51
|
Karki R, Kanneganti TD. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. J Transl Med 2022; 20:542. [PMID: 36419185 PMCID: PMC9682745 DOI: 10.1186/s12967-022-03767-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
The innate immune system serves as the first line of defense against invading pathogens; however, dysregulated innate immune responses can induce aberrant inflammation that is detrimental to the host. Therefore, careful innate immune regulation is critical during infections. The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in global morbidity and mortality as well as socio-economic stresses. Innate immune sensing of SARS-CoV-2 by multiple host cell pattern recognition receptors leads to the production of various pro-inflammatory cytokines and the induction of inflammatory cell death. These processes can contribute to cytokine storm, tissue damage, and acute respiratory distress syndrome. Here, we discuss the sensing of SARS-CoV-2 to induce innate immune activation and the contribution of this innate immune signaling in the development and severity of COVID-19. In addition, we provide a conceptual framework for innate immunity driving cytokine storm and organ damage in patients with severe COVID-19. A better understanding of the molecular mechanisms regulated by innate immunity is needed for the development of targeted modalities that can improve patient outcomes by mitigating severe disease.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA.
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW A large and growing number of patients have persistent gastrointestinal symptoms that they attribute to COVID-19. SARS-CoV-2, the virus that causes COVID-19, replicates within the gut and acute COVID-19 is associated with alteration of the gut microbiome. This article reviews recent observational data related to gastrointestinal symptoms in 'long COVID' and discusses pathophysiologic mechanisms that might explain persistent post-COVID gastrointestinal symptoms. RECENT FINDINGS Gastrointestinal symptoms are present in half of the patients with acute COVID-19, persist 6 months after COVID-19 in 10-25% of patients, and are rated as the most bothersome symptom in 11% of all patients. These symptoms include heartburn, constipation, diarrhoea and abdominal pain and decline in prevalence with the passage of time. Long COVID gastrointestinal symptoms are associated with mental health symptoms (anxiety and depression) that predate COVID-19 and also with mental health symptoms that are concurrent, after recovery from COVID-19. The cause of long COVID gastrointestinal symptoms is unknown and hypotheses include the SARS-CoV-2 virus itself, which infects the gastrointestinal tract; COVID-19, which can be accompanied by gut microbiome changes, a profound systemic inflammatory response and critical illness; and/or effects of pandemic stress on gastrointestinal function and symptom perception, which may be unrelated to either SARS-CoV-2 or to COVID-19. SUMMARY New, persistent gastrointestinal symptoms are commonly reported after recovery from COVID-19. The pathophysiology of these symptoms is unknown but likely to be multifactorial.
Collapse
|
53
|
Salvatore MM, Capaccione KM, Saqi A, Overdevest JB, Patrizio R, Gudis DA. Characteristic patterns of SARS-CoV-2 on chest CT suggests a hematologic pathway for viral entry into the lung. Clin Imaging 2022; 89:92-94. [PMID: 35772334 PMCID: PMC9233344 DOI: 10.1016/j.clinimag.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
Many SARS-CoV-2 studies have supported the theory that the Type II alveolar epithelial cells (AEC-2) are the primary portal of entry of the virus into the lung following its brief nasal occupation. However, the theory of inhalational transmission of the virus from the ciliated and goblet nasal cells to the lung parenchyma is not supported by the imaging findings on chest computerized tomography (CT), leading the authors to consider an alternative pathway from the nose to the lung parenchyma that could explain the peripheral, basilar predominant pattern of early disease. Imaging supports that the pulmonary capillaries may be an important vehicle for transmission of the virus and/or associated inflammatory mediators to the lung epithelium.
Collapse
Affiliation(s)
- Mary M Salvatore
- Department of Radiology- Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States of America.
| | - Kathleen M Capaccione
- Department of Radiology- Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States of America
| | - Anjali Saqi
- Department of Pathology- Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States of America
| | - Jonathan B Overdevest
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States of America
| | - Rebecca Patrizio
- Department of Radiology- Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States of America
| | - David A Gudis
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States of America
| |
Collapse
|
54
|
Effects of coronavirus disease 19 on the gastrointestinal tract and the potential impact on gastrointestinal toxicities during cancer treatment. Curr Opin Support Palliat Care 2022; 16:168-173. [DOI: 10.1097/spc.0000000000000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Bonaffini PA, Franco PN, Bonanomi A, Giaccherini C, Valle C, Marra P, Norsa L, Marchetti M, Falanga A, Sironi S. Ischemic and hemorrhagic abdominal complications in COVID-19 patients: experience from the first Italian wave. Eur J Med Res 2022; 27:165. [PMID: 36045452 PMCID: PMC9428880 DOI: 10.1186/s40001-022-00793-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To report ischemic and haemorrhagic abdominal complications in a series of COVID-19 patients. To correlate these complications with lung involvement, laboratory tests, comorbidities, and anticoagulant treatment. METHODS We retrospectively included 30 COVID-19 patients who undergone abdomen CECT for abdominal pain, between March 16 and May 19, 2020. Ischemic and haemorrhagic complications were compared with lung involvement (early, progressive, peak or absorption stage), blood coagulation values, anticoagulant therapy, comorbidities, and presence of pulmonary embolism (PE). RESULTS Ischemic complications were documented in 10 patients (7 receiving anticoagulant therapy, 70%): 6/10 small bowel ischemia (1 concomitant obstruction, 1 perforation) and 4/10 ischemic colitis. Main mesenteric vessels were patent except for 1 superior mesenteric vein thrombosis. Two ischemia cases also presented splenic infarctions. Bleeding complications were found in 20 patients (all receiving anticoagulant treatments), half with active bleeding: hematomas in soft tissues (15) and retroperitoneum (2) and gastro-intestinal bleeding (3). Platelet and lymphocyte were within the normal range. D-Dimer was significantly higher in ischemic cases (p < 0.001). Most of the patients had severe lung disease (45% peak, 29% absorption), two patients PE. CONCLUSIONS Ischemic and haemorrhagic abdominal complications may occur in COVID-19 patients, particularly associated to extended lung disease. CT plays a key role in the diagnosis of these potentially life- threatening conditions.
Collapse
Affiliation(s)
- Pietro Andrea Bonaffini
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy. .,School of Medicine, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.
| | - Paolo Niccolò Franco
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy.,School of Medicine, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - Alice Bonanomi
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy.,School of Medicine, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - Cinzia Giaccherini
- Unit of Immuno-Hematology and Transfusion Medicine and Center of Hemostasis and Thrombosis, Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy
| | - Clarissa Valle
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy.,School of Medicine, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy.,School of Medicine, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| | - Lorenzo Norsa
- Unit of Pediatric Hepatology Gastroenterology and Transplantation, Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy
| | - Marina Marchetti
- Unit of Immuno-Hematology and Transfusion Medicine and Center of Hemostasis and Thrombosis, Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy
| | - Anna Falanga
- School of Medicine, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy.,Unit of Immuno-Hematology and Transfusion Medicine and Center of Hemostasis and Thrombosis, Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy
| | - Sandro Sironi
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, Piazza OMS 1, 24127, Bergamo, BG, Italy.,School of Medicine, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, MI, Italy
| |
Collapse
|
56
|
Russell MW, Mestecky J. Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol 2022; 13:957107. [PMID: 36059541 PMCID: PMC9428579 DOI: 10.3389/fimmu.2022.957107] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is primarily an airborne infection of the upper respiratory tract, which on reaching the lungs causes the severe acute respiratory disease, COVID-19. Its first contact with the immune system, likely through the nasal passages and Waldeyer's ring of tonsils and adenoids, induces mucosal immune responses revealed by the production of secretory IgA (SIgA) antibodies in saliva, nasal fluid, tears, and other secretions within 4 days of infection. Evidence is accumulating that these responses might limit the virus to the upper respiratory tract resulting in asymptomatic infection or only mild disease. The injectable systemic vaccines that have been successfully developed to prevent serious disease and its consequences do not induce antibodies in mucosal secretions of naïve subjects, but they may recall SIgA antibody responses in secretions of previously infected subjects, thereby helping to explain enhanced resistance to repeated (breakthrough) infection. While many intranasally administered COVID vaccines have been found to induce potentially protective immune responses in experimental animals such as mice, few have demonstrated similar success in humans. Intranasal vaccines should have advantage over injectable vaccines in inducing SIgA antibodies in upper respiratory and oral secretions that would not only prevent initial acquisition of the virus, but also suppress community spread via aerosols and droplets generated from these secretions.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jiri Mestecky
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
57
|
Pandrea I, Brooks K, Desai RP, Tare M, Brenchley JM, Apetrei C. I've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Front Immunol 2022; 13:899559. [PMID: 36032119 PMCID: PMC9411647 DOI: 10.3389/fimmu.2022.899559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The lumen of the gastrointestinal (GI) tract contains an incredibly diverse and extensive collection of microorganisms that can directly stimulate the immune system. There are significant data to demonstrate that the spatial localization of the microbiome can impact viral disease pathogenesis. Here we discuss recent studies that have investigated causes and consequences of GI tract pathologies in HIV, SIV, and SARS-CoV-2 infections with HIV and SIV initiating GI pathology from the basal side and SARS-CoV-2 from the luminal side. Both these infections result in alterations of the intestinal barrier, leading to microbial translocation, persistent inflammation, and T-cell immune activation. GI tract damage is one of the major contributors to multisystem inflammatory syndrome in SARS-CoV-2-infected individuals and to the incomplete immune restoration in HIV-infected subjects, even in those with robust viral control with antiretroviral therapy. While the causes of GI tract pathologies differ between these virus families, therapeutic interventions to reduce microbial translocation-induced inflammation and improve the integrity of the GI tract may improve the prognoses of infected individuals.
Collapse
Affiliation(s)
- Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rahul P. Desai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minali Tare
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
58
|
Cárdaba-García RM, Durantez-Fernández C, Pérez LP, Barba-Pérez MÁ, Olea E. What Do We Know Today about Long COVID? Nursing Care for a New Clinical Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8642. [PMID: 35886491 PMCID: PMC9317186 DOI: 10.3390/ijerph19148642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Persistent COVID, long COVID, long-effects, long-term effects or chronic COVID are all names of a new syndrome caused by a set of multi-organ symptoms that appear after having been infected with SARS-CoV-2 [...].
Collapse
Affiliation(s)
- Rosa M. Cárdaba-García
- Emergencies Management (SACYL), 40002 Segovia, Spain;
- Nursing Department, Faculty of Nursing, University of Valladolid, 47005 Valladolid, Spain; (L.P.P.); (M.Á.B.-P.); (E.O.)
- Nursing Care Research (GICE), Faculty of Nursing, University of Valladolid, 47005 Valladolid, Spain
| | | | - Lucía Pérez Pérez
- Nursing Department, Faculty of Nursing, University of Valladolid, 47005 Valladolid, Spain; (L.P.P.); (M.Á.B.-P.); (E.O.)
- Nursing Care Research (GICE), Faculty of Nursing, University of Valladolid, 47005 Valladolid, Spain
- Primary Care Management Valladolid West (SACYL), 47012 Valladolid, Spain
| | - María Ángeles Barba-Pérez
- Nursing Department, Faculty of Nursing, University of Valladolid, 47005 Valladolid, Spain; (L.P.P.); (M.Á.B.-P.); (E.O.)
