51
|
The Interplay between Oxidative Stress and miRNAs in Obesity-Associated Hepatic and Vascular Complications. Antioxidants (Basel) 2020; 9:antiox9070607. [PMID: 32664383 PMCID: PMC7402144 DOI: 10.3390/antiox9070607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Nowadays, the obesity pandemic is one of the most relevant health issues worldwide. This condition is tightly related to comorbidities such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs), namely atherosclerosis. Dysregulated lipid metabolism and inflammation link these three diseases, leading to a subsequent increase of oxidative stress (OS) causing severe cellular damage. On the other hand, microRNAs (miRNAs) are short, single-stranded, non-coding RNAs that act as post-transcriptional negative regulators of gene expression, thus being involved in the molecular mechanisms that promote the development of many pathologies including obesity and its comorbidities. The involvement of miRNAs in promoting or opposing OS in disease progression is becoming more evident. Some miRNAs, such as miR-200a and miR.421, seem to play important roles in OS control in NAFLD. On the other hand, miR-92a and miR-133, among others, are important in the development of atherosclerosis. Moreover, since both diseases are linked to obesity, they share common altered miRNAs, being miR-34a and miR-21 related to OS. This review summarizes the latest advances in the knowledge about the mechanisms of oxidative stress (OS) generation in obesity-associated NAFLD and atherosclerosis, as well as the role played by miRNAs in the regulation of such mechanisms.
Collapse
|
52
|
Watkins PB. The DILI-sim Initiative: Insights into Hepatotoxicity Mechanisms and Biomarker Interpretation. Clin Transl Sci 2020; 12:122-129. [PMID: 30762301 PMCID: PMC6440570 DOI: 10.1111/cts.12629] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022] Open
Abstract
The drug‐induced liver injury (DILI)‐sim Initiative is a public‐private partnership involving scientists from industry, academia, and the US Food and Drug Administration (FDA). The Initiative uses quantitative systems toxicology (QST) to build and refine a model (DILIsym) capable of understanding and predicting liver safety liabilities in new drug candidates and to optimize interpretation of liver safety biomarkers used in clinical studies. Insights gained to date include the observation that most dose‐dependent hepatotoxicity can be accounted for by combinations of just three mechanisms (oxidative stress, interference with mitochondrial respiration, and alterations in bile acid homeostasis) and the importance of noncompetitive inhibition of bile acid transporters. The effort has also provided novel insight into species and interpatient differences in susceptibility, structure‐activity relationships, and the role of nonimmune mechanisms in delayed idiosyncratic hepatotoxicity. The model is increasingly used to evaluate new drug candidates and several clinical trials are underway that will test the model's ability to prospectively predict liver safety. With more refinement, in the future, it may be possible to use the DILIsym predictions to justify reduction in the size of some clinical trials. The mature model could also potentially assist physicians in managing the liver safety of their patients as well as aid in the diagnosis of DILI.
Collapse
Affiliation(s)
- Paul B Watkins
- Institute for Drug Safety Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
53
|
Hepatic HuR modulates lipid homeostasis in response to high-fat diet. Nat Commun 2020; 11:3067. [PMID: 32546794 PMCID: PMC7298042 DOI: 10.1038/s41467-020-16918-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
Lipid transport and ATP synthesis are critical for the progression of non-alcoholic fatty liver disease (NAFLD), but the underlying mechanisms are largely unknown. Here, we report that the RNA-binding protein HuR (ELAVL1) forms complexes with NAFLD-relevant transcripts. It associates with intron 24 of Apob pre-mRNA, with the 3′UTR of Uqcrb, and with the 5′UTR of Ndufb6 mRNA, thereby regulating the splicing of Apob mRNA and the translation of UQCRB and NDUFB6. Hepatocyte-specific HuR knockout reduces the expression of APOB, UQCRB, and NDUFB6 in mice, reducing liver lipid transport and ATP synthesis, and aggravating high-fat diet (HFD)-induced NAFLD. Adenovirus-mediated re-expression of HuR in hepatocytes rescues the effect of HuR knockout in HFD-induced NAFLD. Our findings highlight a critical role of HuR in regulating lipid transport and ATP synthesis. Human antigen R (HuR) is a RNA binding protein involved in the regulation of many cellular functions. Here the authors show that, hepatocyte specific deletion of HuR exacerbates high-fat diet-induced NAFLD in mice by regulating transcripts involved in lipid transport and ATP synthesis.
Collapse
|
54
|
Sinha R, Lockman KA, Homer NZM, Bower E, Brinkman P, Knobel HH, Fallowfield JA, Jaap AJ, Hayes PC, Plevris JN. Volatomic analysis identifies compounds that can stratify non-alcoholic fatty liver disease. JHEP Rep 2020; 2:100137. [PMID: 32775974 PMCID: PMC7397704 DOI: 10.1016/j.jhepr.2020.100137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
Background & aims Analysis of volatile organic compounds (VOCs) in exhaled breath, ‘volatomics’, provides opportunities for non-invasive biomarker discovery and novel mechanistic insights into a variety of diseases. The purpose of this pilot study was to compare breath VOCs in an initial cohort of patients with non-alcoholic fatty liver disease (NAFLD) and healthy controls. Methods Breath samples were collected from 15 participants with Child-Pugh class A NAFLD cirrhosis, 14 with non-cirrhotic NAFLD, and 14 healthy volunteers. Exhaled breath samples were collected using an established methodology and VOC profiles were analysed by gas chromatography-mass spectrometry. The levels of 19 VOCs previously associated with cirrhosis were assessed. Peaks of the VOCs were confirmed and integrated using Xcalibur® software, normalised to an internal standard. Receiver-operating characteristic (ROC) curves were used to determine the diagnostic accuracy of the candidate VOCs. Results Terpinene, dimethyl sulfide, and D-limonene provided the highest predictive accuracy to discriminate between study groups. Combining dimethyl sulfide with D-limonene led to even better discrimination of patients with NAFLD cirrhosis from healthy volunteers (AUROC 0.98; 95% CI 0.93–1.00; p <0.001) and patients with NAFLD cirrhosis from those with non-cirrhotic NAFLD (AUROC 0.91; 95% CI 0.82–1.00; p <0.001). Breath terpinene concentrations discriminated between patients with non-cirrhotic NAFLD and healthy volunteers (AUROC 0.84; 95% CI 0.68–0.99; p = 0.002). Conclusion Breath terpinene, dimethyl sulfide, and D-limonene are potentially useful volatomic markers for stratifying NAFLD; in addition, a 2-stage approach enables the differentiation of patients with cirrhosis from those without. However, these observations require validation in a larger NAFLD population. (ClinicalTrials.gov Identifier: NCT02950610). Lay summary Breath malodour has been associated with a failing liver since the ancient Greeks. Analytical chemistry has provided us an insight into ubiquitous volatile organic compounds associated with liver (and other) diseases. This has vastly improved our understanding of the mechanistic processes of liver damage. Our study aims to identify volatile organic compounds which are specific to non-alcoholic fatty liver disease and that can be exploited for rapid diagnostics. Metabolic dysfunction in liver disease is reflected in the biocomposition of exhaled breath. Specific volatile organic compounds can be measured in breath samples (volatomics) and have diagnostic potential in chronic liver disease. Levels of alfa-terpinene, dimethyl sulfide, and D-limonene in exhaled breath can be used to stratify patients with non-alcoholic fatty liver disease.
Collapse
Key Words
- ALT, alanine aminotransaminase
- APRI, aminotransferase:platelet ratio index
- ARFI, acoustic radiation force impulse
- AST, aspartate aminotransferase
- AUROC, area under the receiver-operating characteristics curve
- BMI, body mass index
- D-limonene
- Dimethyl sulfide
- GAVE, gastric antral vascular ectasia
- GC-MS, gas chromatography mass spectrometry
- GGT, gamma-glutamyltransferase
- HA, hyaluronic acid
- HOMA, homeostatic model assessment
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- Non-alcoholic fatty liver disease
- PHG, portal hypertensive gastropathy
- QC, quality control
- T2DM, type 2 diabetes mellitus
- TE, transient elastography
- Terpinene
- VOCs, volatile organic compounds
- Volatile organic compounds
- Volatomics
Collapse
Affiliation(s)
- Rohit Sinha
- Hepatology Laboratory and Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh and The University of Edinburgh, Edinburgh, UK
| | - Khalida A Lockman
- Edinburgh Acute & General Medicine, Royal Infirmary of Edinburgh and The University of Edinburgh, Edinburgh, UK
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Edward Bower
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Hugo H Knobel
- Eurofins Materials Science Netherlands BV, High Tech Campus, Eindhoven, The Netherlands
| | | | - Alan J Jaap
- Edinburgh Centre for Endocrinology and Diabetes, Royal Infirmary of Edinburgh and The University of Edinburgh, Edinburgh, UK
| | - Peter C Hayes
- Hepatology Laboratory and Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh and The University of Edinburgh, Edinburgh, UK
| | - John N Plevris
- Hepatology Laboratory and Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh and The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
55
|
Ma X, McKeen T, Zhang J, Ding WX. Role and Mechanisms of Mitophagy in Liver Diseases. Cells 2020; 9:cells9040837. [PMID: 32244304 PMCID: PMC7226762 DOI: 10.3390/cells9040837] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrion is an organelle that plays a vital role in the regulation of hepatic cellular redox, lipid metabolism, and cell death. Mitochondrial dysfunction is associated with both acute and chronic liver diseases with emerging evidence indicating that mitophagy, a selective form of autophagy for damaged/excessive mitochondria, plays a key role in the liver’s physiology and pathophysiology. This review will focus on mitochondrial dynamics, mitophagy regulation, and their roles in various liver diseases (alcoholic liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, and cancer) with the hope that a better understanding of the molecular events and signaling pathways in mitophagy regulation will help identify promising targets for the future treatment of liver diseases.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Tara McKeen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Jianhua Zhang
- Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th street South, Birmingham, AL 35294, USA;
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
- Correspondence: ; Tel.: +1-913-588-9813
| |
Collapse
|
56
|
Yu DY. Relevance of reactive oxygen species in liver disease observed in transgenic mice expressing the hepatitis B virus X protein. Lab Anim Res 2020; 36:6. [PMID: 32206612 PMCID: PMC7081669 DOI: 10.1186/s42826-020-00037-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
The hepatitis B virus (HBV) infects approximately 240 million people worldwide, causing chronic liver disease (CLD) and liver cancer. Although numerous studies have been performed to date, unfortunately there is no conclusive drug or treatment for HBV induced liver disease. The hepatitis B virus X (HBx) is considered a key player in inducing CLD and hepatocellular carcinoma (HCC). We generated transgenic (Tg) mice expressing HBx protein, inducing HCC at the age of 11–18 months. The incidence of histological phenotype, including liver tumor, differed depending on the genetic background of HBx Tg mice. Fatty change and tumor generation were observed much earlier in livers of HBx Tg hybrid (C57BL/6 and CBA) (HBx-Tg hybrid) mice than in HBx Tg C57BL/6 (HBx-Tg B6) mice. Inflammation was also enhanced in the HBx-Tg B6 mice as compared to HBx-Tg hybrid mice. HBx may be involved in inducing and promoting hepatic steatosis, glycemia, hepatic fibrosis, and liver cancer. Reactive oxygen species (ROS) generation was remarkably increased in livers of HBx Tg young mice compared to young wild type control mice. Previous studies on HBx Tg mice indicate that the HBx-induced ROS plays a role in inducing and promoting CLD and HCC.
