in many practices for years. Despite suspicions, especially the 10-passes ozone-high-dosis Therapy (OHT) has shown substantial benefits in chronic ailments. However, knowledge of scientifically based effects of high ozone concentrations are still rare. The present investigation focussed on verifying whether OHT may be linked to a beneficial effect on mitochondrial bioenergetics which can be expressed as a bioenergetic health index (BHI). METHODS We report on six patients which received OHT for preventive purposes twice within one week. The BHI in peripheral blood mononuclear cells (PBMC) is calculated from parameters of a cellular mitochondrial function assay, which gives insights into different aspects of mitochondrial function: 1) Basal oxygen consumption rate (OCR); 2) ATP-linked OCR and proton leak; 3) Maximal OCR and reserve capacity; 4) Non-mitochondrial OCR. RESULTS The results clearly show that the bioenergetic health index in PBMC improves significantly after just 2 OHT applications over a period of 1 week. The overall improvement of the BHI is based primarily on a significant increase in the reserve capacity and the maximum respiration of the mitochondria. The increase in non-mitochondrial oxygen consumption, which has a negative impact on the BHI value, is indicative for the Nrf-2 dependent activation of antioxidant and detoxifying enzymes activated through OHT. CONCLUSION These data demonstrate for the first time the beneficial effect of OHT on mitochondrial parameters. Thus, the results of this study suggest that OHT could be a safe and effective therapeutic option alone or as integrative and complementary support for pharmacological therapy in a variety of chronic and acute diseases where mitochondrial dysfunction plays a central role.
Collapse
Affiliation(s)
- Brigitte König
- Department of Medical Microbiology and Virology, University Clinic Leipzig, Liebigstrasse 21, Leipzig, Germany
| | - Johann Lahodny
- Private Department of Gynecology and General Medicine Univ. Doz. Dr. Johann Lahodny, Klostergasse 1A, St. Pölten, Austria
| |
Collapse
|
68
|
Lähteenmäki EI, Koski M, Koskela I, Lehtonen E, Kankaanpää A, Kainulainen H, Walker S, Lehti M. Resistance exercise with different workloads have distinct effects on cellular respiration of peripheral blood mononuclear cells. Physiol Rep 2022; 10:e15394. [PMID: 35852047 PMCID: PMC9295128 DOI: 10.14814/phy2.15394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023] Open
Abstract
Little is known how acute exercise-induced inflammation and metabolic stress affect immune cell bioenergetics and the portion of its components. Therefore, we investigated acute effects of eccentric-only (E), concentric-only (C) and combined eccentric-concentric resistance exercise (E + C) bouts on cellular respiration of peripheral blood mononuclear cells (PBMCs). Twelve strength-trained young men performed bench press resistance exercises in randomized order. Venous blood samples were drawn at pre-, 5 min post- and 24 h post-exercise. Several PBMC respiration states were measured using high-resolution respirometry. Levels of leukocytes, interleukin 6 (IL-6), C-reactive protein (CRP), creatine kinase (CK), blood lactate and maximum voluntary isometric force were measured from the same time points. Effects of blood lactate and pH change on bioenergetics of PBMCs were investigated ex vivo. PBMC routine respiration (p = 0.017), free routine capacity (p = 0.025) and ET-capacity (p = 0.038) decreased immediately after E + C. E responded in opposite manner 5 min post-exercise compared to E + C (p = 0.013) and C (p = 0.032) in routine respiration, and to E + C in free routine activity (p = 0.013). E + C > C > E was observed for increased lactate levels and decreased isometric force that correlated with routine respiration (R = -0.369, p = 0.035; R = 0.352, p = 0.048). Lactate and pH change did not affect bioenergetics of PBMCs. Acute resistance exercise affected cellular respiration of PBMCs, with training volume and the amount of metabolic stress appear influential. Results suggest that acute inflammation response does not contribute to changes seen in cellular respiration, but the level of peripheral muscle fatigue and metabolic stress could be explaining factors.
Collapse
Affiliation(s)
- Emilia Ilona Lähteenmäki
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
- Research Centre for Physical Activity and Health LIKESJyväskyläFinland
| | - Max Koski
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
- Biology of Physical Activity, Neuromuscular Research CenterUniversity of JyväskyläJyväskyläFinland
| | - Iida Koskela
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Elias Lehtonen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Anna Kankaanpää
- Gerontology Research Center (GEREC), Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Heikki Kainulainen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Simon Walker
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
- Biology of Physical Activity, Neuromuscular Research CenterUniversity of JyväskyläJyväskyläFinland
| | - Maarit Lehti
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
- Research Centre for Physical Activity and Health LIKESJyväskyläFinland
| |
Collapse
|
69
|
Wu CC, Wang CJ, Chang CLT, Shiku H, Wang YR, Yan JD, Ding SJ. Dissolved Oxygen-Sensing Chip Integrating an Open Container Connected with a Position-Raised Channel for Estimation of Cellular Mitochondrial Activity. ACS Sens 2022; 7:1808-1818. [PMID: 35748570 DOI: 10.1021/acssensors.1c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The measurement of oxygen consumption of adherent cells is a profoundly important issue for estimating the bioenergetic health and metabolism activity of cells. The study describes the construction of a microfluidic chip consisting of an open container connected with a position-raised channel and dissolved oxygen (DO)-sensing gold ultramicroelectrodes for quantifying the oxygen consumption rate (OCR) of adherent cells. The microfluidic chip design can reduce the action of shear force on the adherent cells during medium replacement. The residual concentration of analytes in the open container was only 4.4% after solution replacement via the position-raised channel. The DO reduction current measured by ultramicroelectrodes averaged in the range of 40-60 s presented high reproducibility with a 1.1% relative standard deviation suitable for OCR calculation. After short-term (90 min) cultivation, the microfluidic chip can monitor the time-dependent change in the OCR of 3T3-L1 cells for several hours by repeatedly replacing the culture medium or with the stimulation of different mitochondrial inhibitors. The presented microfluidic cell-based chip has great promise for drug screening and chemosensitivity testing by measuring OCR to evaluate the mitochondrial function of adherent cells.
Collapse
Affiliation(s)
- Ching-Chou Wu
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan.,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chieh-Jen Wang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | | | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-Ren Wang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Jia-De Yan
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Shinn-Jyh Ding
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, ROC.,Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan
| |
Collapse
|
70
|
Moreau M, Capallere C, Chavatte L, Plaza C, Meyrignac C, Pays K, Bavouzet B, Botto JM, Nizard C, Bulteau AL. Reconstruction of functional human epidermis equivalent containing 5%IPS-derived keratinocytes treated with mitochondrial stimulating plant extracts. Sci Rep 2022; 12:9073. [PMID: 35641783 PMCID: PMC9156774 DOI: 10.1038/s41598-022-13191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
Reconstructed human epidermis equivalents (RHE) have been developed as a clinical skin substitute and as the replacement for animal testing in both research and industry. KiPS, or keratinocytes derived from induced pluripotent stem cells (iPSCs) are frequently used to generate RHE. In this study, we focus on the mitochondrial performance of the KiPS derived from iPSCs obtained from two donors. We found that the KiPS derived from the older donor have more defective mitochondria. Treatment of these KiPS with a plant extract enriched in compounds known to protect mitochondria improved mitochondrial respiration and rendered them fully competent to derive high-quality RHE. Overall, our results suggest that improving mitochondrial function in KiPS is one of the key aspects to obtain a functional RHE and that our plant extracts can improve in this process.