- Nursing Care Research (GICE), Faculty of Nursing, University of Valladolid, 47005 Valladolid, Spain
- University Clinical Hospital of Valladolid, 47003 Valladolid, Spain
| | - Elena Olea
- Nursing Department, Faculty of Nursing, University of Valladolid, 47005 Valladolid, Spain; (L.P.P.); (M.Á.B.-P.); (E.O.)
- Nursing Care Research (GICE), Faculty of Nursing, University of Valladolid, 47005 Valladolid, Spain
- Unit of Excellence, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47005 Valladolid, Spain
| |
Collapse
|
59
|
Yamada S, Noda T, Okabe K, Yanagida S, Nishida M, Kanda Y. SARS-CoV-2 induces barrier damage and inflammatory responses in the human iPSC-derived intestinal epithelium. J Pharmacol Sci 2022; 149:139-146. [PMID: 35641026 PMCID: PMC9060709 DOI: 10.1016/j.jphs.2022.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/25/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread and led to global health crises. COVID-19 causes well-known respiratory failure and gastrointestinal symptoms, such as diarrhea, nausea, and vomiting. Thus, human gastrointestinal cell models are urgently needed for COVID-19 research; however, it is difficult to obtain primary human intestinal cells. In this study, we examined whether human induced pluripotent stem cell (iPSC)-derived small intestinal epithelial cells (iPSC-SIECs) could be used as a SARS-CoV-2 infection model. We observed that iPSC-SIECs, such as absorptive and Paneth cells, were infected with SARS-CoV-2, and remdesivir treatment decreased intracellular SARS-CoV-2 replication in iPSC-SIECs. SARS-CoV-2 infection decreased expression levels of tight junction markers, ZO-3 and CLDN1, and transepithelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics. In addition, SARS-CoV-2 infection increased expression levels of proinflammatory genes, which are elevated in patients with COVID-19. These findings suggest iPSC-SIECs as a useful in vitro model for elucidating COVID-19 pathology and drug development.
Collapse
Affiliation(s)
- Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Takamasa Noda
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Brain Bioregulatory Science, The Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Okabe
- Department of Psychiatry, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan,National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan,Corresponding author. Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan. Fax: +81 44 270 1065
| |
Collapse
|
60
|
Cherne MD, Gentry AB, Nemudraia A, Nemudryi A, Hedges JF, Walk H, Blackwell K, Snyder DT, Jerome M, Madden W, Hashimi M, Sebrell TA, King DB, Plowright RK, Jutila MA, Wiedenheft B, Bimczok D. Severe Acute Respiratory Syndrome Coronavirus 2 Is Detected in the Gastrointestinal Tract of Asymptomatic Endoscopy Patients but Is Unlikely to Pose a Significant Risk to Healthcare Personnel. GASTRO HEP ADVANCES 2022; 1:844-852. [PMID: 35765598 PMCID: PMC9225937 DOI: 10.1016/j.gastha.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
Background and Aims Recent evidence suggests that the gut is an additional target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, whether SARS-CoV-2 spreads via gastrointestinal secretions remains unclear. To determine the prevalence of gastrointestinal SARS-CoV-2 infection in asymptomatic subjects, we analyzed gastrointestinal biopsy and liquid samples from endoscopy patients for the presence of SARS-CoV-2. Methods We enrolled 100 endoscopic patients without known SARS-CoV-2 infection (cohort A) and 12 patients with a previous COVID-19 diagnosis (cohort B) in a cohort study performed at a regional hospital. Gastrointestinal biopsies and fluids were screened for SARS-CoV-2 by polymerase chain reaction (PCR), immunohistochemistry, and virus isolation assay, and the stability of SARS-CoV-2 in gastrointestinal liquids in vitro was analyzed. Results SARS-CoV-2 ribonucleic acid was detected by PCR in the colonic tissue of 1/100 patients in cohort A. In cohort B, 3 colonic liquid samples tested positive for SARS-CoV-2 by PCR and viral nucleocapsid protein was detected in the epithelium of the respective biopsy samples. However, no infectious virions were recovered from any samples. In vitro exposure of SARS-CoV-2 to colonic liquid led to a 4-log-fold reduction of infectious SARS-CoV-2 within 1 hour (P ≤ .05). Conclusion Overall, the persistent detection of SARS-CoV-2 in endoscopy samples after resolution of COVID-19 points to the gut as a long-term reservoir for SARS-CoV-2. Since no infectious virions were recovered and SARS-CoV-2 was rapidly inactivated in the presence of colon liquids, it is unlikely that performing endoscopic procedures is associated with a significant infection risk due to undiagnosed asymptomatic or persistent gastrointestinal SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Michelle D Cherne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Andrew B Gentry
- Department of Gastroenterology, Bozeman Health Deaconess Hospital, Bozeman, Montana
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Jodi F Hedges
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Heather Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Karlin Blackwell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Deann T Snyder
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Maria Jerome
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Wyatt Madden
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
- Rollins School of Public Heath, Emory University, Atlanta, Georgia
| | - Marziah Hashimi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - T Andrew Sebrell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - David B King
- Department of Clinical Research, Bozeman Health Deaconess Hospital, Bozeman, Montana
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Mark A Jutila
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana
| |
Collapse
|
61
|
Zhang Y, Yan R, Zhou Q. ACE2, B 0AT1, and SARS-CoV-2 spike protein: Structural and functional implications. Curr Opin Struct Biol 2022; 74:102388. [PMID: 35584583 PMCID: PMC9108414 DOI: 10.1016/j.sbi.2022.102388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a public health crisis and led to tremendous economic devastation. The spike protein (S) of SARS-CoV-2 hijacks the angiotensin converting enzyme 2 (ACE2) as a receptor for virus entry, representing the initial step of viral infection. S is one of the major targets for development of the antiviral drugs, antibodies, and vaccines. ACE2 is a peptidase that plays a physiologically important role in the renin-angiotensin system. Concurrently, it also forms dimer of heterodimer with the neutral amino acid transporter B0AT1 to regulate intestinal amino acid metabolism. The symptoms of COVID-19 are closely correlated with the physiological functions of ACE2. In this review, we summarize the functional and structural studies on ACE2, B0AT1, and their complex with S of SARS-CoV-2, providing insights into the various symptoms caused by viral infection and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Renhong Yan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China,Corresponding author: Yan, Renhong
| | - Qiang Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China,Corresponding author: Zhou, Qiang
| |
Collapse
|
62
|
Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses 2022; 14:v14061188. [PMID: 35746659 PMCID: PMC9228950 DOI: 10.3390/v14061188] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 has evolved into a virus that primarily results in mild or asymptomatic disease, making its transmission more challenging to control. In addition to the respiratory tract, SARS-CoV-2 also infects the digestive tract. Some gastrointestinal symptoms occur with or before respiratory symptoms in patients with COVID-19. Respiratory infections are known to cause intestinal immune impairment and gastrointestinal symptoms. When the intestine is inflamed, cytokines affect the lung immune response and inflammation through blood circulation. The gastrointestinal microbiome may be a modifiable factor in determining the risk of SARS-CoV-2 infection and disease severity. The development of oral SARS-CoV-2 vaccine candidates and the maintenance of gut microbiota profiles may contribute to the early control of COVID-19 outbreaks. To this end, this review summarizes information on the gastrointestinal complications caused by SARS-CoV-2, SARS-CoV-2 infection, the gastrointestinal–lung axis immune response, potential control strategies for oral vaccine candidates and maintaining intestinal microbiota homeostasis.
Collapse
|
63
|
Scadding GK. A New Grand Challenge in Rhinology: An Intranasal COVID Vaccine. FRONTIERS IN ALLERGY 2022; 3:881118. [PMID: 35769553 PMCID: PMC9234858 DOI: 10.3389/falgy.2022.881118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Glenis Kathleen Scadding
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Division of Immunity and Infection, University College London, London, United Kingdom
| |
Collapse
|
64
|
SARS CoV-2-Induced Viral Sepsis: The Role of Gut Barrier Dysfunction. Microorganisms 2022; 10:microorganisms10051050. [PMID: 35630492 PMCID: PMC9143860 DOI: 10.3390/microorganisms10051050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
A considerable proportion of patients with severe COVID-19 meet Sepsis-3 criteria and share common pathophysiological mechanisms of multiorgan injury with bacterial sepsis, in absence of secondary bacterial infections, a process characterized as “viral sepsis”. The intestinal barrier exerts a central role in the pathophysiological sequence of events that lead from SARS-CoV-2 infection to severe systemic complications. Accumulating evidence suggests that SARS-CoV-2 disrupts the integrity of the biological, mechanical and immunological gut barrier. Specifically, microbiota diversity and beneficial bacteria population are reduced, concurrently with overgrowth of pathogenic bacteria (dysbiosis). Enterocytes’ tight junctions (TJs) are disrupted, and the apoptotic death of intestinal epithelial cells is increased leading to increased gut permeability. In addition, mucosal CD4(+) and CD8(+) T cells, Th17 cells, neutrophils, dendritic cells and macrophages are activated, and T-regulatory cells are decreased, thus promoting an overactivated immune response, which further injures the intestinal epithelium. This dysfunctional gut barrier in SARS-CoV-2 infection permits the escape of luminal bacteria, fungi and endotoxin to normally sterile extraintestinal sites and the systemic circulation. Pre-existing gut barrier dysfunction and endotoxemia in patients with comorbidities including cardiovascular disease, obesity, diabetes and immunosuppression predisposes to aggravated endotoxemia. Bacterial and endotoxin translocation promote the systemic inflammation and immune activation, which characterize the SARS-CoV-2 induced “viral sepsis” syndrome associated with multisystemic complications of severe COVID-19.
Collapse
|
65
|
Deb B, O’Brien DR, Chunawala ZS, Bharucha AE. Duodenal Mucosal Expression of COVID-19-Related Genes in Health, Diabetic Gastroenteropathy, and Functional Dyspepsia. J Clin Endocrinol Metab 2022; 107:e2600-e2609. [PMID: 35090021 PMCID: PMC8807322 DOI: 10.1210/clinem/dgac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT SARS-CoV-2 infects the gastrointestinal tract and may be associated with symptoms that resemble diabetic gastroparesis. Why patients with diabetes who contract COVID-19 are more likely to have severe disease is unknown. OBJECTIVE We aimed to compare the duodenal mucosal expression of SARS-CoV-2 and inflammation-related genes in diabetes gastroenteropathy (DGE), functional dyspepsia (FD), and healthy controls. METHODS Gastrointestinal transit, and duodenal mucosal mRNA expression of selected genes were compared in 21 controls, 39 DGE patients, and 37 FD patients from a tertiary referral center. Pathway analyses were performed. RESULTS Patients had normal, delayed (5 FD [13%] and 13 DGE patients [33%]; P = 0.03 vs controls), or rapid (5 FD [12%] and 5 DGE [12%]) gastric emptying (GE). Compared with control participants, 100 SARS-CoV-2-related genes were increased in DGE (FDR < 0.05) vs 13 genes in FD; 71 of these 100 genes were differentially expressed in DGE vs FD but only 3 between DGE patients with normal vs delayed GE. Upregulated genes in DGE include the SARS-CoV2 viral entry genes CTSL (|Fold change [FC]|=1.16; FDR < 0.05) and CTSB (|FC|=1.24; FDR < 0.05) and selected genes involved in viral replication (eg, EIF2 pathways) and inflammation (CCR2, CXCL2, and LCN2, but not other inflammation-related pathways eg, IL-2 and IL-6 signaling). CONCLUSION Several SARS-CoV-2-related genes were differentially expressed between DGE vs healthy controls and vs FD but not between DGE patients with normal vs delayed GE, suggesting that the differential expression is related to diabetes per se. The upregulation of CTSL and CTSB and replication genes may predispose to SARS-CoV2 infection of the gastrointestinal tract in diabetes.
