51
|
Kapadia R, Tureyen K, Bowen KK, Kalluri H, Johnson PF, Vemuganti R. Decreased brain damage and curtailed inflammation in transcription factor CCAAT/enhancer binding protein beta knockout mice following transient focal cerebral ischemia. J Neurochem 2006; 98:1718-31. [PMID: 16899075 DOI: 10.1111/j.1471-4159.2006.04056.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CCAAT/enhancer binding protein beta (C/EBPbeta) is a leucine-zipper transcription factor that regulates cell growth and differentiation in mammals. Expression of many pro-inflammatory genes including the cytokine interleukin-6 is known to be controlled by C/EBPbeta. We report that focal cerebral ischemia induced by transient middle cerebral artery occlusion (MCAO) significantly increases C/EBPbeta gene expression in mouse brain at between 6 and 72 h of reperfusion. To understand the functional significance of C/EBPbeta in postischemic inflammation and brain damage, we induced transient MCAO in cohorts of adult C/EBPbeta null mice and their wild-type littermates. At 3 days of reperfusion following transient MCAO, C/EBPbeta null mice showed significantly smaller infarcts, reduced neurological deficits, decreased terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells, decreased intercellular adhesion molecule 1 (ICAM1) immunopositive vessels, decreased extravasated neutrophils and fewer activated microglia/macrophages, compared with their wild-type littermates. Furthermore, GeneChip analysis showed that postischemic induction of many transcripts known to promote inflammation and neuronal damage was less pronounced in the brains of C/EBPbeta-/- mice compared with C/EBPbeta+/+ mice. These results suggest a significant role for C/EBPbeta in postischemic inflammation and brain damage.
Collapse
Affiliation(s)
- Ramya Kapadia
- Department of Neurological Surgery, Universit of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
52
|
Carmody RJ, Maguschak K, Chen YH. A novel mechanism of nuclear factor-kappaB regulation by adenoviral protein 14.7K. Immunology 2006; 117:188-95. [PMID: 16423054 PMCID: PMC1782211 DOI: 10.1111/j.1365-2567.2005.02277.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Viruses have evolved many different ways to evade immune attacks. The adenoviral E3 protein 14.7K effectively inhibits antiviral immunity and inflammation. However, the underlying mechanism for this effect is unclear. Here we show that 14.7K is a potent inhibitor of nuclear factor (NF)-kappaB transcriptional activity following Toll-like receptor (TLR) or tumour necrosis factor (TNF) receptor signalling. The inhibition of the NF-kappaB activity occurs downstream of IkappaBalpha degradation and NF-kappaB translocation into the nucleus. Analysis of NF-kappaB DNA binding reveals that 14.7K specifically inhibits p50 homodimer DNA binding and that this inhibition is mediated through the interaction of 14.7K with p50. We propose that 14.7K inhibits NF-kappaB activity through directly blocking p50 binding to DNA and that this is the basis for its anti-inflammatory properties. Our data also indicate a role for p50 homodimer-dependent transcription in inflammation.
Collapse
Affiliation(s)
- Ruaidhrí J Carmody
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | |
Collapse
|
53
|
Yan X, Hao Q, Mu Y, Timani KA, Ye L, Zhu Y, Wu J. Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. Int J Biochem Cell Biol 2006; 38:1417-28. [PMID: 16546436 PMCID: PMC7108415 DOI: 10.1016/j.biocel.2006.02.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 01/17/2006] [Accepted: 02/07/2006] [Indexed: 02/02/2023]
Abstract
SARS-associated coronavirus (SARS-CoV) causes inflammation and damage to the lungs resulting in severe acute respiratory syndrome. To evaluate the molecular mechanisms behind this event, we investigated the roles of SARS-CoV proteins in regulation of the proinflammatory factor, cyclooxygenase-2 (COX-2). Individual viral proteins were tested for their abilities to regulate COX-2 gene expression. Results showed that the COX-2 promoter was activated by the nucleocapsid (N) protein in a concentration-dependent manner. Western blot analysis indicated that N protein was sufficient to stimulate the production of COX-2 protein in mammalian cells. COX-2 promoter mutations suggested that activation of COX-2 transcription depended on two regulatory elements, a nuclear factor-kappa B (NF-kappaB) binding site, and a CCAAT/enhancer binding protein (C/EBP) binding site. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) demonstrated that SARS-CoV N protein bound directly to these regulatory sequences. Protein mutation analysis revealed that a Lys-rich motif of N protein acted as a nuclear localization signal and was essential for the activation of COX-2. In addition, a Leu-rich motif was found to be required for the N protein function. A sequence of 68 residuals was identified as a potential DNA-binding domain essential for activating COX-2 expression. We propose that SARS-CoV N protein causes inflammation of the lungs by activating COX-2 gene expression by binding directly to the promoter resulting in inflammation through multiple COX-2 signaling cascades.
Collapse
Affiliation(s)
- Xiaohong Yan
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qian Hao
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yongxin Mu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Khalid Amine Timani
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Linbai Ye
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ying Zhu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jianguo Wu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
54
|
Wang JM, Ko CY, Chen LC, Wang WL, Chang WC. Functional role of NF-IL6beta and its sumoylation and acetylation modifications in promoter activation of cyclooxygenase 2 gene. Nucleic Acids Res 2006; 34:217-31. [PMID: 16397300 PMCID: PMC1325205 DOI: 10.1093/nar/gkj422] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
NF-IL6β regulates gene expression and plays function roles in many tissues. The EGF-regulated cyclooxygenase-2 (cox-2) expression is mediated through p38MAPK signaling pathway and positively correlates with NF-IL6β expression in A431 cells. NF-IL6β coordinated with c-Jun on cox-2 transcriptional activation by reporter and small interfering RNA assays. NF-IL6β could directly bind to CCAAT/enhancer-binding protein (C/EBP) and cyclic AMP-response element (CRE) sites of the cox-2 promoter by in vitro-DNA binding assay. The C/EBP site was important for basal and, to a lesser extent, for EGF-regulated cox-2 transcription, while the CRE site was a more specific response to EGF inducibility of cox-2 gene. SUMO1 expression attenuated EGF- and NF-IL6β-induced cox-2 promoter activities. NF-IL6β was found to be sumoylated by in vivo- and in vitro-sumoylation assays, and the SUMO1-NF-IL6β (suNF-IL6β) lost its ability to interact with p300 in in vitro-binding assay. NF-IL6β was also acetylated by p300, and acetylation of NF-IL6β enhanced the cox-2 promoter activity stimulated by NF-IL6β itself. In vivo-DNA binding assay demonstrated that EGF stimulated the recruitment of p300 and NF-IL6β to the cox-2 promoter, yet promoted the dissociation of SUMO1-modificated proteins from the promoter. These results indicated that NF-IL6β plays a pivotal role in the regulation of basal and EGF-induced cox-2 transcription.
Collapse
Affiliation(s)
- Ju-Ming Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chiung-Yuan Ko
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Lei-Chin Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- Department of Medical Nutrition, I-Shou UniversityDashu Township, Kaohsiung County, Taiwan
| | - Wen-Lin Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Wen-Chang Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- To whom correspondence should be addressed. Tel: +886 6 235 3535 Ext. 5496; Fax: +886 6 274 9296;
| |
Collapse
|
55
|
Raymond L, Eck S, Mollmark J, Hays E, Tomek I, Kantor S, Elliott S, Vincenti M. Interleukin-1 beta induction of matrix metalloproteinase-1 transcription in chondrocytes requires ERK-dependent activation of CCAAT enhancer-binding protein-beta. J Cell Physiol 2006; 207:683-8. [PMID: 16453302 DOI: 10.1002/jcp.20608] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interleukin-1 beta (IL-1beta) is a central mediator of inflammation and connective tissue destruction in rheumatoid arthritis. IL-1beta activates articular chondrocytes to produce matrix metalloproteinase-1 (MMP-1), an enzyme capable of dismantling the collagen scaffold of articular cartilage. To define the transcription factors and signaling intermediates that activate MMP-1 transcription in chondrocytes, we performed transient transfection of MMP-1 promoter constructs followed by reporter assays. These studies identified an IL-1beta-responsive region of the human MMP-1 promoter that contains a consensus CCAAT enhancer-binding protein (C/EBP) binding site. Deletion of this site reduced overall transcriptional activity of the MMP-1 promoter, as well as decreased fold induction by IL-1beta. IL-1beta stimulation of chondrocytes increased binding of C/EBP-beta to the MMP-1 C/EBP site. Extracellular signal regulated kinase (ERK) pathway-dependent phosphorylation of C/EBP-beta on threonine 235 activates this transcription factor. Here we show that IL-1beta stimulation of chondrocytes induced phosphorylation of C/EBP-beta on threonine 235, and that the ERK pathway inhibitor PD98059 reduced this phosphorylation. We further show that PD98059 reduces IL-1beta-induced MMP-1 mRNA expression in chondrocytes. Moreover, inhibition of the ERK pathway by expression of dominant-negative forms of ERK1 and ERK2 impaired the ability of IL-1beta to transactivate the MMP-1 promoter. Our findings demonstrate a novel role for C/EBP-beta in IL-1beta-induced connective tissue disease and define a new nuclear target for the ERK pathway in MMP-1 gene activation.
Collapse
Affiliation(s)
- Lauren Raymond
- Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Crofford LJ, McDonagh KT, Guo S, Mehta H, Bian H, Petruzelli LM, Roessler BJ. Adenovirus binding to cultured synoviocytes triggers signaling through MAPK pathways and induces expression of cyclooxygenase-2. J Gene Med 2005; 7:288-96. [PMID: 15515144 DOI: 10.1002/jgm.661] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recombinant adenovirus can be administered in vivo to achieve transduction of a number of cell types including human synoviocytes. Immunogenicity of adenoviruses has limited their utility as vectors for gene delivery; however, specific mechanisms underlying the acute inflammatory response to adenovirus are not well understood. Activation of a number of signal transduction pathways occurs rapidly upon adenovirus binding to cell-surface receptors. We investigated stimulated expression of mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2) and prostaglandin E(2) (PGE(2)) in human primary synovial fibroblasts to adenovirus expressing the E. coli beta-galactosidase gene. METHODS Cultured rheumatoid synoviocytes were exposed to transduction-competent Ad/RSVlacZ recombinant adenovirus or transduction-incompetent (psoralen/UV-irradiated) Ad/RSVlacZ. The effects on COX-2 expression, PGE(2) levels and MAPK signaling in synoviocytes were assessed using a combination of reverse-transcription polymerase chain reaction amplification and immunoblotting. RESULTS Adenovirus treatment of synoviocytes increased levels of COX-2 mRNA and protein as well as PGE(2). Psoralen-treated transcriptionally inactive adenovirus was equivalent to untreated adenovirus for early COX-2 induction suggesting that viral genes were not required. Adenovirus treatment stimulated phosphorylation of ERK-1/-2, p38 MAPK, and JNK. Inhibition of the ERK and p38 MAPK pathways inhibited COX-2 expression and PGE(2) production. CONCLUSIONS Taken together, these data demonstrate that a MAPK-dependent increase in COX-2 results in local prostaglandin production. These findings have clinical implications for use of adenovirus as vectors for in vivo gene delivery.
