51
|
O'Donnell JM, Metz L, Swarup I. Surgical Correction of Neuromuscular Scoliosis Secondary to Congenital Zika Syndrome: A Case Report. JBJS Case Connect 2022; 12:01709767-202212000-00016. [PMID: 36302062 DOI: 10.2106/jbjs.cc.22.00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
CASE Congenital Zika syndrome (CZS) has been noted after the South American pandemic of Zika virus which peaked in 2015 to 2016, and the associated sequelae are still being described. Scoliosis has been noted in patients with CZS; however, there is a paucity of literature on the prevalence or management of scoliosis secondary to this condition. We report the case of a 5-year-old girl with severe neuromuscular scoliosis due to CZS that was managed with halo-gravity traction, followed by a growth-friendly construct. CONCLUSION This case report highlights the need for more research focusing on the survivors of the Zika pandemic.
Collapse
Affiliation(s)
| | - Lionel Metz
- University of California-San Francisco, San Francisco, California
- UCSF Benioff Children's Hospital of Oakland, Oakland, California
| | - Ishaan Swarup
- University of California-San Francisco, San Francisco, California
- UCSF Benioff Children's Hospital of Oakland, Oakland, California
| |
Collapse
|
52
|
Freitas LP, Carabali M, Yuan M, Jaramillo-Ramirez GI, Balaguera CG, Restrepo BN, Zinszer K. Spatio-temporal clusters and patterns of spread of dengue, chikungunya, and Zika in Colombia. PLoS Negl Trop Dis 2022; 16:e0010334. [PMID: 35998165 PMCID: PMC9439233 DOI: 10.1371/journal.pntd.0010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/02/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Colombia has one of the highest burdens of arboviruses in South America. The country was in a state of hyperendemicity between 2014 and 2016, with co-circulation of several Aedes-borne viruses, including a syndemic of dengue, chikungunya, and Zika in 2015. Methodology/Principal findings We analyzed the cases of dengue, chikungunya, and Zika notified in Colombia from January 2014 to December 2018 by municipality and week. The trajectory and velocity of spread was studied using trend surface analysis, and spatio-temporal high-risk clusters for each disease in separate and for the three diseases simultaneously (multivariate) were identified using Kulldorff’s scan statistics. During the study period, there were 366,628, 77,345 and 74,793 cases of dengue, chikungunya, and Zika, respectively, in Colombia. The spread patterns for chikungunya and Zika were similar, although Zika’s spread was accelerated. Both chikungunya and Zika mainly spread from the regions on the Atlantic coast and the south-west to the rest of the country. We identified 21, 16, and 13 spatio-temporal clusters of dengue, chikungunya and Zika, respectively, and, from the multivariate analysis, 20 spatio-temporal clusters, among which 7 were simultaneous for the three diseases. For all disease-specific analyses and the multivariate analysis, the most-likely cluster was identified in the south-western region of Colombia, including the Valle del Cauca department. Conclusions/Significance The results further our understanding of emerging Aedes-borne diseases in Colombia by providing useful evidence on their potential site of entry and spread trajectory within the country, and identifying spatio-temporal disease-specific and multivariate high-risk clusters of dengue, chikungunya, and Zika, information that can be used to target interventions. Dengue, chikungunya, and Zika are diseases transmitted to humans by the bite of infected Aedes mosquitoes. Between 2014 and 2016 chikungunya and Zika viruses started causing outbreaks in Colombia, one of the countries historically most affected by dengue. We used case counts of the diseases by municipality and week to study the spread trajectory of chikungunya and Zika within Colombia’s territory, and to identify space-time high-risk clusters, i.e., the areas and time periods that dengue, chikungunya, and Zika were more present. Chikungunya and Zika spread similarly in Colombia, but Zika spread faster. The Atlantic coast, a famous touristic destination in the country, was likely the place of entry of chikungunya and Zika in Colombia. The south-western region was identified as a high-risk cluster for all three diseases in separate and simultaneously. This region has a favorable climate for the Aedes mosquitoes and other characteristics that facilitate the diseases’ transmission, such as social deprivation and high population mobility. Our results provide useful information on the locations that should be prioritized for interventions to prevent the entry of new diseases transmitted by Aedes and to reduce the burden of dengue, chikungunya and Zika where they are established.
Collapse
Affiliation(s)
- Laís Picinini Freitas
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche en Santé Publique, Montreal, Quebec, Canada
| | - Mabel Carabali
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche en Santé Publique, Montreal, Quebec, Canada
| | - Mengru Yuan
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Berta N. Restrepo
- Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| | - Kate Zinszer
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche en Santé Publique, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
53
|
‘Live with the Virus’ Narrative and Pandemic Amnesia in the Governance of COVID-19. SOCIAL SCIENCES-BASEL 2022. [DOI: 10.3390/socsci11080340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Political leaders have commonly used the phrase ‘learn to live with the virus’ to explain to citizens how they should respond to the COVID-19 pandemic. I consider how the ‘live with the virus’ narrative perpetrates pandemic amnesia by refusing what is known about pandemic-related inequities and the strategies that can be used to overcome these effects. Advice to ‘live with the virus’ helps to further austerity public policy and therefore individualises the social and health burdens of post pandemic life. ‘Live with the virus’ asks citizens to look only to their own futures, which are political strategies that might work for privileged individuals who have the capacity to protect their health, but less well for those with limited personal resources. I draw on Esposito’s framing of affirmative biopolitics and scholarship on how excluded communities have built for themselves health-sustaining commons in responses to pandemic threats to health. I argue that creating opportunities for a ‘COVID-19 commons’ that can enlarge capacity for citizenly deliberation on how they have been governed and other pandemic related matters is vital for the development of more ethical and equitable post-pandemic politics.
Collapse
|
54
|
Islamuddin M, Ali A, Khan WH, Ali A, Hasan SK, Abdullah M, Kato K, Abdin MZ, Parveen S. Development of Highly Sensitive Sandwich ELISA for the Early-Phase Diagnosis of Chikungunya Virus Utilizing rE2-E1 Protein. Infect Drug Resist 2022; 15:4065-4078. [PMID: 35924014 PMCID: PMC9342874 DOI: 10.2147/idr.s347545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Chikungunya is caused by an alpha virus transmitted to humans by an infected mosquito. Infection is generally considered to be self-limiting and non-critical. Chikungunya infection may be diagnosed by severe joint pain with fever, but it is difficult to diagnose because the symptoms of chikungunya are common to many pathogens, including dengue fever. Diagnosis mainly depends on viral culture, reverse transcriptase polymerase chain reaction (RT-PCR), and IgM ELISA. Early and accurate diagnosis of the virus can be achieved by the application of PCR methods, but the high cost and the need for a thermal cycler restrict the use of such methods. On the other hand, antibody-based IgM ELISA is considered to be inexpensive, but antibodies against chikungunya virus (CHIKV) only develop after 4 days of infection, so it has limited application in the earlier diagnosis of viral infection and the management of patients. Because of these challenges, a simple antigen-based sensitive, specific, and rapid detection method is required for the early and accurate clinical diagnosis of chikungunya. Methods The amino acid sequence of CHIKV ectodomain E1 and E2 proteins was analyzed using bioinformatics tools to determine the antigenic residues, particularly the B-cell epitopes and their characteristics. Recombinant E2-E1 CHIKV antigen was used for the development of polyclonal antibodies in hamsters and IgG was purified. Serological tests of 96 CHIKV patients were conducted by antigen-capture ELISA using primary antibodies raised against rCHIKV E2-E1 in hamsters and human anti-CHIKV antibodies. Results We observed high specificity and sensitivity, of 100% and 95.8%, respectively, and these values demonstrate the efficiency of the test as a clinical diagnostic tool. There was no cross-reactivity with samples taken from dengue patients. Discussion Our simple and sensitive sandwich ELISA for the early-phase detection of CHIKV infection may be used to improve the diagnosis of chikungunya.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Correspondence: Mohammad Islamuddin; Shama Parveen, Email ;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Wajihul Hasan Khan
- Molecular Virology Lab, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Syed Kazim Hasan
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Abdullah
- Microbiology Laboratory, Ansari Health Center, Jamia Millia Islamia, New Delhi 110025, India
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Malik Zainul Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Hamdard University, New Delhi 110026, India
| | - Shama Parveen
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
55
|
Tsuji I, Vang F, Dominguez D, Karwal L, Sanjali A, Livengood JA, Davidson E, Fouch ME, Doranz BJ, Das SC, Dean HJ. Somatic Hypermutation and Framework Mutations of Variable Region Contribute to Anti-Zika Virus-Specific Monoclonal Antibody Binding and Function. J Virol 2022; 96:e0007122. [PMID: 35575481 PMCID: PMC9175631 DOI: 10.1128/jvi.00071-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.