Collapse
Affiliation(s)
- Marielle Moreau
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Christophe Capallere
- Advanced Skin Research & Bioengineering Department, Ashland, Global Skin Research Center, Sophia Antipolis, France
| | - Laurent Chavatte
- Centre International de Recherche en Infectiologie, CIRI, 69007, Lyon, France.,Institut National de La Santé Et de La Recherche Médicale (INSERM) Unité U1111, 69007, Lyon, France.,Ecole Normale Supérieure de Lyon, 69007, Lyon, France.,Université Claude Bernard Lyon 1 (UCBL1), 69622, Lyon, France.,Unité Mixte de Recherche 5308 (UMR5308), Centre National de La Recherche Scientifique (CNRS), 69007, Lyon, France
| | - Christelle Plaza
- Advanced Skin Research & Bioengineering Department, Ashland, Global Skin Research Center, Sophia Antipolis, France
| | - Céline Meyrignac
- Advanced Skin Research & Bioengineering Department, Ashland, Global Skin Research Center, Sophia Antipolis, France
| | - Karl Pays
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Bruno Bavouzet
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Jean-Marie Botto
- Advanced Skin Research & Bioengineering Department, Ashland, Global Skin Research Center, Sophia Antipolis, France
| | - Carine Nizard
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Anne-Laure Bulteau
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France.
| |
Collapse
|
71
|
Mitochondrial health quality control: measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:177-193. [PMID: 35578648 PMCID: PMC9096339 DOI: 10.1007/s13167-022-00281-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria are the “gatekeeper” in a wide range of cellular functions, signaling events, cell homeostasis, proliferation, and apoptosis. Consequently, mitochondrial injury is linked to systemic effects compromising multi-organ functionality. Although mitochondrial stress is common for many pathomechanisms, individual outcomes differ significantly comprising a spectrum of associated pathologies and their severity grade. Consequently, a highly ambitious task in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM/3PM) is to distinguish between individual disease predisposition and progression under circumstances, resulting in compromised mitochondrial health followed by mitigating measures tailored to the individualized patient profile. For the successful implementation of PPPM concepts, robust parameters are essential to quantify mitochondrial health sustainability. The current article analyses added value of Mitochondrial Health Index (MHI) and Bioenergetic Health Index (BHI) as potential systems to quantify mitochondrial health relevant for the disease development and its severity grade. Based on the pathomechanisms related to the compromised mitochondrial health and in the context of primary, secondary, and tertiary care, a broad spectrum of conditions can significantly benefit from robust quantification systems using MHI/BHI as a prototype to be further improved. Following health conditions can benefit from that: planned pregnancies (improved outcomes for mother and offspring health), suboptimal health conditions with reversible health damage, suboptimal life-style patterns and metabolic syndrome(s) predisposition, multi-factorial stress conditions, genotoxic environment, ischemic stroke of unclear aetiology, phenotypic predisposition to aggressive cancer subtypes, pathologies associated with premature aging and neuro/degeneration, acute infectious diseases such as COVID-19 pandemics, among others.
Collapse
|
72
|
Lin ML, Hsu CC, Fu TC, Lin YT, Huang YC, Wang JS. Exercise Training Improves Mitochondrial Bioenergetics of Natural Killer Cells. Med Sci Sports Exerc 2022; 54:751-760. [PMID: 34935709 DOI: 10.1249/mss.0000000000002842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Mitochondrial bioenergetics is critical for immune function in natural killer (NK) cell. Physical exercise modulates NK cell functionality, depending on the intensity and type of exercise. This study elucidates how interval and continuous exercise regimens affect the phenotypes and mitochondrial bioenergetics of NK cells. METHODS Sixty healthy sedentary males were randomly assigned to engage in either high-intensity interval training (HIIT, 3-min intervals at 80% and 40% maximal O2, n = 20; age, 22.2 yr; body mass index [BMI], 24.3 kg·m-2) or moderate-intensity continuous training (MICT, sustained 60% maximal O2, n = 20; age, 22.3 yr; BMI, 23.3 kg·m-2) for 30 min·d-1, 5 d·wk-1 for 6 wk or were assigned to a control group that did not receive exercise intervention (n = 20; age, 22.6 yr; BMI, 24.0 kg·m-2). Natural killer cell phenotypes, granule proteins, and mitochondrial oxidative stress/oxidative phosphorylation after graded exercise test (GXT) were measured before and after the various interventions. RESULTS Before the intervention, the GXT increased the mobilization of CD57+NK cells into the blood and elevated mitochondrial matrix oxidant burden (MOB) in NK cells, Following the 6 wk of interventions, both HIIT and MICT (i) diminished mobilization of CD57+NK cells into the blood and depressed mitochondrial MOB level in NK cells immediately after GXT, (ii) increased mitochondrial membrane potential and cellular perforin and granzyme B levels in NK cells, and (iii) enhanced the maximal and reserve O2 consumption rates and heightened bioenergetic health index in NK cells. In addition, HIIT increased maximal work rate than those of MICT. CONCLUSIONS Either HIIT or MICT increases the expressions of cytotoxic granule proteins and depresses mitochondrial MOB elevated by GXT, along with improving mitochondrial bioenergetic functionality in NK cells. Moreover, HIIT is superior to MICT in improving aerobic capacity.
Collapse
Affiliation(s)
- Ming-Lu Lin
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan, TAIWAN
| | - Chih-Chin Hsu
- Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Kwei-Shan, TAIWAN
| | - Tieh-Cheng Fu
- Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Kwei-Shan, TAIWAN
| | - Yu-Ting Lin
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan, TAIWAN
| | - Yu-Chieh Huang
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, TAIWAN
| | | |
Collapse
|
73
|
ALDH1L2 Knockout in U251 Glioblastoma Cells Reduces Tumor Sphere Formation by Increasing Oxidative Stress and Suppressing Methionine Dependency. Nutrients 2022; 14:nu14091887. [PMID: 35565854 PMCID: PMC9105572 DOI: 10.3390/nu14091887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Previously, the in vitro growth of cancer stem cells in the form of tumor spheres from five different brain cancer cell lines was found to be methionine-dependent. As this earlier work indicated that ALDH1L2, a folate-dependent mitochondria aldehyde dehydrogenase gene, is upregulated in glioblastoma stem cells, we invalidated this gene using CRISPR-cas 9 technique in this present work. We reported here that this invalidation was effective in U251 glioblastoma cells, and no cas9 off target site could be detected by genome sequencing of the two independent knockout targeting either exon I or exon III. The knockout of ALDH1L2 gene in U251 cells rendered the growth of the cancer stem cells of U251 methionine independent. In addition, a much higher ROS (reactive oxygen radicals) level can be detected in the knockout cells compared to the wild type cells. Our evidence here linked the excessive ROS level of the knockout cells to reduced total cellular NADPH. Our evidence suggested also that the cause of the slower growth of the knockout turmor sphere may be related to its partial differentiation.
Collapse
|
74
|
Zhao Y, Liu J, Ou M, Hao X. Efficacy of Bioenergetic Health Index to Predict Delirium After Major Abdominal Surgery in Elderly Patients: A Protocol for a Prospective Observational Cohort Study. Front Med (Lausanne) 2022; 9:809335. [PMID: 35547218 PMCID: PMC9081562 DOI: 10.3389/fmed.2022.809335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
IntroductionPostoperative delirium (POD) is a common disorder following surgery, which seriously threatens the quality of patients’ life, especially the older people. The multifactorial manner of this syndrome has made it hard to define an ideal method to predict individual risk. Mitochondria play a key role in the process of POD, which include inflammatory on the brain caused by surgeries and aging related neurodegeneration. As BHI (Bioenergetic Health Index) could be calculated in cells isolated from an individual’s blood to represent the patient’s composite mitochondrial statue, we hypotheses that HBI of monocytes isolated from individual’s peripheral blood can predict POD after major non-cardiac surgery in elderly patients.Methods and AnalysisThis is a prospective, observational single-blinded study in a single center. 124 patients aged ≥ 65 years and scheduled for major abdominal surgery (>3 h) under general anesthesia will be enrolled. Preoperative and postoperative delirium will be assessed by trained members using Confusion Assessment Method (CAM). For patients unable to speak in the ICU after the surgery, Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) will be used. All patients will undergo venous blood sampling twice to measure BHI (1–2 tubes, 5 ml/tube): before the surgery and 1 day after surgery in wards. After discharge, patients will be contacted by telephone 30 days after surgery to confirm the incidence of post-discharge complications. The severity of complications will be categorized as mild, moderate, severe or fatal using a modified Clavien-Dindo Classification (CDC) scheme.Ethics and DisseminationThe study has been approved by the Ethics Committee on Biomedical Research, West China Hospital of Sichuan University, Sichuan, China (Chairperson Prof Shaolin Deng, No. 2021-502). Study data will be disseminated in manuscripts submitted to peer-reviewed medical journals as well as in abstracts submitted to congresses.Clinical Trial Registration[www.ClinicalTrials.gov], identifier [ChiCTR2100047554].