Collapse
Affiliation(s)
- Brototo Deb
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel R O’Brien
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zainali S Chunawala
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
66
|
Brogna C, Brogna B, Bisaccia DR, Giuliano M, Montano L, Cristoni S, Petrillo M, Piscopo M. SARS-CoV-2: Reinfection after 18 Months of a Previous Case with Multiple Negative Nasopharyngeal Swab Tests and Positive Fecal Molecular Test. Medicina (B Aires) 2022; 58:medicina58050642. [PMID: 35630059 PMCID: PMC9148128 DOI: 10.3390/medicina58050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
This short communication describes the reinfection after nearly 18 months of the same patient who was previously infected with coronavirus disease 2019 (COVID-19) and who showed multiple negative real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results by nasal swabs for severe acute respiratory syndrome coronavirus (SARS-CoV-2) but positive results on a fecal sample. We previously noted how, in the presence of symptoms suggestive of pneumonia, visible on a chest computed tomography (CT) scan and confirmed by fecal molecular testing, it was possible to draw the diagnosis of SARS-CoV-2 infection. One year later, the same patient was again affected by SARS-CoV-2. This time, the first antigenic nasal swab showed readily positive results. However, the patient’s clinical course appeared to be more attenuated, showing no signs of pulmonary involvement in the radiographic examinations performed. This case shows a novelty in the pulmonary radiological evaluation of new SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility SRL, 83038 Montemiletto, Italy;
- Correspondence: (C.B.); (B.B.)
| | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy
- Correspondence: (C.B.); (B.B.)
| | | | - Marino Giuliano
- Marsanconsulting Srl Public Health Company, Via dei Fiorentini, 80133 Napoli, Italy;
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy;
| | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|
67
|
Soares-Schanoski A, Sauerwald N, Goforth CW, Periasamy S, Weir DL, Lizewski S, Lizewski R, Ge Y, Kuzmina NA, Nair VD, Vangeti S, Marjanovic N, Cappuccio A, Cheng WS, Mofsowitz S, Miller CM, Yu XB, George MC, Zaslavsky E, Bukreyev A, Troyanskaya OG, Sealfon SC, Letizia AG, Ramos I. Asymptomatic SARS-CoV-2 Infection Is Associated With Higher Levels of Serum IL-17C, Matrix Metalloproteinase 10 and Fibroblast Growth Factors Than Mild Symptomatic COVID-19. Front Immunol 2022; 13:821730. [PMID: 35479098 PMCID: PMC9037090 DOI: 10.3389/fimmu.2022.821730] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Young adults infected with SARS-CoV-2 are frequently asymptomatic or develop only mild disease. Because capturing representative mild and asymptomatic cases require active surveillance, they are less characterized than moderate or severe cases of COVID-19. However, a better understanding of SARS-CoV-2 asymptomatic infections might shed light into the immune mechanisms associated with the control of symptoms and protection. To this aim, we have determined the temporal dynamics of the humoral immune response, as well as the serum inflammatory profile, of mild and asymptomatic SARS-CoV-2 infections in a cohort of 172 initially seronegative prospectively studied United States Marine recruits, 149 of whom were subsequently found to be SARS-CoV-2 infected. The participants had blood samples taken, symptoms surveyed and PCR tests for SARS-CoV-2 performed periodically for up to 105 days. We found similar dynamics in the profiles of viral load and in the generation of specific antibody responses in asymptomatic and mild symptomatic participants. A proteomic analysis using an inflammatory panel including 92 analytes revealed a pattern of three temporal waves of inflammatory and immunoregulatory mediators, and a return to baseline for most of the inflammatory markers by 35 days post-infection. We found that 23 analytes were significantly higher in those participants that reported symptoms at the time of the first positive SARS-CoV-2 PCR compared with asymptomatic participants, including mostly chemokines and cytokines associated with inflammatory response or immune activation (i.e., TNF-α, TNF-β, CXCL10, IL-8). Notably, we detected 7 analytes (IL-17C, MMP-10, FGF-19, FGF-21, FGF-23, CXCL5 and CCL23) that were higher in asymptomatic participants than in participants with symptoms; these are known to be involved in tissue repair and may be related to the control of symptoms. Overall, we found a serum proteomic signature that differentiates asymptomatic and mild symptomatic infections in young adults, including potential targets for developing new therapies and prognostic tests.
Collapse
Affiliation(s)
| | - Natalie Sauerwald
- Center for Computational Biology, Flatiron Institute, New York, NY, United States
| | - Carl W Goforth
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, Galveston, TX, United States
| | - Dawn L Weir
- Naval Medical Research Center, Silver Spring, MD, United States
| | | | | | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, Galveston, TX, United States
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sindhu Vangeti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nada Marjanovic
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Antonio Cappuccio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wan Sze Cheng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sagie Mofsowitz
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Clare M Miller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xuechen B Yu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mary-Catherine George
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, Galveston, TX, United States.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, New York, NY, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States.,Department of Computer Science, Princeton University, Princeton, NJ, United States
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
68
|
Singh S, Samanta J, Suri V, Bhalla A, Puri GD, Sehgal R, Kochhar R. Presence of diarrhea associated with better outcomes in patients with COVID-19 - A prospective evaluation. Indian J Med Microbiol 2022; 40:404-408. [PMID: 35483999 PMCID: PMC9271117 DOI: 10.1016/j.ijmmb.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 01/08/2023]
Abstract
Purpose Gastrointestinal (GI) manifestations have been well documented in patients with coronavirus disease 2019 (COVID-19), but its clinical impact on the course of the disease is debatable. Majority of the available data is retrospective, and hence this prospective study was planned to study the impact of GI symptoms on COVID-19 outcome. Methods All COVID-19 patients admitted in a tertiary care centre from August–October 2020 were screened and patients without pre-existing GI diseases were included. A detailed history of the various symptoms including duration was documented. Various baseline laboratory investigations and inflammatory markers were conducted as per the protocol. Patients with and without diarrhea were compared for the various disease outcome parameters. Results Of the 244 patients screened, 203 patients (128 males; 63.1%) were included. Respiratory symptoms alone were present in 49 (24.1%), GI symptoms alone in 20 (9.9%) and 117 (57.6%) had both. Overall GI symptoms was noted in 137 (67.5%) cases with the commonest being diarrhea (61; 30.0%). Patients with both respiratory and any GI symptoms showed a lower trend towards need for mechanical ventilation (12.2% vs 7.7%; p = 0.35) and mortality (10.2% vs 4.3%; p = 0.14) compared to respiratory symptoms alone, although not statistically significant. Patients with diarrhea (n = 61) had no mortality (0% vs 7.7%; p = 0.036) or need for mechanical ventilation and shorter hospital stay compared to those who did not have diarrhea. Conclusion GI symptoms are frequent in patients with SARS-CoV-2 infection and the commonest is diarrhea. Diarrhea is a harbinger of better outcome with lower mortality among COVID-19 positive patients.
Collapse
Affiliation(s)
- Seerat Singh
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jayanta Samanta
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Vikas Suri
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Bhalla
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Goverdhan Dutt Puri
- Department of Anesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kochhar
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
69
|
Xu L, Yang CS, Liu Y, Zhang X. Effective Regulation of Gut Microbiota With Probiotics and Prebiotics May Prevent or Alleviate COVID-19 Through the Gut-Lung Axis. Front Pharmacol 2022; 13:895193. [PMID: 35548347 PMCID: PMC9081431 DOI: 10.3389/fphar.2022.895193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) can disrupt the gut microbiota balance, and patients usually have intestinal disorders. The intestine is the largest immune organ of the human body, and gut microbes can affect the immune function of the lungs through the gut-lung axis. Many lines of evidence support the role of beneficial bacteria in enhancing human immunity, preventing pathogen colonization, and thereby reducing the incidence and severity of infection. In this article, we review the possible approach of modulating microbiota to help prevent and treat respiratory tract infections, including COVID-19, and discuss the possibility of using probiotics and prebiotics for this purpose. We also discuss the mechanism by which intestinal micro-flora regulate immunity and the effects of probiotics on the intestinal micro-ecological balance. Based on this understanding, we propose the use of probiotics and prebiotics to modulate gut microbiota for the prevention or alleviation of COVID-19 through the gut-lung axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chung S. Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Chung S. Yang, ; Xin Zhang,
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- *Correspondence: Chung S. Yang, ; Xin Zhang,
| |
Collapse
|
70
|
Xu L, Ho CT, Liu Y, Wu Z, Zhang X. Potential Application of Tea Polyphenols to the Prevention of COVID-19 Infection: Based on the Gut-Lung Axis. Front Nutr 2022; 9:899842. [PMID: 35495940 PMCID: PMC9046984 DOI: 10.3389/fnut.2022.899842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) disrupts the intestinal micro-ecological balance, and patients often develop the intestinal disease. The gut is the largest immune organ in the human body; intestinal microbes can affect the immune function of the lungs through the gut-lung axis. It has been reported that tea polyphenols (TPs) have antiviral and prebiotic activity. In this review, we discussed TPs reduced lung-related diseases through gut-lung axis by inhibiting dysbiosis. In addition, we also highlighted the preventive and therapeutic effects of TPs on COVID-19 complications, further demonstrating the importance of research on TPs for the prevention and treatment of COVID-19 in humans. Based on this understanding, we recommend using TPs to regulate the gut microbiota to prevent or alleviate COVID-19 through the gut-lung axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Chi-Tang Ho
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- Xin Zhang
| |
Collapse
|
71
|
Metz-Zumaran C, Kee C, Doldan P, Guo C, Stanifer ML, Boulant S. Increased Sensitivity of SARS-CoV-2 to Type III Interferon in Human Intestinal Epithelial Cells. J Virol 2022; 96:e0170521. [PMID: 35262371 PMCID: PMC9006957 DOI: 10.1128/jvi.01705-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus SARS-CoV-2 caused the COVID-19 global pandemic leading to 5.3 million deaths worldwide as of December 2021. The human intestine was found to be a major viral target which could have a strong impact on virus spread and pathogenesis since it is one of the largest organs. While type I interferons (IFNs) are key cytokines acting against systemic virus spread, in the human intestine type III IFNs play a major role by restricting virus infection and dissemination without disturbing homeostasis. Recent studies showed that both type I and III IFNs can inhibit SARS-CoV-2 infection, but it is not clear whether one IFN controls SARS-CoV-2 infection of the human intestine better or with a faster kinetics. In this study, we could show that type I and III IFNs both possess antiviral activity against SARS-CoV-2 in human intestinal epithelial cells (hIECs); however, type III IFN is more potent. Shorter type III IFN pretreatment times and lower concentrations were required to efficiently reduce virus load compared to type I IFNs. Moreover, type III IFNs significantly inhibited SARS-CoV-2 even 4 h postinfection and induced a long-lasting antiviral effect in hIECs. Importantly, the sensitivity of SARS-CoV-2 to type III IFNs was virus specific since type III IFN did not control VSV infection as efficiently. Together, these results suggest that type III IFNs have a higher potential for IFN-based treatment of SARS-CoV-2 intestinal infection compared to type I IFNs. IMPORTANCE SARS-CoV-2 infection is not restricted to the respiratory tract and a large number of COVID-19 patients experience gastrointestinal distress. Interferons are key molecules produced by the cell to combat virus infection. Here, we evaluated how two types of interferons (type I and III) can combat SARS-CoV-2 infection of human gut cells. We found that type III interferons were crucial to control SARS-CoV-2 infection when added both before and after infection. Importantly, type III interferons were also able to produce a long-lasting effect, as cells were protected from SARS-CoV-2 infection up to 72 h posttreatment. This study suggested an alternative treatment possibility for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Camila Metz-Zumaran
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Carmon Kee
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection,” German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricio Doldan
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection,” German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection,” German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
72
|
Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe 2022; 30:583-598.e8. [PMID: 35421353 DOI: 10.1016/j.chom.2022.03.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/22/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Manipulation of the gut microbiota via fecal microbiota transplantation (FMT) has shown clinical promise in diseases such as recurrent Clostridioides difficile infection (rCDI). However, the variable nature of this approach makes it challenging to describe the relationship between fecal strain colonization, corresponding microbiota changes, and clinical efficacy. Live biotherapeutic products (LBPs) consisting of defined consortia of clonal bacterial isolates have been proposed as an alternative therapeutic class because of their promising preclinical results and safety profile. We describe VE303, an LBP comprising 8 commensal Clostridia strains under development for rCDI, and its early clinical development in healthy volunteers (HVs). In a phase 1a/b study in HVs, VE303 is determined to be safe and well-tolerated at all doses tested. VE303 strains optimally colonize HVs if dosed over multiple days after vancomycin pretreatment. VE303 promotes the establishment of a microbiota community known to provide colonization resistance.