Collapse
Affiliation(s)
- Isamu Tsuji
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Fue Vang
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - David Dominguez
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Ankita Sanjali
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Jill A. Livengood
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | | | | | | | - Subash C. Das
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Hansi J. Dean
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| |
Collapse
|
56
|
Sigle LT, Jones M, Novelo M, Ford SA, Urakova N, Lymperopoulos K, Sayre RT, Xi Z, Rasgon JL, McGraw EA. Assessing Aedes aegypti candidate genes during viral infection and Wolbachia-mediated pathogen blocking. INSECT MOLECULAR BIOLOGY 2022; 31:356-368. [PMID: 35112745 PMCID: PMC9081237 DOI: 10.1111/imb.12764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
One approach to control dengue virus transmission is the symbiont Wolbachia, which limits viral infection in mosquitoes. Despite plans for its widespread use in Aedes aegypti, Wolbachia's mode of action remains poorly understood. Many studies suggest that the mechanism is likely multifaceted, involving aspects of immunity, cellular stress and nutritional competition. A previous study from our group used artificial selection to identify a new mosquito candidate gene related to viral blocking; alpha-mannosidase-2a (alpha-Mann-2a) with a predicted role in protein glycosylation. Protein glycosylation pathways tend to be involved in complex host-viral interactions; however, the function of alpha-mannosidases has not been described in mosquito-virus interactions. We examined alpha-Mann-2a expression in response to virus and Wolbachia infections and whether reduced gene expression, caused by RNA interference, affected viral loads. We show that dengue virus (DENV) infection affects the expression of alpha-Mann-2a in a tissue- and time-dependent manner, whereas Wolbachia infection had no effect. In the midgut, DENV prevalence increased following knockdown of alpha-Mann-2a expression in Wolbachia-free mosquitoes, suggesting that alpha-Mann-2a interferes with infection. Expression knockdown had the same effect on the togavirus chikungunya virus, indicating that alpha-Mann-2a may have broad antivirus effects in the midgut. Interestingly, we were unable to knockdown the expression in Wolbachia-infected mosquitoes. We also provide evidence that alpha-Mann-2a may affect the transcriptional level of another gene predicted to be involved in viral blocking and cell adhesion; cadherin87a. These data support the hypothesis that glycosylation and adhesion pathways may broadly be involved in viral infection in Ae. aegypti.
Collapse
Affiliation(s)
- Leah T. Sigle
- Department of Entomology and Center for Infectious Disease DynamicsThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Matthew Jones
- Department of Entomology and Center for Infectious Disease DynamicsThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Mario Novelo
- Department of Entomology and Center for Infectious Disease DynamicsThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Suzanne A. Ford
- Department of Entomology and Center for Infectious Disease DynamicsThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Nadya Urakova
- Department of Entomology and Center for Infectious Disease DynamicsThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | | | - Zhiyong Xi
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
| | - Jason L. Rasgon
- Department of Entomology and Center for Infectious Disease DynamicsThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Elizabeth A. McGraw
- Department of Biology and Center for Infectious Disease DynamicsThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
57
|
Alam I, Batool K, Idris AL, Tan W, Guan X, Zhang L. Role of Lectin in the Response of Aedes aegypti Against Bt Toxin. Front Immunol 2022; 13:898198. [PMID: 35634312 PMCID: PMC9136036 DOI: 10.3389/fimmu.2022.898198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Aedes aegypti is one of the world’s most dangerous mosquitoes, and a vector of diseases such as dengue fever, chikungunya virus, yellow fever, and Zika virus disease. Currently, a major global challenge is the scarcity of antiviral medicine and vaccine for arboviruses. Bacillus thuringiensis var israelensis (Bti) toxins are used as biological mosquito control agents. Endotoxins, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, and Cyt1Aa, are toxic to mosquitoes. Insect eradication by Cry toxin relies primarily on the interaction of cry toxins with key toxin receptors, such as aminopeptidase (APN), alkaline phosphatase (ALP), cadherin (CAD), and ATP-binding cassette transporters. The carbohydrate recognition domains (CRDs) of lectins and domains II and III of Cry toxins share similar structural folds, suggesting that midgut proteins, such as C-type lectins (CTLs), may interfere with interactions among Cry toxins and receptors by binding to both and alter Cry toxicity. In the present review, we summarize the functional role of C-type lectins in Ae. aegypti mosquitoes and the mechanism underlying the alteration of Cry toxin activity by CTLs. Furthermore, we outline future research directions on elucidating the Bti resistance mechanism. This study provides a basis for understanding Bti resistance, which can be used to develop novel insecticides.
Collapse
Affiliation(s)
- Intikhab Alam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aisha Lawan Idris
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Lingling Zhang,
| |
Collapse
|
58
|
Intranasal Immunization with Zika Virus Envelope Domain III-Flagellin Fusion Protein Elicits Systemic and Mucosal Immune Responses and Protection against Subcutaneous and Intravaginal Virus Challenges. Pharmaceutics 2022; 14:pharmaceutics14051014. [PMID: 35631599 PMCID: PMC9144594 DOI: 10.3390/pharmaceutics14051014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Zika virus (ZIKV) infections in humans are mainly transmitted by the mosquito vectors, but human-to-human sexual transmission is also another important route. Developing a ZIKV mucosal vaccine that can elicit both systemic and mucosal immune responses is of particular interest. In this study, we constructed a recombinant ZIKV envelope DIII (ZDIII) protein genetically fused with Salmonella typhimurium flagellin (FliC-ZDIII) as a novel mucosal antigen for intranasal immunization. The results indicated that the FliC-ZDIII fusion proteins formulated with E. coli heat-labile enterotoxin B subunit (LTIIb-B5) adjuvant greatly increased the ZDIII-specific IgG, IgA, and neutralizing titers in sera, and the ZDIII-specific IgA titers in bronchoalveolar lavage and vaginal fluids. Protective immunity was further assessed by subcutaneous and intravaginal ZIKV challenges. The second-generation FliCΔD3-2ZDIII was shown to result in a reduced titer of anti-FliC IgG antibodies in sera and still retained the same levels of serum IgG, IgA, and neutralizing antibodies and mucosal IgA antibodies without compromising the vaccine antigenicity. Therefore, intranasal immunization with FliCΔD3-2ZDIII fusion proteins formulated with LTIIb-B5 adjuvant elicited the greatest protective immunity against subcutaneous and intravaginal ZIKV challenges. Our findings indicated that the combination of FliCΔD3-2ZDIII fusion proteins and LTIIb-B5 adjuvant for intranasal immunization can be used for developing ZIKV mucosal vaccines.
Collapse
|
59
|
Siperstein A, Marzec S, Fritz ML, Holzapfel CM, Bradshaw WE, Armbruster PA, Meuti ME. Conserved molecular pathways underlying biting in two divergent mosquito genera. Evol Appl 2022; 15:878-890. [PMID: 35603026 PMCID: PMC9108309 DOI: 10.1111/eva.13379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mosquitoes transmit a wide variety of devastating pathogens when they bite vertebrate hosts and feed on their blood. However, three entire mosquito genera and many individual species in other genera have evolved a nonbiting life history in which blood is not required to produce eggs. Our long-term goal is to develop novel interventions that reduce or eliminate the biting behavior in vector mosquitoes. A previous study used biting and nonbiting populations of a nonvector mosquito, Wyeomyia smithii, as a model to uncover the transcriptional basis of the evolutionary transition from a biting to a nonbiting life history. Herein, we ask whether the molecular pathways that were differentially expressed due to differences in biting behavior in W. smithii are also differentially expressed between subspecies of Culex pipiens that are obligate biting (Culex pipiens pipiens) and facultatively nonbiting (Culex pipiens molestus). Results from RNAseq of adult heads show dramatic upregulation of transcripts in the ribosomal protein pathway in biting C. pipiens, recapitulating the results in W. smithii, and implicating the ancient and highly conserved ribosome as the intersection to understanding the evolutionary and physiological basis of blood feeding in mosquitoes. Biting Culex also strongly upregulate energy production pathways, including oxidative phosphorylation and the citric acid (TCA) cycle relative to nonbiters, a distinction that was not observed in W. smithii. Amino acid metabolism pathways were enriched for differentially expressed genes in biting versus nonbiting Culex. Relative to biters, nonbiting Culex upregulated sugar metabolism and transcripts contributing to reproductive allocation (vitellogenin and cathepsins). These results provide a foundation for developing strategies to determine the natural evolutionary transition between a biting and nonbiting life history in vector mosquitoes.