Collapse
Affiliation(s)
- Leslie J Crofford
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
57
|
Uto T, Fujii M, Hou DX. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 transcription by 6-(methylsulfinyl) hexyl isothiocyanate, a chemopreventive compound from Wasabia japonica (Miq.) Matsumura, in mouse macrophages. Biochem Pharmacol 2005; 70:1772-84. [PMID: 16256955 DOI: 10.1016/j.bcp.2005.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 09/23/2005] [Accepted: 09/26/2005] [Indexed: 01/05/2023]
Abstract
6-(Methylsulfinyl)hexyl isothiocyanate (6-MITC) is a chemopreventive compound occurring in Wasabi (Wasabia japonica (Miq.) Matsumura), which is a very popular pungent spice in Japan. We investigated the effects of 6-MITC on the expression of cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. Treatment with 6-MITC suppressed LPS-mediated induction of COX-2 protein in a dose-dependent manner. Transfections with various COX-2 promoter reporter constructs revealed that the inhibitory effects of 6-MITC on COX-2 gene expression were directed by the core promoter elements including nuclear factor kappaB (NF-kappaB), CCAAT/enhancer-binding protein (C/EBP) and cyclic AMP-response element (CRE) sites. Western blotting analysis showed that 6-MITC inhibited LPS-induced activation of MAPK (ERK, p38 kinase and JNK) and transcriptional factors (CREB, c-Jun and C/EBPdelta) binding the core elements of COX-2 promoter, substantiating the involvement of these signal transduction pathways in the regulation of COX-2 expression by 6-MITC. Moreover, Western blotting experiments with MAPK-specific inhibitors (U0126 for MEK1/2, SB203580 for p38 kinase and SP600125 for JNK) demonstrated that 6-MITC suppressed LPS-induced COX-2 expression by blocking the activation of JNK-mediated AP-1 and ERK/p38 kinase-mediated CREB or C/EBPdelta. Finally, the structure-activity study revealed that the inhibitory potency of methylsulfinyl isothiocyanates (MITCs) depended on the methyl chain length. These findings demonstrate for the first time that 6-MITC is an effective agent to attenuate COX-2 production, and enhance our understanding of the anti-inflammation properties of 6-MITC.
Collapse
Affiliation(s)
- Takuhiro Uto
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima City 890-0065, Japan
| | | | | |
Collapse
|
58
|
Wada Y, Shimada K, Sugimoto K, Kimura T, Ushiyama S. Novel p38 mitogen-activated protein kinase inhibitor R-130823 protects cartilage by down-regulating matrix metalloproteinase-1,-13 and prostaglandin E2 production in human chondrocytes. Int Immunopharmacol 2005; 6:144-55. [PMID: 16399619 DOI: 10.1016/j.intimp.2005.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 03/10/2005] [Accepted: 07/25/2005] [Indexed: 01/01/2023]
Abstract
In order to study the involvement of mitogen-activated protein kinase p38 in osteoarthritis, we investigated the effect of novel p38 inhibitor R-130823 {2-(4-fluorophenyl)-4-(1-phenethyl-1,2,3,6-tetrahydropyridin-4-yl)-3-(pyridin-4-yl)-1H-pyrrole} on human chondrocytes and bovine cartilage. In human primary chondrocytes, the production of matrix metalloproteinase-13 and -1 (MMP-13 and -1) and prostaglandin E2 (PGE2) was induced by interleukin-1beta. Pretreatment with R-130823 inhibited the release of MMP-13, MMP-1 and PGE2 with IC50 values of 20, 230 and 3.9 nM, respectively. The inhibitory activity was also confirmed by a decrease in MMP-13 release from human chondrosarcoma cell line SW1353 with an IC50 value of 17 nM. Ribonuclease protection assay on human primary chondrocytes indicated that MMP-13 and MMP-1 mRNA levels almost reached the maximum 14 h after IL-1 stimulation, while cyclooxygenase-2 (COX-2) mRNA quickly reached the maximum 4 h after the stimulation. R-130823 down-regulated the steady-state levels of MMP-13 and MMP-1 mRNA with IC50 values of 4.2 and 79 nM, respectively. The COX-2 mRNA level was also suppressed with an IC50 value of 21 nM. In the explant culture of bovine nasal cartilage, R-130823 suppressed the collagen cleavage induced by interleukin-1alpha and oncostatin M, but not IL-1beta-mediated glycosaminoglycan release. These results suggest that activated p38 accelerates cartilage breakdown by enhancing the expression of MMPs responsible for collagen cleavage, which thus implies chondroprotective effects of p38 inhibitors in osteoarthritis.
Collapse
Affiliation(s)
- Yoshihiro Wada
- Biological Research Laboratories, Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | |
Collapse
|
59
|
Hou DX, Yanagita T, Uto T, Masuzaki S, Fujii M. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure-activity relationship and molecular mechanisms involved. Biochem Pharmacol 2005; 70:417-25. [PMID: 15963474 DOI: 10.1016/j.bcp.2005.05.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/01/2005] [Accepted: 05/04/2005] [Indexed: 12/19/2022]
Abstract
The effects of anthocyanidins, the aglycon nucleuses of anthocyanins widely occurring in reddish fruits and vegetables, on the expression of cyclooxygenase-2 (COX-2) were investigated in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. Of five anthocyanidins, delphinidin and cyanidin inhibited LPS-induced COX-2 expression, but pelargonidin, peonidin and malvidin did not. The structure-activity relationship suggest that the ortho-dihydroxyphenyl structure of anthocyanidins on the B-ring appears to be related with the inhibitory actions. Delphinidin, the most potent inhibitor, caused a dose-dependent inhibition of COX-2 expression at both mRNA and protein levels. Western blotting analysis indicated that delphinidin inhibited the degradation of IkappaB-alpha, nuclear translocation of p65 and CCAAT/enhancer-binding protein (C/EBP)delta and phosphorylation of c-Jun, but not CRE-binding protein (CREB). Moreover, delphinidin suppressed the activations of mitogen-activated protein kinase (MAPK) including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. MAPK inhibitors (U0126 for MEK1/2, SB203580 for p38 kinase and SP600125 for JNK) specifically blocked LPS-induced COX-2 expression. Thus, our results demonstrated that LPS-induced COX-2 expression by activating MAPK pathways and delphinidin suppressed COX-2 by blocking MAPK-mediated pathways with the attendant activation of nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and C/EBPdelta. These findings provide the first molecular basis that anthocyanidins with ortho-dihydroxyphenyl structure may have anti-inflammatory properties through the inhibition of MAPK-mediated COX-2 expression.
Collapse
Affiliation(s)
- De-Xing Hou
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima City 890-0065, Japan.
| | | | | | | | | |
Collapse
|
60
|
Joo M, Hahn YS, Kwon M, Sadikot RT, Blackwell TS, Christman JW. Hepatitis C virus core protein suppresses NF-kappaB activation and cyclooxygenase-2 expression by direct interaction with IkappaB kinase beta. J Virol 2005; 79:7648-57. [PMID: 15919917 PMCID: PMC1143634 DOI: 10.1128/jvi.79.12.7648-7657.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In addition to hepatocytes, hepatitis C virus (HCV) infects immune cells, including macrophages. However, little is known concerning the impact of HCV infection on cellular functions of these immune effector cells. Lipopolysaccharide (LPS) activates IkappaB kinase (IKK) signalsome and NF-kappaB, which leads to the expression of cyclooxygenase-2 (COX-2), which catalyzes production of prostaglandins, potent effectors on inflammation and possibly hepatitis. Here, we examined whether expression of HCV core interferes with IKK signalsome activity and COX-2 expression in activated macrophages. In reporter assays, HCV core inhibited NF-kappaB activation in RAW 264.7 and MH-S murine macrophage cell lines treated with bacterial LPS. HCV core inhibited IKK signalsome and IKKbeta kinase activities induced by tumor necrosis factor alpha in HeLa cells and coexpressed IKKgamma in 293 cells, respectively. HCV core was coprecipitated with IKappaKappabeta and prevented nuclear translocation of IKKbeta. NF-kappaB activation by either LPS or overexpression of IKKbeta was sufficient to induce robust expression of COX-2, which was markedly suppressed by ectopic expression of HCV core. Together, these data indicate that HCV core suppresses IKK signalsome activity, which blunts COX-2 expression in macrophages. Additional studies are necessary to determine whether interrupted COX-2 expression by HCV core contributes to HCV pathogenesis.
Collapse
Affiliation(s)
- Myungsoo Joo
- Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Grall FT, Prall WC, Wei W, Gu X, Cho JY, Choy BK, Zerbini LF, Inan MS, Goldring SR, Gravallese EM, Goldring MB, Oettgen P, Libermann TA. The Ets transcription factor ESE-1 mediates induction of the COX-2 gene by LPS in monocytes. FEBS J 2005; 272:1676-87. [PMID: 15794755 DOI: 10.1111/j.1742-4658.2005.04592.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyclooxygenase-2 (COX-2) is a key enzyme in the production of prostaglandins that are major inflammatory agents. COX-2 production is triggered by exposure to various cytokines and to bacterial endotoxins. We present here a novel role for the Ets transcription factor ESE-1 in regulating the COX-2 gene in response to endotoxin and other pro-inflammatory stimuli. We report that the induction of COX-2 expression by lipopolysaccharide (LPS) and pro-inflammatory cytokines correlates with ESE-1 induction in monocyte/macrophages. ESE-1, in turn, binds to several E26 transformation specific (Ets) sites on the COX-2 promoter. In vitro analysis demonstrates that ESE-1 binds to and activates the COX-2 promoter to levels comparable to LPS-mediated induction. Moreover, we provide results showing that the induction of COX-2 by LPS may require ESE-1, as the mutation of the Ets sites in the COX-2 promoter or overexpression of a dominant-negative form of ESE-1 inhibits LPS-mediated COX-2 induction. The effect of ESE-1 on the COX-2 promoter is further enhanced by cooperation with other transcription factors such as nuclear factor-kappa B and nuclear factor of activated T cells. Neutralization of COX-2 is the goal of many anti-inflammatory drugs. As an activator of COX-2 induction, ESE-1 may become a target for such therapeutics as well. Together with our previous reports of the role of ESE-1 as an inducer of nitric oxide synthase in endothelial cells and as a mediator of pro-inflammatory cytokines in vascular and connective tissue cells, these results establish ESE-1 as an important player in the regulation of inflammation.
Collapse
Affiliation(s)
- Franck T Grall
- New England Baptist Bone and Joint Institute and BIDMC Genomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Isoda K, Koide H, Kojima M, Arita E, Ikkaku M, Higashiyama S, Tashiro F, Yamato E, Miyazaki JI, Kawase M, Yagi K. Stimulation of hepatocyte survival and suppression of CCl4-induced liver injury by the adenovirally introduced C/EBPbeta gene. Biochem Biophys Res Commun 2005; 329:182-7. [PMID: 15721291 DOI: 10.1016/j.bbrc.2005.01.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Indexed: 12/25/2022]
Abstract
Gene therapy has attracted attention as a potentially effective alternative to liver transplantation for the treatment of hepatic failure. We chose the C/EBPbeta gene, which plays vital roles in liver regeneration, as a candidate for gene therapy, and examined its effect on hepatocyte survival and the suppression of liver inflammation. C/EBPbeta gene overexpression significantly maintained hepatocyte viability during 12 days of the culture. Urea synthesis ability, which is a liver-specific function, in Adv-C/EBPbeta-infected hepatocytes was stably maintained during the culture, but the activity per cell was significantly lower than that in non-infected cells. On the contrary, DNA synthesis activity in Adv-C/EBPbeta-infected hepatocytes was significantly higher than that in non-infected cells. COX-2 was induced in Adv-C/EBPbeta-infected hepatocytes, and the addition of NS398, a specific inhibitor of COX-2, suppressed the viability-maintenance effect. COX-2 was thus shown to be involved in the survival effect of C/EBPbeta gene. The introduction of the C/EBPbeta gene into liver-damaged mice significantly suppressed the serum AST and ALT activities. These results indicate that C/EBPbeta appears to be a survival factor under stressful conditions, and the introduction of the gene has therapeutic function against liver injury.