Collapse
Affiliation(s)
- Yi Zhao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Xuechao Hao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xuechao Hao,
| |
Collapse
|
75
|
p53 mutants G245S and R337H associated with the Li-Fraumeni syndrome regulate distinct metabolic pathways. Biochimie 2022; 198:141-154. [DOI: 10.1016/j.biochi.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
|
76
|
Ortiz de Choudens S, Sparapani R, Narayanan J, Lohr N, Gao F, Fish BL, Zielonka M, Gasperetti T, Veley D, Beyer A, Olson J, Jacobs ER, Medhora M. Lisinopril Mitigates Radiation-Induced Mitochondrial Defects in Rat Heart and Blood Cells. Front Oncol 2022; 12:828177. [PMID: 35311118 PMCID: PMC8924663 DOI: 10.3389/fonc.2022.828177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
The genetic bases and disparate responses to radiotherapy are poorly understood, especially for cardiotoxicity resulting from treatment of thoracic tumors. Preclinical animal models such as the Dahl salt-sensitive (SS) rat can serve as a surrogate model for salt-sensitive low renin hypertension, common to African Americans, where aldosterone contributes to hypertension-related alterations of peripheral vascular and renal vascular function. Brown Norway (BN) rats, in comparison, are a normotensive control group, while consomic SSBN6 with substitution of rat chromosome 6 (homologous to human chromosome 14) on an SS background manifests cardioprotection and mitochondrial preservation to SS rats after injury. In this study, 2 groups from each of the 3 rat strains had their hearts irradiated (8 Gy X 5 fractions). One irradiated group was treated with the ACE-inhibitor lisinopril, and a separate group in each strain served as nonirradiated controls. Radiation reduced cardiac end diastolic volume by 9-11% and increased thickness of the interventricular septum (11-16%) and left ventricular posterior wall (14-15%) in all 3 strains (5-10 rats/group) after 120 days. Lisinopril mitigated the increase in posterior wall thickness. Mitochondrial function was measured by the Seahorse Cell Mitochondrial Stress test in peripheral blood mononuclear cells (PBMC) at 90 days. Radiation did not alter mitochondrial respiration in PBMC from BN or SSBN6. However, maximal mitochondrial respiration and spare capacity were reduced by radiation in PBMC from SS rats (p=0.016 and 0.002 respectively, 9-10 rats/group) and this effect was mitigated by lisinopril (p=0.04 and 0.023 respectively, 9-10 rats/group). Taken together, these results indicate injury to the heart by radiation in all 3 strains of rats, although the SS rats had greater susceptibility for mitochondrial dysfunction. Lisinopril mitigated injury independent of genetic background.
Collapse
Affiliation(s)
| | - Rodney Sparapani
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jayashree Narayanan
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Nicole Lohr
- Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Feng Gao
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Brian L Fish
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tracy Gasperetti
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Dana Veley
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Andreas Beyer
- Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jessica Olson
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elizabeth R Jacobs
- Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pulmonary Medicine, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Research Service, Veterans Affairs, Zablocki VA Medical Center (VAMC), Milwaukee, WI, United States
| | - Meetha Medhora
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States.,Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pulmonary Medicine, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Research Service, Veterans Affairs, Zablocki VA Medical Center (VAMC), Milwaukee, WI, United States
| |
Collapse
|
77
|
Werner BA, McCarty PJ, Lane AL, Singh I, Karim MA, Rose S, Frye RE. Time dependent changes in the bioenergetics of peripheral blood mononuclear cells: processing time, collection tubes and cryopreservation effects. Am J Transl Res 2022; 14:1628-1639. [PMID: 35422946 PMCID: PMC8991115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Bioenergetic measurements in peripheral blood mononuclear cells (PBMCs) using high-throughput respirometry is a promising minimally invasive approach to studying mitochondrial function in humans. However, optimal methods for collecting PBMCs are not well studied. METHODS Bioenergetics and viability were measured across processing delays, tube type and cryopreservation. RESULTS Storage of collection tubes on dry ice resulted in unrecoverable samples and using the Cell Preparation Tube (CPTTM) significantly reduced viability. Thus, storage in Sodium Citrate (NaC) and ethylenediaminetetraacetic acid (EDTA) tubes were studied in detail. Cell viability decreased by 0.5% for each hour the samples remained on wet ice prior to processing while cryopreservation decreased viability by 9.6% with viability remaining stable for about one month in liquid nitrogen. Adenosine triphosphate linked respiration (ALR) and proton-leak respiration (PLR) changed minimally while maximal respiratory capacity (MRC) and reserve capacity (RC) decreased markedly with collection tubes stored on wet ice over 24 hrs. Changes in respiratory parameters were more modest over the first 8 hours. Manipulations to replace media did not attenuate changes in respiratory parameters. Cryopreservation decreased ALR, MRC and RC by 17.20, 95.30 and 54.92 pmol/min, respectively and increased PLR by 2.65 pmol/min. PLR, MRC and RC changed moderately during the first month in liquid nitrogen for freshly frozen PBMCs. CONCLUSIONS Our results suggest that bioenergetics in PBMCs vary based on the processing time from specimen collection and preservation method. Changes in bioenergetics can be minimized by processing samples with a minimal time delay. Changes in viability are minimal and may not correspond to changes in bioenergetics.
Collapse
Affiliation(s)
- Brianna A Werner
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Patrick J McCarty
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Alison L Lane
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Indrapal Singh
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Mohammad A Karim
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Shannon Rose
- Arkansas Children’s Research InstituteLittle Rock, AR 72202, USA
| | - Richard E Frye
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| |
Collapse
|
78
|
Triozzi PL, Stirling ER, Song Q, Westwood B, Kooshki M, Forbes ME, Holbrook BC, Cook KL, Alexander-Miller MA, Miller LD, Zhang W, Soto-Pantoja DR. Circulating Immune Bioenergetic, Metabolic, and Genetic Signatures Predict Melanoma Patients' Response to Anti-PD-1 Immune Checkpoint Blockade. Clin Cancer Res 2022; 28:1192-1202. [PMID: 35284940 DOI: 10.1158/1078-0432.ccr-21-3114] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/13/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy with checkpoint inhibitors is improving the outcomes of several cancers. However, only a subset of patients respond. Therefore, predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance. EXPERIMENTAL DESIGN We compared bioenergetics of circulating immune cells and metabolomic profiles of plasma obtained at baseline from patients with melanoma treated with anti-PD-1 therapy. We also performed single-cell RNA sequencing (scRNAseq) to correlate transcriptional changes associated with metabolic changes observed in peripheral blood mononuclear cells (PBMC) and patient plasma. RESULTS Pretreatment PBMC from responders had a higher reserve respiratory capacity and higher basal glycolytic activity compared with nonresponders. Metabolomic analysis revealed that responder and nonresponder patient samples cluster differently, suggesting differences in metabolic signatures at baseline. Differential levels of specific lipid, amino acid, and glycolytic pathway metabolites were observed by response. Further, scRNAseq analysis revealed upregulation of T-cell genes regulating glycolysis. Our analysis showed that SLC2A14 (Glut-14; a glucose transporter) was the most significant gene upregulated in responder patients' T-cell population. Flow cytometry analysis confirmed significantly elevated cell surface expression of the Glut-14 in CD3+, CD8+, and CD4+ circulating populations in responder patients. Moreover, LDHC was also upregulated in the responder population. CONCLUSIONS Our results suggest a glycolytic signature characterizes checkpoint inhibitor responders; consistently, both ECAR and lactate-to-pyruvate ratio were significantly associated with overall survival. Together, these findings support the use of blood bioenergetics and metabolomics as predictive biomarkers of patient response to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Pierre L Triozzi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elizabeth R Stirling
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brian Westwood
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mitra Kooshki
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - M Elizabeth Forbes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Beth C Holbrook
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Martha A Alexander-Miller
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David R Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
79
|
Lai RE, Holman ME, Chen Q, Rivers J, Lesnefsky EJ, Gorgey AS. Assessment of mitochondrial respiratory capacity using minimally invasive and noninvasive techniques in persons with spinal cord injury. PLoS One 2022; 17:e0265141. [PMID: 35275956 PMCID: PMC8916668 DOI: 10.1371/journal.pone.0265141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose Muscle biopsies are the gold standard to assess mitochondrial respiration; however, biopsies are not always a feasible approach in persons with spinal cord injury (SCI). Peripheral blood mononuclear cells (PBMCs) and near-infrared spectroscopy (NIRS) may alternatively be predictive of mitochondrial respiration. The purpose of the study was to evaluate whether mitochondrial respiration of PBMCs and NIRS are predictive of respiration of permeabilized muscle fibers after SCI. Methods Twenty-two individuals with chronic complete and incomplete motor SCI between 18–65 years old were recruited to participate in the current trial. Using high-resolution respirometry, mitochondrial respiratory capacity was measured for PBMCs and muscle fibers of the vastus lateralis oxidizing complex I, II, and IV substrates. NIRS was used to assess mitochondrial capacity of the vastus lateralis with serial cuff occlusions and electrical stimulation. Results Positive relationships were observed between PBMC and permeabilized muscle fibers for mitochondrial complex IV (r = 0.86, P < 0.0001). Bland-Altman displayed agreement for complex IV (MD = 0.18, LOA = -0.86 to 1.21), between PBMCs and permeabilized muscles fibers. No significant relationships were observed between NIRS mitochondrial capacity and respiration in permeabilized muscle fibers. Conclusions This is the first study to explore and support the agreement of less invasive clinical techniques for assessing mitochondrial respiratory capacity in individuals with SCI. The findings will assist in the application of PBMCs as a viable alternative for assessing mitochondrial health in persons with SCI in future clinical studies.