Collapse
Affiliation(s)
- Alden Siperstein
- Department of EntomologyThe Ohio State UniversityColumbusOhioUSA
| | - Sarah Marzec
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Megan L. Fritz
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Christina M. Holzapfel
- Laboratory of Evolutionary GeneticsInstitute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - William E. Bradshaw
- Laboratory of Evolutionary GeneticsInstitute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | | | - Megan E. Meuti
- Department of EntomologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
60
|
Lima MLD, Cabral ÁS, Bittar C, Falleiros Junior LR, Guerra LHA, Carneiro BM, de Souza Ferreira LC, Nogueira ML, Taboga SR, Calmon MF, Rahal P. Early infection of Zika virus in the male reproductive system of AG129 mice: molecular and immunohistochemical evaluation. Braz J Microbiol 2022; 53:1279-1287. [PMID: 35460509 PMCID: PMC9433484 DOI: 10.1007/s42770-022-00761-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Sexual transmission of Zika virus (ZIKV), an important arbovirus, and the virus persistence in semen raise several questions about how and where it circulates in the male reproductive system (MRS). Several studies reported detection of the virus in testes, epididymis, and prostate at 5 days post-infection (dpi) or more in animal models. In the present study, we investigated the interactions of ZIKV with mouse MRS using the AG129 strain, a ZIKV permissive immunodeficient mouse strain, at two dpi. Viral RNA was detected in blood, testes, epididymis, and prostatic complexes (prostate and seminal vesicles). Immunohistochemical (IHC) analyses, based on the envelope protein, showed an early infection in organs of MRS since ZIKV positive antigens were detected in cells within or surrounding blood vessels, Sertoli, and germ cells in testes and epithelial cells in epididymis and prostate. Positive antigens for NS5 protein, the virus RNA-dependent RNA polymerase, were also detected by IHC in these organs and circulating leukocytes, suggesting that the virus replicates in these sites as early as 2 days post-infection. Analysis of the early stages of ZIKV infection in MRS may improve the current knowledge about this issue and contribute to the development of therapies directed to the infection at this site.
Collapse
Affiliation(s)
- Maria Letícia Duarte Lima
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Ágata Silva Cabral
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Cintia Bittar
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil.
| | - Luiz Roberto Falleiros Junior
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Bruno Moreira Carneiro
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
- Institute of Exact and Natural Science, Rondonópolis Federal University (UFR), Rondonópolis, Mato Grosso, Brazil
| | | | - Maurício Lacerda Nogueira
- Department of Infectious, Dermatological and Parasitic Infections, São José Do Rio Preto Medical School (FAMERP), São José Do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Marilia Freitas Calmon
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| |
Collapse
|
61
|
Mask E, Hodara VL, Callery JE, Parodi LM, Obregon-Perko V, Yagi S, Glenn J, Frost P, Clemmons E, Patterson JL, Cox LA, Giavedoni LD. Molecular Approaches for the Validation of the Baboon as a Nonhuman Primate Model for the Study of Zika Virus Infection. Front Cell Infect Microbiol 2022; 12:880860. [PMID: 35493734 PMCID: PMC9046911 DOI: 10.3389/fcimb.2022.880860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Nonhuman primates (NHP) are particularly important for modeling infections with viruses that do not naturally replicate in rodent cells. Zika virus (ZIKV) has been responsible for sporadic epidemics, but in 2015 a disseminated outbreak of ZIKV resulted in the World Health Organization declaring it a global health emergency. Since the advent of this last epidemic, several NHP species, including the baboon, have been utilized for modeling and understanding the complications of ZIKV infection in humans; several health issues related to the outcome of infection have not been resolved yet and require further investigation. This study was designed to validate, in baboons, the molecular signatures that have previously been identified in ZIKV-infected humans and macaque models. We performed a comprehensive molecular analysis of baboons during acute ZIKV infection, including flow cytometry, cytokine, immunological, and transcriptomic analyses. We show here that, similar to most human cases, ZIKV infection of male baboons tends to be subclinical, but is associated with a rapid and transient antiviral interferon-based response signature that induces a detectable humoral and cell-mediated immune response. This immunity against the virus protects animals from challenge with a divergent ZIKV strain, as evidenced by undetectable viremia but clear anamnestic responses. These results provide additional support for the use of baboons as an alternative animal model to macaques and validate omic techniques that could help identify the molecular basis of complications associated with ZIKV infections in humans.
Collapse
Affiliation(s)
- Emma Mask
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Vida L. Hodara
- Southwest National Primate Research Center, San Antonio, TX, United States,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jessica E. Callery
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Laura M. Parodi
- Southwest National Primate Research Center, San Antonio, TX, United States,Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Shigeo Yagi
- California Department of Public Health, Richmond, CA, United States
| | - Jeremy Glenn
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Patrice Frost
- Southwest National Primate Research Center, San Antonio, TX, United States
| | - Elizabeth Clemmons
- Southwest National Primate Research Center, San Antonio, TX, United States
| | | | - Laura A. Cox
- Southwest National Primate Research Center, San Antonio, TX, United States,Center for Precision Medicine, Wake Forest Health Sciences University, Winston Salem, NC, United States
| | - Luis D. Giavedoni
- Department of Biology, Trinity University, San Antonio, TX, United States,Southwest National Primate Research Center, San Antonio, TX, United States,*Correspondence: Luis D. Giavedoni,
| |
Collapse
|
62
|
Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater Sci Eng 2022; 8:964-1000. [PMID: 35229605 DOI: 10.1021/acsbiomaterials.1c00710] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphene- and carbon-based nanomaterials are key materials to develop advanced biosensors for the sensitive detection of many biomarkers owing to their unique properties. Biosensors have attracted increasing interest because they allow efficacious, sensitive, selective, rapid, and low-cost diagnosis. Biosensors are analytical devices based on receptors for the process of detection and transducers for response measuring. Biosensors can be based on electrochemical, piezoelectric, thermal, and optical transduction mechanisms. Early virus identification provides critical information about potentially effective and selective therapies, extends the therapeutic window, and thereby reduces morbidity. The sensitivity and selectivity of graphene can be amended via functionalizing it or conjoining it with further materials. Amendment of the optical and electrical features of the hybrid structure by introducing appropriate functional groups or counterparts is especially appealing for quick and easy-to-use virus detection. Various techniques for the electrochemical detection of viruses depending on antigen-antibody interactions or DNA hybridization are discussed in this work, and the reasons behind using graphene and related carbon nanomaterials for the fabrication are presented and discussed. We review the existing state-of-the-art directions of graphene-based classifications for detecting DNA, protein, and hormone biomarkers and summarize the use of the different biosensors to detect several diseases, like cancer, Alzheimer's disease, and diabetes, to sense numerous viruses, including SARS-CoV-2, human immunodeficiency virus, rotavirus, Zika virus, and hepatitis B virus, and to detect the recent pandemic virus COVID-19. The general concepts, mechanisms of action, benefits, and disadvantages of advanced virus biosensors are discussed to afford beneficial evidence of the creation and manufacture of innovative virus biosensors. We emphasize that graphene-based nanomaterials are ideal candidates for electrochemical biosensor engineering due to their special and tunable physicochemical properties.
Collapse
Affiliation(s)
- Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Esraa Samy Abu Serea
- Chemistry and Biochemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Reem Essam Salah-Eldin
- Chemistry and Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Miar Khaled Ali
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11422 Cairo, Egypt
| | - Senentxu Lanceros-Méndez
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
63
|
Yu X, Cheng G. Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses 2022; 14:v14020435. [PMID: 35216028 PMCID: PMC8878277 DOI: 10.3390/v14020435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) and Togaviridae viruses, such as chikungunya virus (CHIKV). Several factors may have contributed to the recent re-emergence and spread of mosquito-borne viral diseases. Among these important causes are the evolution of mosquito-borne viruses and the genetic mutations that make them more adaptive and virulent, leading to widespread epidemics. RNA viruses tend to acquire genetic diversity due to error-prone RNA-dependent RNA polymerases, thus promoting high mutation rates that support adaptation to environmental changes or host immunity. In this review, we discuss recent findings on the adaptive evolution of mosquito-borne viruses and their impact on viral infectivity, pathogenicity, vector fitness, transmissibility, epidemic potential and disease emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
64
|
Tempfer C. [Vaccinations for pregnant women and women attempting to become pregnant]. GYNAKOLOGISCHE ENDOKRINOLOGIE 2022; 20:93-100. [PMID: 35125986 PMCID: PMC8804669 DOI: 10.1007/s10304-022-00439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Infectious diseases are a potential source of maternal and fetal morbidity and mortality. Every pregnant woman, as well as women actively attempting to become pregnant, should seek specific counselling regarding immunization recommendations. If pregnant women or women attempting to become pregnant plan long-distance travel, immunization requirements should be discussed, especially if their travel destination is within an area endemic for diseases such as malaria, yellow fever, tuberculosis, hepatitis, human immunodeficiency virus-associated diseases, leishmaniosis, toxoplasmosis, and Japanese encephalitis. In general, toxoid vaccinations, inactivated vaccinations, and immunoglobulins can be safely administered during pregnancy, whereas live vaccinations are contraindicated. Recommended vaccinations during pregnancy include tetanus, diphtheria, and pertussis in the case of insufficient immunization status, as well as the seasonal influenza vaccination and-during the current pandemic-coronavirus disease 19 (COVID-19) vaccination in the 2nd or 3rd trimester. Specific travel vaccinations are those against rotavirus, tetanus, diphtheria, pertussis, Haemophilus influenzae type B, polio, hepatitis B, pneumococcus, meningococcus, measles, mumps, rubella, varicella, human papilloma virus (HPV), and influenza (if not already properly vaccinated). In addition, hepatitis A, yellow fever, and polio are recommended in certain countries with endemic areas according to World Health Organization specifications. Some countries may have additional vaccination regulations regarding cholera and meningococcus. Vaccinations "per indication" are required if the travel destination is an area with specific locally increased risks.