Collapse
Affiliation(s)
- Katsuhiro Isoda
- Laboratory of Bio-functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Chen J, Zhao M, Rao R, Inoue H, Hao CM. C/EBPβ and Its Binding Element Are Required for NFκB-induced COX2 Expression Following Hypertonic Stress. J Biol Chem 2005; 280:16354-9. [PMID: 15713664 DOI: 10.1074/jbc.m411134200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
NFkappaB plays a critical role mediating COX2 expression in renal medullary interstitial cells (RMICs). The trans-activating ability of NFkappaB can be modified by another nuclear factor C/EBPbeta that can physically bind to NFkappaB and regulate its activity. Because the COX2 promoter also contains a C/EBPbeta site adjacent to the NFkappaB site, the present study examined whether these two transcription factors cooperate to induce COX2 expression following hypertonic stress. Hypertonicity markedly induced COX2 expression in cultured medullary interstitial cells by immunoblot analysis. The tonicity-induced COX2 expression was suppressed by mutant IkappaB (IkappaBm) that blocks NFkappaB activation, demonstrating that tonicity-induced COX2 expression depends on NFkappaB activation. However, mutation of the NFkappaB site in the COX2 promoter failed to abolish tonicity-induced COX2 reporter activity. IkappaB kinase-1 (IKK1) significantly induced COX2-luciferase activity by 2.3-fold (n = 10, p < 0.01); mutation of the NFkappaB site also failed to abolish IKK1-stimulated COX2 reporter activity (86 +/- 3.1% of wild type, p > 0.05, n = 4). Interestingly, mutation of the C/EBPbeta site of the COX2 gene significantly reduced both IKK1 and hypertonicity-induced COX2 reporter activity (p < 0.01). To further examine the potential role of C/EBPbeta in tonicity-induced COX2 expression, a dominant negative C/EBPbeta-p20 was transduced into RMICs. C/EBPbeta-p20 markedly suppressed hypertonic (550 mOsm) induction of COX2 (immunoblot) to a similar extent as IkappaBm. No additional suppression was observed when both NFkappaB and C/EBPbeta were simultaneously blocked by IkappaBm and C/EBPbeta-p20. Interestingly, IKK-induced COX2 expression was not only blocked by IkappaBm, but also completely abolished by C/EBPbeta-p20. Further studies demonstrated physical association of C/EBPbeta to NFkappaB p65 by coimmunoprecipitation. Importantly, this interaction between C/EBPbeta and NFkappaB was greatly enhanced following hypertonic stress. These studies indicate C/EBPbeta is required for the transcriptional activation of COX2 by NFkappaB, suggesting a dominant role for the C/EBPbeta pathway in regulating induction of RMIC COX2 by hypertonicity.
Collapse
Affiliation(s)
- Jing Chen
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
64
|
Masuko-Hongo K, Berenbaum F, Humbert L, Salvat C, Goldring MB, Thirion S. Up-regulation of microsomal prostaglandin E synthase 1 in osteoarthritic human cartilage: critical roles of the ERK-1/2 and p38 signaling pathways. ACTA ACUST UNITED AC 2004; 50:2829-38. [PMID: 15457451 DOI: 10.1002/art.20437] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Microsomal prostaglandin E synthase 1 (mPGES-1) is the final enzyme of the cascade that produces prostaglandin E(2) (PGE(2)), a key actor in arthritis. To study mPGES-1 synthesis in human cartilage and its regulation by interleukin-1beta (IL-1beta), we used human cartilage and an immortalized human chondrocyte cell line. Furthermore, we investigated the signaling pathways involved in mPGES-1 expression. METHODS We used real-time quantitative reverse transcription-polymerase chain reaction, Northern blotting, and Western blotting to measure mPGES-1 messenger RNA (mRNA) and protein expression in human chondrocytes. PGE(2) production was measured by enzyme-linked immunosorbent assay. RESULTS Cartilage specimens from osteoarthritis (OA) patients contained far greater amounts of mPGES-1 and cyclooxygenase 2 (COX-2) mRNA than did normal cartilage. Incubation with IL-1beta markedly increased mPGES-1 mRNA and protein in a dose-dependent and time-dependent manner, in parallel with an increase in PGE(2) levels. Both PD98059, an ERK pathway inhibitor, and SB203580, a p38alpha/beta MAPK inhibitor, abolished the increases in mPGES-1 mRNA and protein in response to IL-1beta. The specific p38alpha MAPK inhibitor SC906 suppressed IL-1beta-induced COX-2 expression but not IL-1beta-induced mPGES-1 expression, suggesting preferential involvement of p38beta MAPK in IL-1beta-induced mPGES-1 expression. CONCLUSION This study is the first to show that mPGES-1 is stimulated in human chondrocytes by the proinflammatory cytokine IL-1beta via activation of both ERK-1/2 and p38 MAPK in an isoform-specific manner. We postulate that mPGES-1 may be a novel target for OA therapy.
Collapse
Affiliation(s)
- Kayo Masuko-Hongo
- UMR CNRS 7079, Université Pierre et Marie Curie (Paris VI), Paris, France
| | | | | | | | | | | |
Collapse
|
65
|
Pathak SK, Bhattacharyya A, Pathak S, Basak C, Mandal D, Kundu M, Basu J. Toll-like receptor 2 and mitogen- and stress-activated kinase 1 are effectors of Mycobacterium avium-induced cyclooxygenase-2 expression in macrophages. J Biol Chem 2004; 279:55127-36. [PMID: 15496409 DOI: 10.1074/jbc.m409885200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Understanding how pathogenic mycobacteria subvert the protective immune response is crucial to the development of strategies aimed at controlling mycobacterial infections. Prostaglandin E(2) exerts an immunosuppressive function in the context of mycobacterial infection. Because cyclooxygenase-2 (COX-2) is a rate-limiting enzyme in prostaglandin biosynthesis, there is a need to delineate the mechanisms through which pathogenic mycobacteria regulate COX-2 expression in macrophages. Our studies demonstrate that the NF-kappaB and CRE elements of the COX-2 promoter are critical to Mycobacterium avium-induced COX-2 gene expression. M. avium-triggered signaling originates at the Toll-like receptor 2 (TLR2). Ras associates with TLR2 and activates the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK), whereas tumor necrosis factor receptor-associated factor 6 (TRAF6)/transforming growth factor beta-activated kinase 1 (TAK1)-dependent signaling activates p38 MAPK. Both ERK and p38 MAPK activation converge to regulate the activation of mitogen- and stress-activated kinase 1 (MSK1). MSK1 mediates the phosphorylation of the transcription factor CREB accounting for its stimulatory effect on CRE-dependent gene expression. M. avium-triggered cytoplasmic NF-kappaB activation following IkappaB phosphorylation is necessary but not sufficient for COX-2 promoter-driven gene expression. MSK1 activation is also essential for M. avium-triggered NF-kappaB-dependent gene expression, presumably mediating nucleosomal modifications. These studies demonstrate that the nuclear kinase MSK1 is necessary in regulating the pathogen-driven expression of a gene by controlling two transcription factors. The attenuation of MSK1 may therefore have potential benefit in restricting survival of pathogenic mycobacteria in macrophages.
Collapse
Affiliation(s)
- Sushil Kumar Pathak
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Calcutta 700009, India
| | | | | | | | | | | | | |
Collapse
|
66
|
Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res 2004:S37-46. [PMID: 15480072 DOI: 10.1097/01.blo.0000144484.69656.e4] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Within the mature articular cartilage matrix, which has no blood or nerve supply, chondrocytes show little metabolic activity with low turnover of matrix components. Under conditions of stress because of biomechanical factors, however, chondrocytes are capable of producing mediators that are associated with inflammation, including cytokines such as interleukin-1 and tumor necrosis factor-alpha, which in turn stimulate the production of prostaglandins and nitric oxide. Chondrocytes also express receptors for these mediators, which accumulate at high local concentrations and can act in an autocrine-paracrine fashion to feedback-regulate chondrocyte responses. Prostaglandin E2 can exert catabolic or anabolic effects depending on the microenvironment. Nitric oxide can promote cellular injury and increase chondrocyte susceptibility to cytokine-induced apoptosis. Because cross-talk between these mediators produces complex modulation of catabolic and anabolic pathways, further studies in vitro and in vivo are required to elucidate their precise roles in osteoarthritis.
Collapse
Affiliation(s)
- Mary B Goldring
- Rheumatology Division, Beth Israel Deaconess Medical Center, Harvard Institute of Medicine, Boston, MA 02115, USA.
| | | |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW The pathophysiology of osteoarthritis is the result of an imbalance between anabolic and catabolic pathways. This imbalance is the result of the activation of joint cells by inflammatory mediators, matrix components, and mechanical stress. All these mediators act through specific receptors that transmit the signals to the nucleus to activate the transcription of matrix metalloproteinases and inflammatory genes. Targeting these signaling pathways in osteoarthritis is considered a novel approach to modulate this imbalance. RECENT FINDINGS Although many signaling pathways are necessary for physiologic cell life, it is now well established that a few are more specifically induced in an inflammatory environment. In osteoarthritis, the nuclear factor-kappaB and mitogen-activated protein kinase pathways have been shown to play a predominant role in the expression of metalloproteinases and inflammatory genes and proteins. Also involved in the activation of osteoarthritic cells are other molecules interacting with one or several signaling pathways, such as nitric oxide, peroxisome proliferator-activated receptor-gamma ligands, or C/EBP transcriptional factors. Based on this knowledge, specific inhibitors for some of these signaling pathways have been designed and include p38 mitogen-activated protein kinase or nuclear factor-kappaB inhibitors. Experimental studies evaluating cartilage degradation in arthritis models are promising, although fewer have been done specifically in osteoarthritis models. SUMMARY Targeting signaling pathways in osteoarthritis did not seem feasible a few years ago because of the complexity of the multiple intracellular pathways, mainly physiologic, defined by a high degree of redundancy and cross-talk. However, important advances in the knowledge of chondrocyte and synoviocyte signaling in osteoarthritis have been achieved in recent years and suggest that inhibitors of specific signaling pathways could shortly provide effective treatments for this disease.