Collapse
|
73
|
Wu X, Jing H, Wang C, Wang Y, Zuo N, Jiang T, Novakovic VA, Shi J. Intestinal Damage in COVID-19: SARS-CoV-2 Infection and Intestinal Thrombosis. Front Microbiol 2022; 13:860931. [PMID: 35391725 PMCID: PMC8981312 DOI: 10.3389/fmicb.2022.860931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
The intestinal tract, with high expression of angiotensin-converting enzyme 2 (ACE2), is a major site of extrapulmonary infection in COVID-19. During pulmonary infection, the virus enters the bloodstream forming viremia, which infects and damages extrapulmonary organs. Uncontrolled viral infection induces cytokine storm and promotes a hypercoagulable state, leading to systemic microthrombi. Both viral infection and microthrombi can damage the gut–blood barrier, resulting in malabsorption, malnutrition, and intestinal flora entering the blood, ultimately increasing disease severity and mortality. Early prophylactic antithrombotic therapy can prevent these damages, thereby reducing mortality. In this review, we discuss the effects of SARS-CoV-2 infection and intestinal thrombosis on intestinal injury and disease severity, as well as corresponding treatment strategies.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Yufeng Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Nan Zuo
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Tao Jiang
- Department of General Surgery, The First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China.,Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
74
|
Kirtipal N, Kumar S, Dubey SK, Dwivedi VD, Gireesh Babu K, Malý P, Bharadwaj S. Understanding on the possible routes for SARS CoV-2 invasion via ACE2 in the host linked with multiple organs damage. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105254. [PMID: 35217145 PMCID: PMC8863418 DOI: 10.1016/j.meegid.2022.105254] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accountable for causing the coronavirus diseases 2019 (COVID-19), is already declared as a pandemic disease globally. Like previously reported SARS-CoV strain, the novel SARS-CoV-2 also initiates the viral pathogenesis via docking viral spike-protein with the membranal angiotensin-converting enzyme 2 (ACE2) - a receptor on variety of cells in the human body. Therefore, COVID-19 is broadly characterized as a disease that targets multiple organs, particularly causing acute complications via organ-specific pathogenesis accompanied by destruction of ACE2+ cells, including alveolus, cardiac microvasculature, endothelium, and glomerulus. Under such circumstances, the high expression of ACE2 in predisposing individuals associated with anomalous production of the renin-angiotensin system (RAS) may promote enhanced viral load in COVID-19, which comparatively triggers excessive apoptosis. Furthermore, multi-organ injuries were found linked to altered ACE2 expression and inequality between the ACE2/angiotensin-(1-7)/mitochondrial Ang system (MAS) and renin-angiotensin-system (RAS) in COVID-19 patients. However, the exact pathogenesis of multi-organ damage in COVID-19 is still obscure, but several perspectives have been postulated, involving altered ACE2 expression linked with direct/indirect damages by the virus-induced immune responses, such as cytokinin storm. Thus, insights into the invasion of a virus with respect to ACE2 expression site can be helpful to simulate or understand the possible complications in the targeted organ during viral infection. Hence, this review summarizes the multiple organs invasion by SARS CoV-2 linked with ACE2 expression and their consequences, which can be helpful in the management of the COVID-19 pathogenesis under life-threatening conditions.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India; Centre for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Vivek Dhar Dwivedi
- Centre for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.
| | - K Gireesh Babu
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Limda, Vadodara, India.
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic.
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic.
| |
Collapse
|
75
|
Mouro V, Fischer A. Dealing with a mucosal viral pandemic: lessons from COVID-19 vaccines. Mucosal Immunol 2022; 15:584-594. [PMID: 35505121 PMCID: PMC9062288 DOI: 10.1038/s41385-022-00517-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
The development and deployment of vaccines against COVID-19 demonstrated major successes in providing immunity and preventing severe disease and death. Yet SARS-CoV-2 evolves and vaccine-induced protection wanes, meaning progress in vaccination strategies is of upmost importance. New vaccines directed at emerging viral strains are being developed while vaccination schemes with booster doses and combinations of different platform-based vaccines are being tested in trials and real-world settings. Despite these diverse approaches, COVID-19 vaccines are only delivered intramuscularly, whereas the nasal mucosa is the primary site of infection with SARS-CoV-2. Preclinical mucosal vaccines with intranasal or oral administration demonstrate promising results regarding mucosal IgA generation and tissue-resident lymphocyte responses against SARS-CoV-2. By mounting an improved local humoral and cell-mediated response, mucosal vaccination could be a safe and effective way to prevent infection, block transmission and contribute to reduce SARS-CoV-2 spread. However, questions and limitations remain: how effectively and reproducibly will vaccines penetrate mucosal barriers? Will vaccine-induced mucosal IgA responses provide sustained protection against infection?
Collapse
Affiliation(s)
- Violette Mouro
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
| | - Alain Fischer
- Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- Collège de France, Paris, France
| |
Collapse
|
76
|
Abstract
Considerable research effort has been made worldwide to decipher the immune response triggered upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, identify the drivers of severe and fatal COVID-19, and understand what leads to the prolongation of symptoms after disease resolution. We review the results of almost 2 years of COVID-19 immunology research and discuss definitive findings and remaining questions regarding our understanding of COVID-19 pathophysiology. We discuss emerging understanding of differences in immune responses seen in those with and without Long Covid syndrome, also known as post-acute sequelae of SARS-CoV-2. We hope that the knowledge gained from this COVID-19 research will be applied in studies of inflammatory processes involved in critical and chronic illnesses, which remain a major unmet need.
Collapse
Affiliation(s)
- Miriam Merad
- Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine A Blish
- Department of Medicine and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland.,Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
77
|
Are gastrointestinal symptoms associated with higher risk of Mortality in COVID-19 patients? A systematic review and meta-analysis. BMC Gastroenterol 2022; 22:106. [PMID: 35255816 PMCID: PMC8899790 DOI: 10.1186/s12876-022-02132-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Gastrointestinal symptoms have been reported in patients with COVID-19. Several clinical investigations suggested that gastrointestinal symptoms were associated with disease severity of COVID-19. However, the relevance of gastrointestinal symptoms and mortality of COVID-19 remains largely unknown. We aim to investigate the relationship between gastrointestinal symptoms and COVID-19 mortality. METHODS We searched the PubMed, Embase, Web of science and Cochrane for studies published between Dec 1, 2019 and May 1, 2021, that had data on gastrointestinal symptoms in COVID-19 patients. Additional literatures were obtained by screening the citations of included studies and recent reviews. Only studies that reported the mortality of COVID-19 patients with/without gastrointestinal symptoms were included. Raw data were pooled to calculate OR (Odds Ratio). The mortality was compared between patients with and without gastrointestinal symptoms, as well as between patients with and without individual symptoms (diarrhea, nausea/vomiting, abdominal pain). RESULTS Fifty-three literatures with 55,245 COVID-19 patients (4955 non-survivors and 50,290 survivors) were included. The presence of GI symptoms was not associated with the mortality of COVID-19 patients (OR=0.88; 95% CI 0.71-1.09; P=0.23). As for individual symptoms, diarrhea (OR=1.01; 95% CI 0.72-1.41; P=0.96), nausea/vomiting (OR=1.16; 95% CI 0.78-1.71; P=0.46) and abdominal pain (OR=1.55; 95% CI 0.68-3.54; P=0.3) also showed non-relevance with the death of COVID-19 patients. CONCLUSIONS Gastrointestinal symptoms are not associated with higher mortality of COVID-19 patients. The prognostic value of gastrointestinal symptoms in COVID-19 requires further investigation.
Collapse
|
78
|
Tsuchiya H. Gustatory and Saliva Secretory Dysfunctions in COVID-19 Patients with Zinc Deficiency. Life (Basel) 2022; 12:life12030353. [PMID: 35330104 PMCID: PMC8950751 DOI: 10.3390/life12030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Given the ever-progressing studies on coronavirus disease 2019 (COVID-19), it is critical to update our knowledge about COVID-19 symptomatology and pathophysiology. In the present narrative review, oral symptoms were overviewed using the latest data and their pathogenesis was hypothetically speculated. PubMed, LitCovid, ProQuest, and Google Scholar were searched for relevant studies from 1 April 2021 with a cutoff date of 31 January 2022. The literature search indicated that gustatory dysfunction and saliva secretory dysfunction are prevalent in COVID-19 patients and both dysfunctions persist after recovery from the disease, suggesting the pathogenic mechanism common to these cooccurring symptoms. COVID-19 patients are characterized by hypozincemia, in which zinc is possibly redistributed from blood to the liver at the expense of zinc in other tissues. If COVID-19 induces intracellular zinc deficiency, the activity of zinc-metalloenzyme carbonic anhydrase localized in taste buds and salivary glands may be influenced to adversely affect gustatory and saliva secretory functions. Zinc-binding metallothioneins and zinc transporters, which cooperatively control cellular zinc homeostasis, are expressed in oral tissues participating in taste and saliva secretion. Their expression dysregulation associated with COVID-19-induced zinc deficiency may have some effect on oral functions. Zinc supplementation is expected to improve oral symptoms in COVID-19 patients.