Collapse
Affiliation(s)
- Clemens Tempfer
- Klinik für Frauenheilkunde, Marien Hospital Herne – Universitätsklinikum der Ruhr-Universität Bochum, Hölkeskampring 40, 44625 Herne, Deutschland
| |
Collapse
|
65
|
Antigenic escape selects for the evolution of higher pathogen transmission and virulence. Nat Ecol Evol 2022; 6:51-62. [PMID: 34949816 PMCID: PMC9671278 DOI: 10.1038/s41559-021-01603-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Despite the propensity for complex and non-equilibrium dynamics in nature, eco-evolutionary analytical theory typically assumes that populations are at equilibria. In particular, pathogens often show antigenic escape from host immune defences, leading to repeated epidemics, fluctuating selection and diversification, but we do not understand how this impacts the evolution of virulence. We model the impact of antigenic drift and escape on the evolution of virulence in a generalized pathogen and apply a recently introduced oligomorphic methodology that captures the dynamics of the mean and variance of traits, to show analytically that these non-equilibrium dynamics select for the long-term persistence of more acute pathogens with higher virulence. Our analysis predicts both the timings and outcomes of antigenic shifts leading to repeated epidemics and predicts the increase in variation in both antigenicity and virulence before antigenic escape. There is considerable variation in the degree of antigenic escape that occurs across pathogens and our results may help to explain the difference in virulence between related pathogens including, potentially, human influenzas. Furthermore, it follows that these pathogens will have a lower R0, with clear implications for epidemic behaviour, endemic behaviour and control. More generally, our results show the importance of examining the evolutionary consequences of non-equilibrium dynamics.
Collapse
|
66
|
Dias ÍKR, Martins RMG, Sobreira CLDS, Rocha RMGS, Lopes MDSV. Ações educativas de enfrentamento ao Aedes Aegypti: revisão integrativa. CIENCIA & SAUDE COLETIVA 2022; 27:231-242. [DOI: 10.1590/1413-81232022271.33312020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Resumo Objetivou sintetizar os estudos, publicados na literatura cientifica, que abordem estratégias de enfrentamento às arboviroses mediante ações educativas. Os dados foram coletados nas bases de dados: LILACS, BDENF e MEDLINE utilizando os descritores “Educação em Saúde” e “Aedes” empregando o operador booleano “AND”. Foram encontrados 242 estudos, dos quais após aplicação dos critérios de inclusão e exclusão, 14 foram incluídos na revisão. Os dados foram analisados utilizando a abordagem qualitativa. Foram identificadas quatro categorias: ações de enfrentamento vetorial mediante capacitação da comunidade; mobilização social em torno do combate às arboviroses; combate vetorial a partir de ações educativas associadas ao uso de controle biológico; ações integradas de enfrentamento às arboviroses. Infere-se que a educação em saúde é um elemento indispensável para o enfrentamento às arboviroses que deverá ser implementada de forma conjunta e articuladas às demais estratégia de combate vetorial.
Collapse
|
67
|
Caldwell M, Boruah AP, Thakur KT. Acute neurologic emerging flaviviruses. Ther Adv Infect Dis 2022; 9:20499361221102664. [PMID: 35719177 PMCID: PMC9198421 DOI: 10.1177/20499361221102664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
The COVID-19 pandemic has shed light on the challenges we face as a global society in preventing and containing emerging and re-emerging pathogens. Multiple intersecting factors, including environmental changes, host immunological factors, and pathogen dynamics, are intimately connected to the emergence and re-emergence of communicable diseases. There is a large and expanding list of communicable diseases that can cause neurological damage, either through direct or indirect routes. Novel pathogens of neurotropic potential have been identified through advanced diagnostic techniques, including metagenomic next-generation sequencing, but there are also known pathogens which have expanded their geographic distribution to infect non-immune individuals. Factors including population growth, climate change, the increase in animal and human interface, and an increase in international travel and trade are contributing to the expansion of emerging and re-emerging pathogens. Challenges exist around antimicrobial misuse giving rise to antimicrobial-resistant infectious neurotropic organisms and increased susceptibility to infection related to the expanded use of immunomodulatory treatments. In this article, we will review key concepts around emerging and re-emerging pathogens and discuss factors associated with neurotropism and neuroinvasion. We highlight several neurotropic pathogens of interest, including West Nile virus (WNV), Zika Virus, Japanese Encephalitis Virus (JEV), and Tick-Borne Encephalitis Virus (TBEV). We emphasize neuroinfectious diseases which impact the central nervous system (CNS) and focus on flaviviruses, a group of vector-borne pathogens that have expanded globally in recent years and have proven capable of widespread outbreak.
Collapse
Affiliation(s)
- Marissa Caldwell
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Abhilasha P. Boruah
- Department of Neurology, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital (CUIMC/NYP), New York, NY, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kiran T. Thakur
- Division of Critical Care and Hospitalist Neurology, Department of Neurology, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital (CUIMC/NYP), 177 Fort Washington Avenue, Milstein Hospital, 8GS-300, New York, NY 10032, USA
| |
Collapse
|
68
|
Angina J, Bachhu A, Talati E, Talati R, Rychtář J, Taylor D. Game-Theoretical Model of the Voluntary Use of Insect Repellents to Prevent Zika Fever. DYNAMIC GAMES AND APPLICATIONS 2022; 12:133-146. [PMID: 35127230 PMCID: PMC8800840 DOI: 10.1007/s13235-021-00418-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 05/14/2023]
Abstract
Zika fever is an emerging mosquito-borne disease. While it often causes no or only mild symptoms that are similar to dengue fever, Zika virus can spread from a pregnant woman to her baby and cause severe birth defects. There is no specific treatment or vaccine, but the disease can be mitigated by using several control strategies, generally focusing on the reduction in mosquitoes or mosquito bites. In this paper, we model Zika virus transmission and incorporate a game-theoretical approach to study a repeated population game of DEET usage to prevent insect bites. We show that the optimal use effectively leads to disease elimination. This result is robust and not significantly dependent on the cost of the insect repellents.
Collapse
Affiliation(s)
- Jabili Angina
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012 USA
| | - Anish Bachhu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012 USA
| | - Eesha Talati
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012 USA
| | - Rishi Talati
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012 USA
| | - Jan Rychtář
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014 USA
| | - Dewey Taylor
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014 USA
| |
Collapse
|
69
|
Alvarez MJR, Hasanzad M, Meybodi HRA, Sarhangi N. Precision Medicine in Infectious Disease. PRECISION MEDICINE IN CLINICAL PRACTICE 2022:221-257. [DOI: 10.1007/978-981-19-5082-7_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
70
|
Lin CS, Huang SH, Yan BY, Lai HC, Lin CW. Effective Antiviral Activity of the Tyrosine Kinase Inhibitor Sunitinib Malate against Zika Virus. Infect Chemother 2021; 53:730-740. [PMID: 34951532 PMCID: PMC8731257 DOI: 10.3947/ic.2021.0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Zika virus (ZIKV), a mosquito-borne flavivirus, causes the outbreaks of Latin America in 2015 - 2016, with the incidence of neurological complications. Sunitinib malate, an orally bioavailable malate salt of the tyrosine kinase inhibitor, is suggested as a broad-spectrum antiviral agent against emerging viruses like severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Materials and Methods This study investigated the antiviral efficacy and antiviral mechanisms of sunitinib malate against ZIKV infection using cytopathic effect reduction, virus yield, and time-of-addition assays. Results Sunitinib malate concentration-dependently reduced ZIKV-induced cytopathic effect, the expression of viral proteins, and ZIKV yield in supernatant with 50% inhibitory concentration (IC50) value of 0.015 μM, and the selectivity index of greater than 100 against ZIKV infection, respectively. Sunitinib malate had multiple antiviral actions during entry and post-entry stages of ZIKV replication. Sunitinib malate treatment at entry stage significantly reduced the levels of ZIKV RNA replication with the reduction of (+) RNA to (-) RNA ratio and the production of new intracellular infectious particles in infected cells. The treatment at post-entry stage caused a concentration-dependent increase in the levels of ZIKV (+) RNA and (-) RNA in infected cells, along with enlarging the ratio of (+) RNA to (-) RNA, but caused a pointed increase in the titer of intracellular infectious particles by 0.01 and 0.1 μM, and a substantial decrease in the titer of intracellular infectious particles by 1 μM. Conclusion The study discovered the antiviral actions of sunitinib malate against ZIKV infection, demonstrating a repurposed, host-targeted approach to identify potential antiviral drugs for treating emerging and global viral diseases.