Collapse
Affiliation(s)
- Dae-Yeul Yu
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806 South Korea
| |
Collapse
|
57
|
Hasenour CM, Kennedy AJ, Bednarski T, Trenary IA, Eudy BJ, da Silva RP, Boyd KL, Young JD. Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice. J Lipid Res 2020; 61:707-721. [PMID: 32086244 DOI: 10.1194/jlr.ra119000183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R-/-) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction.
Collapse
Affiliation(s)
- Clinton M Hasenour
- Departments of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Arion J Kennedy
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Tomasz Bednarski
- Departments of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Irina A Trenary
- Departments of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL
| | - Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL
| | - Kelli L Boyd
- Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
| | - Jamey D Young
- Departments of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN; Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN; Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN. mailto:
| |
Collapse
|
58
|
Xiao T, Liang X, Liu H, Zhang F, Meng W, Hu F. Mitochondrial stress protein HSP60 regulates ER stress-induced hepatic lipogenesis. J Mol Endocrinol 2020; 64:67-75. [PMID: 31804966 PMCID: PMC6993205 DOI: 10.1530/jme-19-0207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are associated with hepatic steatosis and insulin resistance. Molecular mechanisms underlying ER stress and/or mitochondrial dysfunction that cause metabolic disorders and hepatic steatosis remain to be fully understood. Here, we found that a high fat diet (HFD) or chemically induced ER stress can stimulate mitochondrial stress protein HSP60 expression, impair mitochondrial respiration, and decrease mitochondrial membrane potential in mouse hepatocytes. HSP60 overexpression promotes ER stress and hepatic lipogenic protein expression and impairs insulin signaling in mouse hepatocytes. Mechanistically, HSP60 regulates ER stress-induced hepatic lipogenesis via the mTORC1-SREBP1 signaling pathway. These results suggest that HSP60 is an important ER and mitochondrial stress cross-talking protein and may control ER stress-induced hepatic lipogenesis and insulin resistance.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiuci Liang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Zhang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Meng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Correspondence should be addressed to F Hu: or to W Meng:
| | - Fang Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Metabolic Syndrome Research Center, Central South University, Changsha, Hunan, China
- Correspondence should be addressed to F Hu: or to W Meng:
| |
Collapse
|
59
|
Plasma Krebs Cycle Intermediates in Nonalcoholic Fatty Liver Disease. J Clin Med 2020; 9:jcm9020314. [PMID: 31979094 PMCID: PMC7073566 DOI: 10.3390/jcm9020314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic liver disease (NAFLD) is manifested with a wide spectrum of clinical symptoms and is closely associated with the metabolic syndrome, inflammation, and mitochondrial dysfunction. Although the mechanism of mitochondrial dysfunction in NAFLD is still not fully elucidated, multiple studies have demonstrated evidence of molecular, biochemical, and biophysical mitochondrial abnormalities in NAFLD. Given the association between NAFLD and mitochondrial dysfunction, the aim of this study is to analyze circulating levels of Krebs cycle intermediates in a cohort of NAFLD-affected individuals and matching healthy controls and to correlate our findings with the liver function metrics. Standard serum biochemistry and Krebs cycle intermediates were analyzed in NAFLD (n = 22) and matched control (n = 67) cohorts. Circulating levels of isocitrate and citrate were significantly (p < 0.05) elevated in the NAFLD cohort of patients. The area under the curve (AUROC) for these two metabolites exhibited a moderate clinical utility. Correlations between plasma Krebs cycle intermediates and standard clinical plasma metrics were explored by Pearson’s correlation coefficient. The data obtained for plasma Krebs cycle intermediates suggest pathophysiological insights that link mitochondrial dysfunction with NAFLD. Our findings reveal that plasma isocitrate and citrate can discriminate between normal and NAFLD cohorts and can be utilized as noninvasive markers of mitochondrial dysfunction in NAFLD. Future studies with large populations at different NAFLD stages are warranted.
Collapse
|
60
|
Impact of Glucoraphanin-Mediated Activation of Nrf2 on Non-Alcoholic Fatty Liver Disease with a Focus on Mitochondrial Dysfunction. Int J Mol Sci 2019; 20:ijms20235920. [PMID: 31775341 PMCID: PMC6929181 DOI: 10.3390/ijms20235920] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common disease in Western nations and ranges in severity from steatosis to steatohepatitis (NASH). NAFLD is a genetic-environmental-metabolic stress-related disease of unclear pathogenesis. NAFLD is triggered by caloric overconsumption and physical inactivity, which lead to insulin resistance and oxidative stress. A growing body of evidence indicates that mitochondrial dysfunction plays a critical role in the pathogenesis of NAFLD. Mitochondrial dysfunction not only promotes fat accumulation, but also leads to generation of reactive oxygen species (ROS) and lipid peroxidation, resulting in oxidative stress in hepatocytes. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important modulator of antioxidant signaling that serves as a primary cellular defense against the cytotoxic effects of oxidative stress. The pharmacological induction of Nrf2 ameliorates obesity-associated insulin resistance and NAFLD in a mouse model. Sulforaphane and its precursor glucoraphanin are derived from broccoli sprouts and are the most potent natural Nrf2 inducers—they may protect mitochondrial function, thus suppressing the development of NASH. In this review, we briefly describe the role of mitochondrial dysfunction in the pathogenesis of NASH and the effects of glucoraphanin on its development.
Collapse
|
61
|
Metabolomic Biomarkers in the Diagnosis of Non-Alcoholic Fatty Liver Disease. HEPATITIS MONTHLY 2019. [DOI: 10.5812/hepatmon.92244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
62
|
Upadhyay KK, Jadeja RN, Vyas HS, Pandya B, Joshi A, Vohra A, Thounaojam MC, Martin PM, Bartoli M, Devkar RV. Carbon monoxide releasing molecule-A1 improves nonalcoholic steatohepatitis via Nrf2 activation mediated improvement in oxidative stress and mitochondrial function. Redox Biol 2019; 28:101314. [PMID: 31514051 PMCID: PMC6737302 DOI: 10.1016/j.redox.2019.101314] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor-erythroid 2 related factor 2 (Nrf2)-mediated signaling plays a central role in maintaining cellular redox homeostasis of hepatic cells. Carbon monoxide releasing molecule-A1 (CORM-A1) has been reported to stimulate up-regulation and nuclear translocation of Nrf2 in hepatocytes. However, the role of CORM-A1 in improving lipid metabolism, antioxidant signaling and mitochondrial functions in nonalcoholic steatohepatitis (NASH) is unknown. In this study, we report that CORM-A1 prevents hepatic steatosis in high fat high fructose (HFHF) diet fed C57BL/6J mice, used as model of NASH. The beneficial effects of CORM-A1 in HFHF fed mice was associated with improved lipid homeostasis, Nrf2 activation, upregulation of antioxidant responsive (ARE) genes and increased ATP production. As, mitochondria are intracellular source of reactive oxygen species (ROS) and important sites of lipid metabolism, we further investigated the mechanisms of action of CORM-A1-mediated improvement in mitochondrial function in palmitic acid (PA) treated HepG2 cells. Cellular oxidative stress and cell viability were found to be improved in PA + CORM-A1 treated cells via Nrf2 translocation and activation of cytoprotective genes. Furthermore, in PA treated cells, CORM-A1 improved mitochondrial oxidative stress, membrane potential and rescued mitochondrial biogenesis thru upregulation of Drp1, TFAM, PGC-1α and NRF-1 genes. CORM-A1 treatment improved cellular status by lowering glycolytic respiration and maximizing OCR. Improvement in mitochondrial respiration and increment in ATP production in PA + CORM-A1 treated cells further corroborate our findings. In summary, our data demonstrate for the first time that CORM-A1 ameliorates tissue damage in steatotic liver via Nrf2 activation and improved mitochondrial function, thus, suggesting the anti-NASH potential of CORM-A1. CORM-A1 facilitates Nrf2 translocation and regulates cellular redox homeostasis in liver. CORM-A1 improves antioxidant status and lipid metabolism in liver. CORM-A1 induces mitochondrial biogenesis, improves energetics and cellular respiration in HepG2 cells.
Collapse
Affiliation(s)
- Kapil K Upadhyay
- Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ravirajsinh N Jadeja
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Hitarthi S Vyas
- Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Bhaumik Pandya
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Apeksha Joshi
- Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Aliasgar Vohra
- Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Menaka C Thounaojam
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Ranjitsinh V Devkar
- Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
63
|
miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. Mol Metab 2019; 29:40-54. [PMID: 31668391 PMCID: PMC6728756 DOI: 10.1016/j.molmet.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolic pathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation and fibrosis. The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, is downregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression. Methods miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Different in vitro and in vivo NAFLD murine models were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy. Results We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria. In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondrial functionality in a preclinical murine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating with hepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation and fibrosis by enhancing fatty acid β-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment. Conclusion GNMT participates in the regulation of metabolic pathways and mitochondrial functionality through the regulation of Complex II activity in the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment. The microRNA miR-873-5p is upregulated in human and murine NAFLD/NASH livers. miR-873-5p upregulation downregulates GNMT in the liver. miR-873-5p inhibition reduces liver steatosis, inflammation and fibrosis in in vivo NAFLD mouse models. GNMT is a hepatic metabolic hub with mitochondria activity through the regulation of Complex II of the ETC. Mitochondrial GNMT deficiency compromises ETC functionality and metabolism.
Collapse
|
64
|
Antioxidant Versus Pro-Apoptotic Effects of Mushroom-Enriched Diets on Mitochondria in Liver Disease. Int J Mol Sci 2019; 20:ijms20163987. [PMID: 31426291 PMCID: PMC6720908 DOI: 10.3390/ijms20163987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play a central role in non-alcoholic fatty liver disease (NAFLD) progression and in the control of cell death signalling during the progression to hepatocellular carcinoma (HCC). Associated with the metabolic syndrome, NAFLD is mostly driven by insulin-resistant white adipose tissue lipolysis that results in an increased hepatic fatty acid influx and the ectopic accumulation of fat in the liver. Upregulation of beta-oxidation as one compensatory mechanism leads to an increase in mitochondrial tricarboxylic acid cycle flux and ATP generation. The progression of NAFLD is associated with alterations in the mitochondrial molecular composition and respiratory capacity, which increases their vulnerability to different stressors, including calcium and pro-inflammatory molecules, which result in an increased generation of reactive oxygen species (ROS) that, altogether, may ultimately lead to mitochondrial dysfunction. This may activate further pro-inflammatory pathways involved in the progression from steatosis to steatohepatitis (NASH). Mushroom-enriched diets, or the administration of their isolated bioactive compounds, have been shown to display beneficial effects on insulin resistance, hepatic steatosis, oxidative stress, and inflammation by regulating nutrient uptake and lipid metabolism as well as modulating the antioxidant activity of the cell. In addition, the gut microbiota has also been described to be modulated by mushroom bioactive molecules, with implications in reducing liver inflammation during NAFLD progression. Dietary mushroom extracts have been reported to have anti-tumorigenic properties and to induce cell-death via the mitochondrial apoptosis pathway. This calls for particular attention to the potential therapeutic properties of these natural compounds which may push the development of novel pharmacological options to treat NASH and HCC. We here review the diverse effects of mushroom-enriched diets in liver disease, emphasizing those effects that are dependent on mitochondria.