Collapse
|
79
|
Alvarado DM, Son J, Thackray LB, Gomez Castro MF, Prasad S, Cui X, Sonnek NM, Diamond MS, Ding S, Ciorba MA. Mesalamine Reduces Intestinal ACE2 Expression Without Modifying SARS-CoV-2 Infection or Disease Severity in Mice. Inflamm Bowel Dis 2022; 28:318-321. [PMID: 34849936 PMCID: PMC8690199 DOI: 10.1093/ibd/izab274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 12/14/2022]
Affiliation(s)
- David M Alvarado
- From the ∗Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Juhee Son
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Larissa B Thackray
- Divison of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Sarada Prasad
- From the ∗Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Xueyang Cui
- From the ∗Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Naomi M Sonnek
- From the ∗Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
- Divison of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Divison of Pathology and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew A Ciorba
- From the ∗Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
80
|
Noviello D, Costantino A, Muscatello A, Bandera A, Consonni D, Vecchi M, Basilisco G. Functional gastrointestinal and somatoform symptoms five months after SARS-CoV-2 infection: A controlled cohort study. Neurogastroenterol Motil 2022; 34:e14187. [PMID: 34060710 PMCID: PMC8209890 DOI: 10.1111/nmo.14187] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/07/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Gastrointestinal infections represent a risk factor for functional gastrointestinal and somatoform extraintestinal disorders. We investigated the prevalence and relative risk (RR) of gastrointestinal and somatoform symptoms 5 months after SARS-CoV-2 infection compared with a control cohort. METHODS One hundred and sixty-four SARS-CoV-2 infected patients and 183 controls responded to an online questionnaire about symptoms and signs during the acute phase of the infection and after 4.8 ± 0.3 months. Presence and severity of gastrointestinal symptoms, somatization, anxiety, and depression were recorded with standardized questionnaires. Stool form and presence of irritable bowel syndrome (IBS) were also recorded. Any association between exposure to infection and symptoms was evaluated by calculating crude and adjusted RR values and score differences with 95% confidence intervals (CI). KEY RESULTS Fever, dyspnea, loss of smell/taste/weight, diarrhea, myalgia, arthralgia, and asthenia were reported by more than 40% of patients during the acute phase. Compared with controls, adjusted RRs for loose stools, chronic fatigue, and somatization were increased after infection: 1.88 (95% CI 0.99-3.54), 2.24 (95% CI 1.48-3.37), and 3.62 (95% CI 1.01-6.23), respectively. Gastrointestinal sequelae were greater in patients with diarrhea during the acute phase. CONCLUSIONS & INFERENCES Mild gastroenterological symptoms persist 5 months after SARS-CoV-2 infection, in particular in patients reporting diarrhea in the acute phase. Infected patients are at increased risk of chronic fatigue and somatoform disorders, thus supporting the hypothesis that both functional gastrointestinal and somatoform disorders may have a common biological origin.
Collapse
Affiliation(s)
- Daniele Noviello
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Andrea Costantino
- Gastroenterology and Endoscopy UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Antonio Muscatello
- Infectious Disease UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Alessandra Bandera
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Infectious Disease UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Dario Consonni
- Epidemiology UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Maurizio Vecchi
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Gastroenterology and Endoscopy UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Guido Basilisco
- Gastroenterology and Endoscopy UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
81
|
Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol 2022; 23:194-202. [PMID: 35105985 PMCID: PMC9127978 DOI: 10.1038/s41590-021-01104-y] [Citation(s) in RCA: 372] [Impact Index Per Article: 186.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
The world continues to contend with successive waves of coronavirus disease 2019 (COVID-19), fueled by the emergence of viral variants. At the same time, persistent, prolonged and often debilitating sequelae are increasingly recognized in convalescent individuals, named 'post-COVID-19 syndrome' or 'long-haul COVID'. Clinical symptomatology includes fatigue, malaise, dyspnea, defects in memory and concentration and a variety of neuropsychiatric syndromes as the major manifestations, and several organ systems can be involved. The underlying pathophysiological mechanisms are poorly understood at present. This Review details organ-specific sequelae of post-COVID-19 syndromes and examines the underlying pathophysiological mechanisms available so far, elaborating on persistent inflammation, induced autoimmunity and putative viral reservoirs. Finally, we propose diagnostic strategies to better understand this heterogeneous disorder that continues to afflict millions of people worldwide.
Collapse
Affiliation(s)
- Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
82
|
Singh AK, Kasarpalkar N, Bhowmick S, Paradkar G, Talreja M, Shah K, Tiwari A, Palav H, Kaginkar S, Kulkarni R, Patil A, Kalsurkar V, Agrawal S, Shastri J, Dere R, Bharmal R, Mahale SD, Bhor VM, Patel V. Opposing roles for sMAdCAM and IL‐15 in COVID‐19 associated cellular immune pathology. J Leukoc Biol 2022; 111:1287-1295. [PMID: 35075682 PMCID: PMC9015433 DOI: 10.1002/jlb.3covbcr0621-300r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
Immune cell dysregulation and lymphopenia characterize COVID‐19 pathology in moderate to severe disease. While underlying inflammatory factors have been extensively studied, homeostatic and mucosal migratory signatures remain largely unexplored as causative factors. In this study, we evaluated the association of circulating IL‐6, soluble mucosal addressin cell adhesion molecule (sMAdCAM), and IL‐15 with cellular dysfunction characterizing mild and hypoxemic stages of COVID‐19. A cohort of SARS‐CoV‐2 infected individuals (n = 130) at various stages of disease progression together with healthy controls (n = 16) were recruited from COVID Care Centres (CCCs) across Mumbai, India. Multiparametric flow cytometry was used to perform in‐depth immune subset characterization and to measure plasma IL‐6 levels. sMAdCAM, IL‐15 levels were quantified using ELISA. Distinct depletion profiles, with relative sparing of CD8 effector memory and CD4+ regulatory T cells, were observed in hypoxemic disease within the lymphocyte compartment. An apparent increase in the frequency of intermediate monocytes characterized both mild as well as hypoxemic disease. IL‐6 levels inversely correlated with those of sMAdCAM and both markers showed converse associations with observed lympho‐depletion suggesting opposing roles in pathogenesis. Interestingly, IL‐15, a key cytokine involved in lymphocyte activation and homeostasis, was detected in symptomatic individuals but not in healthy controls or asymptomatic cases. Further, plasma IL‐15 levels negatively correlated with T, B, and NK count suggesting a compensatory production of this cytokine in response to the profound lymphopenia. Finally, higher levels of plasma IL‐15 and IL‐6, but not sMAdCAM, were associated with a longer duration of hospitalization.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Biochemistry & Virology ICMR‐NIRRH Mumbai Maharashtra India
| | - Nandini Kasarpalkar
- Department of Biochemistry & Virology ICMR‐NIRRH Mumbai Maharashtra India
- Department of Molecular Immunology & Microbiology ICMR‐NIRRH Mumbai Maharashtra India
| | - Shilpa Bhowmick
- Department of Biochemistry & Virology ICMR‐NIRRH Mumbai Maharashtra India
| | - Gaurav Paradkar
- Department of Molecular Immunology & Microbiology ICMR‐NIRRH Mumbai Maharashtra India
| | - Mayur Talreja
- Department of Molecular Immunology & Microbiology ICMR‐NIRRH Mumbai Maharashtra India
| | - Karan Shah
- Department of Molecular Immunology & Microbiology ICMR‐NIRRH Mumbai Maharashtra India
| | - Abhishek Tiwari
- Department of Biochemistry & Virology ICMR‐NIRRH Mumbai Maharashtra India
| | - Harsha Palav
- Department of Biochemistry & Virology ICMR‐NIRRH Mumbai Maharashtra India
| | - Snehal Kaginkar
- Department of Biochemistry & Virology ICMR‐NIRRH Mumbai Maharashtra India
| | - Rajiv Kulkarni
- Department of Molecular Immunology & Microbiology ICMR‐NIRRH Mumbai Maharashtra India
| | - Ashwini Patil
- Department of Molecular Immunology & Microbiology ICMR‐NIRRH Mumbai Maharashtra India
| | - Varsha Kalsurkar
- Department of Molecular Immunology & Microbiology ICMR‐NIRRH Mumbai Maharashtra India
| | - Sachee Agrawal
- Department of Microbiology BYL Nair Hospital Mumbai Maharashtra India
| | - Jayanthi Shastri
- Department of Microbiology BYL Nair Hospital Mumbai Maharashtra India
| | - Rajesh Dere
- BKC COVID Jumbo Facility Municipal Corporation of Greater Mumbai Maharashtra India
| | - Ramesh Bharmal
- Office of the Dean TN Medical College & BYL Nair Hospital Mumbai Maharashtra India
| | | | - Vikrant M. Bhor
- Department of Molecular Immunology & Microbiology ICMR‐NIRRH Mumbai Maharashtra India
| | - Vainav Patel
- Department of Biochemistry & Virology ICMR‐NIRRH Mumbai Maharashtra India
| |
Collapse
|
83
|
Galati D, Zanotta S, Capitelli L, Bocchino M. A bird's eye view on the role of dendritic cells in SARS‐CoV‐2 infection: Perspectives for immune‐based vaccines. Allergy 2022. [DOI: 10.1111/all.15004
expr 869230256 + 930548950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Domenico Galati
- Hematology‐Oncology and Stem Cell Transplantation Unit Department of Hematology and Developmental Therapeutics Istituto Nazionale Tumori‐ IRCCS‐ Fondazione G. Pascale Napoli Italy
| | - Serena Zanotta
- Hematology‐Oncology and Stem Cell Transplantation Unit Department of Hematology and Developmental Therapeutics Istituto Nazionale Tumori‐ IRCCS‐ Fondazione G. Pascale Napoli Italy
| | - Ludovica Capitelli
- Department of Clinical Medicine and Surgery Università degli Studi di Napoli Federico II Napoli Italy
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery Università degli Studi di Napoli Federico II Napoli Italy
| |
Collapse
|
84
|
Patel AP, Sanders TK, Prakash P, Law J, Alvencar S, Choi A, Shah J, Patel K, Srivoleti P, Chauhan K, Weissman S, Holzwanger E, Dhingra R, Nguyen M, Kim D, Sidhu T, Stallwood C, Dickstein A, Parekh N, Altayar O, Ciorba MA, Yu J, Chen LA, Tabibian JH, Limketkai BN. Gastrointestinal Manifestations of Coronavirus Disease 2019 Across the United States: A Multicenter Cohort Study. GASTRO HEP ADVANCES 2022; 1:909-915. [PMID: 35874930 PMCID: PMC9293374 DOI: 10.1016/j.gastha.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Background and Aims Gastrointestinal (GI) symptoms occur among patients diagnosed with coronavirus disease 2019 (COVID-19), and there is clear evidence that SARS-CoV-2, the causative pathogen, infects the GI tract. In this large, multicenter cohort study, we evaluated variations in gastrointestinal and hepatic manifestations of COVID-19 throughout the United States (US). Methods Patients hospitalized with a positive COVID-19 test prior to October 2020 were identified at 7 US academic centers. Demographics, presenting symptoms, laboratory data, and hospitalization outcomes were abstracted. Descriptive and regression analyses were used to evaluate GI manifestations and their potential predictors. Results Among 2031 hospitalized patients with COVID-19, GI symptoms were present in 18.9%; diarrhea was the most common (15.2%), followed by nausea and/or vomiting (12.6%) and abdominal pain (6.0%). GI symptoms were less common in the Western cohort (16.0%) than the Northeastern (25.6%) and Midwestern (26.7%) cohorts. Compared to nonintensive care unit (ICU) patients, ICU patients had a higher prevalence of abnormal aspartate aminotransferase (58.1% vs 37.3%; P < .01), alanine aminotransferase (37.5% vs 29.3%; P = .01), and total bilirubin (12.7% vs 9.0%; P < .01). ICU patients also had a higher mortality rate (22.7% vs 4.7%; P < .01). Chronic liver disease was associated with the development of GI symptoms. Abnormal aspartate aminotransferase or alanine aminotransferase was associated with an increased risk of ICU admission. Conclusion We present the largest multicenter cohort of patients with COVID-19 across the United States. GI manifestations were common among patients hospitalized with COVID-19, although there was significant variability in prevalence and predictors across the United States.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BMI, body mass index