Collapse
Affiliation(s)
- Raymond E. Lai
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Matthew E. Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Qun Chen
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Edward J. Lesnefsky
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
80
|
Ghirotto B, Oliveira DF, Cipelli M, Basso PJ, de Lima J, Breda CNS, Ribeiro HC, Silva CCC, Sertié AL, Oliveira AER, Hiyane MI, Caldini EG, Sussulini A, Nakaya HI, Kowaltowski AJ, Oliveira EML, Zatz M, Câmara NOS. MS-driven metabolic alterations are recapitulated in iPSC-derived astrocytes. Ann Neurol 2022; 91:652-669. [PMID: 35226368 PMCID: PMC9310856 DOI: 10.1002/ana.26336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022]
Abstract
Objective Astrocytes play a significant role in the pathology of multiple sclerosis (MS). Nevertheless, for ethical reasons, most studies in these cells were performed using the Experimental Autoimmune Encephalomyelitis model. As there are significant differences between human and mouse cells, we aimed here to better characterize astrocytes from patients with MS (PwMS), focusing mainly on mitochondrial function and cell metabolism. Methods We obtained and characterized induced pluripotent stem cell (iPSC)‐derived astrocytes from three PwMS and three unaffected controls, and performed electron microscopy, flow cytometry, cytokine and glutamate measurements, gene expression, in situ respiration, and metabolomics. We validated our findings using a single‐nuclei RNA sequencing dataset. Results We detected several differences in MS astrocytes including: (i) enrichment of genes associated with neurodegeneration, (ii) increased mitochondrial fission, (iii) increased production of superoxide and MS‐related proinflammatory chemokines, (iv) impaired uptake and enhanced release of glutamate, (v) increased electron transport capacity and proton leak, in line with the increased oxidative stress, and (vi) a distinct metabolic profile, with a deficiency in amino acid catabolism and increased sphingolipid metabolism, which have already been linked to MS. Interpretation Here we describe the metabolic profile of iPSC‐derived astrocytes from PwMS and validate this model as a very powerful tool to study disease mechanisms and to perform non‐invasive drug targeting assays in vitro. Our findings recapitulate several disease features described in patients and provide new mechanistic insights into the metabolic rewiring of astrocytes in MS, which could be targeted in future therapeutic studies. ANN NEUROL 2022;91:652–669
Collapse
Affiliation(s)
- Bruno Ghirotto
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Danyllo F Oliveira
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Marcella Cipelli
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Paulo J Basso
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Jean de Lima
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Cristiane N S Breda
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Henrique C Ribeiro
- Laboratory of Bioanalytics and Integrated Omics, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Camille C C Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Andrea L Sertié
- Hospital Israelita Albert Einstein, São Paulo, SP, 05652-900, Brazil
| | - Antonio Edson R Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | - Meire I Hiyane
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Elia G Caldini
- Cell Biology Laboratory, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, 01246903, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Helder I Nakaya
- Hospital Israelita Albert Einstein, São Paulo, SP, 05652-900, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Enedina M L Oliveira
- Neuroimmunology Clinic, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, 04039-002, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Niels O S Câmara
- Transplantation Immunobiology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
81
|
Meyer MM, Lamont SJ, Bobeck EA. Mitochondrial and Glycolytic Capacity of Peripheral Blood Mononuclear Cells Isolated From Diverse Poultry Genetic Lines: Optimization and Assessment. Front Vet Sci 2022; 8:815878. [PMID: 35155649 PMCID: PMC8831803 DOI: 10.3389/fvets.2021.815878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Cellular metabolic preference is a culmination of environment, nutrition, genetics, and individual variation in poultry. The Seahorse XFe24 analyzer was used to generate foundational immune cellular metabolic data in layer, broiler, and legacy genetic strains using fresh chicken peripheral blood mononuclear cells (PBMCs). Baseline mitochondrial respiration [oxygen consumption rate (OCR)] and glycolytic activity [extracellular acidification rate (ECAR)] were determined in modern commercial laying hen (Bovans White) and broiler (Ross 308) lines, as well as the highly inbred lines of Iowa State University (L8, Fayoumi M-15.2, Spanish, Ghs-6), partially inbred broiler line, and advanced intercrosses of broiler by Fayoumi M-15.2 and broiler by Leghorn lines. Commercial broiler vs. Bovans layer and unvaccinated vs. vaccinated Bovans layer immune cell metabolic potential were compared following an in-assay pathway inhibitor challenge. Titrations consistently showed that optimal PBMC density in laying hens and broilers was 3 million cells per well monolayer. Assay media substrate titrations identified 25 mM glucose, 1 mM glutamine, and 1 mM sodium pyruvate as the optimal concentration for layer PBMCs. Pathway inhibitor injection titrations in Bovans layers and broilers showed that 0.5 μM carbonyl cyanide-4 phenylhydrazone (FCCP) and 1 μM oligomycin were optimal. Baseline OCR and ECAR were significantly affected by genetic line of bird (p < 0.05), with the dual-purpose, L8 inbred line showing the highest OCR (mean 680 pmol/min) and the partially inbred broiler line showing the greatest ECAR (mean 74 mpH/min). ECAR metabolic potential tended to be greater in modern layers than broilers (p < 0.10), indicating increased ability to utilize the glycolytic pathway to produce energy. OCR was significantly higher in vaccinated than unvaccinated hens (p < 0.05), while baseline ECAR values were significantly lower in vaccinated Bovans laying hens, showing increased oxidative capacity in activated immune cells. These baseline data indicate that different genetic strains of birds utilized the mitochondrial respiration pathway differently and that modern commercial lines may have reduced immune cell metabolic capacity compared with legacy lines due to intense selection for production traits. Furthermore, the Seahorse assay demonstrated the ability to detect differences in cellular metabolism between genetic lines and immune status of chickens.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
82
|
Adapted suspension tumor cells rewire metabolic pathways for anchorage-independent survival through AKT activation. Exp Cell Res 2022; 411:113005. [PMID: 34979107 DOI: 10.1016/j.yexcr.2021.113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Metastatic spread of cancer cells is the main cause of cancer-related death. As cancer cells adapt themselves in a suspended state in the blood stream before penetration and regrowth at distal tissues, understanding their survival strategy in an anchorage-independent condition is important to develop appropriate therapeutics. We have previously generated adapted suspension cells (ASCs) from parental adherent cancer cells to study the characteristics of circulating tumor cells. In this study, we explored metabolic rewiring in MDA-MB-468 ASCs to adapt to suspension growth conditions through extracellular flux analyses and various metabolic assays. We also determined the relationship between AKT activation and metabolic rewiring in ASCs using the AKT inhibitor, MK2206. ASCs reprogramed metabolism to enhance glycolysis and basal oxygen consumption rate. RNA-sequencing analysis revealed the upregulation in the genes related to glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The changes in the metabolic program led to a remarkable dependency of ASCs on carbohydrates as an energy source for proliferation as compared to parental adherent cells (ADs). AKT activation was observed in ASCs and those generated from pancreatic and other breast cancer cells, and AKT activation inhibition in ASCs decreased glycolysis and oxygen consumption. AKT activation is an important strategy for obtaining energy through the enhancement of glycolysis in ASCs. The regulation of AKT activity and/or glycolysis may provide a strong therapeutic strategy to prevent the metastatic spread of cancer cells.