Collapse
|
65
|
Altered serum acylcarnitine profile is associated with the status of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma. Sci Rep 2019; 9:10663. [PMID: 31337855 PMCID: PMC6650415 DOI: 10.1038/s41598-019-47216-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic disturbance of lipids is a hallmark of nonalcoholic fatty liver disease (NAFLD). In this study, we measured the serum levels of 15 acylcarnitine species of various carbon chain lengths from 2 to 18 in 241 patients with biopsy-proven NAFLD, including 23 patients with hepatocellular carcinoma (HCC), and analyzed the relationship between serum acylcarnitine profile and NAFLD status. Long-chain acylcarnitines AC14:1 and AC18:1 increased gradually with the progression of fibrosis and further increased in patients with HCC, whereas the middle-chain acylcarnitine AC5:0 exhibited the opposite trend. In particular, AC18:1, which we previously showed to possess a tumor promoting effect, was significantly elevated in patients with HCC compared to those without HCC. In addition, long-chain acylcarntines including AC18:1 were positively correlated with serum levels of inflammatory cytokines. Although none of the acylcarnitine species were independently associated with the presence of HCC, (AC16:0 + AC18:1)/AC2:0, an index for the diagnosis of carnitine palmitoyltransferase 2 (CPT2) deficiency, was independently associated with the presence of HCC after adjusting for age and liver fibrosis stage, likely reflecting the downregulation of CPT2 in HCC tissues. Thus, serum acylcarnitine profiles changed significantly according to the status of NAFLD, which may be implicated in the pathogenesis of NAFLD.
Collapse
|
66
|
Serum Vitamin E Levels of Adults with Nonalcoholic Fatty Liver Disease: An Inverse Relationship with All-Cause Mortality in Non-Diabetic but Not in Pre-Diabetic or Diabetic Subjects. J Clin Med 2019; 8:jcm8071057. [PMID: 31330971 PMCID: PMC6678235 DOI: 10.3390/jcm8071057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing health threat worldwide. Vitamin E supplementation is recommended for nonalcoholic steatohepatitis (NASH) patients, but only for non-diabetic subjects. We aimed to investigate whether serum vitamin E levels differently impact long-term prognosis in diabetic versus non-diabetic NAFLD individuals. A total of 2404 ultrasonographically defined NAFLD individuals from National Health and Nutrition Examination Survey (NHANES) III were stratified by their glycemic statuses into diabetic (N = 662), pre-diabetic (N = 836) and non-diabetic (N = 906), and the relationship between serum vitamin E levels and all-cause mortality was analyzed. The serum vitamin E concentrations were 31.1 ± 14.1, 26.7 ± 9.6, and 24.7 ± 9.8 µmol/L and vitamin E: total cholesterol ratios were 5.16 ± 1.70, 4.81 ± 1.46, and 4.80 ± 1.34 µmol/mmol in in diabetic, pre-diabetic, and non-diabetic groups, respectively. Of 2404 NAFLD subjects, 2403 have mortality information and 152 non-diabetic, 244 pre-diabetic, and 342 diabetic participants died over a median follow-up period of 18.8 years. Both serum vitamin E levels and vitamin E: total cholesterol ratios were negatively associated with all-cause mortality after adjusting for possible confounders in non-diabetic subjects (HR = 0.483, and 0.451, respectively, p < 0.005), but not in either diabetic or pre-diabetic subjects. In NAFLD individuals, both serum vitamin E and lipid-corrected vitamin E were (1) higher in the diabetic group; and (2) negatively associated with all-cause mortality only in the non-diabetic group. Further investigations are warranted to elucidate the underlying mechanism of this inverse association of serum vitamin E concentration with all-cause mortality in non-diabetic but not pre-diabetic or diabetic subjects.
Collapse
|
67
|
Dall M, Trammell SAJ, Asping M, Hassing AS, Agerholm M, Vienberg SG, Gillum MP, Larsen S, Treebak JT. Mitochondrial function in liver cells is resistant to perturbations in NAD + salvage capacity. J Biol Chem 2019; 294:13304-13326. [PMID: 31320478 DOI: 10.1074/jbc.ra118.006756] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Supplementation with NAD precursors such as nicotinamide riboside (NR) has been shown to enhance mitochondrial function in the liver and to prevent hepatic lipid accumulation in high-fat diet (HFD)-fed rodents. Hepatocyte-specific knockout of the NAD+-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT) reduces liver NAD+ levels, but the metabolic phenotype of Nampt-deficient hepatocytes in mice is unknown. Here, we assessed Nampt's role in maintaining mitochondrial and metabolic functions in the mouse liver. Using the Cre-LoxP system, we generated hepatocyte-specific Nampt knockout (HNKO) mice, having a 50% reduction of liver NAD+ levels. We screened the HNKO mice for signs of metabolic dysfunction following 60% HFD feeding for 20 weeks ± NR supplementation and found that NR increases hepatic NAD+ levels without affecting fat mass or glucose tolerance in HNKO or WT animals. High-resolution respirometry revealed that NR supplementation of the HNKO mice did not increase state III respiration, which was observed in WT mice following NR supplementation. Mitochondrial oxygen consumption and fatty-acid oxidation were unaltered in primary HNKO hepatocytes. Mitochondria isolated from whole-HNKO livers had only a 20% reduction in NAD+, suggesting that the mitochondrial NAD+ pool is less affected by HNKO than the whole-tissue pool. When stimulated with tryptophan in the presence of [15N]glutamine, HNKO hepatocytes had a higher [15N]NAD+ enrichment than WT hepatocytes, indicating that HNKO mice compensate through de novo NAD+ synthesis. We conclude that NAMPT-deficient hepatocytes can maintain substantial NAD+ levels and that the Nampt knockout has only minor consequences for mitochondrial function in the mouse liver.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Magnus Asping
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Sara G Vienberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark.
| |
Collapse
|
68
|
Lee Y, Hu S, Park YK, Lee JY. Health Benefits of Carotenoids: A Role of Carotenoids in the Prevention of Non-Alcoholic Fatty Liver Disease. Prev Nutr Food Sci 2019; 24:103-113. [PMID: 31328113 PMCID: PMC6615349 DOI: 10.3746/pnf.2019.24.2.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases with a prevalence of ~25% worldwide. NAFLD includes simple hepatic steatosis, non-alcoholic steatohepatitis, fibrosis, and cirrhosis, which can further progress to hepatocellular carcinoma. Therefore, effective strategies for the prevention of NAFLD are needed. The pathogenesis of NAFLD is complicated due to diverse injury insults, such as fat accumulation, oxidative stress, inflammation, lipotoxicity, and apoptosis, which may act synergistically. Studies have shown that carotenoids, a natural group of isoprenoid pigments, prevent the development of NAFLD by exerting antioxidant, lipid-lowering, anti-inflammatory, anti-fibrotic, and insulin-sensitizing properties. This review summarizes the protective action of carotenoids, with primary focuses on astaxanthin, lycopene, β-carotene, β-cryptoxanthin, lutein, fucoxanthin, and crocetin, against the development and progression of NAFLD.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.,Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
69
|
Lee C, Kim J, Wang S, Sung S, Kim N, Lee HH, Seo YS, Jung Y. Hepatoprotective Effect of Kombucha Tea in Rodent Model of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Int J Mol Sci 2019; 20:E2369. [PMID: 31086120 PMCID: PMC6539514 DOI: 10.3390/ijms20092369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Kombucha tea (KT) has emerged as a substance that protects the liver from damage; however, its mechanisms of action on the fatty liver remain unclear. Therefore, we investigated the potential role of KT and its underlying mechanisms on nonalcoholic fatty liver disease (NAFLD). db/db mice that were fed methionine/choline-deficient (MCD) diets for seven weeks were treated for vehicle (M + V) or KT (M + K) and fed with MCD for four additional weeks. Histomorphological injury and increased levels of liver enzymes and lipids were evident in the M + V group, whereas these symptoms were ameliorated in the M + K group. The M + K group had more proliferating and less apoptotic hepatocytic cells than the M + V group. Lipid uptake and lipogenesis significantly decreased, and free fatty acid (FFA) oxidation increased in the M + K, when compared with the M + V group. With the reduction of hedgehog signaling, inflammation and fibrosis also declined in the M + K group. Palmitate (PA) treatment increased the accumulation of lipid droplets and decreased the viability of primary hepatocytes, whereas KT suppressed PA-induced damage in these cells by enhancing intracellular lipid disposal. These results suggest that KT protects hepatocytes from lipid toxicity by influencing the lipid metabolism, and it attenuates inflammation and fibrosis, which contributes to liver restoration in mice with NAFLD.
Collapse
Affiliation(s)
- Chanbin Lee
- Department of Integrated Biological Science, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
| | - Jieun Kim
- Department of Integrated Biological Science, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
| | - Sihyung Wang
- Department of Integrated Biological Science, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
| | - Sumi Sung
- Department of Integrated Biological Science, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
| | - Namgyu Kim
- Department of Integrated Biological Science, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
- Department of Microbiological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Geumjeong-gu, Pusan 46241, Korea.
| |
Collapse
|
70
|
Oxidative Stress-Driven Autophagy acROSs Onset and Therapeutic Outcome in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6050123. [PMID: 31205585 PMCID: PMC6530208 DOI: 10.1155/2019/6050123] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species- (ROS-) mediated autophagy physiologically contributes to management of cell homeostasis in response to mild oxidative stress. Cancer cells typically engage autophagy downstream of ROS signaling derived from hypoxia and starvation, which are harsh environmental conditions that need to be faced for cancer development and progression. Hepatocellular carcinoma (HCC) is a solid tumor for which several environmental risk factors, particularly viral infections and alcohol abuse, have been shown to promote carcinogenesis via augmentation of oxidative stress. In addition, ROS burst in HCC cells frequently takes place after administration of therapeutic compounds that promote apoptotic cell death or even autophagic cell death. The interplay between ROS and autophagy (i) in the disposal of dysfunctional mitochondria via mitophagy, as a tumor suppressor mechanism, or (ii) in the cell survival adaptive response elicited by chemotherapeutic interventions, as a tumor-promoting event, will be depicted in this review in relation to HCC development and progression.