- CI, confidence interval
- COVID-19
- COVID-19, coronavirus disease 2019
- Coronavirus Disease 2019
- GI, gastrointestinal
- Gastrointestinal
- ICU, intensive care unit
- OR, odds ratio
- SARS-CoV-2
- SD, standard deviation
- UCLA, University of California Los Angeles
- aOR, adjusted odds ratio
Collapse
Affiliation(s)
- Ankur P. Patel
- Vatche & Tamar Manoukian Division of Digestive Diseases, UCLA School of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Troy K. Sanders
- Vatche & Tamar Manoukian Division of Digestive Diseases, UCLA School of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Preeti Prakash
- Vatche & Tamar Manoukian Division of Digestive Diseases, UCLA School of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Jade Law
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, California
| | - Sujay Alvencar
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts
| | - Alyssa Choi
- Division of Gastroenterology, University of California Irvine, Irvine, California
| | - Janaki Shah
- Inflammatory Bowel Diseases Center, Washington University in St. Louis, Saint Louis, Missouri
| | - Karishma Patel
- Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, Oregon
| | - Padmavathi Srivoleti
- Department of Medicine, Saint Elizabeth’s Medical Center, Brighton, Massachusetts
| | - Kirtan Chauhan
- Department of Medicine, Baylor College of Medicine, Houston, Texas,Division of Gastroenterology and Hepatology, NYU Langone Health, New York, New York
| | - Simcha Weissman
- Department of Medicine, Hackensack University Medical Center, Hackensack, New Jersey
| | - Erik Holzwanger
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts
| | - Rohit Dhingra
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts
| | - Michelle Nguyen
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts
| | - Daniel Kim
- Division of Gastroenterology, University of California Irvine, Irvine, California
| | - Tahnee Sidhu
- Department of Medicine, Saint Elizabeth’s Medical Center, Brighton, Massachusetts
| | | | - Aaron Dickstein
- Division of Gastroenterology, Tufts Medical Center, Boston, Massachusetts
| | - Nimisha Parekh
- Division of Gastroenterology, University of California Irvine, Irvine, California
| | - Osama Altayar
- Inflammatory Bowel Diseases Center, Washington University in St. Louis, Saint Louis, Missouri
| | - Matthew A. Ciorba
- Inflammatory Bowel Diseases Center, Washington University in St. Louis, Saint Louis, Missouri
| | - Jessica Yu
- Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, Oregon
| | - Lea Ann Chen
- Division of Gastroenterology and Hepatology, Rutgers University New Brunswick, New Jersey
| | - James H. Tabibian
- Vatche & Tamar Manoukian Division of Digestive Diseases, UCLA School of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California,Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, California
| | - Berkeley N. Limketkai
- Vatche & Tamar Manoukian Division of Digestive Diseases, UCLA School of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California,Vatche & Tamar Manoukian Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, California,Correspondence: Address correspondence to: Berkeley N. Limketkai, MD, PhD, Westwood Digestive Diseases, 100 Medical Plaza, Suite 345, Los Angeles, California 90024
| |
Collapse
|
85
|
Lau HCH, Ng SC, Yu J. Targeting the Gut Microbiota in Coronavirus Disease 2019: Hype or Hope? Gastroenterology 2022; 162:9-16. [PMID: 34508775 PMCID: PMC8425294 DOI: 10.1053/j.gastro.2021.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Siew C Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
86
|
Galati D, Zanotta S, Capitelli L, Bocchino M. A bird's eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines. Allergy 2022; 77:100-110. [PMID: 34245591 PMCID: PMC8441836 DOI: 10.1111/all.15004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a complex disorder caused by the pandemic diffusion of a novel coronavirus named SARS-CoV-2. Clinical manifestations vary from silent infection to severe pneumonia, disseminated thrombosis, multi-organ failure, and death. COVID-19 pathogenesis is still not fully elucidated, while increasing evidence suggests that disease phenotypes are strongly related to the virus-induced immune system's dysregulation. Indeed, when the virus-host cross talk is out of control, the occurrence of an aberrant systemic inflammatory reaction, named "cytokine storm," leads to a detrimental impairment of the adaptive immune response. Dendritic cells (DCs) are the most potent antigen-presenting cells able to support innate immune and promote adaptive responses. Besides, DCs play a key role in the anti-viral defense. The aim of this review is to focus on DC involvement in SARS-CoV-2 infection to better understand pathogenesis and clinical behavior of COVID-19 and explore potential implications for immune-based therapy strategies.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology‐Oncology and Stem Cell Transplantation UnitDepartment of Hematology and Developmental TherapeuticsIstituto Nazionale Tumori‐ IRCCS‐ Fondazione G. PascaleNapoliItaly
| | - Serena Zanotta
- Hematology‐Oncology and Stem Cell Transplantation UnitDepartment of Hematology and Developmental TherapeuticsIstituto Nazionale Tumori‐ IRCCS‐ Fondazione G. PascaleNapoliItaly
| | - Ludovica Capitelli
- Department of Clinical Medicine and SurgeryUniversità degli Studi di Napoli Federico IINapoliItaly
| | - Marialuisa Bocchino
- Department of Clinical Medicine and SurgeryUniversità degli Studi di Napoli Federico IINapoliItaly
| |
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW COVID-19 patients can present gastrointestinal symptoms, being diarrhoea one of the most frequent, suggesting intestinal health can be impacted by COVID-19. Here, we will discuss whether there is a correlation between the presence of SARS-CoV-2 RNA in faeces and diarrhoea, the relevance of gastrointestinal symptoms in disease diagnosis and transmission, and how COVID-19 can impact the gut microbial balance. RECENT FINDINGS SARS-CoV-2 RNA has been reported in faeces or rectal swabs of COVID-19 patients with and without diarrhoea, suggesting faecal shedding can occur independently of gastrointestinal symptoms. However, the presence of the virus in the intestine can persist beyond its presence in the respiratory tract, with some reports suggesting that SARS-CoV-2 in the faeces can be infectious.COVID-19 can impact the gut microbiota causing an enhancement of biosynthesis pathways that favour the expansion of bacterial pathogens in the inflamed gut, and causing a decline in commensals involved in the human immune response. SUMMARY Gastrointestinal symptoms may be the first indication of COVID-19. SARS-CoV-2 in faeces can potentiate routes of disease transmission, particularly as the high viral loads reported in patients with severe illness suggest virus replication in the intestine may be possible.
Collapse
Affiliation(s)
- Ines B. Moura
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds
| | - Anthony M. Buckley
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds
| | - Mark H. Wilcox
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds
- Microbiology, Leeds Teaching Hospital NHS Trust, Old Medical School, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
88
|
Nobel YR, Su SH, Anderson MR, Luk L, Small-Saunders JL, Reyes-Soffer G, Gallagher D, Freedberg DE. Relationship Between Body Composition and Death in Patients with COVID-19 Differs Based on the Presence of Gastrointestinal Symptoms. Dig Dis Sci 2022; 67:4484-4491. [PMID: 34820728 PMCID: PMC8612109 DOI: 10.1007/s10620-021-07324-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Patients with SARS-CoV-2 who present with gastrointestinal symptoms have a milder clinical course than those who do not. Risk factors for severe COVID-19 disease include increased adiposity and sarcopenia. AIMS To determine whether body composition risk factors are associated with worse outcomes among patients with gastrointestinal symptoms. METHODS This was a retrospective study of hospitalized patients with COVID-19 who underwent abdominal CT scan for clinical indications. Abdominal body composition measures including skeletal muscle index (SMI), intramuscular adipose tissue index (IMATI), visceral adipose tissue index (VATI), subcutaneous adipose tissue index (SATI), visceral-to-subcutaneous adipose tissue ratio (VAT/SAT ratio), and liver and spleen attenuation were collected. The association between body composition measurements and 30-day mortality was evaluated in patients with and without gastrointestinal symptoms at the time of positive SARS-CoV-2 test. RESULTS Abdominal CT scans of 190 patients with COVID-19 were evaluated. Gastrointestinal symptoms including nausea, vomiting, diarrhea, or abdominal pain were present in 117 (62%). Among patients without gastrointestinal symptoms, those who died had greater IMATI (p = 0.049), less SMI (p = 0.010), and a trend toward a greater VAT/SAT ratio. Among patients with gastrointestinal symptoms, those who died had significantly greater IMATI (p = 0.025) but no differences in other measures. CONCLUSIONS Among patients with COVID-19, those without gastrointestinal symptoms showed the expected associations between mortality and low SMI, high IMATI, and trend toward higher VAT/SAT ratio, but those with gastrointestinal symptoms did not. Future studies should explore the mechanisms for the altered disease course in patients with COVID-19 who present with gastrointestinal symptoms.
Collapse
Affiliation(s)
- Yael R. Nobel
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, 630 West 168th Street, 3rd Floor, New York, NY 10032 USA
| | - Steven H. Su
- College of Physicians and Surgeons, Columbia University, New York, NY USA
| | - Michaela R. Anderson
- Division of Pulmonary and Critical Care, Columbia University Irving Medical Center, New York, NY USA
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, New York, NY USA
| | | | - Gissette Reyes-Soffer
- Division of Endocrinology, Columbia University Irving Medical Center, New York, NY USA
| | - Dympna Gallagher
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY USA
| | - Daniel E. Freedberg
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, 630 West 168th Street, 3rd Floor, New York, NY 10032 USA
| |
Collapse
|
89
|
Hong X, He J, Li P, Chen J, Zou B, Li Z, Jia Y, Liu Y, Yang L, Li J. Evidence of SARS-CoV-2 infection in gallbladder and aggravating cholecystitis to septic shock: a case report. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1631. [PMID: 34926675 PMCID: PMC8640915 DOI: 10.21037/atm-21-4778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has threatened human health worldwide and could lead to multiple organs injury. However, the impact on the virus infecting the biliary system, especially the gallbladder, has remained unclear and no pathological evidence has been reported yet. A case of SARS-CoV-2 infection in a gallbladder with cholecystitis, which progressed rapidly to sepsis and required an emergency operation was investigated and reported. Clinical specimens of the COVID-19 patient including serum, oropharyngeal swabs, sputum, bile, abdominal drainage fluid, urine, stool, and gallbladder tissue were collected and tested for SARS-CoV-2 RNA using a quantitative polymerase chain reaction (qPCR) assay. Fresh normal gallbladder tissue and gangrenous gallbladder tissue were also collected for further research including hematoxylin and eosin (HE), immunohistochemistry (IHC), and immunofluorescent (IF) staining, and compared with the gallbladder from the COVID-19 patient. The bile, as well as the serum, oropharyngeal swabs, sputum, abdominal drainage fluid, urine, and rectal swabs were consecutively negative for SARS-CoV-2 RNA. The viral host receptor angiotensin-converting enzyme 2 (ACE2) was highly expressed in gallbladder epithelial cells, and viral nucleocapsid protein (NP) was visualized in the cytoplasm of gallbladder epithelial cells. Immune cells including CD2, CD3, CD4, CD8, CD20, CD38, CD68, and MPO were positive in gangrenous gallbladder tissues without SARS-CoV-2 infection, and were relatively downregulated in SARS-CoV-2 infective gallbladder tissue. This study provided evidence of SARS-CoV-2 infection in the gallbladder and verified that the gallbladder was one of the target organs that SARS-CoV-2 could attack and damage using ACE2 as a cell receptor. Due to the immune dysregulation involved, more vigilant management and early assessment is needed for COVID-19 patients with the comorbidity of cholecystitis.