Collapse
|
83
|
Chan YH, Ramji DP. Investigation of Mitochondrial Bioenergetic Profile and Dysfunction in Atherosclerosis. Methods Mol Biol 2022; 2419:301-311. [PMID: 35237973 DOI: 10.1007/978-1-0716-1924-7_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitochondrial function and activity are key indicators of overall cell health and mitochondrial dysfunction is closely associated with disruptions in normal cellular function. Altered mitochondrial function and cellular metabolism has been implicated in processes involved in ageing and associated pathologies. In atherosclerosis, compromised mitochondrial respiration can promote plaque instability and other processes that encourage pathogenesis and dysfunction. For example, increasing respiration promotes vascular smooth muscle cell (VSMC) proliferation and attenuates macrophage and VSMC apoptosis. Use of Agilent Seahorse technology to study mitochondrial bioenergetics has largely replaced previous outdated methods which provided limited insight into mitochondrial function and were associated with various issues. This chapter describes the use of Seahorse Agilent technology (Mito Stress Test) to study key parameters of mitochondrial respiration on cultured cells relevant to atherosclerosis.
Collapse
Affiliation(s)
- Yee-Hung Chan
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
84
|
Jophlin L, Singal AK. Liver Biopsy in Patients With Alcohol-Associated Liver Disease With Acute-on-Chronic Liver Failure. J Clin Exp Hepatol 2022; 12:544-550. [PMID: 35535109 PMCID: PMC9077173 DOI: 10.1016/j.jceh.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
Patients with alcohol-associated liver disease may develop severe forms of presentation of acute-on-chronic liver failure, with a high risk for short-term mortality. Alcoholic hepatitis should be suspected among patients with alcohol-associated liver disease who present with acute-on-chronic liver failure. In this review, we discuss the need and feasibility of liver biopsy in the diagnosis of alcoholic hepatitis and predicting its prognosis among decompensated patients with alcohol-associated liver disease and acute-on-chronic liver failure.
Collapse
Key Words
- AARC, Asia-Pacific ACLF Research Consortium
- ACLF
- ACLF, acute-on-chronic liver failure
- AH
- AH, alcoholic hepatitis
- AHHS, alcoholic hepatitis histologic score
- ALD
- ALD, alcohol-associated liver disease
- AUD, alcohol use disorder
- DF, discriminant function
- EUS, endoscopic ultrasound
- EtG, ethyl glucuronide
- NIAAA, National Institute on Alcoholism and Alcohol Abuse
- PEth, phosphatidylethanol
- SALVE, Study of Alcohol-related LiVer disease in Europe
- histology
Collapse
Affiliation(s)
- Loretta Jophlin
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, KY, USA
| | - Ashwani K. Singal
- Division of Gastroenterology and Hepatology, Department of Medicine, University of South Dakota Sanford School of Medicine, South Dakota, USA,Address for correspondence:. Ashwani K. Singal, Professor of Medicine, University of South Dakota Sanford School of Medicine, Transplant Hepatologist and Chief Clinical Research Affairs, Avera McKennan University Hospital Transplant Institute, Sioux Falls, SD, 57105, USA. Tel.: +605 322-8545; fax: +605 322 8536.
| |
Collapse
|
85
|
Lehrer HM, Chu LE, Hall MH, Murdock KW. Self-reported sleep efficiency and duration are associated with bioenergetic function in peripheral blood mononuclear cells (PBMCs) of adults. Mitochondrion 2022; 62:122-127. [PMID: 34785262 PMCID: PMC8724413 DOI: 10.1016/j.mito.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Poor sleep may impair systemic mitochondrial bioenergetics, but this relationship has not been examined in humans. This study examined associations of self-reported sleep with peripheral blood mononuclear cell (PBMC) bioenergetics in adults. Forty-three participants completed the Pittsburgh Sleep Quality Index from which sleep indices were calculated. PBMCs were analyzed for bioenergetics using extracellular flux analysis. Sleep efficiency was positively correlated with maximal respiration and spare capacity. Lower sleep efficiency and longer sleep duration were associated with lower Bioenergetic Health Index in age-, sex-, and body mass index-adjusted models. Findings indicate that sleep is related to systemic bioenergetic function in humans.
Collapse
Affiliation(s)
- H. Matthew Lehrer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lauren E. Chu
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Martica H. Hall
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kyle W. Murdock
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
86
|
K Soman S, Swain M, Dagda RK. Multiplexing Seahorse XF e24 and ImageXpress ® Nano Platforms for Comprehensive Evaluation of Mitochondrial Bioenergetic Profile and Neuronal Morphology. Methods Mol Biol 2022; 2497:349-362. [PMID: 35771457 DOI: 10.1007/978-1-0716-2309-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The measurement of mitochondrial function has become imperative to understand and characterize diseases characterized by bioenergetic alterations. The advancement of automation and application of high-throughput technologies has propelled our understanding of biological complexity and facilitated drug discovery. Seahorse extracellular flux (XFe) technology measures changes in dissolved oxygen and proton concentration in cell culture media, providing kinetic measurements of oxidative phosphorylation and glycolytic metabolism. ImageXpress® Nano is an automated fluorescent microscope with the ability to perform high-content, fast, and robust imaging in multi-well formats. In this chapter, we present a comprehensive protocol to multiplex the Seahorse XFe24 analyzer with the ImageXpress® Nano high content imaging microscope to provide a comprehensive yet rigorous profile of bioenergetics and its correlation to neuronal function and morphology.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
87
|
Lelcu T, Bînă AM, Dănilă MD, Popoiu CM, Aburel OM, Arghirescu ST, Borza C, Muntean DM. Assessment of Platelet Mitochondrial Respiration in a Pediatric Population: A Pilot Study in Healthy Children and Children with Acute Lymphoblastic Leukemia. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121196. [PMID: 34943392 PMCID: PMC8700085 DOI: 10.3390/children8121196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
Characterization of mitochondrial respiration in peripheral blood cells has recently emerged as a potential biomarker for the assessment of the severity of hematological malignancies (HM) in adults. Whether changes in platelet respiratory function occur in children with or without HM it is unknown. The present pilot study was double-aimed: (i) to investigate whether platelet respiration is age-dependent in non-HM children and (ii) to assess the platelet mitochondrial respiration in children with newly diagnosed acute lymphoblastic leukemia (ALL). Blood samples obtained from age-grouped children (10–11, 13–14 and 16–17 years) with non-HM and children with ALL (10–11 years) were used to isolate platelets via differential centrifugation. High-resolution respirometry studies of isolated platelets were performed according to a protocol adapted to evaluate complex I and II-supported respiration. An age-related decrease in respiration was observed in the non-HM pediatric population and had comparable values for the 13–14 and 16–17 years. groups. In children with ALL, a significant increase in C I-supported active respiration and decrease in maximal noncoupled respiration were found at the disease onset. In conclusion, in a pediatric population, platelet mitochondrial respiration is age-dependent. Platelet respiratory dysfunction occurs in children with newly-diagnosed ALL, an observation that warrants further investigation of this change as a disease biomarker.