Collapse
Affiliation(s)
- Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Su-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Bo-Yu Yan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
71
|
Francis S, Frank C, Buchanan L, Green S, Stennett-Brown R, Gordon-Strachan G, Rubio-Palis Y, Grant C, Alexander-Lindo RL, Nwokocha C, Robinson D, Delgoda R. Challenges in the control of neglected insect vector diseases of human importance in the Anglo-Caribbean. One Health 2021; 13:100316. [PMID: 34485673 PMCID: PMC8405964 DOI: 10.1016/j.onehlt.2021.100316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Neglected tropical diseases (NTDs) in developing countries like the Caribbean, negatively affect multiple income-generating sectors, including the tourism industry upon which island states are highly dependent. Insect-transmitted NTDs include, but are not limited to, malaria, dengue and lymphatic filariasis. Control measures for these disease, are often ignored because of the associated cost. Many of the developing country members are thus retained in a financially crippling cycle, balancing the cost of prophylactic measures with that of controlling an outbreak.The purpose of the paper is to bring awareness to NTDs transmitted by insects of importance to humans, and to assess factors affecting such control, in the English-speaking Caribbean. METHOD Comprehensive literature review on reports pertaining to NTDs transmitted by insects in the Caribbean and Latin America was conducted. Data search was carried out on PubMed, and WHO and PAHO websites. RESULTS AND CONCLUSION Potential risk factors for NTDs transmitted by arthropods in the English-speaking Caribbean are summarised. The mosquito appears to be the main insect-vector of human importance within the region of concern. Arthropod-vectors of diseases of veterinary importance are also relevant because they affect the livelihood of farmers, in highly agriculture based economies. Other NTDs may also be in circulation gauged by the presence of antibodies in Caribbean individuals. However, routine diagnostic tests for specific diseases are expensive and tests may not be conducted when diseases are not prevalent in the population. It appears that only a few English-speaking Caribbean countries have examined secondary reservoirs of pathogens or assessed the effectivity of their insect control methods. As such, disease risk assessment appears incomplete. Although continuous control is financially demanding, an integrated and multisectoral approach might help to deflect the cost. Such interventions are now being promoted by health agencies within the region and various countries are creating and exploring the use of novel tools to be incorporated in their insect-vector control programmes.
Collapse
Affiliation(s)
- Sheena Francis
- Natural Products Institute, University of the West Indies, Mona, Jamaica
- Mosquito Control Research Unit, University of the West Indies, Jamaica
| | - Chelsea Frank
- Natural Products Institute, University of the West Indies, Mona, Jamaica
- Mosquito Control Research Unit, University of the West Indies, Jamaica
| | - Luke Buchanan
- Mona Geoinformatics Institute, University of the West Indies, Mona, Jamaica
| | - Sean Green
- Department of Life Sciences, University of the West Indies, Mona, Jamaica
| | - Roxann Stennett-Brown
- Department of Physics, University of the West Indies, Mona, Jamaica
- Mosquito Control Research Unit, University of the West Indies, Jamaica
| | - Georgiana Gordon-Strachan
- Caribbean Institute for Health Research, University of the West Indies, Mona, Jamaica
- Mosquito Control Research Unit, University of the West Indies, Jamaica
| | - Yasmin Rubio-Palis
- Facultad de Ciencias de la Salud, sede Aragua, Universidad de Carabobo, Maracay, Venezuela
| | - Charles Grant
- International Centre for Environmental and Nuclear Sciences, University of the West Indies, Mona, Jamaica
- Mosquito Control Research Unit, University of the West Indies, Jamaica
| | - Ruby Lisa Alexander-Lindo
- Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica
- Mosquito Control Research Unit, University of the West Indies, Jamaica
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, University of the West Indies, Mona, Jamaica
- Mosquito Control Research Unit, University of the West Indies, Jamaica
| | - Dwight Robinson
- Department of Life Sciences, University of the West Indies, Mona, Jamaica
- Mosquito Control Research Unit, University of the West Indies, Jamaica
| | - Rupika Delgoda
- Natural Products Institute, University of the West Indies, Mona, Jamaica
- Mosquito Control Research Unit, University of the West Indies, Jamaica
| |
Collapse
|
72
|
Godoy RSM, Felix LDS, Orfanó ADS, Chaves BA, Nogueira PM, Costa BDA, Soares AS, Oliveira CCA, Nacif-Pimenta R, Silva BM, Duarte AP, de Lacerda MVG, Monteiro WM, Secundino NFC, Pimenta PFP. Dengue and Zika virus infection patterns vary among Aedes aegypti field populations from Belo Horizonte, a Brazilian endemic city. PLoS Negl Trop Dis 2021; 15:e0009839. [PMID: 34727099 PMCID: PMC8562804 DOI: 10.1371/journal.pntd.0009839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/24/2021] [Indexed: 01/21/2023] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections. Dengue and Zika are neglected diseases caused by viruses transmitted to humans by mosquitoes (vector-borne diseases). The primary vector of both diseases is Aedes aegypti, a highly abundant mosquito in tropical countries and adapted to the urban habitat. The viral cycle in the vector starts when the mosquito bites an infected person and acquires the viruses through the blood meal. When the infected blood reaches the mosquito’s midgut, the viruses invade the epithelial cells and disseminate in several organs until they reach the salivary glands, enabling viral transmission to the next person. However, the mosquitoes have developed strategies to combat the viral invasion and dissemination in their body, making this journey a challenge to the viruses. Herein, we show that the mosquito responses against dengue and Zika viruses are distinct. In addition, mosquitoes from separate populations of the same city have different abilities to deal with the viruses in both cases, dengue and Zika infections. Our results show the diversity of responses that the mosquitoes may present to viral infections. These findings may better direct disease control strategies to combat dengue and Zika outbreaks in endemic regions.
Collapse
Affiliation(s)
| | - Luiza dos Santos Felix
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biologia Celular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Bárbara Aparecida Chaves
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | | - Breno dos Anjos Costa
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Silva Soares
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biologia Celular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rafael Nacif-Pimenta
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Mello Silva
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Paula Duarte
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto Leônidas e Maria Deane, FIOCRUZ, Manaus, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Nágila Francinete Costa Secundino
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Instituto de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biologia Celular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
73
|
Manning JE, Chea S, Parker DM, Bohl JA, Lay S, Mateja A, Man S, Nhek S, Ponce A, Sreng S, Kong D, Kimsan S, Meneses C, Fay MP, Suon S, Huy R, Lon C, Leang R, Oliveira F. Development of inapparent dengue associated with increased antibody levels to Aedes aegypti salivary proteins: a longitudinal dengue cohort in Cambodia. J Infect Dis 2021; 226:1327-1337. [PMID: 34718636 DOI: 10.1093/infdis/jiab541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We established the first prospective cohort to understand how infection with dengue virus is influenced by vector-specific determinants like humoral immunity to Aedes aegypti salivary proteins. METHODS Children aged two to nine years old enrolled in the PAGODAS (Pediatric Assessment Group of Dengue and Aedes Saliva) cohort with informed consent by their guardians. Children were followed semi-annually for antibodies to dengue and to proteins in Ae. aegypti salivary gland homogenate using enzyme-linked immunosorbent assays and dengue-specific neutralization titers. Children presented with fever at any time for dengue testing. RESULTS From July 13 to August 30, 2018, we enrolled 771 children. At baseline, 22% (173/770) had evidence of neutralizing antibodies to one or more dengue serotypes. By April 2020, 51 children had symptomatic dengue while 148 dengue-naïve children had inapparent dengue defined by neutralization assays. In a multivariate model, individuals with higher antibodies to Ae. aegypti salivary proteins were 1.5x more likely to have dengue infection (HR 1.47 95% CI 1.05-2.06; p=0.02), particularly individuals with inapparent dengue (HR 1.64 95% CI 1.12-2.41; p=0.01). CONCLUSIONS High levels of seropositivity to Ae. aegypti salivary proteins are associated with future development of dengue infection, primarily inapparent, in dengue-naïve Cambodian children.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | | | - Jennifer A Bohl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sreyngim Lay
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Allyson Mateja
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Somnang Man
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Sreynik Nhek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Aiyana Ponce
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sokunthea Sreng
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Dara Kong
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Soun Kimsan
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia.,National Dengue Control Program, Ministry of Health, Phnom Penh, Cambodia
| | - Claudio Meneses
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael P Fay
- Biostatistics Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seila Suon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia.,National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia
| | - Chanthap Lon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria Control, Ministry of Health, Phnom Penh Cambodia.,National Dengue Control Program, Ministry of Health, Phnom Penh, Cambodia
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
74
|
Chala B, Hamde F. Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front Public Health 2021; 9:715759. [PMID: 34676194 PMCID: PMC8524040 DOI: 10.3389/fpubh.2021.715759] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Vector-borne emerging and re-emerging diseases pose considerable public health problem worldwide. Some of these diseases are emerging and/or re-emerging at increasing rates and appeared in new regions in the past two decades. Studies emphasized that the interactions among pathogens, hosts, and the environment play a key role for the emergence or re-emergence of these diseases. Furthermore, social and demographic factors such as human population growth, urbanization, globalization, trade exchange and travel and close interactions with livestock have significantly been linked with the emergence and/or re-emergence of vector-borne diseases. Other studies emphasize the ongoing evolution of pathogens, proliferation of reservoir populations, and antimicrobial drug use to be the principal exacerbating forces for emergence and re-emergence of vector-borne infectious diseases. Still other studies equivocally claim that climate change has been associated with appearance and resurgence of vector-borne infectious diseases. Despite the fact that many important emerging and re-emerging vector-borne infectious diseases are becoming better controlled, our success in stopping the many new appearing and resurging vector-borne infectious diseases that may happen in the future seems to be uncertain. Hence, this paper reviews and synthesizes the existing literature to explore global patterns of emerging and re-emerging vector-borne infections and the challenges for their control. It also attempts to give insights to the epidemiological profile of major vector-borne diseases including Zika fever, dengue, West Nile fever, Crimean-Congo hemorrhagic fever, Chikungunya, Yellow fever, and Rift Valley fever.