Collapse
Affiliation(s)
- Francis Berenbaum
- University Pierre & Marie Curie and Department of Rheumatology, UFR Saint-Antoine, AP-HP, Paris, France.
| |
Collapse
|
68
|
Cho MK, Cho YH, Lee GH, Kim SG. Induction of cyclooxygenase-2 by bovine type I collagen in macrophages via C/EBP and CREB activation by multiple cell signaling pathways. Biochem Pharmacol 2004; 67:2239-50. [PMID: 15163555 DOI: 10.1016/j.bcp.2004.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 02/05/2004] [Indexed: 01/07/2023]
Abstract
Bovine type I collagen (Col-I) is utilized for medical purposes such as cosmetic surgery and wrinkle removal. Cyclooxygenase-2 (COX-2) plays roles in pathophysiological processes including inflammation and tumorigenesis. This study examines the effects of Col-I on the COX-2 expression and the signaling pathways in macrophages. Col-I increased the levels of COX-2 protein and mRNA in serum-stimulated Raw264.7 cells in a time- and concentration-dependent manner. Treatment of cells with Col-I increased CCAAT/enhancer binding protein (C/EBP) DNA binding. Antibody supershift experiments revealed that C/EBP DNA binding activity induced by Col-I depended largely on C/EBPbeta and C/EBPdelta. Immunocytochemistry showed that Col-I induced nuclear translocation of C/EBPbeta and C/EBPdelta, whose activation contributes to COX-2 induction. Overexpression of the dominant-negative mutant form of C/EBP abolished COX-2 induction by Col-I. Col-I also increased cyclic-AMP response element binding protein (CREB) binding to DNA. Inhibition of focal adhesion kinase (FAK) or downstream phosphoinositide 3-kinase and p70S6 kinase by specific chemical inhibitors prevented COX-2 induction by Col-I, and C/EBP and CREB from binding to their consensus DNA oligonucleotides. Experiments using chemical inhibitors or dominant-negative mutant vectors showed that the mitogen-activated protein (MAP) kinase pathways including p38-kinase and extracellular signal-regulated kinase (ERK1/2), but not c-Jun N-terminal kinase (JNK1), simultaneously regulated COX-2 induction by Col-I. This was in agreement with inhibition of Col-I-inducible C/EBP and CREB DNA binding by concomitant treatment with SB203580 and PD98059. These results provide evidence that Col-I induces COX-2 in serum-stimulated macrophages and that the multiple cell signaling pathways involving Src-focal adhesion kinase, phosphoinositide 3-kinase, and MAP kinases regulate COX-2 induction by Col-I via C/EBP and CREB activation.
Collapse
Affiliation(s)
- Min Kyung Cho
- National Research Laboratory, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
69
|
Membrane-associated prostaglandin E synthase-1 is upregulated by proinflammatory cytokines in chondrocytes from patients with osteoarthritis. Arthritis Res Ther 2004; 6:R355-65. [PMID: 15225371 PMCID: PMC464891 DOI: 10.1186/ar1195] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2003] [Revised: 04/01/2004] [Accepted: 05/12/2004] [Indexed: 01/12/2023] Open
Abstract
Prostaglandin E synthase (PGES) including isoenzymes of membrane-associated PGES (mPGES)-1, mPGES-2, and cytosolic PGES (cPGES) is the recently identified terminal enzyme of the arachidonic acid cascade. PGES converts prostaglandin (PG)H2 to PGE2 downstream of cyclooxygenase (COX). We investigated the expression of PGES isoenzyme in articular chondrocytes from patients with osteoarthritis (OA). Chondrocytes were treated with various cytokines and the expression of PGES isoenzyme mRNA was analyzed by the reverse transcription–polymerase chain reaction and Northern blotting, whereas Western blotting was performed for protein expression. The subcellular localization of mPGES-1 was determined by immunofluorescent microscopy. Conversion of arachidonic acid or PGH2 to PGE2 was measured by enzyme-linked immunosorbent assay. Finally, the expression of mPGES-1 protein in OA articular cartilage was assessed by immunohistochemistry. Expression of mPGES-1 mRNA in chondrocytes was significantly induced by interleukin (IL)-1β or tumor necrosis factor (TNF)-α, whereas other cytokines, such as IL-4, IL-6, IL-8, IL-10, and interferon-γ, had no effect. COX-2 was also induced under the same conditions, although its pattern of expression was different. Expression of cPGES, mPGES-2, and COX-1 mRNA was not affected by IL-1β or TNF-α. The subcellular localization of mPGES-1 and COX-2 almost overlapped in the perinuclear region. In comparison with 6-keto-PGF1α and thromboxane B2, the production of PGE2 was greater after chondrocytes were stimulated by IL-1β or TNF-α. Conversion of PGH2 to PGE2 (PGES activity) was significantly increased in the lysate from IL-1β-stimulated chondrocytes and it was inhibited by MK-886, which has an inhibitory effect on mPGES-1 activity. Chondrocytes in articular cartilage from patients with OA showed positive immunostaining for mPGES-1. These results suggest that mPGES-1 might be important in the pathogenesis of OA. It might also be a potential new target for therapeutic strategies that specifically modulate PGE2 synthesis in patients with OA.
Collapse
|
70
|
Martel-Pelletier J, Pelletier JP, Fahmi H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum 2004; 33:155-67. [PMID: 14671726 DOI: 10.1016/s0049-0172(03)00134-3] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To provide an overview on: 1) the expression of cyclooxygenase (COX)-2 in articular tissues; 2) the role of prostaglandin E2 (PGE2) in these tissue functions; and 3) clinical trials with COX-2-selective nonsteroidal anti-inflammatory drugs (NSAIDs) (coxibs). METHODS MEDLINE search was performed using the key words "cyclooxygenase," "prostaglandin," "osteoarthritis" (OA), and "rheumatoid arthritis" (RA). Selected publications related to clinical trials with coxibs also are included. RESULTS COX-2 is upregulated in inflamed joint tissues and is responsible for elevated PGE2 production. The overexpression of COX-2 is likely induced by proinflammatory mediators such as interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF) alpha. However, the exact molecular mechanisms through which the expression of COX-2 is regulated remain to be elucidated. Several studies suggest that PGE2 is involved in inflammation, apoptosis, angiogenesis, and possibly structural changes that characterize arthritic diseases. NSAIDs are prescribed for the treatment of OA and RA and provide effective relief from symptoms; however, serious gastrointestinal complications occur with their use. The clinical efficacy of NSAIDs is primarily related to the inhibition of COX-2, whereas much of the toxicity is related to COX-1 inhibition. Selective COX-2 inhibitors (coxibs) that spare COX-1 at therapeutic doses are more effective than placebo and as effective as other NSAIDs for relief of symptoms of OA and RA, and have significantly improved gastrointestinal safety and tolerability. However, some studies showed that COX-2-selective inhibitors still have classic NSAID complications. CONCLUSIONS Overexpression of COX-2 protein in articular tissues is a characteristic feature of arthritic diseases. However, the molecular mechanisms involved in the regulation of COX-2 expression and activity are still unclear. Elucidating the mechanisms of COX-2 expression and PGE2 production and action will help identify novel and more selective potential drug targets in the treatment of arthritic diseases.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Quebec, Canada
| | | | | |
Collapse
|
71
|
Tong X, Yin L, Giardina C. Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem Biophys Res Commun 2004; 317:463-71. [PMID: 15063780 DOI: 10.1016/j.bbrc.2004.03.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 01/29/2023]
Abstract
Cox-2 plays an important role in colon carcinogenesis and inflammation. Studying the HT-29 colon cancer cell line as a model, we found that Cox-2 expression and activity is increased approximately 25-fold by TNF-alpha. As previously reported for other Cox-2 inducers, this activation appears to result from a p38-mediated mRNA stabilization rather than an increase in promoter activity. The HDAC inhibitors butyrate and TSA blocked the TNF-alpha activation of Cox-2 protein and mRNA synthesis, and dramatically suppressed Cox-2 activity in HT-29 cells. The suppression of Cox-2 synthesis did not involve promoter inactivation and could be achieved even when applied after the TNF-alpha stimulus. The effect of the HDAC inhibitors was observed prior to the activation of p21 expression and did not require new protein synthesis. Finally, butyrate did not prevent p38 phosphorylation, so the block is likely to occur at a later step in the activation pathway. We propose that a component of the cytokine-induced Cox-2 mRNA stabilization pathway is sensitive to acetylation.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
72
|
Joo M, Park GY, Wright JG, Blackwell TS, Atchison ML, Christman JW. Transcriptional Regulation of the Cyclooxygenase-2 Gene in Macrophages by PU.1. J Biol Chem 2004; 279:6658-65. [PMID: 14966110 DOI: 10.1074/jbc.m306267200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Macrophages are an abundant source of cyclooxygenase-2 (COX-2) enzymatic products, but a specific mechanism for macrophage COX-2 gene expression has not been described. We examined whether PU.1, a myeloid-specific Ets family transcription factor, is involved. Sequence analysis revealed two potential c-Ets binding sites in the COX-2 promoter (COX-2p) which bind to immunoreactive PU.1. Chromatin immunoprecipitation analysis shows inducible PU.1 binding to these sites in response to lipopolysaccharide, and COX-2 protein production is augmented by ectopic expression of PU.1 but not by PU.1S148A, indicating that PU.1 phosphorylation is likely involved. Interestingly, expression of PU.1 results in acetylation of CCAAT/enhancer-binding protein-beta (C/EBP-beta) and increased production of COX-2 protein. Coimmunoprecipitation experiments suggest a role for p300 in C/EBP-beta acetylation and COX-2 expression. In contrast, E1A inhibits acetylation of C/EBP-beta and is correlated with decreased COX-2 expression. Together, these data suggest that PU.1 is activated by phosphorylation of Ser148 in response to lipopolysaccharide treatment and subsequently binds to sequences in the endogenous COX-2p in a time-dependent manner. Concomitantly, C/EBP-beta becomes acetylated, and expression of the COX-2 gene increases. We speculate that a combinatorial role of PU.1 and C/EBP-beta mediates the robust production of COX-2 products by macrophages which occurs in Gram-negative bacterial sepsis.
Collapse
Affiliation(s)
- Myungsoo Joo
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2650, USA
| | | | | | | | | | | |
Collapse
|
73
|
McEvoy AN, Bresnihan B, FitzGerald O, Murphy EP. Cyclooxygenase 2-derived prostaglandin E2 production by corticotropin-releasing hormone contributes to the activated cAMP response element binding protein content in rheumatoid arthritis synovial tissue. ACTA ACUST UNITED AC 2004; 50:1132-45. [PMID: 15077295 DOI: 10.1002/art.20157] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To determine a mechanism by which corticotropin-releasing hormone (CRH) promotes human inflammatory joint disease progression. METHODS An ex vivo synovial tissue culture system was established to investigate the functional properties of CRH at peripheral sites of inflammation. CRH- and interleukin-1 beta (IL-1 beta)-induced prostaglandin E(2) (PGE(2)) production from 10 fresh rheumatoid arthritis (RA) synovial tissue (ST) explants was quantified using a competitive enzyme-linked immunosorbent assay. Modulation of PGE(2) levels was further examined following selective and nonselective cyclooxygenase 2 (COX-2) inhibition. Nuclear extracts were analyzed by electrophoretic mobility shift assays to determine functional cAMP response element binding protein (CREB) activity in response to CRH and PGE(2) in isolated primary synovial cell populations. Western blot analysis measured levels of total and activated (phosphospecific) CREB/activating transcription factor (ATF) family members prior to and following stimulation. RESULTS CRH, in a time- and dose-dependent manner, significantly (P = 0.022) up-regulated PGE(2) production from 10 fresh RA ST explants. Costimulation of RA ST with CRH and IL-1 beta significantly augmented (P = 0.036) the effects on PGE(2) production additively over 24 hours. We demonstrated that selective COX-2 inhibitors prevent the induction of PGE(2) by both CRH and IL-1 beta. Further, we provided evidence that CRH and PGE(2) signal through the induction of CREB and phosphorylated CREB/ATF family members in RA ST and in isolated primary RA cell populations. CONCLUSION Our findings underscore the pathogenic role that CRH may play in modulating inflammatory joint disease and establish the CREB/ATF family of transcription factors as principal effector molecules of proinflammatory mediator action in RA.