Collapse
|
71
|
Fermented Cordyceps militaris Extract Prevents Hepatosteatosis and Adipocyte Hypertrophy in High Fat Diet-Fed Mice. Nutrients 2019; 11:nu11051015. [PMID: 31064103 PMCID: PMC6566621 DOI: 10.3390/nu11051015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 01/01/2023] Open
Abstract
Nonalcoholic fatty liver diseases (NAFLD) is characterized by accumulation of lipid droplets in the liver. The objective of this study was to evaluate protective effects of fermented Cordyceps militaris extract by Pediococcus pentosaceus ON188 (ONE) against hepatosteatosis and obesity in mice fed a high-fat diet (HFD). Eight-week-old male C57BL/6J mice were fed HFD mixed with ONE for four weeks and its effects on hepatosteatosis and obesity were examined. Although ONE did not change food intake, it reduced body weights of mice at administration dose of 200 mg/kg/day. Activities of lactate dehydrogenase (LDH), aspartate transaminase (AST), and alanine transaminase (ALT) as plasma parameters were reduced by ONE in a dose-dependent manner. Hepatic lipid droplets and triglyceride (TG) levels were also reduced by ONE due to upregulation of fatty acid oxidizing genes such as carnithine palmitoyltransferase (CPT1) and peroxisomal proliferator activated receptor α(PPARα) mediated by induction of sphingosine kinase 2 (SPHK2). In epididymal fat tissue, sizes of adipocytes were significantly reduced by ONE in a dose-dependent manner. This is mainly due to suppression of lipogenesis and upregulation of adipocyte browning genes. Collectively, these results suggest that fermented ONE can activate fatty acid oxidation via SPHK2 in the liver. It can also suppress lipogenesis and activate browning in adipose tissue. Thus, ONE might have potential to be used for the development of functional foods against liver dysfunction and obesity.
Collapse
|
72
|
Analyzing the Mechanisms Behind Macrolide Antibiotic-Induced Liver Injury Using Quantitative Systems Toxicology Modeling. Pharm Res 2019; 36:48. [PMID: 30734107 PMCID: PMC6373306 DOI: 10.1007/s11095-019-2582-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/27/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Macrolide antibiotics are commonly prescribed treatments for drug-resistant bacterial infections; however, many macrolides have been shown to cause liver enzyme elevations and one macrolide, telithromycin, has been pulled from the market by its provider due to liver toxicity. This work seeks to assess the mechanisms responsible for the toxicity of macrolide antibiotics. METHODS Five macrolides were assessed in in vitro systems designed to test for bile acid transporter inhibition, mitochondrial dysfunction, and oxidative stress. The macrolides were then represented in DILIsym, a quantitative systems pharmacology (QST) model of drug-induced liver injury, placing the in vitro results in context with each compound's predicted liver exposure and known biochemistry. RESULTS DILIsym results suggest that solithromycin and clarithromycin toxicity is primarily due to inhibition of the mitochondrial electron transport chain (ETC) while erythromycin toxicity is primarily due to bile acid transporter inhibition. Telithromycin and azithromycin toxicity was not predicted by DILIsym and may be caused by mechanisms not currently incorporated into DILIsym or by unknown metabolite effects. CONCLUSIONS The mechanisms responsible for toxicity can be significantly different within a class of drugs, despite the structural similarity among the drugs. QST modeling can provide valuable insight into the nature of these mechanistic differences.
Collapse
|
73
|
Electrophilic nitro-oleic acid reverses obesity-induced hepatic steatosis. Redox Biol 2019; 22:101132. [PMID: 30769284 PMCID: PMC6375063 DOI: 10.1016/j.redox.2019.101132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is linked to obesity and insulin resistance and is the most prevalent chronic liver disease. During the development of obesity and NAFLD, mitochondria adapt to the increased lipid load in hepatocytes by increasing the rate of fatty acid oxidation. In concert with this, reactive species (RS) generation is increased, damaging hepatocytes and inducing inflammation. Hepatic mitochondrial dysfunction is central to the pathogenesis of NAFLD via undefined mechanisms. There are no FDA approved treatments for NAFLD other than weight loss and management of glucose tolerance. Electrophilic nitro-oleic acid (NO2-OA) displays anti-inflammatory and antioxidant signaling actions, thus mitochondrial dysfunction, RS production and inflammatory responses to NO2-OA and the insulin sensitizer rosiglitazone were evaluated in a murine model of insulin resistance and NAFLD. Mice on HFD for 20 wk displayed increased adiposity, insulin resistance and hepatic lipid accumulation (steatosis) compared to mice on normal chow (NC). The HFD mice had mitochondrial dysfunction characterized by lower hepatic mitochondrial complex I, IV and V activity compared to mice on NC. Treatment with NO2-OA or rosiglitazone for the last 42 days (out of 20 wk) abrogated HFD-mediated decreases in hepatic mitochondrial complex I, IV and V activity. Notably, NO2-OA treatment normalized hepatic triglyceride levels and significantly reversed hepatic steatosis. Despite the improved glucose tolerance observed upon rosiglitazone treatment, liver weight and hepatic triglycerides were significantly increased over vehicle-treated HFD mice. These observations support that the pleiotropic signaling actions of electrophilic fatty acids limit the complex hepatic and systemic pathogenic responses instigated by obesity, without the adverse effects of thiazolidinedione drugs such as rosiglitazone.
Collapse
|
74
|
Dorr BS, Hanson-Dorr KC, Assadi-Porter FM, Selen ES, Healy KA, Horak KE. Effects of Repeated Sublethal External Exposure to Deep Water Horizon Oil on the Avian Metabolome. Sci Rep 2019; 9:371. [PMID: 30674908 PMCID: PMC6344488 DOI: 10.1038/s41598-018-36688-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
We assessed adverse effects of external sublethal exposure of Deepwater Horizon, Mississippi Canyon 252 oil on plasma and liver metabolome profiles of the double-crested cormorant (Phalacrocorax auritus), a large (1.5 to 3.0 kg) diving waterbird common in the Gulf of Mexico. Metabolomics analysis of avian plasma showed significant negative effects on avian metabolic profiles, in some cases after only two external exposures (26 g cumulative) to oil. We observed significant (p < 0.05) changes in intermediate metabolites of energy metabolism and fatty acid and amino acid metabolic pathways in cormorants after repeated exposure to oil. Exposure to oil increased several metabolites (glycine, betaine, serine and methionine) that are essential to the one-carbon metabolism pathway. Lipid metabolism was affected, causing an increase in production of ketone bodies, suggesting lipids were used as an alternative energy source for energy production in oil exposed birds. In addition, metabolites associated with hepatic bile acid metabolism were affected by oil exposure which was correlated with changes observed in bile acids in exposed birds. These changes at the most basic level of phenotypic expression caused by sublethal exposure to oil can have effects that would be detrimental to reproduction, migration, and survival in avian species.
Collapse
Affiliation(s)
- Brian S Dorr
- US Department of Agriculture, Wildlife Services, National Wildlife Research Center, MS State, MS, 39762, USA.
| | - Katie C Hanson-Dorr
- US Department of Agriculture, Wildlife Services, National Wildlife Research Center, MS State, MS, 39762, USA
| | - Fariba M Assadi-Porter
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Ebru Selin Selen
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Katherine A Healy
- US Fish and Wildlife Service, Deepwater Horizon Natural Resource Damage Assessment and Restoration Office, Fairhope, AL, 36532, USA
| | - Katherine E Horak
- US Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, 80521, USA
| |
Collapse
|
75
|
Shin SK, Cho HW, Song SE, Bae JH, Im SS, Hwang I, Ha H, Song DK. Ablation of catalase promotes non-alcoholic fatty liver via oxidative stress and mitochondrial dysfunction in diet-induced obese mice. Pflugers Arch 2019; 471:829-843. [PMID: 30617744 DOI: 10.1007/s00424-018-02250-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/05/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
Hydrogen peroxide (H2O2) produced endogenously can cause mitochondrial dysfunction and metabolic complications in various cell types by inducing oxidative stress. In the liver, oxidative and endoplasmic reticulum (ER) stress affects the development of non-alcoholic fatty liver disease (NAFLD). Although a link between both stresses and fatty liver diseases has been suggested, few studies have investigated the involvement of catalase in fatty liver pathogenesis. We examined whether catalase is associated with NAFLD, using catalase knockout (CKO) mice and the catalase-deficient human hepatoma cell line HepG2. Hepatic morphology analysis revealed that the fat accumulation was more prominent in high-fat diet (HFD) CKO mice compared to that in age-matched wild-type (WT) mice, and lipid peroxidation and H2O2 release were significantly elevated in CKO mice. Transmission electron micrographs indicated that the liver mitochondria from CKO mice tended to be more severely damaged than those in WT mice. Likewise, mitochondrial DNA copy number and cellular ATP concentrations were significantly lower in CKO mice. In fatty acid-treated HepG2 cells, knockdown of catalase accelerated cellular lipid accumulation and depressed mitochondrial biogenesis, which was recovered by co-treatment with N-acetyl cysteine or melatonin. This effect of antioxidant was also true in HFD-fed CKO mice, suppressing fatty liver development and improving hepatic mitochondrial function. Expression of ER stress marker proteins and hepatic fat deposition also increased in normal-diet, aged CKO mice compared to WT mice. These findings suggest that H2O2 production may be an important event triggering NAFLD and that catalase may be an attractive therapeutic target for preventing NAFLD.
Collapse
Affiliation(s)
- Su-Kyung Shin
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Hyun-Woo Cho
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Seung-Eun Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Jae-Hoon Bae
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Seung-Soon Im
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea
| | - Inha Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Women's University, Seoul, 03760, South Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Women's University, Seoul, 03760, South Korea
| | - Dae-Kyu Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-Ro, Dalseo-Gu, Daegu, 42601, South Korea.
| |
Collapse
|
76
|
Kappler L, Kollipara L, Lehmann R, Sickmann A. Investigating the Role of Mitochondria in Type 2 Diabetes - Lessons from Lipidomics and Proteomics Studies of Skeletal Muscle and Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:143-182. [PMID: 31452140 DOI: 10.1007/978-981-13-8367-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is discussed as a key player in the pathogenesis of type 2 diabetes mellitus (T2Dm), a highly prevalent disease rapidly developing as one of the greatest global health challenges of this century. Data however about the involvement of mitochondria, central hubs in bioenergetic processes, in the disease development are still controversial. Lipid and protein homeostasis are under intense discussion to be crucial for proper mitochondrial function. Consequently proteomics and lipidomics analyses might help to understand how molecular changes in mitochondria translate to alterations in energy transduction as observed in the healthy and metabolic diseases such as T2Dm and other related disorders. Mitochondrial lipids integrated in a tool covering proteomic and functional analyses were up to now rarely investigated, although mitochondrial lipids might provide a possible lynchpin in the understanding of type 2 diabetes development and thereby prevention. In this chapter state-of-the-art analytical strategies, pre-analytical aspects, potential pitfalls as well as current proteomics and lipidomics-based knowledge about the pathophysiological role of mitochondria in the pathogenesis of type 2 diabetes will be discussed.