Collapse
Affiliation(s)
- Bayissa Chala
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Feyissa Hamde
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
75
|
Mundim-Pombo APM, Carvalho HJCD, Rodrigues Ribeiro R, León M, Maria DA, Miglino MA. Aedes aegypti: egg morphology and embryonic development. Parasit Vectors 2021; 14:531. [PMID: 34645492 PMCID: PMC8515647 DOI: 10.1186/s13071-021-05024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background The diseases for which Aedes aegypti is a vector are worrisome. The high vector competence of this mosquito, as well as its anthropophilia and ability to adapt to the urban environment, allows it to exploit many habitats, making its prevention an arduous task. Despite current disease control measures focused on the mosquito, the effectiveness in containing its dispersion still requires improvement; thus greater knowledge about this insect is fundamental. Methods Aedes aegypti egg morphology and embryonic development were analyzed from eggs of the insectary of the Institute of Biomedical Sciences of the University of São Paulo. Optical (light and confocal) and electronic (transmission and scanning) microscopy were used to analyze the morphological and ultrastructural features of the eggs. Embryos were observed in the initial (0–20.5 h after egg-laying), intermediate (20.6–40.1 h after egg-laying), and final (40.2–61.6 h) stages of development, and kept at a temperature of 28 °C ± 1 °C until collection for processing. Results Eggs of Ae. aegypti were whitish at the time of oviposition, and then quickly became black. The egg length was 581.45 ± 39.73 μm and the width was 175.36 ± 11.59. Access to the embryo was difficult due to the egg morphology, point of embryonic development, and difficult permeability of the exochorion (mainly in fixation). Only about 5% of the collected eggs were successfully processed. In the initial stage of embryonic development, characteristics suggestive of intense cellular activity were found. In the intermediate stage, the beginning of the segmentation process was evident. In the final phase, it was possible to differentiate the cephalic region and the thoracic and abdominal segments. Conclusion The chorion was found to be an important protective barrier and a limiting factor for the evaluation of the embryos and mosquito embryonic cells, indicating that further studies need to be carried out to identify the reason that this occurs. Graphical abstract ![]()
Collapse
Affiliation(s)
| | - Hianka Jasmyne Costa de Carvalho
- Department of Surgery, Anatomy Sector, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Orlando Marques de Paiva, 87, Butantã, São Paulo, São Paulo, CEP 05508-270, Brazil
| | - Rafaela Rodrigues Ribeiro
- Department of Surgery, Anatomy Sector, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Orlando Marques de Paiva, 87, Butantã, São Paulo, São Paulo, CEP 05508-270, Brazil
| | - Marisol León
- Department of Surgery, Anatomy Sector, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Orlando Marques de Paiva, 87, Butantã, São Paulo, São Paulo, CEP 05508-270, Brazil
| | | | - Maria Angélica Miglino
- Department of Surgery, Anatomy Sector, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Orlando Marques de Paiva, 87, Butantã, São Paulo, São Paulo, CEP 05508-270, Brazil.
| |
Collapse
|
76
|
Manuli ER, Pereira GM, Bernat MC, Novaes CR, Sabino EC, Avelino-Silva VI. Knowledge about clinical presentation, prevention strategies and sexual transmission of Zika virus infection among women of reproductive age in an endemic area. Braz J Infect Dis 2021; 25:101629. [PMID: 34627783 PMCID: PMC9392182 DOI: 10.1016/j.bjid.2021.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 12/05/2022] Open
Abstract
Background The recognition of the causal association between Zika virus (ZIKV) infection during pregnancy and congenital abnormalities including microcephaly underlines the importance of preventing this disease in pregnant women (PW) and women of childbearing age (WCA). Although Brazil and other Latin American countries reported a significant reduction in the number of ZIKV infections in recent years, epidemic waves can recur in settings with previous outbreaks as conditions for transmission remain optimal and susceptible populations are continuously replenished. Methods In this cross-sectional study, we enrolled 64 PW and 260 non-pregnant WCA attending routine medical appointments in two primary care units in Sao Paulo, Brazil, and assessed knowledge and attitudes about ZIKV infection and prevention. Results Most women reported knowing that ZIKV is transmitted through the bite of Aedes mosquitos, and most knew that acute symptoms are similar to those seen in Dengue infection. Furthermore, most participants correctly described that ZIKV infection during pregnancy may cause detrimental outcomes for the newborn. However, most ignored that ZIKV infection can be asymptomatic, and only 15% knew about the risk of ZIKV sexual transmission. We found no statistically significant differences between PW and WCA regarding knowledge about ZIKV sexual transmission. Knowledge about ZIKV sexual transmission was significantly associated with education; among participants with ≤12 schooling years, only 9.0% (95%CI 3.4-18.5%) correctly answered that ZIKV can be sexually transmitted, compared to 12.9% (95%CI 8.2-18.8%) among participants with 12-14 schooling years, and to 24.4% (95%CI 15.9-34.9%) of participants with ≥15 schooling years (p = 0.015). Education remained independently associated with knowledge about sexual transmission of ZIKV in a multivariate logistic regression model adjusted for age, race and pregnancy status (p = 0.022). Conclusion Our findings underscore the urgent need of educational and family planning programs that may help prevent detrimental outcomes of ZIKV infection in an endemic area of Brazil.
Collapse
Affiliation(s)
- Erika R Manuli
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Geovana M Pereira
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Bernat
- Centro de Saude Escola Geraldo de Paula Souza, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Celia R Novaes
- Centro de Saude I "Dr. Victor Araujo Homem de Mello ", Departamento de Gerenciamento Ambulatorial da Capital, Secretaria de Estado da Saúde, São Paulo, São Paulo, SP, Brazil
| | - Ester C Sabino
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vivian I Avelino-Silva
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
77
|
Guerra-Gomes IC, Gois BM, Peixoto RF, Palmeira PHDS, Dias CNDS, Csordas BG, Araújo JMG, Veras RC, de Medeiros IA, de Azevedo FDLAA, Boyton RJ, Altmann DM, Keesen TSL. Phenotypical characterization of regulatory T cells in acute Zika infection. Cytokine 2021; 146:155651. [PMID: 34325119 PMCID: PMC8405058 DOI: 10.1016/j.cyto.2021.155651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Zika virus (ZIKV), alongside Dengue virus (DENV), Chikungunya virus (CHIKV), and Yellow Fever Virus (YFV) are prevalent arboviruses in the Americas. Each of these infections is associated with the development of associated disease immunopathology. Immunopathological processes are an outcome of counter-balancing impacts between effector and regulatory immune mechanisms. In this context, regulatory T cells (Tregs) are key in modulating the immune response and, therefore, in tissue damage control. However, to date, Treg phenotypes and mechanisms during acute infection of the ZIKV in humans have not been fully investigated. The main aim of this work was to characterize Tregs and their immunological profile related to cytokine production and molecules that are capable of controlling the exacerbated inflammatory profile in acute Zika infected patients. Using whole blood analyses of infected patients, an ex vivo phenotypical characterization of Tregs, circulating during acute Zika virus infection, was conducted by flow cytometry. We found that though there are no differences in absolute Treg frequency between infected and healthy control groups. However, pro-inflammatory cytokine up-regulation such as IFN-γ and LAP was observed in the acute disease. Furthermore, acute ZIKV patients expressed increased levels of CD39/CD73, perforin/granzyme B, PD-1, and CTLA-4, all markers involved in mechanisms used by Tregs to attempt to control strong inflammatory responses. Thus, the data indicates a potential contribution of Tregs during the inflammatory ZIKV infection response.