Collapse
Affiliation(s)
- Alice N McEvoy
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
74
|
Ajmone-Cat MA, Nicolini A, Minghetti L. Prolonged exposure of microglia to lipopolysaccharide modifies the intracellular signaling pathways and selectively promotes prostaglandin E2 synthesis. J Neurochem 2003; 87:1193-203. [PMID: 14622099 DOI: 10.1046/j.1471-4159.2003.02087.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During inflammatory or degenerative processes microglial cells are likely to be exposed to activating agents that persist in brain parenchyma for prolonged periods. As our knowledge on microglial activation is largely based on in vitro studies in which microglial cultures are activated by a single administration of pro-inflammatory stimuli, we investigated the effects of repeated endotoxin (LPS) challenges on microglial functional state. Primary rat microglial cultures were subjected to one, two or three consecutive LPS-stimulation and the production of tumor necrosis factor-alpha (TNF-alpha), nitric oxide (NO), prostaglandin E2 (PGE2) and 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2) measured. The ability of microglial cells to produce NO, TNF-alpha and 15d-PGJ2 upon the first LPS challenge rapidly declined after the second and the third stimulations, whereas PGE2 synthesis remained constantly elevated. Accordingly, the expression of inducible NO synthase decreased whereas cyclooxygenase-2 and microsomal PGE synthase remained up-regulated. The signaling pathways evoked by single or multiple LPS-stimulation were also profoundly different, when considering the activation of the transcription factors nuclear factor-kappa B and CREB, and of the p38 MAPK. Our observations suggest that prolonged exposure to LPS, and likely other activating agents, induces in microglia a functional state clearly distinct from that triggered by acute stimulation. The progressive down-regulation of pro-inflammatory molecules and the sustained release of PGE2 could have important implications for the resolution of brain inflammation.
Collapse
Affiliation(s)
- M A Ajmone-Cat
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | |
Collapse
|
75
|
Bradbury DA, Newton R, Zhu YM, El-Haroun H, Corbett L, Knox AJ. Cyclooxygenase-2 induction by bradykinin in human pulmonary artery smooth muscle cells is mediated by the cyclic AMP response element through a novel autocrine loop involving endogenous prostaglandin E2, E-prostanoid 2 (EP2), and EP4 receptors. J Biol Chem 2003; 278:49954-64. [PMID: 14517215 DOI: 10.1074/jbc.m307964200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bradykinin (BK) is an important mediator in several inflammatory and vascular diseases that acts in part via induction of cyclooxygenase-2 (COX-2). The mechanisms involved in BK-mediated COX-2 induction are unclear. Here we characterized the transcriptional mechanisms involved in human pulmonary artery smooth muscle cells. BK stimulated the activity of a transiently transfected 966-bp (-917 to + 49) COX-2 promoter luciferase reporter construct. There was no reduction in BK-induced luciferase activity in cells transfected with COX-2 promoter constructs of 674, 407, 239, and 135 bp or constructs with mutated CCAAT/enhancer-binding protein- or NF-kappaB-binding sites. In contrast luciferase activity was reduced in cells transfected with a 407-bp COX-2 promoter fragment containing a mutated cAMP response element (CRE)-binding site, suggesting that the CRE binding site is critical. Electrophoretic mobility shift assays using oligonucleotides specific for the CRE-binding region of the COX-2 promoter and consensus oligonucleotides showed strong specific binding. Furthermore BK increased consensus cAMP-responsive luciferase reporter (p6CRE/luc)-mediated luciferase expression. CRE activation occurred by BK inducing cytosolic phospholipase A2-mediated arachidonic acid release and rapid prostaglandin E2 (PGE2) production, thereby increasing cAMP. Indomethacin inhibited BK-induced PGE2 production, cAMP accumulation, and CRE/luc reporter and COX-2 promoter luciferase activity. Exogenous PGE2 and EP2 (ONO-AE1 259) and EP4 (ONO-AE1 329) PGE2 receptor agonists mimicked the effect of BK. Collectively these studies indicate that COX-2 induction by BK in human pulmonary artery smooth muscle cells is mediated by the CRE through a novel autocrine loop involving endogenous PGE2.
Collapse
MESH Headings
- Arachidonic Acid/metabolism
- Blotting, Western
- Bradykinin/chemistry
- Cell Division
- Cell Survival
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclooxygenase 2
- DNA Mutational Analysis
- Dose-Response Relationship, Drug
- Gene Deletion
- Genes, Reporter
- Humans
- Isoenzymes/metabolism
- Luciferases/metabolism
- Membrane Proteins
- Models, Biological
- Muscle, Smooth/cytology
- Promoter Regions, Genetic
- Prostaglandin-Endoperoxide Synthases/metabolism
- Pulmonary Artery/cytology
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, Prostaglandin E/chemistry
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Dawn A Bradbury
- Division of Respiratory Medicine, University of Nottingham, City Hospital, Nottingham NG5 1PB, United Kingdom
| | | | | | | | | | | |
Collapse
|
76
|
Tan L, Peng H, Osaki M, Choy BK, Auron PE, Sandell LJ, Goldring MB. Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1beta. J Biol Chem 2003; 278:17688-700. [PMID: 12637574 DOI: 10.1074/jbc.m301676200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Following induction and activation of the early growth response (Egr)-1 transcription factor in human chondrocytes, interleukin-1beta (IL-1beta) suppresses the expression of the type II collagen gene (COL2A1), associated with induction of Egr-1 binding activity in nuclear extracts. The COL2A1 proximal promoter contains overlapping binding sites for Egr-1 and Sp1 family members at -119/-112 bp and -81/-74 bp. Mutations that block binding of Sp1 and Sp3 to either site markedly reduce constitutive expression of the core promoter. IL-1beta-induced Egr-1 binds strongly to the -119/-112 bp site, and mutations that block Egr-1 binding prevent inhibition by IL-1beta. Cotransfection with pCMV-Egr1 potentiates the inhibition of COL2A1 promoter activity by IL-1beta, whereas overexpression of dominant-negative Egr-1 mutant, Wilm's tumor-1 (WT1)/Egr1, Sp1, or Sp3 reverses the inhibition by IL-1beta. Cotransfection of pGL2-COL2/Gal4, in which we substituted the critical residue for Egr-1 binding with a Gal4 binding domain and a pCMV-Gal4-Egr1 chimera permits an inhibitory response to IL-1beta that is reversed by overexpression of Gal4-CBP. Our results indicate that IL-1beta-induced activation of Egr-1 binding is required for inhibition of COL2A1 proximal promoter activity and suggest that Egr-1 acts as a repressor of a constitutively expressed collagen gene by preventing interactions between Sp1 and the general transcriptional machinery.
Collapse
Affiliation(s)
- Lujian Tan
- Rheumatology Division, Beth Israel Deaconess Medical Center and New England Baptist Bone & Joint Institute, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Grall F, Gu X, Tan L, Cho JY, Inan MS, Pettit AR, Thamrongsak U, Choy BK, Manning C, Akbarali Y, Zerbini L, Rudders S, Goldring SR, Gravallese EM, Oettgen P, Goldring MB, Libermann TA. Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor alpha in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor kappaB-mediated induction of the Ets transcription factor ESE-1. ARTHRITIS AND RHEUMATISM 2003; 48:1249-60. [PMID: 12746898 DOI: 10.1002/art.10942] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the expression of the novel Ets transcription factor ESE-1 in rheumatoid synovium and in cells derived from joint tissues, and to analyze the role of nuclear factor kappaB (NF-kappaB) as one of the central downstream targets in mediating the induction of ESE-1 by proinflammatory cytokines. METHODS ESE-1 protein expression was analyzed by immunohistochemistry using antibodies in synovial tissues from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). ESE-1 messenger RNA (mRNA) levels were analyzed by reverse transcriptase-polymerase chain reaction or Northern blotting in human chondrocytes, synovial fibroblasts, osteoblasts, and macrophages, before and after exposure to interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNFalpha), or lipopolysaccharide (LPS) with or without prior infection with an adenovirus encoding the inhibitor of nuclear factor kappaB (IkappaB). The wild-type ESE-1 promoter and the ESE-1 promoter mutated in the NF-kappaB site were cloned into a luciferase reporter vector and analyzed in transient transfections. Electrophoretic mobility shift assays (EMSAs) and supershift assays with antibodies against members of the NF-kappaB family were conducted using the NF-kappaB site from the ESE-1 promoter as a probe. RESULTS Immunohistochemical analysis showed specific expression of ESE-1 in cells of the synovial lining layer and in some mononuclear and endothelial cells in RA and OA synovial tissues. ESE-1 mRNA expression could be induced by IL-1beta and TNFalpha in cells such as synovial fibroblasts, chondrocytes, osteoblasts, and monocytes. Transient transfection experiments and EMSAs showed that induction of ESE-1 gene expression by IL-1beta requires activation of NF-kappaB and binding of p50 and p65 family members to the NF-kappaB site in the ESE-1 promoter. Overexpression of IkappaB using an adenoviral vector blocked IL-1beta-induced ESE-1 mRNA expression. Chromatin immunoprecipitation further confirmed that NF-kappaB binds to the ESE-1 promoter in vivo. CONCLUSION ESE-1 is expressed in synovial tissues in RA and, to a variable extent, in OA, and is specifically induced in synovial fibroblasts, chondrocytes, osteoblasts, and monocyte/macrophages by IL-1beta, TNFalpha, or LPS. This induction relies on the translocation of the NF-kappaB family members p50 and p65 to the nucleus and transactivation of the ESE-1 promoter via a high-affinity NF-kappaB binding site. ESE-1 may play a role in mediating some effects of proinflammatory stimuli in cells at sites of inflammation.
Collapse
Affiliation(s)
- Franck Grall
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, and Beth Israel Deaconess Medical Center Genomics Center, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Lee AK, Sung SH, Kim YC, Kim SG. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappaBalpha phosphorylation, C/EBP and AP-1 activation. Br J Pharmacol 2003; 139:11-20. [PMID: 12746218 PMCID: PMC1573829 DOI: 10.1038/sj.bjp.0705231] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
1. Sauchinone, a lignan isolated from Saururus chinensis (Saururaceae), is a diastereomeric lignan with cytoprotective and antioxidant activities in cultured hepatocytes. The effects of sauchinone on the inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha) and cyclooxygenase 2 (COX-2) gene expression and on the activation of transcription factors, nuclear factor-kappaB (NF-kappaB), CCAAT/enhancer-binding protein (C/EBP), activator protein-1 (AP-1) and cAMP-response element-binding protein (CREB) were determined in Raw264.7 cells as part of the studies on its anti-inflammatory effects. 2. Expression of the iNOS, TNF-alpha and COX-2 genes was assessed by Northern and Western blot analyses. NO production was monitored by chemiluminescence detection using a NO analyzer. To identify the transcriptional factors affected by sauchinone, the extents of NF-kappaB, C/EBP, AP-1 and CREB activation were measured. Activation of the transcription factors was monitored by gel mobility shift assay, whereas p65 and I-kappaBalpha were analyzed by immunocytochemical and immunoblot analyses. 3. Sauchinone inhibited the induction of iNOS, TNF-alpha and COX-2 by lipopolysaccharide (LPS) (IC50</=10 micro M) with suppression of the mRNAs. 4. Sauchinone (1-30 micro M) inhibited LPS-inducible nuclear NF-kappaB activation and nuclear translocation of p65, which was accompanied by inhibition of I-kappaBalpha phosphorylation. 5. LPS-inducible increase in the intensity of C/EBP binding to its consensus sequence was also inhibited by sauchinone. The AP-1, but not CREB, DNA binding activity was weakly inhibited by sauchinone. 6. These results demonstrate that sauchinone inhibits LPS-inducible iNOS, TNF-alpha and COX-2 expression in macrophages through suppression of I-kappaBalpha phosphorylation and p65 nuclear translocation and of C/EBP and/or AP-1 activation, which may constitute anti-inflammatory effects of the lignan.