Collapse
Affiliation(s)
- Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tuebingen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany. .,Medical Proteome Centre, Ruhr Universität Bochum, Bochum, Germany. .,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
77
|
Egnatchik RA, Leamy AK, Sacco SA, Cheah YE, Shiota M, Young JD. Glutamate-oxaloacetate transaminase activity promotes palmitate lipotoxicity in rat hepatocytes by enhancing anaplerosis and citric acid cycle flux. J Biol Chem 2018; 294:3081-3090. [PMID: 30563841 DOI: 10.1074/jbc.ra118.004869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte lipotoxicity is characterized by aberrant mitochondrial metabolism, which predisposes cells to oxidative stress and apoptosis. Previously, we reported that translocation of calcium from the endoplasmic reticulum to mitochondria of palmitate-treated hepatocytes activates anaplerotic flux from glutamine to α-ketoglutarate (αKG), which subsequently enters the citric acid cycle (CAC) for oxidation. We hypothesized that increased glutamine anaplerosis fuels elevations in CAC flux and oxidative stress following palmitate treatment. To test this hypothesis, primary rat hepatocytes or immortalized H4IIEC3 rat hepatoma cells were treated with lipotoxic levels of palmitate while modulating anaplerotic pathways leading to αKG. We found that culture media supplemented with glutamine, glutamate, or dimethyl-αKG increased palmitate lipotoxicity compared with media that lacked these anaplerotic substrates. Knockdown of glutamate-oxaloacetate transaminase activity significantly reduced the lipotoxic effects of palmitate, whereas knockdown of glutamate dehydrogenase (Glud1) had no effect on palmitate lipotoxicity. 13C flux analysis of H4IIEC3 cells co-treated with palmitate and the pan-transaminase inhibitor aminooxyacetic acid confirmed that reductions in lipotoxic markers were associated with decreases in anaplerosis, CAC flux, and oxygen consumption. Taken together, these results demonstrate that lipotoxic palmitate treatments enhance anaplerosis in cultured rat hepatocytes, causing a shift to aberrant transaminase metabolism that fuels CAC dysregulation and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Masakazu Shiota
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37235
| | - Jamey D Young
- From Chemical and Biomolecular Engineering and .,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
78
|
Zhang H, Niu Y, Gu H, Lu S, Zhang W, Li X, Yang Z, Qin L, Su Q. Low serum adiponectin is a predictor of progressing to nonalcoholic fatty liver disease. J Clin Lab Anal 2018; 33:e22709. [PMID: 30390352 DOI: 10.1002/jcla.22709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/17/2018] [Accepted: 10/10/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The association between adiponectin and nonalcoholic fatty liver disease (NAFLD) has been studied before, but most of the studies are cross-sectional and cannot prove a causal link. OBJECTIVE To prospectively investigate the relationship between serum adiponectin levels and the incidence of NAFLD in 3 years. SUBJECTS AND METHODS A total of 1325 subjects aged 40 to 70 from the Chongming District of Shanghai, China, were included. All of them did not have fatty liver according to the liver ultrasound examination at entry; alcohol abuse and hepatitis were also excluded. Serum adiponectin levels and other indices were measured at baseline. After 3 years of follow-up, hepatic ultrasound examination was performed on each participant again to detect fatty liver. RESULTS The serum adiponectin levels at entry were significantly lower in subjects who developed NAFLD compared with those who did not develop NAFLD after 3 years (1.75 ± 0.89 ug/mL vs 2.37 ± 1.01 ug/mL, P < 0.001). After multiple adjustments, the highest odds ratios for NAFLD were in the second adiponectin quartile, the adjusted ORs were 1.89 (95% confidence interval [CI] 1.25 to 2.86) compared with those in the highest quartile. Multivariate logistic regression analysis showing variables at entry independently associated with NAFLD after 3 years was adiponectin (P < 0.01), sex (P < 0.01), BMI (P < 0.001), insulin (P < 0.001), HOMA-IR (P < 0.01), GGT (P = 0.001), TG (P < 0.001), and WBC (P < 0.001). CONCLUSIONS Lower serum adiponectin level is a predictor of NAFLD among middle-aged and elderly subjects.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yixin Niu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongxia Gu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuai Lu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weiwei Zhang
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
79
|
García-Ruiz C, Fernández-Checa JC. Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatol Commun 2018; 2:1425-1439. [PMID: 30556032 PMCID: PMC6287487 DOI: 10.1002/hep4.1271] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Fatty liver disease is one of the most prevalent forms of chronic liver disease that encompasses both alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH) are intermediate stages of ALD and NAFLD, which can progress to more advanced forms, including cirrhosis and hepatocellular carcinoma. Oxidative stress and particularly alterations in mitochondrial function are thought to play a significant role in both ASH and NASH and recognized to contribute to the generation of reactive oxygen species (ROS), as documented in experimental models. Despite the evidence of ROS generation, the therapeutic efficacy of treatment with antioxidants in patients with fatty liver disease has yielded poor results. Although oxidative stress is considered to be the disequilibrium between ROS and antioxidants, there is evidence that a subtle balance among antioxidants, particularly in mitochondria, is necessary to avoid the generation of ROS and hence oxidative stress. Conclusion: As mitochondria are a major source of ROS, the present review summarizes the role of mitochondrial oxidative stress in ASH and NASH and presents emerging data indicating the need to preserve mitochondrial antioxidant balance as a potential approach for the treatment of human fatty liver disease, which may pave the way for the design of future trials to test the therapeutic role of antioxidants in fatty liver disease.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Cell Death and Proliferation Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior Investigaciones Científicas Barcelona Spain.,Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD Barcelona Spain
| | - José C Fernández-Checa
- Cell Death and Proliferation Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior Investigaciones Científicas Barcelona Spain.,Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD Barcelona Spain.,University of Southern California Research Center for ALPD Keck School of Medicine Los Angeles CA
| |
Collapse
|
80
|
Torres MJ, Ryan TE, Lin CT, Zeczycki TN, Neufer PD. Impact of 17β-estradiol on complex I kinetics and H 2O 2 production in liver and skeletal muscle mitochondria. J Biol Chem 2018; 293:16889-16898. [PMID: 30217819 PMCID: PMC6204892 DOI: 10.1074/jbc.ra118.005148] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Naturally or surgically induced postmenopausal women are widely prescribed estrogen therapies to alleviate symptoms associated with estrogen loss and to lower the subsequent risk of developing metabolic diseases, including diabetes and nonalcoholic fatty liver disease. However, the molecular mechanisms by which estrogens modulate metabolism across tissues remain ill-defined. We have previously reported that 17β-estradiol (E2) exerts antidiabetogenic effects in ovariectomized (OVX) mice by protecting mitochondrial and cellular redox function in skeletal muscle. The liver is another key tissue for glucose homeostasis and a target of E2 therapy. Thus, in the present study we determined the effects of acute loss of ovarian E2 and E2 administration on liver mitochondria. In contrast to skeletal muscle mitochondria, E2 depletion via OVX did not alter liver mitochondrial respiratory function or complex I (CI) specific activities (NADH oxidation, quinone reduction, and H2O2 production). Surprisingly, in vivo E2 replacement therapy and in vitro E2 exposure induced tissue-specific effects on both CI activity and on the rate and topology of CI H2O2 production. Overall, E2 therapy protected and restored the OVX-induced reduction in CI activity in skeletal muscle, whereas in liver mitochondria E2 increased CI H2O2 production and decreased ADP-stimulated respiratory capacity. These results offer novel insights into the tissue-specific effects of E2 on mitochondrial function.
Collapse
Affiliation(s)
- Maria J Torres
- From the East Carolina Diabetes and Obesity Institute
- the Department of Kinesiology, and
| | - Terence E Ryan
- From the East Carolina Diabetes and Obesity Institute
- the Departments of Physiology, and
| | - Chien-Te Lin
- From the East Carolina Diabetes and Obesity Institute
- the Departments of Physiology, and
| | - Tonya N Zeczycki
- From the East Carolina Diabetes and Obesity Institute,
- Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - P Darrell Neufer
- From the East Carolina Diabetes and Obesity Institute,
- the Department of Kinesiology, and
- the Departments of Physiology, and
| |
Collapse
|
81
|
Sadygov RG, Avva J, Rahman M, Lee K, Ilchenko S, Kasumov T, Borzou A. d2ome, Software for in Vivo Protein Turnover Analysis Using Heavy Water Labeling and LC-MS, Reveals Alterations of Hepatic Proteome Dynamics in a Mouse Model of NAFLD. J Proteome Res 2018; 17:3740-3748. [PMID: 30265007 DOI: 10.1021/acs.jproteome.8b00417] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolic labeling with heavy water followed by LC-MS is a high throughput approach to study proteostasis in vivo. Advances in mass spectrometry and sample processing have allowed consistent detection of thousands of proteins at multiple time points. However, freely available automated bioinformatics tools to analyze and extract protein decay rate constants are lacking. Here, we describe d2ome-a robust, automated software solution for in vivo protein turnover analysis. d2ome is highly scalable, uses innovative approaches to nonlinear fitting, implements Grubbs' outlier detection and removal, uses weighted-averaging of replicates, applies a data dependent elution time windowing, and uses mass accuracy in peak detection. Here, we discuss the application of d2ome in a comparative study of protein turnover in the livers of normal vs Western diet-fed LDLR-/- mice (mouse model of nonalcoholic fatty liver disease), which contained 256 LC-MS experiments. The study revealed reduced stability of 40S ribosomal protein subunits in the Western diet-fed mice.
Collapse
Affiliation(s)
- Rovshan G Sadygov
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine , The University of Texas Medical Branch , 301 University Blvd. , Galveston , Texas 77555 , United States
| | - Jayant Avva
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine , The University of Texas Medical Branch , 301 University Blvd. , Galveston , Texas 77555 , United States
| | - Mahbubur Rahman
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine , The University of Texas Medical Branch , 301 University Blvd. , Galveston , Texas 77555 , United States
| | - Kwangwon Lee
- Department of Pharmaceutical Sciences , Northeast Ohio Medical University , Rootstown , Ohio 44272 , United States
| | - Sergei Ilchenko
- Department of Pharmaceutical Sciences , Northeast Ohio Medical University , Rootstown , Ohio 44272 , United States
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences , Northeast Ohio Medical University , Rootstown , Ohio 44272 , United States
| | - Ahmad Borzou
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine , The University of Texas Medical Branch , 301 University Blvd. , Galveston , Texas 77555 , United States
| |
Collapse
|
82
|
Archer AE, Rogers RS, Von Schulze AT, Wheatley JL, Morris EM, McCoin CS, Thyfault JP, Geiger PC. Heat shock protein 72 regulates hepatic lipid accumulation. Am J Physiol Regul Integr Comp Physiol 2018; 315:R696-R707. [PMID: 29924632 PMCID: PMC6230886 DOI: 10.1152/ajpregu.00073.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022]
Abstract
Induction of the chaperone heat shock protein 72 (HSP72) through heat treatment (HT), exercise, or overexpression improves glucose tolerance and mitochondrial function in skeletal muscle. Less is known about HSP72 function in the liver where lipid accumulation can result in insulin resistance and nonalcoholic fatty liver disease (NAFLD). The purpose of this study was 1) to determine whether weekly in vivo HT induces hepatic HSP72 and improves glucose tolerance in rats fed a high-fat diet (HFD) and 2) to determine the ability of HSP72 to protect against lipid accumulation and mitochondrial dysfunction in primary hepatocytes. Male Wistar rats were fed an HFD for 15 wk and were given weekly HT (41°C, 20 min) or sham treatments (37°C, 20 min) for the final 7 wk. Glucose tolerance and insulin sensitivity were assessed, along with HSP72 induction and triglyceride storage, in the skeletal muscle and liver. The effect of an acute loss of HSP72 in primary hepatocytes was examined via siRNA. Weekly in vivo HT improved glucose tolerance, elevated muscle and hepatic HSP72 protein content, and reduced muscle triglyceride storage. In primary hepatocytes, mitochondrial morphology was changed, and fatty acid oxidation was reduced in small interfering HSP72 (siHSP72)-treated hepatocytes. Lipid accumulation following palmitate treatment was increased in siHSP72-treated hepatocytes. These data suggest that HT may improve systemic metabolism via induction of hepatic HSP72. Additionally, acute loss of HSP72 in primary hepatocytes impacts mitochondrial health as well as fat oxidation and storage. These findings suggest therapies targeting HSP72 in the liver may prevent NAFLD.