Collapse
Affiliation(s)
- Isabel Cristina Guerra-Gomes
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Bruna Macêdo Gois
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Rephany Fonseca Peixoto
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Pedro Henrique de Sousa Palmeira
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Cínthia Nóbrega de Sousa Dias
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Bárbara Guimarães Csordas
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Josélio Maria Galvão Araújo
- Molecular Biology of Cancer and Infectious Diseases Laboratory of Post-Graduation Program on Parasite Biology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 58078-970, Brazil
| | - Robson Cavalcante Veras
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Isac Almeida de Medeiros
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Rosemary Jane Boyton
- Department of Infectious Disease, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Daniel Martin Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Tatjana Souza Lima Keesen
- Immunology of Infectious Diseases Laboratory of Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
78
|
Novel inhibitors of the renal inward rectifier potassium channel of the mosquito vector Aedes aegypti. Future Med Chem 2021; 13:2015-2025. [PMID: 34590494 DOI: 10.4155/fmc-2021-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mosquito continues to be the most lethal animal to humans due to the devastating diseases that it carries and transmits. Controlling mosquito-borne diseases relies heavily on vector management using neurotoxic insecticides with limited modes of action. This has led to the emergence of resistance to pyrethroids and other neurotoxic insecticides in mosquitoes, which has reduced the efficacy of chemical control agents. Moreover, many neurotoxic insecticides are not selective for mosquitoes and negatively impact beneficial insects such as honeybees. Developing new mosquitocides with novel mechanisms of action is a clear unmet medical need; this review covers the efforts made toward this end by targeting the renal inward rectifier potassium channel (Kir) of the mosquito.
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize recent advances in understanding the origins, drivers and clinical context of zoonotic disease epidemics and pandemics. In addition, we aimed to highlight the role of clinicians in identifying sentinel cases of zoonotic disease outbreaks. RECENT FINDINGS The majority of emerging infectious disease events over recent decades, including the COVID-19 pandemic, have been caused by zoonotic viruses and bacteria. In particular, coronaviruses, haemorrhagic fever viruses, arboviruses and influenza A viruses have caused significant epidemics globally. There have been recent advances in understanding the origins and drivers of zoonotic epidemics, yet there are gaps in diagnostic capacity and clinical training about zoonoses. SUMMARY Identifying the origins of zoonotic pathogens, understanding factors influencing disease transmission and improving the diagnostic capacity of clinicians will be crucial to early detection and prevention of further epidemics of zoonoses.
Collapse
Affiliation(s)
| | - Peter M Rabinowitz
- Department of Medicine
- Department of Environmental and Occupational Health Sciences, Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
80
|
Tebas P, Roberts CC, Muthumani K, Reuschel EL, Kudchodkar SB, Zaidi FI, White S, Khan AS, Racine T, Choi H, Boyer J, Park YK, Trottier S, Remigio C, Krieger D, Spruill SE, Kobinger GP, Weiner DB, Maslow JN. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine. N Engl J Med 2021; 385:e35. [PMID: 34525286 PMCID: PMC6824915 DOI: 10.1056/nejmoa1708120] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although Zika virus (ZIKV) infection is typically self-limiting, other associated complications such as congenital birth defects and the Guillain-Barré syndrome are well described. There are no approved vaccines against ZIKV infection. METHODS In this phase 1, open-label clinical trial, we evaluated the safety and immunogenicity of a synthetic, consensus DNA vaccine (GLS-5700) encoding the ZIKV premembrane and envelope proteins in two groups of 20 participants each. The participants received either 1 mg or 2 mg of vaccine intradermally, with each injection followed by electroporation (the use of a pulsed electric field to introduce the DNA sequence into cells) at baseline, 4 weeks, and 12 weeks. RESULTS The median age of the participants was 38 years, and 60% were women; 78% were White and 22% Black; in addition, 30% were Hispanic. At the interim analysis at 14 weeks (i.e., after the third dose of vaccine), no serious adverse events were reported. Local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants. After the third dose of vaccine, binding antibodies (as measured on enzyme-linked immunosorbent assay) were detected in all the participants, with geometric mean titers of 1642 and 2871 in recipients of 1 mg and 2 mg of vaccine, respectively. Neutralizing antibodies developed in 62% of the samples on Vero-cell assay. On neuronal-cell assay, there was 90% inhibition of ZIKV infection in 70% of the serum samples and 50% inhibition in 95% of the samples. The intraperitoneal injection of postvaccination serum protected 103 of 112 IFNAR knockout mice (bred with deletion of genes encoding interferon-α and interferon-β receptors) (92%) that were challenged with a lethal dose of ZIKV-PR209 strain; none of the mice receiving baseline serum survived the challenge. Survival was independent of the neutralization titer. CONCLUSIONS In this phase 1, open-label clinical trial, a DNA vaccine elicited anti-ZIKV immune responses. Further studies are needed to better evaluate the safety and efficacy of the vaccine. (Funded by GeneOne Life Science and others; ZIKA-001 ClinicalTrials.gov number, NCT02809443.).
Collapse
Affiliation(s)
- Pablo Tebas
- Divison of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | - Scott White
- Inovio Pharmaceuticals, Plymouth Meeting, PA
| | | | - Trina Racine
- Infectious Diseases Research Centre-Université Laval, Québec City, QC, Canada
| | | | - Jean Boyer
- Inovio Pharmaceuticals, Plymouth Meeting, PA
| | | | - Sylvie Trottier
- Infectious Diseases Research Centre-Université Laval, Québec City, QC, Canada
| | | | | | | | - Gary P. Kobinger
- Infectious Diseases Research Centre-Université Laval, Québec City, QC, Canada
| | | | - Joel N. Maslow
- GeneOne Life Science Inc., Seoul, Korea
- Department of Medicine, Morristown Medical Center, Morristown NJ
| |
Collapse
|
81
|
Kumar V, Garg S, Gupta L, Gupta K, Diagne CT, Missé D, Pompon J, Kumar S, Saxena V. Delineating the Role of Aedes aegypti ABC Transporter Gene Family during Mosquito Development and Arboviral Infection via Transcriptome Analyses. Pathogens 2021; 10:1127. [PMID: 34578158 PMCID: PMC8470938 DOI: 10.3390/pathogens10091127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Aedes aegypti acts as a vector for several arboviral diseases that impose a major socio-economic burden. Moreover, the absence of a vaccine against these diseases and drug resistance in mosquitoes necessitates the development of new control strategies for vector-borne diseases. ABC transporters that play a vital role in immunity and other cellular processes in different organisms may act as non-canonical immune molecules against arboviruses, however, their role in mosquito immunity remains unexplored. This study comprehensively analyzed various genetic features of putative ABC transporters and classified them into A-H subfamilies based on their evolutionary relationships. Existing RNA-sequencing data analysis indicated higher expression of cytosolic ABC transporter genes (E & F Subfamily) throughout the mosquito development, while members of other subfamilies exhibited tissue and time-specific expression. Furthermore, comparative gene expression analysis from the microarray dataset of mosquito infected with dengue, yellow fever and West Nile viruses revealed 31 commonly expressed ABC transporters suggesting a potentially conserved transcriptomic signature of arboviral infection. Among these, only a few transporters of ABCA, ABCC and ABCF subfamily were upregulated, while most were downregulated. This indicates the possible involvement of ABC transporters in mosquito immunity.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani 333031, India or (V.K.); (S.G.)
| | - Shilpi Garg
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani 333031, India or (V.K.); (S.G.)
| | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Bhiwani 127021, India or
| | - Kuldeep Gupta
- Department of Radiology and Radiological Sciences, School of Medicine, 470 Cancer Research Building-II, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Cheikh Tidiane Diagne
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France; (C.T.D.); (D.M.); (J.P.)
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France; (C.T.D.); (D.M.); (J.P.)