Collapse
Affiliation(s)
- Ae Kyung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Young Choong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
- Author for correspondence:
| |
Collapse
|
79
|
Largo R, Alvarez-Soria MA, Díez-Ortego I, Calvo E, Sánchez-Pernaute O, Egido J, Herrero-Beaumont G. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 2003; 11:290-8. [PMID: 12681956 DOI: 10.1016/s1063-4584(03)00028-1] [Citation(s) in RCA: 297] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Glucosamine sulfate (GS) is a commonly used drug for the treatment of osteoarthritis. The mechanism of the action of this drug does, however, remain to be elucidated. In human osteoarthritic chondrocytes (HOC) stimulated with a proinflammatory cytokine, we studied whether GS could modify the NFkappaB activity and the expression of COX-2, a NFkappaB-dependent gene. METHODS Using HOC in culture stimulated with interleukin-1 beta (IL-1beta), the effects of GS on NFkappaB activation, nuclear translocation of NFkappaB/Rel family members, COX-1 and COX-2 expressions and syntheses and prostaglandin E2 (PGE2) concentration were studied. RESULTS GS significantly inhibited NFkappaB activity in a dose-dependent manner, as well as the nuclear translocation of p50 and p65 proteins. Furthermore, GS-preincubated IL-1beta-stimulated HOC showed an increase in IkappaBalpha in the cell cytoplasm in comparison with HOC incubated with IL-1beta alone. GS also inhibited the gene expression and the protein synthesis of COX-2 induced by IL-1beta, while no effect on COX-1 synthesis was seen. GS also inhibited the release of PGE2 to conditioned media of HOC stimulated with IL-1beta. CONCLUSIONS GS inhibits the synthesis of proinflammatory mediators in HOC stimulated with IL-1beta through a NFkappaB-dependent mechanism. Our study further supports the role of GS as a symptom- and structure-modifying drug in the treatment of OA.
Collapse
Affiliation(s)
- R Largo
- Inflammation Research Unit, Fundación Jiménez Díaz, Autonoma University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
80
|
Cho YH, Lee CH, Kim SG. Potentiation of lipopolysaccharide-inducible cyclooxygenase 2 expression by C2-ceramide via c-Jun N-terminal kinase-mediated activation of CCAAT/enhancer binding protein beta in macrophages. Mol Pharmacol 2003; 63:512-23. [PMID: 12606757 DOI: 10.1124/mol.63.3.512] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ceramide, formed by sphingomyelinase, is involved in the expression of cyclooxygenase-2 (COX-2). This study examines the effect of C2-ceramide (C2), a cell-permeable ceramide analog, on the lipopolysaccharide (LPS)-inducible COX-2 expression and signaling pathways. C2 did not induce COX-2 but potentiated LPS-inducible COX-2 expression in Raw264.7 cells, whereas dihydro-C2 was inactive. Treatment of cells with C2 notably increased LPS-inducible CCAAT/enhancer binding protein (C/EBP) DNA binding. Antibody supershift experiments revealed that LPS-induced C/EBP DNA binding activity depended on C/EBP beta and C/EBP delta but not C/EBP alpha, C/EBP epsilon or CBP/p300. C/EBP beta contributed to C2-enhanced DNA binding activity. 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl) 1H-imidazole (SB203580), a p38 kinase inhibitor, completely inhibited LPS-inducible and C2-potentiated LPS-inducible COX-2 expression. Enhancement of LPS-inducible COX-2 expression and C/EBP DNA binding by C2 was abrogated in dominant-negative mutant of JNK1 [JNK1(-)] cells. 2'-Amino-3'-methoxyflavone (PD98059) or stable transfection with dominant-negative mutant of MKK1 decreased COX-2 induction by LPS but failed to inhibit C2-enhanced LPS induction of COX-2. Transfection with dominant-negative mutant of C/EBP inhibited the ability of C2 to potentiate the induction of COX-2 by LPS. In LPS-treated cells, C2 enhanced both the nuclear translocation and the expression of LPS-inducible C/EBP beta with an increase in AP-1 DNA binding activity. These enhancements were abolished by JNK1(-) transfection. AP-1 decoy oligonucleotide suppressed C2-potentiated C/EBP beta expression, indicating that AP-1 was responsible for C2-mediated C/EBP beta expression. These results demonstrate that C2 increases C/EBP beta-mediated COX-2 induction by LPS and that the pathway of JNK1 but not ERK1/2 is responsible for C/EBP beta activation involving activator protein-1-mediated enhanced C/EBP beta expression.
Collapse
Affiliation(s)
- Yang Hee Cho
- National Research Laboratory (MDT), College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
81
|
Bousserouel S, Brouillet A, Béréziat G, Raymondjean M, Andréani M. Different effects of n-6 and n-3 polyunsaturated fatty acids on the activation of rat smooth muscle cells by interleukin-1 beta. J Lipid Res 2003; 44:601-11. [PMID: 12562859 DOI: 10.1194/jlr.m200092-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is good evidence that the n-3 polyunsaturated fatty acids (PUFAs) in fish oil have antiinflammatory effects and reduce the pathogenesis of atherosclerosis. However, the mechanisms underlying these actions are largely unknown. This study was designed to investigate the effects of membrane incorporation of two major components of fish oil [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)], on rat smooth muscle cells (SMCs) activation induced by interleukin-1 beta (IL1 beta). We compared their effects with those of n-6 arachidonic acid (AA). Expression of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1 adhesion molecules involved in SMCs migration was enhanced by AA, whereas EPA and DHA had no similar effects. We established that AA potentiates IL1 beta-induced expression of the type IIA secreted phospholipase A2 (sPLA2) gene, whereas EPA and DHA reduce this stimulation. EPA and DHA also abolished proinflammatory prostaglandin PGE2 production by inhibiting the IL1 beta-induced production of cyclooxygenase-2 (COX-2) mRNA. Much interest was then focused on three transcriptional factors implicated in inflammation control and especially in modulating rat sPLA2 and COX-2 gene transcription: nuclear factor-kappa B, CCAAT/enhancer binding protein beta, and E26 transformation-specific-1. electrophoretic mobility shift assay revealed that the binding activity of all three factors was increased by AA and reduced (or not affected) by n-3 PUFA. These results indicate that EPA and DHA act in opposition to AA by modulating various steps of the inflammatory process induced by IL1 beta, probably by reducing mitogen-activated protein kinase p42/p44 activity.
Collapse
MESH Headings
- Animals
- Aorta
- Chemokine CCL2/genetics
- Cyclooxygenase 2
- Dinoprostone/biosynthesis
- Dinoprostone/metabolism
- Enzyme Activation/drug effects
- Fatty Acids, Omega-3
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation/drug effects
- Inflammation/genetics
- Inflammation/metabolism
- Interleukin-1/pharmacology
- Isoenzymes/genetics
- MAP Kinase Signaling System/drug effects
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Phospholipases A/metabolism
- Phospholipases A2
- Phospholipids/analysis
- Phospholipids/metabolism
- Prostaglandin-Endoperoxide Synthases/genetics
- Rats
- Transcription Factors/metabolism
- Triglycerides/pharmacology
- Vascular Cell Adhesion Molecule-1/genetics
Collapse
Affiliation(s)
- Souad Bousserouel
- UMR Physiologie et Physiopathologie, Université Pierre et Marie Curie, case courrier 256, Bâtiment A, 5éme étage, 7 quai Saint Bernard, 75252 Paris Cedex 5, France
| | | | | | | | | |
Collapse
|
82
|
Bundy LM, Sealy L. CCAAT/enhancer binding protein beta (C/EBPbeta)-2 transforms normal mammary epithelial cells and induces epithelial to mesenchymal transition in culture. Oncogene 2003; 22:869-83. [PMID: 12584567 DOI: 10.1038/sj.onc.1206216] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The transcription factor CCAAT/enhancer binding protein (C/EBP)beta is critical for normal growth and differentiation of the mammary gland. The intronless C/EBPbeta gene encodes a single mRNA that produces three protein isoforms, C/EBPbeta-1, -2, and -3, which share a common basic-leucine zipper domain at their C-terminus, but are distinguished at their N-termini by the in-frame methionine codon used to initiate translation. Although C/EBPbeta-1 and -2 are both transactivators, they likely perform distinct functions in mammary epithelial cells. C/EBPbeta-1 is the only isoform detected in normal human mammary tissue. In breast cancer cell lines, C/EBPbeta-1 is absent, and the C/EBPbeta-2 transactivator is expressed. Moreover, our data suggest that C/EBPbeta-2 is upregulated in human primary breast tumors. To assess C/EBPbeta-2's ability to participate in the transformation process, we generated recombinant retrovirus selectively encoding epitope-tagged C/EBPbeta-2. Strikingly, 10 days after infecting a normal human mammary epithelial cell line (MCF10A) with C/EBPbeta-2 virus, transformed subcultures were readily generated. Specifically, C/EBPbeta-2-overexpressing MCF10A cells form foci, gain anchorage independence, express markers associated with having undergone an epithelial-to-mesenchymal transition, and acquire an invasive phenotype. These studies, and our previous observations, provide supportive evidence that deregulated expression of C/EBPbeta-2 contributes to malignant conversion of the human breast.
Collapse
Affiliation(s)
- L M Bundy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
83
|
Cieslik K, Zhu Y, Wu KK. Salicylate suppresses macrophage nitric-oxide synthase-2 and cyclo-oxygenase-2 expression by inhibiting CCAAT/enhancer-binding protein-beta binding via a common signaling pathway. J Biol Chem 2002; 277:49304-10. [PMID: 12379662 DOI: 10.1074/jbc.m205030200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We determined whether salicylate at pharmacological concentrations inhibits nitric-oxide synthase-2 (NOS-2) and cyclo-oxygenase-2 (COX-2) expressions in RAW 264.7 stimulated with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Cells were treated with sodium salicylate (10(-7)-10(-4) m) or vehicle for 30 min followed by LPS+IFN-gamma for up to 24 h. Salicylate suppressed NOS-2 and COX-2 protein levels and promoter activities stimulated by LPS+IFN-gamma for 4 h in a concentration-dependent manner but had no effect on NOS-2 expression stimulated by the combined agonists for 24 h. Results from promoter analysis indicate that the binding of CCAAT/enhancer-binding protein beta (C/EBPbeta) to its cognate site at -150/-142 on the NOS-2 promoter region was essential for NOS-2 expression at 4 h but not at 24 h. Salicylate reduced C/EBPbeta binding at 4 h and did not alter its binding at 24 h. NOS-2 and COX-2 protein levels and C/EBPbeta binding stimulated by LPS+IFN-gamma for 4 h were inhibited by a similar battery of signaling inhibitors, suggesting a common pathway for NOS-2 and COX-2 expression. Kinetic analysis indicates that NOS-2, similar to COX-2 expression, at 4 h was largely due to the action of LPS, which induced C/EBPbeta binding, whereas its expression at a longer time point was contributed by IFN-gamma. Our findings implicate two distinct pathways for NOS-2 expression induced by LPS+IFN-gamma. Salicylate at pharmacological concentrations is capable of suppressing the early phase of NOS-2 and COX-2 expression by blocking C/EBPbeta binding.