Collapse
Affiliation(s)
- Xiaopeng Hong
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jianzhong He
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Peiping Li
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jiafan Chen
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhanyu Li
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingbin Jia
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lukun Yang
- Department of Anesthesiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jian Li
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
90
|
Khan MU, Mushtaq K, Alsoub DH, Iqbal P, Ata F, Chaudhry HS, Iqbal F, Balaraju G, Maslamani MAA, Varughese B, Singh R, Ejji KA, Kaabi SA, Kamel YM, Butt AA. Digestive system involvement and clinical outcomes among COVID-19 patients: A retrospective cohort study from Qatar. World J Gastroenterol 2021; 27:7995-8009. [PMID: 35046626 PMCID: PMC8678823 DOI: 10.3748/wjg.v27.i46.7995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 virus most commonly presents with respiratory symptoms. While gastrointestinal (GI) manifestations either at presentation or during hospitalization are also common, their impact on clinical outcomes is controversial. Some studies have described worse outcomes in COVID-19 patients with GI symptoms, while others have shown either no association or a protective effect. There is a need for consistent standards to describe GI symptoms in COVID-19 patients and to assess their effect on clinical outcomes, including mortality and disease severity.
AIM To investigate the prevalence of GI symptoms in hospitalized COVID-19 patients and their correlation with disease severity and clinical outcomes.
METHODS We retrospectively reviewed 601 consecutive adult COVID-19 patients requiring hospitalization between May 1-15, 2020. GI symptoms were recorded at admission and during hospitalization. Demographic, clinical, laboratory, and treatment data were retrieved. Clinical outcomes included all-cause mortality, disease severity at presentation, need for intensive care unit (ICU) admission, development of acute respiratory distress syndrome, and need for mechanical ventilation. Multivariate logistic regression model was used to identify independent predictors of the adverse outcomes.
RESULTS The prevalence of any GI symptom at admission was 27.1% and during hospitalization was 19.8%. The most common symptoms were nausea (98 patients), diarrhea (76 patients), vomiting (73 patients), and epigastric pain or discomfort (69 patients). There was no difference in the mortality between the two groups (6.21% vs 5.5%, P = 0.7). Patients with GI symptoms were more likely to have severe disease at presentation (33.13% vs 22.5%, P < 0.001) and prolonged hospital stay (15 d vs 14 d, P = 0.04). There was no difference in other clinical outcomes, including ICU admission, development of acute respiratory distress syndrome, or need for mechanical ventilation. Drugs associated with the development of GI symptoms during hospitalization were ribavirin (diarrhea 26.37% P < 0.001, anorexia 17.58%, P = 0.02), hydroxychloroquine (vomiting 28.52%, P = 0.009) and lopinavir/ritonavir (nausea 32.65% P = 0.049, vomiting 31.47% P = 0.004, and epigastric pain 12.65% P = 0.048). In the multivariate regression analysis, age > 65 years was associated with increased mortality risk [odds ratio (OR) 7.53, confidence interval (CI): 3.09-18.29, P < 0.001], ICU admission (OR: 1.79, CI: 1.13-2.83, P = 0.012), and need for mechanical ventilation (OR: 1.89, CI:1.94-2.99, P = 0.007). Hypertension was an independent risk factor for ICU admission (OR: 1.82, CI:1.17-2.84, P = 0.008) and need for mechanical ventilation (OR: 1.66, CI: 1.05-2.62, P = 0.028).
CONCLUSION Patients with GI symptoms are more likely to have severe disease at presentation; however, mortality and disease progression is not different between the two groups.
Collapse
Affiliation(s)
- Muhammad Umair Khan
- Department of Gastroenterology and Hepatology, Hamad Medical Corporation, Doha 3050, Qatar
- ECPE- Executive and Continuing Professional Education, Harvard T.H Chan School of Public Health, Boston, MA 02115-5810, United States
| | - Kamran Mushtaq
- Department of Gastroenterology and Hepatology, Hamad Medical Corporation, Doha 3050, Qatar
- ECPE- Executive and Continuing Professional Education, Harvard T.H Chan School of Public Health, Boston, MA 02115-5810, United States
| | - Deema Hussam Alsoub
- ECPE- Executive and Continuing Professional Education, Harvard T.H Chan School of Public Health, Boston, MA 02115-5810, United States
- Department of Palliative Care, National Center for Cancer Care & Research, Hamad Medical Corporation, Doha 3050, Qatar
| | - Phool Iqbal
- Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
| | - Fateen Ata
- Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Fatima Iqbal
- ECPE- Executive and Continuing Professional Education, Harvard T.H Chan School of Public Health, Boston, MA 02115-5810, United States
- Department of Infectious Disease, Communicable Disease Center, Hamad Medical Corporation, Doha 3050, Qatar
| | - Girisha Balaraju
- Department of Gastroenterology and Hepatology, Hamad Medical Corporation, Doha 3050, Qatar
| | - Muna A Al Maslamani
- Department of Infectious Disease, Communicable Disease Center, Hamad Medical Corporation, Doha 3050, Qatar
| | - Betsy Varughese
- Department of Gastroenterology and Hepatology, Hamad Medical Corporation, Doha 3050, Qatar
| | - Rajvir Singh
- Department of Cardiology Research, Heart Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Khalid Al Ejji
- Department of Gastroenterology and Hepatology, Hamad Medical Corporation, Doha 3050, Qatar
| | - Saad Al Kaabi
- Department of Gastroenterology and Hepatology, Hamad Medical Corporation, Doha 3050, Qatar
| | - Yasser Medhat Kamel
- Department of Gastroenterology and Hepatology, Hamad Medical Corporation, Doha 3050, Qatar
| | - Adeel Ajwad Butt
- Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10075, United States
- Department of Medicine, Weill Cornell Medical College - Qatar, Doha 24144, Qatar
| |
Collapse
|
91
|
Pizuorno A, Brim H, Ashktorab H. Gastrointestinal manifestations and SARS-CoV-2 infection. Curr Opin Pharmacol 2021; 61:114-119. [PMID: 34688995 PMCID: PMC8463306 DOI: 10.1016/j.coph.2021.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022]
Abstract
Since COVID-19 occurrence in late 2019, intense research efforts on an unprecedented scale have focused on the study of named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry mechanisms and clinical presentations. As for other coronaviruses, SARS-CoV-2 presents with extrarespiratory clinical manifestations such as diarrhea, nausea, vomiting, and abdominal pain which highlight that the gastrointestinal (GI) system as another viral target along with the typical presentations of COVID-19 which is characterized primarily by respiratory symptoms. The digestive system is involved in many systemic functions through the gut-brain axis and systemic immunity modulation. Therefore, the GI system plays an important role in the presentation of the disease, pathogenesis, and possibly treatment outcomes. This minireview summarizes recent work to study SARS-CoV-2 infection as it relates to comorbidities, GI symptoms. This will help to strategize the priorities in understanding the impact of the virus on outcomes in various aspects.
Collapse
Affiliation(s)
- Antonio Pizuorno
- La Universidad del Zulia, Faculty of Medicine, School of Medicine, 4002, Maracaibo, Zulia state, Venezuela
| | - Hassan Brim
- Pathology and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology division, and Cancer Center, Howard University College of Medicine, Washington, DC, USA.
| |
Collapse
|
92
|
Rothschild N. Does Fecal-Oral Transmission of SARS-CoV-2 Due to Low Sanitation Conditions Contribute to Low Mortality Rates From COVID-19. Cureus 2021; 13:e18557. [PMID: 34754698 PMCID: PMC8571565 DOI: 10.7759/cureus.18557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19) is a global pandemic generated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The primary infection site is mucosal surfaces, mainly the lungs and the intestine, where epithelial cells can be infected. COVID-19 has spread throughout the world, causing millions of deaths and hundreds of millions of confirmed infections. Despite the global spread of SARS-CoV-2, there are extreme differences between countries in mortality rates and confirmed infections. METHODS Pearson correlations and a t-test were performed on data from 137 countries in order to test the correlation between number of deaths from diarrheal diseases (pre-COVID-19 pandemic data) as a marker for countries' sanitation level, and the number of confirmed COVID-19 cases and deaths per million. RESULTS It was found that countries' prevalence of confirmed COVID-19 cases and deaths per million are statistically correlated with their sanitation level. CONCLUSIONS The hypothesis proposed in this article is that the low mortality rates from COVID-19 in countries where the level of sanitation is low are due to fecal-oral infection of the population by SARS-CoV-2, rather than infection of the respiratory system. This hypothesis is supported by the protective effect of the low sanitation level presented in this work and the fact that lung infection by SARS-CoV-2 can cause severe pathology, while infection in the intestine generally causes minor or no symptoms.
Collapse
|
93
|
Qu L, Chen C, Yin T, Fang Q, Hong Z, Zhou R, Tang H, Dong H. ACE2 and Innate Immunity in the Regulation of SARS-CoV-2-Induced Acute Lung Injury: A Review. Int J Mol Sci 2021; 22:11483. [PMID: 34768911 PMCID: PMC8583933 DOI: 10.3390/ijms222111483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Despite the protracted battle against coronavirus acute respiratory infection (COVID-19) and the rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), no specific and effective drugs have to date been reported. Angiotensin-converting enzyme 2 (ACE2) is a zinc metalloproteinase and a critical modulator of the renin-angiotensin system (RAS). In addition, ACE2 has anti-inflammatory and antifibrosis functions. ACE has become widely known in the past decade as it has been identified as the primary receptor for SARS-CoV and SARS-CoV-2, being closely associated with their infection. SARS-CoV-2 primarily targets the lung, which induces a cytokine storm by infecting alveolar cells, resulting in tissue damage and eventually severe acute respiratory syndrome. In the lung, innate immunity acts as a critical line of defense against pathogens, including SARS-CoV-2. This review aims to summarize the regulation of ACE2, and lung host cells resist SARS-CoV-2 invasion by activating innate immunity response. Finally, we discuss ACE2 as a therapeutic target, providing reference and enlightenment for the clinical treatment of COVID-19.