Collapse
Affiliation(s)
- Theia Lelcu
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Anca M. Bînă
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Maria D. Dănilă
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Călin M. Popoiu
- Department XI Pediatrics, Discipline Pediatric Surgery, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Department XI Pediatrics, Discipline Pediatrics III, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Oana M. Aburel
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Smaranda T. Arghirescu
- Department XI Pediatrics, Discipline Pediatrics III, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
- “Louis Țurcanu” Emergency Hospital for Children, 300011 Timișoara, Romania
- Correspondence: (S.T.A.); (C.B.)
| | - Claudia Borza
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
- Correspondence: (S.T.A.); (C.B.)
| | - Danina M. Muntean
- Department III Functional Sciences, Discipline Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.L.); (A.M.B.); (M.D.D.); (O.M.A.); (D.M.M.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
88
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|
89
|
Delic V, Karp J, Klein J, Stalnaker KJ, Murray KE, Ratliff WA, Myers CE, Beck KD, Citron BA. Pyridostigmine bromide, chlorpyrifos, and DEET combined Gulf War exposure insult depresses mitochondrial function in neuroblastoma cells. J Biochem Mol Toxicol 2021; 35:e22913. [PMID: 34528356 PMCID: PMC8678325 DOI: 10.1002/jbt.22913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/21/2021] [Accepted: 09/01/2021] [Indexed: 11/11/2022]
Abstract
Gulf War Illness (GWI) is defined by the Centers for Disease Control and Prevention (CDC) as a multi-symptom illness having at least one symptom from two of three factors, which include: fatigue, mood-cognition problems, and musculoskeletal disorders. The cluster of long-term symptoms is unique to military personnel from coalition countries including United States, Australia, and the United Kingdom that served in Operation Desert Storm from 1990 to 1991. Reporting of these symptoms is much lower among soldiers deployed in other parts of the world like Bosnia during the same time period. The exact cause of GWI is unknown, but combined exposure to N,N-diethyl-m-toluamide (DEET), organophosphates like chlorpyrifos (CPF), and pyridostigmine bromide (PB), has been hypothesized as a potential mechanism. Mitochondrial dysfunction is known to occur in most neurodegenerative diseases that share symptoms with GWI and has therefore been implicated in GWI. Although exposure to these and other toxicants continues to be investigated as potential causes of GWI, their combined impact on mitochondrial physiology remains unknown. In this study, the effects of combined GWI toxicant exposure on mitochondrial function were determined in a commonly used and readily available immortalized cell line (N2a), whose higher rate of oxygen consumption resembles that of highly metabolic neurons in vivo. We report that combined exposure containing pesticide CPF 71 μM, insect repellants DEET 78 μM, and antitoxins PB 19 μM, causes profound mitochondrial dysfunction after a 4-h incubation resulting in decreased mitochondrial respiratory states in the absence of proapoptotic signaling, proton leak, or significant increase in reactive oxygen species production.
Collapse
Affiliation(s)
- Vedad Delic
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development (Mailstop 15), East Orange, New Jersey, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joshua Karp
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development (Mailstop 15), East Orange, New Jersey, USA
- Rutgers School of Graduate Studies, Newark, New Jersey, USA
| | - Julian Klein
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development (Mailstop 15), East Orange, New Jersey, USA
- Rutgers School of Graduate Studies, Newark, New Jersey, USA
| | - Katherine J. Stalnaker
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development (Mailstop 15), East Orange, New Jersey, USA
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research & Development (Mailstop 15), East Orange, New Jersey, USA
| | - Kathleen E. Murray
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development (Mailstop 15), East Orange, New Jersey, USA
- Rutgers School of Graduate Studies, Newark, New Jersey, USA
| | - Whitney A. Ratliff
- Laboratory of Molecular Biology, Bay Pines VA Healthcare System Research and Development, Bay Pines, Florida, USA
| | - Catherine E. Myers
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research & Development (Mailstop 15), East Orange, New Jersey, USA
| | - Kevin D. Beck
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research & Development (Mailstop 15), East Orange, New Jersey, USA
| | - Bruce A. Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development (Mailstop 15), East Orange, New Jersey, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
90
|
Pal VK, Agrawal R, Rakshit S, Shekar P, Murthy DTN, Vyakarnam A, Singh A. Hydrogen sulfide blocks HIV rebound by maintaining mitochondrial bioenergetics and redox homeostasis. eLife 2021; 10:68487. [PMID: 34792020 PMCID: PMC8660018 DOI: 10.7554/elife.68487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
A fundamental challenge in human immunodeficiency virus (HIV) eradication is to understand how the virus establishes latency, maintains stable cellular reservoirs, and promotes rebound upon interruption of antiretroviral therapy (ART). Here, we discovered an unexpected role of the ubiquitous gasotransmitter hydrogen sulfide (H2S) in HIV latency and reactivation. We show that reactivation of HIV is associated with downregulation of the key H2S producing enzyme cystathionine-γ-lyase (CTH) and reduction in endogenous H2S. Genetic silencing of CTH disrupts redox homeostasis, impairs mitochondrial function, and remodels the transcriptome of latent cells to trigger HIV reactivation. Chemical complementation of CTH activity using a slow-releasing H2S donor, GYY4137, suppressed HIV reactivation and diminished virus replication. Mechanistically, GYY4137 blocked HIV reactivation by inducing the Keap1-Nrf2 pathway, inhibiting NF-κB, and recruiting the epigenetic silencer, YY1, to the HIV promoter. In latently infected CD4+ T cells from ART-suppressed human subjects, GYY4137 in combination with ART prevented viral rebound and improved mitochondrial bioenergetics. Moreover, prolonged exposure to GYY4137 exhibited no adverse influence on proviral content or CD4+ T cell subsets, indicating that diminished viral rebound is due to a loss of transcription rather than a selective loss of infected cells. In summary, this work provides mechanistic insight into H2S-mediated suppression of viral rebound and suggests exploration of H2S donors to maintain HIV in a latent form.
Collapse
Affiliation(s)
- Virender Kumar Pal
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ragini Agrawal
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Pooja Shekar
- BMCRI, Bangalore Medical College and Research Institute, Bangalore, India
| | | | | | - Amit Singh
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
91
|
Fujiwara H, Seike K, Brooks MD, Mathew AV, Kovalenko I, Pal A, Lee HJ, Peltier D, Kim S, Liu C, Oravecz-Wilson K, Li L, Sun Y, Byun J, Maeda Y, Wicha MS, Saunders TL, Rehemtulla A, Lyssiotis CA, Pennathur S, Reddy P. Mitochondrial complex II in intestinal epithelial cells regulates T cell-mediated immunopathology. Nat Immunol 2021; 22:1440-1451. [PMID: 34686860 PMCID: PMC9351914 DOI: 10.1038/s41590-021-01048-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023]
Abstract
Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.
Collapse
Affiliation(s)
- Hideaki Fujiwara
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Keisuke Seike
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Michael D Brooks
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Anna V Mathew
- Department of Internal Medicine, Division of Nephrology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Ilya Kovalenko
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anupama Pal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Peltier
- Department of Pediatrics, Division of Hematology/Oncology and BMT, University of Michigan Health System, Ann Arbor, MI, USA
| | - Stephanie Kim
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Lu Li
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yaping Sun
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jaeman Byun
- Department of Internal Medicine, Division of Nephrology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Yoshinobu Maeda
- Department of Hematology Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Max S Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, Division of Nephrology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
92
|
Levitt DE, Ferguson TF, Primeaux SD, Zavala JA, Ahmed J, Marshall RH, Simon L, Molina PE. Skeletal muscle bioenergetic health and function in people living with HIV: association with glucose tolerance and alcohol use. Am J Physiol Regul Integr Comp Physiol 2021; 321:R781-R790. [PMID: 34585616 PMCID: PMC8616628 DOI: 10.1152/ajpregu.00197.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
At-risk alcohol use is prevalent and increases dysglycemia among people living with human immunodeficiency virus (PLWH). Skeletal muscle (SKM) bioenergetic dysregulation is implicated in dysglycemia and type 2 diabetes. The objective of this study was to determine the relationship between at-risk alcohol, glucose tolerance, and SKM bioenergetic function in PLWH. Thirty-five PLWH (11 females, 24 males, age: 53 ± 9 yr, body mass index: 29.0 ± 6.6 kg/m2) with elevated fasting glucose enrolled in the ALIVE-Ex study provided medical history and alcohol use information [Alcohol Use Disorders Identification Test (AUDIT)], then underwent an oral glucose tolerance test (OGTT) and SKM biopsy. Bioenergetic health and function and mitochondrial volume were measured in isolated myoblasts. Mitochondrial gene expression was measured in SKM. Linear regression adjusting for age, sex, and smoking was performed to examine the relationship between glucose tolerance (2-h glucose post-OGTT), AUDIT, and their interaction with each outcome measure. Negative indicators of bioenergetic health were significantly (P < 0.05) greater with higher 2-h glucose (proton leak) and AUDIT (proton leak, nonmitochondrial oxygen consumption, and bioenergetic health index). Mitochondrial volume was increased with the interaction of higher 2-h glucose and AUDIT. Mitochondrial gene expression decreased with higher 2-h glucose (TFAM, PGC1B, PPARG, MFN1), AUDIT (MFN1, DRP1, MFF), and their interaction (PPARG, PPARD, MFF). Decreased expression of mitochondrial genes were coupled with increased mitochondrial volume and decreased bioenergetic health in SKM of PLWH with higher AUDIT and 2-h glucose. We hypothesize these mechanisms reflect poorer mitochondrial health and may precede overt SKM bioenergetic dysregulation observed in type 2 diabetes.