Collapse
Affiliation(s)
- Ashley E Archer
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Robert S Rogers
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Alex T Von Schulze
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Joshua L Wheatley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - E Matthew Morris
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Research Service, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - Colin S McCoin
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Research Service, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Research Service, Kansas City Veterans Affairs Medical Center , Kansas City, Missouri
| | - Paige C Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
83
|
Effects of Alpha-Lipoic Acid Supplementation on Oxidative Stress Status in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized, Double Blind, Placebo-Controlled Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2018. [DOI: 10.5812/ircmj.67615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
84
|
Schuster S, Johnson CD, Hennebelle M, Holtmann T, Taha AY, Kirpich IA, Eguchi A, Ramsden CE, Papouchado BG, McClain CJ, Feldstein AE. Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. J Lipid Res 2018; 59:1597-1609. [PMID: 30084831 PMCID: PMC6121934 DOI: 10.1194/jlr.m083741] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/30/2018] [Indexed: 01/03/2023] Open
Abstract
Circulating oxidized linoleic acid (LA) metabolites (OXLAMs) are increased in patients with nonalcoholic steatohepatitis (NASH) and their levels correlate with disease severity. However, the mechanisms by which OXLAMs contribute to NASH development are incompletely understood. We tested the hypothesis that LA or OXLAMs provided directly through the diet are involved in the development of hepatic injury. C57BL/6 mice were fed an isocaloric high-fat diet containing low LA, high LA, or OXLAMs for 8 weeks. The livers of OXLAM-fed mice showed lower triglyceride concentrations, but higher FA oxidation and lipid peroxidation in association with increased oxidative stress. OXLAM-induced mitochondrial dysfunction was associated with reduced Complex I protein and hepatic ATP levels, as well as increased mitochondrial biogenesis and cytoplasmic mitochondrial DNA. Oxidative stress increased thioredoxin-interacting protein (TXNIP) in the liver and stimulated the activation of mitochondrial apoptosis signal-regulating kinase 1 (ASK1) leading to apoptosis. We also found increased levels of NOD-like receptor protein 3 (NLRP3) inflammasome components and Caspase-1 activation in the livers of OXLAM-fed mice. In vitro, OXLAMs induced hepatocyte cell death, which was partly dependent on Caspase-1 activation. This study identified key mechanisms by which dietary OXLAMs contribute to NASH development, including mitochondrial dysfunction, hepatocyte cell death, and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Susanne Schuster
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Casey D Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Marie Hennebelle
- Department of Food Science and Technology, University of California, Davis, CA University of Louisville, Louisville, KY
| | - Theresa Holtmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, CA University of Louisville, Louisville, KY
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition University of Louisville, Louisville, KY; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY; Department of Pharmacology and Toxicology and University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Christopher E Ramsden
- Intramural Programs of the National Institute on Aging and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, and FOODplus Research Center, School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, Australia
| | - Bettina G Papouchado
- Department of Pathology, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition University of Louisville, Louisville, KY; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY; Department of Pharmacology and Toxicology and University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY; Robley Rex Veterans Medical Center, Louisville, KY
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, CA.
| |
Collapse
|
85
|
Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 2018; 75:3313-3327. [PMID: 29936596 PMCID: PMC6105174 DOI: 10.1007/s00018-018-2860-6] [Citation(s) in RCA: 812] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the world's most common liver disease, estimated to affect up to one-fourth of the population. Hallmarked by hepatic steatosis, NAFLD is associated with a multitude of detrimental effects and increased mortality. This narrative review investigates the molecular mechanisms of hepatic steatosis in NAFLD, focusing on the four major pathways contributing to lipid homeostasis in the liver. Hepatic steatosis is a consequence of lipid acquisition exceeding lipid disposal, i.e., the uptake of fatty acids and de novo lipogenesis surpassing fatty acid oxidation and export. In NAFLD, hepatic uptake and de novo lipogenesis are increased, while a compensatory enhancement of fatty acid oxidation is insufficient in normalizing lipid levels and may even promote cellular damage and disease progression by inducing oxidative stress, especially with compromised mitochondrial function and increased oxidation in peroxisomes and cytochromes. While lipid export initially increases, it plateaus and may even decrease with disease progression, sustaining the accumulation of lipids. Fueled by lipo-apoptosis, hepatic steatosis leads to systemic metabolic disarray that adversely affects multiple organs, placing abnormal lipid metabolism associated with NAFLD in close relation to many of the current life-style-related diseases.
Collapse
Affiliation(s)
- David Højland Ipsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
86
|
Baker PR, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. J Clin Invest 2018; 128:3692-3703. [PMID: 30168806 DOI: 10.1172/jci120846] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic in obese children and adults, and the onset might have fetal origins. A growing body of evidence supports the role of developmental programming, whereby the maternal environment affects fetal and infant development, altering the risk profile for disease later in life. Human and nonhuman primate studies of maternal obesity demonstrate that risk factors for pediatric obesity and NAFLD begin in utero. The pathologic mechanisms for NAFLD are multifactorial but have centered on altered mitochondrial function/dysfunction that might precede insulin resistance. Compared with the adult liver, the fetal liver has fewer mitochondria, low activity of the fatty acid metabolic enzyme carnitine palmitoyl-CoA transferase-1, and little or no gluconeogenesis. Exposure to excess maternal fuels during fetal life uniquely alters hepatic fatty acid oxidation, tricarboxylic acid cycle activity, de novo lipogenesis, and mitochondrial health. These events promote increased oxidative stress and excess triglyceride storage, and, together with altered immune function and epigenetic changes, they prime the fetal liver for NAFLD and might drive the risk for nonalcoholic steatohepatitis in the next generation.
Collapse
Affiliation(s)
- Peter R Baker
- Section of Clinical Genetics and Metabolism, Department of Pediatrics
| | - Jacob E Friedman
- Section of Neonatology, Department of Pediatrics.,Department of Biochemistry and Molecular Genetics, and.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
87
|
Lee K, Haddad A, Osme A, Kim C, Borzou A, Ilchenko S, Allende D, Dasarathy S, McCullough A, Sadygov RG, Kasumov T. Hepatic Mitochondrial Defects in a Nonalcoholic Fatty Liver Disease Mouse Model Are Associated with Increased Degradation of Oxidative Phosphorylation Subunits. Mol Cell Proteomics 2018; 17:2371-2386. [PMID: 30171159 DOI: 10.1074/mcp.ra118.000961] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with hepatic mitochondrial dysfunction characterized by reduced ATP synthesis. We applied the 2H2O-metabolic labeling approach to test the hypothesis that the reduced stability of oxidative phosphorylation proteins contributes to mitochondrial dysfunction in a diet-induced mouse model of NAFLD. A high fat diet containing cholesterol (a so-called Western diet (WD)) led to hepatic oxidative stress, steatosis, inflammation and mild fibrosis, all markers of NAFLD, in low density cholesterol (LDL) receptor deficient (LDLR-/-) mice. In addition, compared with controls (LDLR-/- mice on normal diet), livers from NAFLD mice had reduced citrate synthase activity and ATP content, suggesting mitochondrial impairment. Proteome dynamics study revealed that mitochondrial defects are associated with reduced average half-lives of mitochondrial proteins in NAFLD mice (5.41 ± 0.46 versus 5.15 ± 0.49 day, p < 0.05). In particular, the WD reduced stability of oxidative phosphorylation subunits, including cytochrome b-c1 complex subunit 1 (5.9 ± 0.1 versus 3.4 ± 0.8 day), ATP synthase subunit α (6.3 ± 0.4 versus 5.5 ± 0.4 day) and ATP synthase F(0) complex subunit B1 of complex V (8.5 ± 0.6 versus 6.5 ± 0.2 day) (p < 0.05). These changes were associated with impaired complex III and F0F1-ATP synthase activities. Markers of mitophagy were increased, but proteasomal degradation activity were reduced in NAFLD mice liver, suggesting that ATP deficiency because of reduced stability of oxidative phosphorylation complex subunits contributed to inhibition of ubiquitin-proteasome and activation of mitophagy. In conclusion, the 2H2O-metabolic labeling approach shows that increased degradation of hepatic oxidative phosphorylation subunits contributed to mitochondrial impairment in NAFLD mice.
Collapse
Affiliation(s)
- Kwangwon Lee
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Andrew Haddad
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Abdullah Osme
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Chunki Kim
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Ahmad Borzou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sergei Ilchenko
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Daniela Allende
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | | | - Arthur McCullough
- Department of Hepatology, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Rovshan G Sadygov
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272; Department of Hepatology, Cleveland Clinic Foundation, Cleveland, Ohio 44195.