Collapse
Affiliation(s)
- Lihua Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210013, China;
| | - Tong Yin
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Qian Fang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Zizhan Hong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Rui Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Hongbin Tang
- Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Huifen Dong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| |
Collapse
|
94
|
Wang X, Xu G, Liu X, Liu Y, Zhang S, Zhang Z. Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection. Cell Mol Immunol 2021; 18:2313-2324. [PMID: 34471261 PMCID: PMC8408367 DOI: 10.1038/s41423-021-00754-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
In response to emerging infectious diseases, such as the recent pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to quickly identify and understand responsible pathogens, risk factors, host immune responses, and pathogenic mechanisms at both the molecular and cellular levels. The recent development of multiomic technologies, including genomics, proteomics, metabolomics, and single-cell transcriptomics, has enabled a fast and panoramic grasp of the pathogen and the disease. Here, we systematically reviewed the major advances in the virology, immunology, and pathogenic mechanisms of SARS-CoV-2 infection that have been achieved via multiomic technologies. Based on well-established cohorts, omics-based methods can greatly enhance the mechanistic understanding of diseases, contributing to the development of new diagnostics, drugs, and vaccines for emerging infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Xin Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiaoju Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong Province, China.
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China.
| |
Collapse
|
95
|
Nataf S, Pays L. Molecular Insights into SARS-CoV2-Induced Alterations of the Gut/Brain Axis. Int J Mol Sci 2021; 22:10440. [PMID: 34638785 PMCID: PMC8508788 DOI: 10.3390/ijms221910440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
For a yet unknown reason, a substantial share of patients suffering from COVID-19 develop long-lasting neuropsychiatric symptoms ranging from cognitive deficits to mood disorders and/or an extreme fatigue. We previously reported that in non-neural cells, angiotensin-1 converting enzyme 2 (ACE2), the gene coding for the SARS-CoV2 host receptor, harbors tight co-expression links with dopa-decarboxylase (DDC), an enzyme involved in the metabolism of dopamine. Here, we mined and integrated data from distinct human expression atlases and found that, among a wide range of tissues and cells, enterocytes of the small intestine express the highest expression levels of ACE2, DDC and several key genes supporting the metabolism of neurotransmitters. Based on these results, we performed co-expression analyses on a recently published set of RNA-seq data obtained from SARS-CoV2-infected human intestinal organoids. We observed that in SARS-CoV2-infected enterocytes, ACE2 co-regulates not only with DDC but also with a specific group of genes involved in (i) the dopamine/trace amines metabolic pathway, (ii) the absorption of microbiota-derived L-DOPA and (iii) the absorption of neutral amino acids serving as precursors to neurotransmitters. We conclude that in patients with long COVID, a chronic infection and inflammation of small intestine enterocytes might be indirectly responsible for prolonged brain alterations.
Collapse
Affiliation(s)
- Serge Nataf
- INSERM, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France;
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France
| | - Laurent Pays
- INSERM, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France;
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France
| |
Collapse
|
96
|
Rouka E, Kotsiou OS, Perlepe G, Pagonis A, Pantazopoulos I, Gourgoulianis KI. Temporal Associations of the SARS-CoV-2 NP Antigen and Anti-Spike Total Ig Levels with Laboratory Parameters in a Greek Cohort of Hospitalized COVID-19 Patients. Can Respir J 2021; 2021:6590528. [PMID: 34621457 PMCID: PMC8490794 DOI: 10.1155/2021/6590528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Background The direct effect of SARS-CoV-2 on the lungs results in increased hospitalization rates of patients with pneumonia. Severe COVID-19 patients often develop ARDS which is associated with poor prognosis. Assessing risk factors for COVID-19 severity is indispensable for implementing and evaluating therapeutic interventions. We investigated the temporal associations between the SARS-CoV-2 antigen (Ag), total Immunoglobulin (Ig) levels, and several laboratory parameters in hospitalized patients with varying degrees of COVID-19 severity. Methods The SARS-CoV-2 nucleocapsid protein (NP) and total Ig Spike (S) protein-specific antibodies were determined for each patient with lateral flow assays through repeated sampling every two days. Hematological and biochemical parameters were evaluated at the same time points. Results 40 Greek COVID-19 patients (31 males, 9 females) with a median age of 59.50 ± 16.21 years were enrolled in the study. The median time from symptom onset to hospitalization was 8.0 ± 4.19 days. A significant negative correlation was observed between the SARS-CoV-2 Ag and total Ig levels. The temporal correlation patterns of the SARS-CoV-2 NP Ag and anti-S total Ig levels with laboratory markers varied among patients with differing degrees of COVID-19 severity. Severe-critical cases had lower SARS-CoV-2 Ag and increased total Ig levels as compared to mild-moderate cases. Conclusions Distinct temporal profiles of the SARS-CoV-2 NP Ag and anti-S total Ig levels may distinguish different groups of COVID-19 severity.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS,41110, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS,41110, Larissa, Greece
- Nursing Department, School of Health Sciences, University of Thessaly, GAIOPOLIS,41110, Larissa, Greece
| | - Garyfallia Perlepe
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS,41110, Larissa, Greece
| | - Athanasios Pagonis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS,41110, Larissa, Greece
| | - Ioannis Pantazopoulos
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS,41110, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS,41110, Larissa, Greece
| |
Collapse
|
97
|
Russo T, Pizuorno A, Oskrochi G, Latella G, Massironi S, Schettino M, Aghemo A, Pugliese N, Brim H, Ashktorab H. Gastrointestinal Manifestations, Clinical Characteristics and Outcomes of COVID-19 in Adult and Pediatric Patients. SOJ MICROBIOLOGY & INFECTIOUS DISEASES 2021; 8:109. [PMID: 35611315 PMCID: PMC9126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Italy was the first country in Europe to report a SARS-CoV-2 case. Since then, the country has suffered a large number of COVID-19 infections both in adults and children. This disease has been shown to lead to different outcomes in these two groups, which often present varying symptoms and comorbidities. AIM Therefore, we aimed to evaluate the symptoms, comorbidities and laboratory values in adults and children. METHODS We present the characteristics of 1,324 adults and 563 pediatric COVID-19 Italian patients. The data was retrieved from studies published in Italy and found via PubMed and Google Scholar. RESULTS The virus appeared to affect adults more than children and men more than women, and to result in more severe outcomes in patients with abnormal laboratory values and a higher number of comorbidities. Adults are at higher risk for complications and death, and they usually present with fever, respiratory symptoms, cough, fatigue, diarrhea, myalgia, and/or loss of taste, smell, or appetite. Children usually have a milder disease progression and usually present with fever, cough, rhinorrhea, pharyngitis, sore throat, pneumonia, GI symptoms (diarrhea, vomiting, abdominal pain), fatigue, and dyspnea. CONCLUSION Our findings support early reports that showed that SARS-CoV-2 is associated with more common asymptomatic cases and milder clinical outcome in children than in adults. Acute respiratory distress syndrome and Multisystem inflammatory syndrome in children (systemic vasculitis) are the most severe disease progressions for adults and children, respectively.
Collapse
Affiliation(s)
- Tiziano Russo
- Department of Medicine, Department of Pathology and Cancer Center, Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington DC
| | - Antonio Pizuorno
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Gholamreza Oskrochi
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Giovanni Latella
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, Italy
| | - Sara Massironi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Mario Schettino
- Gastroenterology Unit, ASST Rhodense, Garbagnate Milanese, Lombardia, Italy
| | - Alessio Aghemo
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy
| | - Nicola Pugliese
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy
| | - Hassan Brim
- Department of Medicine, Department of Pathology and Cancer Center, Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington DC
| | - Hassan Ashktorab
- Department of Medicine, Department of Pathology and Cancer Center, Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington DC
| |
Collapse
|
98
|
COVID-19 in Liver Transplant Recipients: A Systematic Review. J Clin Med 2021; 10:jcm10174015. [PMID: 34501463 PMCID: PMC8432463 DOI: 10.3390/jcm10174015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
Liver transplant (LT) recipients are considered a vulnerable population amidst the COVID-19 pandemic. To date, available data have been heterogeneous and scarce. Therefore, we conducted a systematic literature review identifying English-language articles published in PubMed between November 2019 and 30 May 2021. We aimed to explore three areas: (1) outcome and clinical course; (2) immunological response after COVID-19 in LT recipients; and (3) vaccination response. After systematic selection, 35, 4, and 5 articles, respectively, were considered suitable for each area of analysis. Despite the heterogeneity of the reports included in this study, we found that gastrointestinal symptoms were common in LT recipients. The outcome of the LT population was not per se worse compared to the general population, although careful management of immunosuppressive therapy is required. While a complete therapy discontinuation is not encouraged, caution needs to be taken with use of mycophenolate mofetil (MMF), favoring tacrolimus (TAC) use. Although data conflicted about acquired immunity after SARS-CoV-2 infection, vaccine immunogenicity appeared to be low, suggesting that the level of surveillance should be kept high in this population.
Collapse
|
99
|
Ihlow J, Seelhoff A, Corman VM, Gruber AD, Dökel S, Meinhardt J, Radbruch H, Späth-Schwalbe E, Elezkurtaj S, Horst D, Herbst H. COVID-19: a fatal case of acute liver failure associated with SARS-CoV-2 infection in pre-existing liver cirrhosis. BMC Infect Dis 2021; 21:901. [PMID: 34479499 PMCID: PMC8414454 DOI: 10.1186/s12879-021-06605-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The detection of severe acute respiratory syndrome coronavirus (SARS-CoV-2) is challenging, particularly in post-mortem human tissues. However, there is increasing evidence for viral SARS-CoV-2 manifestation in non-respiratory tissues. In this context, it is a current matter of debate, whether SARS-CoV-2 shows hepatotropism. CASE PRESENTATION Here, we report a case of an 88-year-old women with massive SARS-CoV-2 viremia, severe jaundice and clinical signs of an acute hepatitis, who died within a few days from an acute liver failure without showing any clinical signs of pneumonia. Autopsy revealed a severe chronic and acute liver damage with bile duct infestation by SARS-CoV-2 that was accompanied by higher expressions of angiotensin-converting enzyme-2 (ACE2), Cathepsin L and transmembrane serine protease 2 (TMPRSS2). CONCLUSION Our findings indicate an enhanced biliary susceptibility to viral infection with SARS-CoV-2, that might have resulted from pre-existing severe liver damage. Furthermore, our findings emphasize the differential diagnosis of coronavirus disease 2019 (COVID-19)-associated liver failure in the clinical setting of an inexplicable jaundice.
Collapse
Affiliation(s)
- Jana Ihlow
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Alexander Seelhoff
- Department of Gastroenterology, Vivantes Netzwerk für Gesundheit GmbH Berlin, Vivantes Hospital Spandau, Neue Bergstraße 6, 13585, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163, Berlin, Germany
| | - Simon Dökel
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163, Berlin, Germany
| | - Jenny Meinhardt
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ernst Späth-Schwalbe
- Department of Hematology, Oncology and Palliative Care, Vivantes Netzwerk für Gesundheit GmbH Berlin, Vivantes Hospital Spandau, Neue Bergstraße 6, 13585, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hermann Herbst
- Department of Pathology, Vivantes Netzwerk für Gesundheit GmbH Berlin, Vivantes Hospital Neukölln, Rudower Straße 48, 12351, Berlin, Germany
| |
Collapse
|
100
|
Neurath MF, Überla K, Ng SC. Gut as viral reservoir: lessons from gut viromes, HIV and COVID-19. Gut 2021; 70:1605-1608. [PMID: 33903146 PMCID: PMC8076629 DOI: 10.1136/gutjnl-2021-324622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Markus F Neurath
- First Department of Medicine & Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology & Deutsches Zentrum für Immuntherapie (DZI), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Siew C Ng
- Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|