Collapse
Affiliation(s)
- Danielle E Levitt
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Stefany D Primeaux
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Joint Diabetes, Endocrinology & Metabolism Center, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jeanette A Zavala
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jameel Ahmed
- Section of Cardiology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Richard H Marshall
- Department of Radiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
93
|
Neural oscillatory activity serving sensorimotor control is predicted by superoxide-sensitive mitochondrial redox environments. Proc Natl Acad Sci U S A 2021; 118:2104569118. [PMID: 34686594 PMCID: PMC8639326 DOI: 10.1073/pnas.2104569118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial integrity and associated redox profiles have long been revered as key contributors to a host of age- and disease-related pathologies, which eventually lead to neuronal and behavioral dysfunction in the sensorimotor and other systems. However, the precise role of the mitochondrial redox environment in human sensorimotor brain systems and motor behavior remains poorly understood. Herein, we provide evidence for a strong predictive capacity of superoxide and its scavenger, superoxide dismutase, on the neural oscillatory dynamics serving motor planning and execution above and beyond the effects of mitochondrial respiratory capacities alone. Importantly, these data provide insight regarding the impact of the redox environment on the population-level neural oscillations that serve motor function in healthy humans. Motor control requires a coordinated ensemble of spatiotemporally precise neural oscillations across a distributed motor network, particularly in the beta range (15 to 30 Hz) to successfully plan and execute volitional actions. While substantial evidence implicates beta activity as critical to motor control, the molecular processes supporting these microcircuits and their inherent oscillatory dynamics remain poorly understood. Among these processes are mitochondrial integrity and the associated redox environments, although their direct impact on human neurophysiological function is unknown. Herein, 40 healthy adults completed a motor sequence paradigm during magnetoencephalography (MEG). MEG data were imaged in the time–frequency domain using a beamformer to evaluate beta oscillatory profiles during distinct phases of motor control (i.e., planning and execution) and subsequent behavior. To comprehensively quantify features of the mitochondrial redox environment, we used state-of-the-art systems biology approaches including Seahorse Analyzer to assess mitochondrial respiration and electron paramagnetic resonance spectroscopy to measure superoxide levels in whole blood as well as antioxidant activity assays. Using structural equation modeling, we tested the relationship between mitochondrial function and sensorimotor brain-behavior dynamics through alterations in the redox environment (e.g., generation of superoxide and alteration in antioxidant defenses). Our results indicated that superoxide-sensitive but not hydrogen peroxide–sensitive features of the redox environment had direct and mediating effects on the bioenergetic–neural pathways serving motor performance in healthy adults. Importantly, our results suggest that alterations in the redox environment may directly impact behavior above and beyond mitochondrial respiratory capacities alone and further may be effective targets for age- and disease-related declines in cognitive–motor function.
Collapse
|
94
|
Alayash AI. The Impact of COVID-19 Infection on Oxygen Homeostasis: A Molecular Perspective. Front Physiol 2021; 12:711976. [PMID: 34690793 PMCID: PMC8532809 DOI: 10.3389/fphys.2021.711976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus (2019-nCoV/SARS-CoV-2) causes respiratory symptoms including a substantial pulmonary dysfunction with worsening arterial hypoxemia (low blood oxygenation), eventually leading to acute respiratory distress syndrome (ARDS). The impact of the viral infection on blood oxygenation and other elements of oxygen homeostasis, such as oxygen sensing and respiratory mitochondrial mechanisms, are not well understood. As a step toward understanding these mechanisms in the context of COVID-19, recent experiments revealed contradictory data on the impact of COVID-19 infection on red blood cells (RBCs) oxygenation parameters. However, structural protein damage and membrane lipid remodeling in RBCs from COVID-19 patients that may impact RBC function have been reported. Moreover, COVID-19 infection could potentially disrupt one, if not all, of the other major pathways of homeostasis. Understanding the nature of the crosstalk among normal homeostatic pathways; oxygen carrying, oxygen sensing (i.e., hypoxia inducible factor, HIF) proteins, and the mitochondrial respiratory machinery may provide a target for therapeutic interventions.
Collapse
Affiliation(s)
- Abdu I Alayash
- Division of Blood and Devices (DBCD), United States Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
95
|
Bakare AB, Dean J, Chen Q, Thorat V, Huang Y, LaFramboise T, Lesnefsky EJ, Iyer S. Evaluating the Bioenergetics Health Index Ratio in Leigh Syndrome Fibroblasts to Understand Disease Severity. Int J Mol Sci 2021; 22:ijms221910344. [PMID: 34638685 PMCID: PMC8508996 DOI: 10.3390/ijms221910344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Several pediatric mitochondrial disorders, including Leigh syndrome (LS), impact mitochondrial (mt) genetics, development, and metabolism, leading to complex pathologies and energy failure. The extent to which pathogenic mtDNA variants regulate disease severity in LS is currently not well understood. To better understand this relationship, we computed a glycolytic bioenergetics health index (BHI) for measuring mitochondrial dysfunction in LS patient fibroblast cells harboring varying percentages of pathogenic mutant mtDNA (T8993G, T9185C) exhibiting deficiency in complex V or complex I (T10158C, T12706C). A high percentage (>90%) of pathogenic mtDNA in cells affecting complex V and a low percentage (<39%) of pathogenic mtDNA in cells affecting complex I was quantified. Levels of defective enzyme activities of the electron transport chain correlated with the percentage of pathogenic mtDNA. Subsequent bioenergetics assays showed cell lines relied on both OXPHOS and glycolysis for meeting energy requirements. Results suggest that whereas the precise mechanism of LS has not been elucidated, a multi-pronged approach taking into consideration the specific pathogenic mtDNA variant, glycolytic BHI, and the composite BHI (average ratio of oxphos to glycolysis) can aid in better understanding the factors influencing disease severity in LS.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Joseph Dean
- Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA 23284, USA; (J.D.); (E.J.L.)
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Vedant Thorat
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (V.T.); (Y.H.); (T.L.)
| | - Yimin Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (V.T.); (Y.H.); (T.L.)
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (V.T.); (Y.H.); (T.L.)
| | - Edward J. Lesnefsky
- Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA 23284, USA; (J.D.); (E.J.L.)