| |
Collapse
|
88
|
Fujiwara N, Nakagawa H, Enooku K, Kudo Y, Hayata Y, Nakatsuka T, Tanaka Y, Tateishi R, Hikiba Y, Misumi K, Tanaka M, Hayashi A, Shibahara J, Fukayama M, Arita J, Hasegawa K, Hirschfield H, Hoshida Y, Hirata Y, Otsuka M, Tateishi K, Koike K. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity. Gut 2018; 67:1493-1504. [PMID: 29437870 PMCID: PMC6039238 DOI: 10.1136/gutjnl-2017-315193] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Metabolic reprogramming of tumour cells that allows for adaptation to their local environment is a hallmark of cancer. Interestingly, obesity-driven and non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) mouse models commonly exhibit strong steatosis in tumour cells as seen in human steatohepatitic HCC (SH-HCC), which may reflect a characteristic metabolic alteration. DESIGN Non-tumour and HCC tissues obtained from diethylnitrosamine-injected mice fed either a normal or a high-fat diet (HFD) were subjected to comprehensive metabolome analysis, and the significance of obesity-mediated metabolic alteration in hepatocarcinogenesis was evaluated. RESULTS The extensive accumulation of acylcarnitine species was seen in HCC tissues and in the serum of HFD-fed mice. A similar increase was found in the serum of patients with NASH-HCC. The accumulation of acylcarnitine could be attributed to the downregulation of carnitine palmitoyltransferase 2 (CPT2), which was also seen in human SH-HCC. CPT2 downregulation induced the suppression of fatty acid β-oxidation, which would account for the steatotic changes in HCC. CPT2 knockdown in HCC cells resulted in their resistance to lipotoxicity by inhibiting the Src-mediated JNK activation. Additionally, oleoylcarnitine enhanced sphere formation by HCC cells via STAT3 activation, suggesting that acylcarnitine accumulation was a surrogate marker of CPT2 downregulation and directly contributed to hepatocarcinogenesis. HFD feeding and carnitine supplementation synergistically enhanced HCC development accompanied by acylcarnitine accumulation in vivo. CONCLUSION In obesity-driven and NASH-driven HCC, metabolic reprogramming mediated by the downregulation of CPT2 enables HCC cells to escape lipotoxicity and promotes hepatocarcinogenesis.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655,Corresponding Author: Hayato Nakagawa, Department of Gastroenterology, The University of Tokyo, 7-3-1, Bunkyo-ku Hongo, Tokyo, 113-8655, , Tel: +81-3-3815-5411; Fax: +81-3-3814-0021
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655,Corresponding Author: Hayato Nakagawa, Department of Gastroenterology, The University of Tokyo, 7-3-1, Bunkyo-ku Hongo, Tokyo, 113-8655, , Tel: +81-3-3815-5411; Fax: +81-3-3814-0021
| | - Kenichiro Enooku
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yotaro Kudo
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Takuma Nakatsuka
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yasuo Tanaka
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Ryosuke Tateishi
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Yohko Hikiba
- Division of Gastroenterology, Institute for Adult Diseases, Asahi Life Foundation 2-2-6 Nihonbashibakurocho, Chuo-ku, Tokyo 103-0002
| | - Kento Misumi
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Mariko Tanaka
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Akimasa Hayashi
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Junji Shibahara
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Masashi Fukayama
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Hadassa Hirschfield
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences. Icahn School of Medicine at Mount Sinai, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences. Icahn School of Medicine at Mount Sinai, USA
| | - Yoshihiro Hirata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Motoyuki Otsuka
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Keisuke Tateishi
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| |
Collapse
|
89
|
Possible Involvement of Mitochondrial Dysfunction and Oxidative Stress in a Cellular Model of NAFLD Progression Induced by Benzo[a]pyrene/Ethanol CoExposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4396403. [PMID: 30147834 PMCID: PMC6083493 DOI: 10.1155/2018/4396403] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Exposure to xenobiotics could favor the transition of nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis in obese patients. Recently, we showed in different models of NAFL that benzo[a]pyrene (B[a]P) and ethanol coexposure induced a steatohepatitis-like state. One model was HepaRG cells incubated with stearate and oleate for 2 weeks. In the present study, we wished to determine in this model whether mitochondrial dysfunction and reactive oxygen species (ROS) overproduction could be involved in the occurrence of this steatohepatitis-like state. CRISPR/Cas9-modified cells were also used to specify the role of aryl hydrocarbon receptor (AhR), which is potently activated by B[a]P. Thus, nonsteatotic and steatotic HepaRG cells were treated with B[a]P, ethanol, or both molecules for 2 weeks. B[a]P/ethanol coexposure reduced mitochondrial respiratory chain activity, mitochondrial respiration, and mitochondrial DNA levels and induced ROS overproduction in steatotic HepaRG cells. These deleterious effects were less marked or absent in steatotic cells treated with B[a]P alone or ethanol alone and in nonsteatotic cells treated with B[a]P/ethanol. Our study also disclosed that B[a]P/ethanol-induced impairment of mitochondrial respiration was dependent on AhR activation. Hence, mitochondrial dysfunction and ROS generation could explain the occurrence of a steatohepatitis-like state in steatotic HepaRG cells exposed to B[a]P and ethanol.
Collapse
|
90
|
Peng KY, Watt MJ, Rensen S, Greve JW, Huynh K, Jayawardana KS, Meikle PJ, Meex RCR. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res 2018; 59:1977-1986. [PMID: 30042157 DOI: 10.1194/jlr.m085613] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises fat-accumulating conditions within hepatocytes that can cause severe liver damage and metabolic comorbidities. Studies suggest that mitochondrial dysfunction contributes to its development and progression and that the hepatic lipidome changes extensively in obesity and in NAFLD. To gain insight into the relationship between lipid metabolism and disease progression through different stages of NAFLD, we performed lipidomic analysis of plasma and liver biopsy samples from obese patients with nonalcoholic fatty liver (NAFL) or nonalcoholic steatohepatitis (NASH) and from those without NAFLD. Congruent with earlier studies, hepatic lipid levels overall increased with NAFLD. Lipid species that differed with NAFLD severity were related to mitochondrial dysfunction; specifically, hepatic cardiolipin and ubiquinone accumulated in NAFL, and levels of acylcarnitine increased with NASH. We propose that increased levels of cardiolipin and ubiquinone may help to preserve mitochondrial function in early NAFLD, but that mitochondrial function eventually fails with progression to NASH, leading to increased acylcarnitine. We also found a negative association between hepatic odd-chain phosphatidylcholine and NAFLD, which may result from mitochondrial dysfunction-related impairment of branched-chain amino acid catabolism. Overall, these data suggest a close link between accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD.
Collapse
Affiliation(s)
- Kang-Yu Peng
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Sander Rensen
- Departments of Surgery Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem Greve
- Department of Surgery, Zuyderland Medical Center Heerlen, Heerlen, The Netherlands
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia .,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ruth C R Meex
- Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
91
|
Wang YH, Twu YC, Wang CK, Lin FZ, Lee CY, Liao YJ. Niemann-Pick Type C2 Protein Regulates Free Cholesterol Accumulation and Influences Hepatic Stellate Cell Proliferation and Mitochondrial Respiration Function. Int J Mol Sci 2018; 19:ijms19061678. [PMID: 29874879 PMCID: PMC6032364 DOI: 10.3390/ijms19061678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-β1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3β (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.
Collapse
Affiliation(s)
- Yuan-Hsi Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chung-Kwe Wang
- Department of International Medicine, Taipei City Hospital Ranai Branch, Taipei 106, Taiwan.
| | - Fu-Zhen Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Ya Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
92
|
Nassir F, Arndt JJ, Johnson SA, Ibdah JA. Regulation of mitochondrial trifunctional protein modulates nonalcoholic fatty liver disease in mice. J Lipid Res 2018; 59:967-973. [PMID: 29581157 PMCID: PMC5983392 DOI: 10.1194/jlr.m080952] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial trifunctional protein (MTP) plays a critical role in the oxidation of long-chain fatty acids. We previously reported that aging mice (>9 months old) heterozygous for an MTP defect (MTP+/-) develop nonalcoholic fatty liver disease (NAFLD). We tested whether a high-fat diet (HFD) accelerates NAFLD in young MTP+/-mice, and whether overexpression of the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 3 (SIRT3) deacetylates MTP and improves mitochondrial function and NAFLD. Three-month-old WT and MTP+/- mice were fed HFD (60% cal fat) for 16 weeks and livers were assessed for fatty acid oxidation (FAO) and NAFLD. Compared with WT, MTP+/- mice displayed reduced hepatic SIRT3 levels and reduced FAO, with increased hepatic steatosis and the inflammatory marker CD68. Hepatic overexpression of SIRT3 in HFD-fed MTP+/- mice increased hepatic MTP protein levels at the posttranscriptional level. Immunoprecipitation of MTP from liver mitochondria followed by Western blot with acetyl-lysine antibody showed higher acetylation of MTP in MTP+/- compared with WT mice. Overexpression of SIRT3 in MTP+/- mice significantly reduced the acetylation of MTP compared with β-galactosidase controls, increased mitochondrial FAO, and reduced hepatic steatosis, CD68, and serum ALT levels. Taken together, our data indicate that deacetylation of MTP by SIRT3 improves mitochondrial function and rescues NAFLD in MTP+/- mice.
Collapse
Affiliation(s)
- Fatiha Nassir
- Departments of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO; Nutrition and Exercise Physiology, University of Missouri, Columbia, MO; United States Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
| | - Justin J Arndt
- Departments of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO
| | - Sarah A Johnson
- Departments of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO; United States Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
| | - Jamal A Ibdah
- Departments of Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO; Nutrition and Exercise Physiology, University of Missouri, Columbia, MO; Medical Pharmacology & Physiology, University of Missouri, Columbia, MO; United States Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO.
| |
Collapse
|
93
|
Gwangwa MV, Joubert AM, Visagie MH. Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis. Cell Mol Biol Lett 2018; 23:20. [PMID: 29760743 PMCID: PMC5935986 DOI: 10.1186/s11658-018-0088-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Tumourigenic tissue uses modified metabolic signalling pathways in order to support hyperproliferation and survival. Cancer-associated aerobic glycolysis resulting in lactic acid production was described nearly 100 years ago. Furthermore, increased reactive oxygen species (ROS) and lactate quantities increase metabolic, survival and proliferation signalling, resulting in increased tumourigenesis. In order to maintain redox balance, the cell possesses innate antioxidant defence systems such as superoxide dismutase, catalase and glutathione. Several stimuli including cells deprived of nutrients or failure of antioxidant systems result in oxidative stress and cell death induction. Among the cell death machinery is autophagy, a compensatory mechanism whereby energy is produced from damaged and/or redundant organelles and proteins, which prevents the accumulation of waste products, thereby maintaining homeostasis. Furthermore, autophagy is maintained by several pathways including phosphoinositol 3 kinases, the mitogen-activated protein kinase family, hypoxia-inducible factor, avian myelocytomatosis viral oncogene homolog and protein kinase receptor-like endoplasmic reticulum kinase. The persistent potential of cancer metabolism, redox regulation and the crosstalk with autophagy in scientific investigation pertains to its ability to uncover essential aspects of tumourigenic transformation. This may result in clinical translational possibilities to exploit tumourigenic oxidative status and autophagy to advance our capabilities to diagnose, monitor and treat cancer.