Collapse
Affiliation(s)
- Katarzyna Cieslik
- Vascular Biology Research Center, Institute of Molecular Medicine and Division of Hematology, University of Texas-Houston Health Science Center, 6431 Fannin, Houston, TX 77030, USA
| | | | | |
Collapse
|
84
|
Fernández N, Renedo M, García-Rodríguez C, Sánchez Crespo M. Activation of monocytic cells through Fc gamma receptors induces the expression of macrophage-inflammatory protein (MIP)-1 alpha, MIP-1 beta, and RANTES. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3321-8. [PMID: 12218153 DOI: 10.4049/jimmunol.169.6.3321] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Monocytic cells were stimulated with IgG-OVA equivalence immune complexes, mAb reacting with FcgammaRI, FcgammaRIIA, and FcgammaRIII, LPS, TNF-alpha, and the combination of ionomycin and phorbol ester, to address their effects on the expression of the mRNAs encoding for chemokines. Stimulation of monocytes with immune complexes induced a rapid expression of macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, and IL-8 mRNAs. In contrast, RANTES mRNA was already detectable in resting cells and only increased after 16 h of stimulation. A similar pattern was observed following homotypic stimulation of FcgammaR with mAb reacting with FcgammaRI and FcgammaRIIA, but not with a mAb reacting with FcgammaRIII, a subtype of receptor not expressed in THP-1 cells, thus indicating that both FcgammaRI and FcgammaRIIA are involved in the response. The pattern of chemokine induction elicited by LPS and the combination of ionomycin and PMA showed some similarities to those produced by FcgammaR cross-linking, although expression of IFN-gamma-inducible protein 10 mRNA was also observed in response to those agonists. The production of MIP-1alpha, MIP-1beta, and RANTES proteins encompassing the induction of their mRNAs was confirmed by specific ELISA. Experiments to address the transcription factors involved in the regulation of MIP-1alpha using pharmacological agents and EMSA showed the possible involvement of CCAAT/enhancer-binding protein beta sites and ruled out the functional significance of both NF-AT and AP-1 sites.
Collapse
Affiliation(s)
- Nieves Fernández
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, and Unidad de Investigación, Hospital Clínico Universitario, Valladolid, Spain
| | | | | | | |
Collapse
|
85
|
Okazaki K, Li J, Yu H, Fukui N, Sandell LJ. CCAAT/enhancer-binding proteins beta and delta mediate the repression of gene transcription of cartilage-derived retinoic acid-sensitive protein induced by interleukin-1 beta. J Biol Chem 2002; 277:31526-33. [PMID: 12072435 DOI: 10.1074/jbc.m202815200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cartilage-derived retinoic acid-sensitive protein (CD-RAP) is a secreted protein expressed by chondrocytes; the expression is repressed by interleukin 1 beta (IL-1 beta). To investigate the transcriptional mechanism, by which CD-RAP expression is suppressed by IL-1 beta, deletion constructs of the mouse CD-RAP promoter were transfected into rat chondrocytes treated with or without IL-1 beta. The results revealed an IL-1 beta-responsive element located between -2138 and -2068 bp. As this element contains a CAAT/enhancer-binding protein (C/EBP) motif, the function of C/EBP beta and C/EBP delta was examined. IL-1 beta stimulated the expression of C/EBP beta and -delta, and the direct binding of C/EBP beta to the C/EBP motif was confirmed. The -2251-bp CD-RAP promoter activity was down-regulated by co-transfection with C/EBP expression vectors. Mutation of the C/EBP motif abolished the inhibitory response to IL-1 beta. Additionally, C/EBP expression vectors were found to down-regulate the construct containing the promoter and enhancer of the type II collagen gene. Finally, the enhancer factor, Sox9, was shown to bind adjacent to the C/EBP site competing with C/EBP binding. Taken together, these results suggest that C/EBP beta and -delta may play an important role in the IL-1 beta-induced repression of cartilage-specific proteins and that expression of matrix proteins will be influenced by the availability of positive and negative trans-acting factors.
Collapse
Affiliation(s)
- Ken Okazaki
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
86
|
Kim SJ, Im DS, Kim SH, Ryu JH, Hwang SG, Seong JK, Chun CH, Chun JS. Beta-catenin regulates expression of cyclooxygenase-2 in articular chondrocytes. Biochem Biophys Res Commun 2002; 296:221-6. [PMID: 12147254 DOI: 10.1016/s0006-291x(02)00824-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pro-inflammatory cytokine such as interleukin (IL)-1beta causes inflammation of articular cartilage via induction of cyclooxygenase (COX)-2 expression. We investigated in this study the role of beta-catenin in the IL-1beta regulation of COX-2 expression in articular chondrocytes. IL-1beta increased expression of COX-2 and induced accumulation and nuclear translocation of transcriptionally competent beta-catenin. Inhibition of beta-catenin degradation by the treatment of cells with LiCl or proteasome inhibitor stimulated expression of COX-2, indicating that transcriptionally active beta-catenin is sufficient to induce COX-2 expression. This was demonstrated further by the observation that ectopic expression of transcriptionally competent beta-catenin stimulated expression of COX-2. Levels of beta-catenin and COX-2 protein were increased in osteoarthritic and rheumatoid arthritic cartilage, suggesting that beta-catenin may play a role in the inflammatory responses of arthritic cartilage. Taken together, our data suggest that accumulation of transcriptionally active beta-catenin contributes to the expression of COX-2 in articular chondrocytes.
Collapse
Affiliation(s)
- Song Ja Kim
- Department of Life Science, Kwangju Institute of Science and Technology, 500-712, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Tanabe T, Tohnai N. Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat 2002; 68-69:95-114. [PMID: 12432912 DOI: 10.1016/s0090-6980(02)00024-2] [Citation(s) in RCA: 293] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cyclooxygenase (COX, prostaglandin endoperoxide synthase) is a key enzyme in prostaglandin biosynthesis. Two isoforms of COX, COX-1 and COX-2, have been identified by molecular biological methods. The amino acid sequence homology between COX-1 and COX-2 is about 60% for the human enzymes. COX-1 is constitutively expressed in most tissues and cells in animal species. The COX-1 promoter region lacks a canonical TATA or CAAT box and is GC-rich. These features are consistent with those of a housekeeping gene. On the other hand, COX-2 is an inducible enzyme and is induced by various cytokines and mitogenic factors. The induction of COX-2 is suppressed by dexamethasone and PGJ2. There are many consensus cis-elements in the 5'-flanking region to regulate the expression of COX-2. Among them, a CRE, an NF-kappaB site, a NF-IL6 motif and an E-box, regulate transcription independently or synergistically. Most of the transcriptional signaling pathways require activation of the mitogen-activated protein kinase (MAPK) cascade. Moreover, MAPK signaling pathways are involved in regulating COX-2 gene expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Tadashi Tanabe
- Department of Pharmacology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | |
Collapse
|
88
|
Tamura M, Sebastian S, Yang S, Gurates B, Ferrer K, Sasano H, Okamura K, Bulun SE. Up-regulation of cyclooxygenase-2 expression and prostaglandin synthesis in endometrial stromal cells by malignant endometrial epithelial cells. A paracrine effect mediated by prostaglandin E2 and nuclear factor-kappa B. J Biol Chem 2002; 277:26208-16. [PMID: 12006564 DOI: 10.1074/jbc.m201347200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the regulation of prostaglandin production in normal endometrial stromal cells (ESC) by malignant endometrial epithelial cells. We found that cyclooxygenase (COX)-2 mRNA and protein levels and prostaglandin (PG)E(2) production in ESC were significantly increased by Ishikawa malignant endometrial epithelial cell conditioned medium (MECM). By using transient transfection assays, we found that the -360/-218-bp region of the COX-2 promoter gene was critical for MECM induction of promoter activity. This MECM-responsive region contained a variant nuclear factor (NF)-kappa B site at -222 to -213 that, when mutated, completely abolished COX-2 promoter activation by MECM. Employing electrophoretic mobility shift assays, we further demonstrated that binding of NF-kappa B p65 to this NF-kappa B-binding site is, in part, responsible for the COX-2 promoter activation by MECM. To investigate further the potential effects of MECM on COX-2 mRNA stability, ESC were treated with MECM in the absence or presence of actinomycin D, a general transcription inhibitor. We found that MECM significantly increased COX-2 mRNA stability. Intriguingly, we found that PGE(2) was one of the major factors in MECM, which was responsible for up-regulating COX-2 expression in ESC. ECC-1 and HEC-1A malignant endometrial epithelial cell lines also produced significantly increased quantities of PGE(2). In conclusion, malignant endometrial epithelial cells secrete PGE(2) that induces COX-2 expression in normal endometrial stromal cells in a paracrine fashion through activation of transcription and stabilization of COX-2 mRNA.
Collapse
Affiliation(s)
- Mitsutoshi Tamura
- Department of Obstetrics and Gynecology and Molecular Genetics, the University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Qiao D, Im E, Qi W, Martinez JD. Activator protein-1 and CCAAT/enhancer-binding protein mediated GADD153 expression is involved in deoxycholic acid-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:108-16. [PMID: 12069855 DOI: 10.1016/s1388-1981(02)00190-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies have demonstrated bile acids, principally deoxycholic acid (DCA), to be colon tumor promoters. DCA is cytotoxic and increasing evidence suggests a role for DCA-induced apoptosis in colon tumorigenesis. Although the precise mechanism by which DCA induces apoptosis remains unclear, DCA may affect cell growth and cell death via altering intracellular signaling and gene expression. In this study, we examined the effect of DCA on the GADD153 (growth arrest- and DNA damage-inducible gene 153) proapoptotic gene and its role in DCA-induced apoptosis in a human colon cancer cell line, HCT116. Our results showed that GADD153 expression was strongly stimulated by DCA and disruption of this with an antisense GADD153 transcript could significantly suppress DCA-induced apoptosis, suggesting GADD153 is essential for DCA induction of apoptosis. Further studies were conducted to investigate the upstream regulatory factors that participated in DCA mediated GADD153 expression. Activator protein-1 (AP-1) was activated by DCA and an AP-1 regulatory element was identified in the human GADD153 promoter in our previous studies. However, inhibition of the AP-1 activation by the dominant negative mutant c-Jun, Tam67, caused only a partial suppression of both DCA-induced GADD153 expression and apoptosis, indicating AP-1 plays an important but not exclusive role in DCA mediated GADD153 pathway. By further promoter analyses, a novel DCA response element, which is located downstream of the AP-1 binding site in the human GADD153 promoter, was determined and identified as C/EBP regulatory element. These results suggest that GADD153 expression is critical for DCA-induced apoptosis and that multiple signaling pathways that include AP-1 and C/EBP transcription factors are involved in DCA-induced GADD153 expression.