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-(479)-575-3400
| |
Collapse
|
96
|
Rey F, Ottolenghi S, Zuccotti GV, Samaja M, Carelli S. Mitochondrial dysfunctions in neurodegenerative diseases: role in disease pathogenesis, strategies for analysis and therapeutic prospects. Neural Regen Res 2021; 17:754-758. [PMID: 34472461 PMCID: PMC8530118 DOI: 10.4103/1673-5374.322430] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Fundamental organelles that occur in every cell type with the exception of mammal erythrocytes, the mitochondria are required for multiple pivotal processes that include the production of biological energy, the biosynthesis of reactive oxygen species, the control of calcium homeostasis, and the triggering of cell death. The disruption of anyone of these processes has been shown to impact strongly the function of all cells, but especially of neurons. In this review, we discuss the role of the mitochondria impairment in the development of the neurodegenerative diseases Amyotrophic Lateral Sclerosis, Parkinson's disease and Alzheimer's disease. We highlight how mitochondria disruption revolves around the processes that underlie the mitochondria's life cycle: fusion, fission, production of reactive oxygen species and energy failure. Both genetic and sporadic forms of neurodegenerative diseases are unavoidably accompanied with and often caused by the dysfunction in one or more of the key mitochondrial processes. Therefore, in order to get in depth insights into their health status in neurodegenerative diseases, we need to focus into innovative strategies aimed at characterizing the various mitochondrial processes. Current techniques include Mitostress, Mitotracker, transmission electron microscopy, oxidative stress assays along with expression measurement of the proteins that maintain the mitochondrial health. We will also discuss a panel of approaches aimed at mitigating the mitochondrial dysfunction. These include canonical drugs, natural compounds, supplements, lifestyle interventions and innovative approaches as mitochondria transplantation and gene therapy. In conclusion, because mitochondria are fundamental organelles necessary for virtually all the cell functions and are severely impaired in neurodegenerative diseases, it is critical to develop novel methods to measure the mitochondrial state, and novel therapeutic strategies aimed at improving their health.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan; Paediatric Clinical Research Centre Fondazione "Romeo ed Enrica Invernizzi", University of Milano, Milano, Italy
| | - Sara Ottolenghi
- Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Milano, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan; Paediatric Clinical Research Centre Fondazione "Romeo ed Enrica Invernizzi", University of Milano; Department of Paediatrics, Children's Hospital "V. Buzzi", Milano, Italy
| | - Michele Samaja
- Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Milano, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan; Paediatric Clinical Research Centre Fondazione "Romeo ed Enrica Invernizzi", University of Milano, Milano, Italy
| |
Collapse
|
97
|
Napoli E, Flores A, Mansuri Y, Hagerman RJ, Giulivi C. Sulforaphane improves mitochondrial metabolism in fibroblasts from patients with fragile X-associated tremor and ataxia syndrome. Neurobiol Dis 2021; 157:105427. [PMID: 34153466 PMCID: PMC8475276 DOI: 10.1016/j.nbd.2021.105427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/09/2023] Open
Abstract
CGG expansions between 55 and 200 in the 5'-untranslated region of the fragile-X mental retardation gene (FMR1) increase the risk of developing the late-onset debilitating neuromuscular disease Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). While the science behind this mutation, as a paradigm for RNA-mediated nucleotide triplet repeat expansion diseases, has progressed rapidly, no treatment has proven effective at delaying the onset or decreasing morbidity, especially at later stages of the disease. Here, we demonstrated the beneficial effect of the phytochemical sulforaphane (SFN), exerted through NRF2-dependent and independent manner, on pathways relevant to brain function, bioenergetics, unfolded protein response, proteosome, antioxidant defenses, and iron metabolism in fibroblasts from FXTAS-affected subjects at all disease stages. This study paves the way for future clinical studies with SFN in the treatment of FXTAS, substantiated by the established use of this agent in clinical trials of diseases with NRF2 dysregulation and in which age is the leading risk factor.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Amanda Flores
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616;,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Yasmeen Mansuri
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA;,Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States of America; Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817, USA.
| |
Collapse
|
98
|
Bakare AB, Rao RR, Iyer S. Cell-Permeable Succinate Increases Mitochondrial Membrane Potential and Glycolysis in Leigh Syndrome Patient Fibroblasts. Cells 2021; 10:cells10092255. [PMID: 34571904 PMCID: PMC8470843 DOI: 10.3390/cells10092255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial disorders represent a large group of severe genetic disorders mainly impacting organ systems with high energy requirements. Leigh syndrome (LS) is a classic example of a mitochondrial disorder resulting from pathogenic mutations that disrupt oxidative phosphorylation capacities. Currently, evidence-based therapy directed towards treating LS is sparse. Recently, the cell-permeant substrates responsible for regulating the electron transport chain have gained attention as therapeutic agents for mitochondrial diseases. We explored the therapeutic effects of introducing tricarboxylic acid cycle (TCA) intermediate substrate, succinate, as a cell-permeable prodrug NV118, to alleviate some of the mitochondrial dysfunction in LS. The results suggest that a 24-hour treatment with prodrug NV118 elicited an upregulation of glycolysis and mitochondrial membrane potential while inhibiting intracellular reactive oxygen species in LS cells. The results from this study suggest an important role for TCA intermediates for treating mitochondrial dysfunction in LS. We show, here, that NV118 could serve as a therapeutic agent for LS resulting from mutations in mtDNA in complex I and complex V dysfunctions.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Raj R. Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
- Correspondence:
| |
Collapse
|
99
|
Impaired Mitochondrial Bioenergetics Function in Pediatric Chronic Overlapping Pain Conditions with Functional Gastrointestinal Disorders. Pain Res Manag 2021; 2021:6627864. [PMID: 34426756 PMCID: PMC8380178 DOI: 10.1155/2021/6627864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Background Fatigue is often the primary complaint of children with functional gastrointestinal disorders (FGDI) and other chronic overlapping pain disorders (COPC). The basis for this symptom remains unknown. We evaluated mitochondrial function in the white blood cells of these patients. Methods This prospective Children's Wisconsin IRB approved study recruited subjects aging 10–18 years from pediatric neurogastroenterology clinics and healthy comparison subjects (HC). Environmental and oxidative stressors can damage the mitochondrial respiratory chain. The known low-grade inflammation in COPC could, therefore, impact the respiratory chain and theoretically account for the disabling fatigue so often voiced by patients. Mitochondrial energy generation can be easily measured in peripheral mononuclear cells (PMC) as a general marker by the Seahorse XF96 Extracellular Flux Analyzer. We measured 5 parameters of oxygen consumption using this methodology: basal respiration (BR), ATP linked oxygen consumption (ATP-LC), maximal oxygen consumption rate (max R), spare respiratory capacity (SRC), and extracellular acidification rate (ECAR), which reflect non-electron chain energy generation through glycolysis. In health, we expect high ATP linked respiration, high reserve capacity, low proton leak, and low non-mitochondrial respiration. In disease, the proton leak typically increases, ATP demand increases, and there is decreased reserve capacity with increased non-mitochondrial respiration. Findings and clinical data were compared to healthy control subjects using a Mann–Whitney test for skewed variables, Fisher's exact test for dichotomous variables, and regression tree for association with functional outcome (functional disability inventory, FDI). Results 19 HC and 31 COPC showed no statistically significant difference in age. FGID, orthostatic intolerance, migraine, sleep disturbance, and chronic fatigue were present in the majority of COPC subjects. BR, ECAR, and ATP-LC rates were lower in the COPC group. The low BR and ATP-LC suggest that mitochondria are stressed with decreased ability to produce ATP. Tree analysis selected SRC as the best predictor of functional disability: patients with SRC >150 had a greater FDI (more disability) compared to patients with SRC <=150, p-value = 0.021. Conclusion Subjects with COPC have reduced mitochondrial capacity to produce ATP. Predisposing genetic factors or reversible acquired changes may be responsible. A higher SRC best predicts disability. Since a higher SRC is typically associated with more mitochondrial reserve, the SRC may indicate an underutilized available energy supply related to inactivity, or a “brake” on mitochondrial function. Prospective longitudinal studies can likely discern whether these findings represent deconditioning, true mitochondrial dysfunction, or both.
Collapse
|
100
|
Bourgeais J, Hérault O. In Vitro Analysis of Energy Metabolism in Bone-Marrow Mesenchymal Stromal Cells. Methods Mol Biol 2021; 2308:59-70. [PMID: 34057714 DOI: 10.1007/978-1-0716-1425-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bone marrow mesenchymal stromal cells (MSCs) play an essential role in the regulation of normal and leukemic hematopoiesis. Their multipotent potential of differentiation also makes them an interesting therapeutic tool. Among factors involved in the regulation of MSCs, energy metabolism plays a key role in their proliferation and differentiation. Seahorse Bioscience introduced extracellular flux technology to the life sciences market in 2006. This methodology allows, in living cells and in real time, the concomitant determination of basal oxygen consumption, glycolysis rates, ATP production, and respiratory capacity in a single experiment. Here we describe the protocol used to study concomitantly the respiratory and glycolytic metabolism of primary MSCs from the determination of oxygen consumption (OCR) and extracellular acidification (ECAR) rates.
Collapse
Affiliation(s)
- Jérôme Bourgeais
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France.,EA7501 GICC, Faculty of Medicine, Tours University, Tours, France.,Department of Biolocical Hematology, Tours University Hospital, Tours, France
| | - Olivier Hérault
- CNRS ERL7001 LNOx "Leukemic Niche & Redox Metabolism", Tours, France. .,EA7501 GICC, Faculty of Medicine, Tours University, Tours, France. .,Department of Biolocical Hematology, Tours University Hospital, Tours, France.
| |
Collapse
|