Collapse
Affiliation(s)
- Mokgadi Violet Gwangwa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007 South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007 South Africa
| | - Michelle Helen Visagie
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007 South Africa
| |
Collapse
|
94
|
Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr 2018; 9:247-262. [PMID: 29767698 PMCID: PMC5952932 DOI: 10.1093/advances/nmy007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - William D Green
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - Melinda A Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, VA
| | - Saame Raza Shaikh
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| |
Collapse
|
95
|
Gao W, Du X, Lei L, Wang H, Zhang M, Wang Z, Li X, Liu G, Li X. NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non-alcoholic steatohepatitis. J Cell Mol Med 2018; 22:3408-3422. [PMID: 29602237 PMCID: PMC6010831 DOI: 10.1111/jcmm.13617] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the changes in hepatic oxidative phosphorylation (OXPHOS) complexes (COs) in patients and cows with non‐alcoholic steatohepatitis (NASH) and to investigate the mechanism that links mitochondrial dysfunction and hepatic insulin resistance induced by non‐esterified fatty acids (NEFAs). Patients and cows with NASH displayed high blood NEFAs, TNF‐α and IL‐6 concentrations, mitochondrial dysfunction and insulin resistance. The protein levels of peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), mitofusin‐2 (Mfn‐2) and OXPHOS complexes (human: COI and COIII; cow: COI‐IV) were significantly decreased in patients and cows with NASH. NEFA treatment significantly impaired mitochondrial function and, increased reactive oxygen species (ROS) production, and excessive ROS overactivated the JNK and p38MAPK pathways and induced insulin resistance in cow hepatocytes. PGC‐1α and Mfn‐2 overexpression significantly decreased the NEFA‐induced ROS production and TNF‐α and IL‐6 mRNA expressions, reversed the inhibitory effect of NEFAs on mitochondrial function and attenuated the overactivation of the ROS‐JNK/p38MAPK pathway, alleviated insulin resistance induced by NEFAs in cow hepatocytes and HepG2 cells. These findings indicate that NEFAs induce mitochondrial dysfunction and insulin resistance mediated by the ROS‐JNK/p38MAPK pathway. PGC‐1α or Mfn‐2 overexpression reversed the lipotoxicity of NEFAs on mitochondrial dysfunction and insulin resistance. Our study clarified the mechanism that links hepatic mitochondrial dysfunction and insulin resistance in NASH.
Collapse
Affiliation(s)
- Wenwen Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lin Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The first Hospital, Jilin University, Changchun, Jilin Province, China
| | - Min Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zhe Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
96
|
Melatonin Modulation of Sirtuin-1 Attenuates Liver Injury in a Hypercholesterolemic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 29516009 PMCID: PMC5817311 DOI: 10.1155/2018/7968452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypercholesterolemia increases and exacerbates stress signals leading also to liver damage (LD) and failure. Sirtuin1 (SIRT1) is involved in lifespan extension and it plays an essential role in hepatic lipid metabolism. However, its involvement in liver hypercholesterolemic damage is not yet completely defined. This in vivo study evaluated the role of SIRT1 in the hypercholesterolemic-related LD and, then, investigated how oral supplementation of melatonin, pleiotropic indoleamine, may be protective. Control mice and apolipoprotein E-deficient mice (ApoE−/−) of 6 and 15 weeks of age were treated or not treated with melatonin at the dose of 10 mg/kg/day for 9 weeks. In this study, we evaluated serum biochemical markers, liver SIRT1 expression, and oxidative stress markers. We observed that hypercholesterolemia increased significantly serum cholesterol and triglycerides, reduced significantly liver SIRT1, and, in turn, induced hepatic oxidative stress in untreated ApoE−/− mice with respect to control mice. Interestingly, melatonin treatment improved serum biochemical markers and hepatic morphological impairment and inhibited oxidative stress through its antioxidant properties and also by SIRT1 upregulation. In summary, melatonin oral supplementation may represent a new protective approach to block hypercholesterolemic liver alterations involving also a SIRT1-dependent mechanism.
Collapse
|
97
|
Bjørndal B, Alterås EK, Lindquist C, Svardal A, Skorve J, Berge RK. Associations between fatty acid oxidation, hepatic mitochondrial function, and plasma acylcarnitine levels in mice. Nutr Metab (Lond) 2018; 15:10. [PMID: 29422939 PMCID: PMC5789604 DOI: 10.1186/s12986-018-0241-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background The 4-thia fatty acid tetradecylthiopropionic acid (TTP) is known to inhibit mitochondrial β-oxidation, and can be used as chemically induced hepatic steatosis-model in rodents, while 3-thia fatty acid tetradecylthioacetic acid (TTA) stimulates fatty acid oxidation through activation of peroxisome proliferator activated receptor alpha (PPARα). We wished to determine how these two compounds affected in vivo respiration and mitochondrial efficiency, with an additional goal to elucidate whether mitochondrial function is reflected in plasma acylcarnitine levels. Methods C57BL/6 mice were divided in 4 groups of 10 mice and fed a control low-fat diet, low-fat diets with 0.4% (w/w) TTP, 0.4% TTA or a combination of these two fatty acids for three weeks (n = 10). At sacrifice, β-oxidation and oxidative phosphorylation (OXPHOS) capacity was analysed in fresh liver samples. Hepatic mitochondria were studied using transmission electron microscopy. Lipid classes were measured in plasma, heart and liver, acylcarnitines were measured in plasma, and gene expression was measured in liver. Results The TTP diet resulted in hepatic lipid accumulation, plasma L-carnitine and acetylcarnitine depletion and elevated palmitoylcarnitine and non-esterified fatty acid levels. No significant lipid accumulation was observed in heart. The TTA supplement resulted in enhanced hepatic β-oxidation, accompanied by an increased level of acetylcarnitine and palmitoylcarnitine in plasma. Analysis of mitochondrial respiration showed that TTP reduced oxidative phosphorylation, while TTA increased the maximum respiratory capacity of the electron transport system. Combined treatment with TTP and TTA resulted in a profound stimulation of genes involved in the PPAR-response and L-carnitine metabolism, and partly prevented triacylglycerol accumulation in the liver concomitant with increased peroxisomal β-oxidation and depletion of plasma acetylcarnitines. Despite an increased number of mitochondria in the liver of TTA + TTP fed mice, the OXPHOS capacity was significantly reduced. Conclusion This study indicates that fatty acid β-oxidation directly affects mitochondrial respiratory capacity in liver. As plasma acylcarnitines reflected the reduced mitochondrial β-oxidation in TTP-fed mice, they could be useful tools to monitor mitochondrial function. As mitochondrial dysfunction is a major determinant of metabolic disease, this supports their use as plasma markers of cardiovascular risk in humans. Results however indicate that high PPAR activation obscures the interpretation of plasma acylcarnitine levels. Electronic supplementary material The online version of this article (10.1186/s12986-018-0241-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bodil Bjørndal
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Eva Katrine Alterås
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Carine Lindquist
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,2Department of Heart Disease, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Asbjørn Svardal
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Jon Skorve
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Rolf K Berge
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,2Department of Heart Disease, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
98
|
Systematic integrative analysis of gene expression identifies HNF4A as the central gene in pathogenesis of non-alcoholic steatohepatitis. PLoS One 2017; 12:e0189223. [PMID: 29216278 PMCID: PMC5720788 DOI: 10.1371/journal.pone.0189223] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, and encompasses a spectrum from simple steatosis to steatohepatitis (NASH). There is currently no approved pharmacologic therapy against NASH, partly due to an incomplete understanding of its molecular basis. The goal of this study was to determine the key differentially expressed genes (DEGs), as well as those genes and pathways central to its pathogenesis. We performed an integrative computational analysis of publicly available gene expression data in NASH from GEO (GSE17470, GSE24807, GSE37031, GSE89632). The DEGs were identified using GEOquery, and only the genes present in at least three of the studies, to a total of 190 DEGs, were considered for further analyses. The pathways, networks, molecular interactions, functional analyses were generated through the use of Ingenuity Pathway Analysis (IPA). For selected networks, we computed the centrality using igraph package in R. Among the statistically significant predicted networks (p-val < 0.05), three were of most biological interest: the first is involved in antimicrobial response, inflammatory response and immunological disease, the second in cancer, organismal injury and development and the third in metabolic diseases. We discovered that HNF4A is the central gene in the network of NASH connected to metabolic diseases and that it regulates HNF1A, an additional transcription regulator also involved in lipid metabolism. Therefore, we show, for the first time to our knowledge, that HNF4A is central to the pathogenesis of NASH. This adds to previous literature demonstrating that HNF4A regulates the transcription of genes involved in the progression of NAFLD, and that HNF4A genetic variants play a potential role in NASH progression.
Collapse
|
99
|
[ 18F]-BMS-747158-02PET imaging for evaluating hepatic mitochondrial complex 1dysfunction in a mouse model of non-alcoholic fatty liver disease. EJNMMI Res 2017; 7:96. [PMID: 29209997 PMCID: PMC5716959 DOI: 10.1186/s13550-017-0345-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background Mitochondrial dysfunction is one of the main causes of non-alcohol fatty liver disease (NAFLD). [18F]-BMS-747158-02 (18F-BMS) which was originally developed as a myocardial perfusion imaging agent was reported to bind mitochondrial complex-1 (MC-1). The aim of this study was to investigate the potential use of 18F-BMS for evaluating hepatic MC-1 activity in mice fed a methionine- and choline-deficient (MCD) diet. Male C57BL/6J mice were fed a MCD diet for up to 2 weeks. PET scans with 18F-BMS were performed after 1 and 2 weeks of the MCD diet. 18F-BMS was intravenously injected into mice, and the uptake (standardized uptake value (SUV)) in the liver was determined. The binding specificity for MC-1 was assessed by pre-administration of rotenone, a specific MC-1 inhibitor. Hepatic MC-1 activity was measured using liver homogenates generated after each positron emission tomography (PET) scan. Blood biochemistry and histopathology were also assessed. Results In control mice, hepatic 18F-BMS uptake was significantly inhibited by the pre-injection of rotenone. The uptake of 18F-BMS was significantly decreased after 2 weeks of the MCD diet. The SUV at 30–60 min was well correlated with hepatic MC-1 activity (r = 0.73, p < 0.05). Increases in plasma ALT and AST levels were also noted at 1 and 2 weeks. Mild hepatic steatosis with or without minimal inflammation was histopathologically observed at 1 and 2 weeks in mice liver on the MCD diet. However, inflammation was observed only at 2 weeks in mice on the MCD diet. Conclusions The present study demonstrated that 18F-BMS is a potential PET probe for quantitative imaging of hepatic MC-1 activity and its mitochondrial dysfunction induced by steatosis and inflammation, such as in NAFLD.
Collapse
|
100
|
Liver-specific deletion of RORα aggravates diet-induced nonalcoholic steatohepatitis by inducing mitochondrial dysfunction. Sci Rep 2017; 7:16041. [PMID: 29167529 PMCID: PMC5700103 DOI: 10.1038/s41598-017-16077-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction may play a key role in the progression of steatosis to nonalcoholic steatohepatitis (NASH); however, the molecular mechanism that controls the structure and function of mitochondria in NASH is not clearly understood. Here, we demonstrated that RORα is a regulator of expression of Bnip3 and PGC-1α, and thereby enhances mitochondrial quality. First, we observed that liver-specific RORα knockout mice (RORα-LKO) were more susceptible to high-fat diet-induced NASH compared with control, probably due to mitochondrial dysfunction. Concordantly, mitochondrial fission in response to nutrient stimuli was abolished with downregulation of Bnip3 and phospho-Drp1 in the hepatocytes of RORα-LKO. RORα enhanced oxygen consumption rate and expression of genes associated with mitochondrial quality control. Finally, we observed the positive correlation of the expression levels of Bnip3 and PGC-1α with those of RORα in patients with steatohepatitis. Together, we demonstrated that RORα mediates mitochondrial quality under nutrient-overloaded conditions and propose RORα as a potential therapeutic target in treatment of NASH.
Collapse
|