Collapse
Affiliation(s)
- Dianhua Qiao
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 53792-8550, USA
| | | | | | | |
Collapse
|
90
|
Schroer K, Zhu Y, Saunders MA, Deng WG, Xu XM, Meyer-Kirchrath J, Wu KK. Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators. Circulation 2002; 105:2760-5. [PMID: 12057991 DOI: 10.1161/01.cir.0000018127.10968.34] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) plays a key role in human inflammatory disorders such as vascular inflammation. COX-2 promoter activity is induced by proinflammatory mediators, but the role of cyclic adenosine monophosphate response element (CRE) in promoter stimulation remains unclear. METHODS AND RESULTS Transient transfection of a 0.9-kb COX-2 promoter fragment bearing CRE mutation abrogated COX-2 promoter activity induced by proinflammatory mediators in human endothelial cells and fibroblasts. Dual mutations of CRE and an upstream CCAAT/enhancer binding protein (C/EBP) site did not have an additional effect. Binding of CREB-2, ATF-2, USF-2, and c-Jun transactivators to a wild-type and CRE-mutated oligonucleotide was analyzed by a novel DNA-binding assay. CREB-2 and ATF-2 in nuclear extracts of unstimulated endothelial cells bound to CRE, whereas USF-2 and c-Jun or c-Fos bound to non-CRE sites. CREB-2 and c-Fos binding was increased by phorbol 12-myristate 13-acetate but not tumor necrosis factor-alpha. The binding assay and chromatin immunoprecipitation revealed binding of P300 coactivator to the COX-2 promoter region. CONCLUSIONS CRE plays an obligatory role in COX-2 promoter activation by diverse stimuli. CREB-2 and ATF-2 bound to CRE serve as an anchor for P300 interaction with upstream transactivators and downstream transcription machinery.
Collapse
Affiliation(s)
- Karsten Schroer
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universtät Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
91
|
Meynier de Salinelles V, Berenbaum F, Jacques C, Salvat C, Olivier JL, Béréziat G, Raymondjean M, Massaad C. Design of a chimeric promoter induced by pro-inflammatory mediators in articular chondrocytes. FEBS Lett 2002; 518:67-71. [PMID: 11997019 DOI: 10.1016/s0014-5793(02)02645-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have designed a chimeric promoter that can be stimulated by various pro-inflammatory mediators and so drive the expression of therapeutic genes under inflammatory conditions. The promoter has two parts, the [-247/+20] fragment of the human type IIA secreted phospholipase A2 gene promoter, which is stimulated by the pro-inflammatory cytokine interleukin-1beta (IL-1beta), and a double peroxisome proliferator-activated receptor response element that is activated by some eicosanoids and by non-steroidal anti-inflammatory drugs (NSAIDs). Transfection experiments using rabbit articular chondrocytes in primary culture showed that this chimeric promoter produced a low basal activity and was induced by NSAIDs, WY-14643, IL-1beta, and 15-deoxy Delta12,14 prostaglandin J2. The latter two compounds stimulated the promoter synergistically.
Collapse
|
92
|
Zhu Y, Saunders MA, Yeh H, Deng WG, Wu KK. Dynamic regulation of cyclooxygenase-2 promoter activity by isoforms of CCAAT/enhancer-binding proteins. J Biol Chem 2002; 277:6923-8. [PMID: 11741938 DOI: 10.1074/jbc.m108075200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To elucidate the mechanism by which isoforms of CCAAT/enhancer-binding proteins regulate cyclooxygenase-2 expression, we determined by a novel technique binding of six isoforms of this transactivator to two sequence-specific CCAAT/enhancer-binding protein (-132/-125) and cyclic AMP (-59/-53) regulatory elements in human foreskin fibroblasts treated with phorbol 12-myristate 13-acetate for 4 h. The delta isoform bound to these two elements at basal state, which was displaced by full-length as well as two truncated beta isoforms, a 41-kDa liver-enriched activating protein and a 16-kDa liver-enriched inhibitory protein, after phorbol ester stimulation. Kinetic analysis shows time-dependent changes in beta and delta binding that were concordant with time-dependent increase in cyclooxygenase-2 induction. Overexpression of the 16-kDa beta isoform blocked the promoter activity and protein level induced by phorbol ester. Paradoxically, it increased binding of beta isoforms to the sequence-specific promoter DNA but suppressed cyclooxygenase-2 promoter activation by p300 cotransfection. These findings provide new insight into the regulation of cyclooxygenase-2 promoter by an interplay between two opposite beta isoforms and p300 co-activator.
Collapse
Affiliation(s)
- Ying Zhu
- Vascular Biology Research Center, Institute of Molecular Medicine, University of Texas-Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
93
|
Thomas B, Thirion S, Humbert L, Tan L, Goldring MB, Béréziat G, Berenbaum F. Differentiation regulates interleukin-1beta-induced cyclo-oxygenase-2 in human articular chondrocytes: role of p38 mitogen-activated protein kinase. Biochem J 2002; 362:367-73. [PMID: 11853544 PMCID: PMC1222396 DOI: 10.1042/0264-6021:3620367] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chondrocyte dedifferentiation has been noted in osteoarthritic cartilage, but the contribution of this phenomenon is poorly understood. Interleukin (IL)-1beta, the major pro-inflammatory cytokine found in osteoarthritic synovial fluid, induces the dedifferentiation of cultured articular chondrocytes, whereas E-series prostaglandins (PGE) are capable of inducing cell differentiation. Since PGE(2) synthesis is up-regulated by IL-1beta, we addressed the question of whether the state of chondrocyte differentiation may influence the production of IL-1-induced PGE(2) by modulating cyclooxygenase (COX)-2 expression. Immortalized human articular chondrocytes, (tsT/AC62) cultured in monolayer after passage through alginate matrix (alg+) produced 5-fold greater amounts of PGE(2) than continuous monolayer cultures (alg-) after stimulation with IL-1beta. Moreover, IL-1beta induced COX-2 expression at 0.01 ng/ml in (alg+) cells, whereas a 100-fold higher dose of cytokine was necessary for stimulation in (alg-) cells. SB203580, a selective p38 mitogen-activated protein kinase (MAPK) inhibitor, completely abolished the IL-1beta-induced COX-2 mRNA. Overexpression of p38 MAPK induces a COX-2 reporter, whereas overexpression of dominant negative p38 MAPK represses IL-1beta-induced promoter expression. Interestingly, IL-1beta-induced p38 MAPK activity was greatly enhanced in (alg+) compared with (alg-) cells. Our results suggest that differentiated articular chondrocytes are highly responsive to IL-1beta and that p38 MAPK mediates this response by inducing COX-2 gene expression.
Collapse
Affiliation(s)
- Béatrice Thomas
- UPRES-A CNRS 7079, Université Pierre et Marie Curie, 7 Quai Saint-Bernard, 75252 Paris Cédex 05, France
| | | | | | | | | | | | | |
Collapse
|
94
|
Caivano M, Gorgoni B, Cohen P, Poli V. The induction of cyclooxygenase-2 mRNA in macrophages is biphasic and requires both CCAAT enhancer-binding protein beta (C/EBP beta ) and C/EBP delta transcription factors. J Biol Chem 2001; 276:48693-701. [PMID: 11668179 DOI: 10.1074/jbc.m108282200] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Prostaglandins are important mediators of activated macrophage functions, and their inducible synthesis is mediated by cyclooxygenase-2 (COX-2). Here, we make use of the murine macrophage cells RAW264 as well as of immortalized macrophages derived from mice deficient for the transcription factor CCAAT enhancer-binding protein beta (C/EBP beta) to explore the molecular mechanisms regulating COX-2 induction in activated macrophages. We demonstrate that lipopolysaccharide-mediated COX-2 mRNA induction is biphasic. The initial phase is independent of de novo protein synthesis, correlates with cAMP-response element-binding protein (CREB) activation, is inhibited by treatments that abolish CREB phosphorylation and reduce NF-kappa B-mediated gene activation, and requires the presence of the transcription factor C/EBP beta. On the other hand, C/EBP delta appears to be essential in addition to C/EBP beta to effect the second phase of COX-2 gene transcription, which is important for maintaining the induced state and requires de novo protein synthesis. Indeed, both phases of COX-2 induction were defective in C/EBP beta-/- macrophages. Moreover, the synthesis of C/EBP delta was increased dramatically by treatment with lipopolysaccharide and, like COX-2 induction, repressed by combined inhibition of the MAPK and of the SAPK2/p38 cascades. Taken together, these data identify CREB, NF-kappa B, and both C/EBP beta and -delta as key factors in coordinately orchestrating transcription from the COX-2 promoter in activated macrophages.
Collapse
Affiliation(s)
- M Caivano
- Medical Research Council Protein Phosphorylation Unit, University of Dundee, Dundee DD1 5EH, Scotland
| | | | | | | |
Collapse
|
95
|
Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med 2001; 7:1291-7. [PMID: 11726968 DOI: 10.1038/nm1201-1291] [Citation(s) in RCA: 600] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inflammation involves the sequential activation of signaling pathways leading to the production of both pro- and anti-inflammatory mediators. Although much attention has focused on pro-inflammatory pathways that initiate inflammation, relatively little is known about the mechanisms that switch off inflammation and resolve the inflammatory response. The transcription factor NF-kappaB is thought to have a central role in the induction of pro-inflammatory gene expression and has attracted interest as a new target for the treatment of inflammatory disease. We show here that NF-kappaB activation in leukocytes recruited during the onset of inflammation is associated with pro-inflammatory gene expression, whereas such activation during the resolution of inflammation is associated with the expression of anti-inflammatory genes and the induction of apoptosis. Inhibition of NF-kappaB during the resolution of inflammation protracts the inflammatory response and prevents apoptosis. This suggests that NF-kappaB has an anti-inflammatory role in vivo involving the regulation of inflammatory resolution.
Collapse
Affiliation(s)
- T Lawrence
- Department of Experimental Pathology, William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | | | |
Collapse
|
96
|
Gorgoni B, Caivano M, Arizmendi C, Poli V. The transcription factor C/EBPbeta is essential for inducible expression of the cox-2 gene in macrophages but not in fibroblasts. J Biol Chem 2001; 276:40769-77. [PMID: 11522796 DOI: 10.1074/jbc.m106865200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is the rate-limiting enzyme for the inducible synthesis of prostaglandins, and its up-regulated activity is thought to play a pathological role in diseases such as inflammatory bowel disease, rheumatoid arthritis, and cancer. Regulation of COX-2 expression is complex and appears to involve diversified mechanisms in different cell types and conditions. Here we make use of immortalized macrophages and fibroblasts that we have generated from C/EBPbeta-deficient mice to directly test and compare the specific role played by this factor in inducible COX-2 expression in these two cell types. We could demonstrate that COX-2 mRNA induction and promoter activity were profoundly impaired in C/EBPbeta(-/-) macrophages and could be rescued by expression of C/EBPbeta. The obligatory role of C/EBPbeta in COX-2 expression appeared to be mediated exclusively by the C/EBP element located at positions -138/-130 of the murine cox-2 promoter, and did not involve altered activity at the level of the other promoter elements described previously (the -402/-392 NF-kappaB site, the -59/-48 CRE/E box element, and a potential second C/EBP site located at positions -93/-85). In contrast, COX-2 induction was completely normal in C/EBPbeta-deficient fibroblasts, thus highlighting the diversity of cell-specific molecular mechanisms in determining inducible COX-2 expression and prostaglandins production.
Collapse
Affiliation(s)
- B Gorgoni
- School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|