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France; (C.T.D.); (D.M.); (J.P.)
| | - Sanjeev Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Vishal Saxena
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani 333031, India or (V.K.); (S.G.)
| |
Collapse
|
82
|
Kim YC, Garcia-Larragoiti N, Cano-Mendez A, Hernandez-Flores KG, Domínguez-Alemán CA, Cabrera-Jorge FJ, Mar MA, Vivanco-Cid H, Viveros-Sandoval ME, Reyes-Sandoval A. Development of Zika NS1 ELISA methodology for seroprevalence detection in a cohort of Mexican patients in an endemic region. JOURNAL OF CLINICAL VIROLOGY PLUS 2021. [DOI: 10.1016/j.jcvp.2021.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
83
|
Evangelista E, Medeiros-Sousa AR, Ceretti-Junior W, Oliveira-Christe R, Wilk-da-Silva R, Duarte AMRDC, Vendrami DP, de Carvalho GC, Mucci LF, Marrelli MT. Relationship between vertical stratification and feeding habits of mosquito (Diptera: Culicidae) assemblages collected in conservation units in the green belt of the city of São Paulo, Brazil. Acta Trop 2021; 221:106009. [PMID: 34126089 DOI: 10.1016/j.actatropica.2021.106009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/26/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
São Paulo is one of the largest cities in the world and has several characteristics that favor a diversity of urban and wild mosquitoes. Little is known about how variations in mosquito diversity and feeding preferences for different hosts in different vegetation strata can influence the risk of pathogen transmission to humans. We investigated vertical stratification of mosquitoes and its relationship with vertebrate hosts in environments with different degrees of conservation in two conservation units in the city of São Paulo. Adult mosquitoes were collected using CDC traps, aspiration and Shannon traps. After morphological identification, host blood in engorged females was analyzed by PCR with a vertebrate-specific primer set based on mitochondrial cytochrome b DNA of vertebrates commonly found in the two conservation units. Although a higher abundance of the species Anopheles cruzii and Culex nigripalpus was found in the canopy, blood not only from birds but also from humans and rodents was identified in these mosquitoes. In one of the units, Wyeomyia confusa and Limatus durhamii were found occupying mainly niches at ground level while Culex vaxus was frequently found in the canopy. Haemagogus leucocelaenus, the main vector of yellow fever, was found in low abundance at all collection points, particularly in the canopy. Species richness and composition tended to vary little between canopy and ground level in the same environment, but the abundance between canopy and ground level varied more depending on the species analyzed, the most abundant and frequent species exhibiting a predilection for the canopy. Even those mosquito species observed more frequently in the canopy did not show an association with hosts found in this stratum as most of the blood identified in these species was from humans, suggesting opportunist feeding behavior, i.e., feeding on the most readily available host in the environment. The two most common species in the study, An. cruzii and Cx. nigripalpus, may be able to act as bridge vectors for pathogens to circulate between the forest canopy and ground level.
Collapse
Affiliation(s)
- Eduardo Evangelista
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil; São Paulo City Hall, Health Surveillance Unit, São Paulo, SP, Brazil
| | | | - Walter Ceretti-Junior
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | | | - Ramon Wilk-da-Silva
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Luis Filipe Mucci
- Superintendency for the Control of Endemic Diseases (SUCEN), State Department of Health, São Paulo, Brazil
| | - Mauro Toledo Marrelli
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
84
|
Roldán JS, Cassola A, Castillo DS. Development of a novel NS1 competitive enzyme-linked immunosorbent assay for the early detection of Zika virus infection. PLoS One 2021; 16:e0256220. [PMID: 34403457 PMCID: PMC8370630 DOI: 10.1371/journal.pone.0256220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) is a flavivirus that has emerged as a global health threat after the 2015 outbreak in the Americas, where devastating congenital defects were documented. There are currently no vaccines to prevent ZIKV infections nor commercially available clinical diagnostic tests demonstrated to identify ZIKV without cross-reactive interference of related flaviviruses. Early diagnosis is critical when treating symptomatic patients and in preventing ZIKV transmission. In this context, the development of sensitive and accurate diagnostic methods are urgently needed for the detection of ZIKV acute infection. The aim of this study consisted of obtaining monoclonal antibodies (mAbs) against denatured monomeric ZIKV Nonstructural protein 1 (ZNS1), a useful diagnostic marker for flavivirus early detection, in order to develop a highly specific and sensitive ZNS1 indirect competitive ELISA (icELISA). The production of hybridomas secreting ZNS1 mAbs was carried out through immunizations with denatured monomeric ZNS1. We selected 1F5 and 6E2 hybridoma clones, which recognized the heat-denatured ZNS1 hexameric form by indirect ELISA. Cross-reaction studies indicated that these mAbs specifically bind to a ZNS1 linear epitope, and that they do not cross-react with the NS1 protein from other related flaviviruses. The 1F5 mAb enabled the development of a sensitive and reproducible icELISA to detect and quantify small amounts of ZNS1 disease marker in heat-denatured human sera. Here, we establish a reliable 1F5 based-icELISA that constitutes a promising diagnostic tool for control strategies and the prevention of ZIKV propagation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- Antibodies, Viral/isolation & purification
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Binding, Competitive
- Cloning, Molecular
- Early Diagnosis
- Enzyme-Linked Immunosorbent Assay/methods
- Enzyme-Linked Immunosorbent Assay/standards
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- HEK293 Cells
- Humans
- Hybridomas/chemistry
- Hybridomas/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Protein Multimerization
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Reproducibility of Results
- Sensitivity and Specificity
- Viral Nonstructural Proteins/administration & dosage
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus Infection/diagnosis
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Julieta S. Roldán
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIBIO), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIBIO), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Daniela S. Castillo
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIBIO), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
85
|
Cheng C, Wu JJ, Chen J. A Sensitive and Specific Genomic RNA Sensor for Point-of-Care Screening of Zika Virus from Serum. Anal Chem 2021; 93:11379-11387. [PMID: 34378378 DOI: 10.1021/acs.analchem.0c05415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work presents a sensitive and specific single-step RNA sensor for Zika virus (ZIKV) in serum. Using AC electrokinetics (ACEK)-enhanced capacitive sensing technology, ZIKV genomic RNA (gRNA) can be directly detected from serum. The sensors are interdigitated electrodes modified with oligonucleotide probes complementary to the conserved regions of ZIKV gRNA. The ACEK capacitive sensing applies an optimized AC excitation signal over the sensor, which induces ACEK microfluidic enrichment of analytes and also simultaneously performs real-time monitoring of hybridization of ZIKV gRNA on the sensor surface. Hence, the sensing procedures are simple with rapid turn-around time and good specificity and sensitivity. A series of experiments are conducted to optimize the sensor performance. The performance of the sensor is investigated for three different probes, two functionalization buffers, and different hybridization buffers. With the optimized sensing protocol, this method can detect spiked ZIKV gRNA from human serum within 30 s and reach a limit of detection of 78.8 copies/μL in analytical samples and as low as 287.5 copies/μL in neat serum. The sensors can successfully differentiate between the RNAs of the ZIKV and dengue virus, two viruses with similar transmission paths and symptoms. The sensor is simple to use and requires no labeling or sophisticated process typically involved in a polymerase chain reaction, hybridization chain reaction, or nucleic acid sequence-based amplification.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Engineering and Computer Science, Morehead State University, 150 University Blvd., Morehead, Kentucky 40351, United States.,Department of Electrical Engineering and Computer Science, The University of Tennessee, 1520 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, 1520 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, 1914 Andy Holt Avenue, Knoxville, Tennessee 37996, United States
| |
Collapse
|
86
|
The Specificity of the Persistent IgM Neutralizing Antibody Response in Zika Virus Infections among Individuals with Prior Dengue Virus Exposure. J Clin Microbiol 2021; 59:e0040021. [PMID: 33980647 DOI: 10.1128/jcm.00400-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dengue viruses (DENV) and Zika virus (ZIKV) are related mosquito-borne flaviviruses with similar disease manifestations, vector ecologies, and geographic ranges. The ability to differentiate these viruses serologically is vital due to the teratogenic nature of ZIKV and the potential confounding of preexisting cross-reactive anti-DENV antibodies. Here, we illustrate the kinetics of the IgM neutralizing antibody (NAb) response using longitudinal samples ranging from acute ZIKV infection to late convalescence from individuals with evidence of prior DENV infection. By serially depleting antibody isotypes prior to the neutralization assay, we determined that IgM contributes predominantly to ZIKV neutralization and is less cross-reactive than the IgG NAb. The IgM NAb peaked around 14 days (95% confidence interval [95% CI], 13 to 15) and had a median duration of 257 days (95% CI, 133 to 427). These results demonstrate the persistence of IgM NAb after ZIKV infection and imply its potential role in diagnosis, vaccine evaluation, serosurveillance, and research on flavivirus-host interactions.
Collapse
|
87
|
Yap TL, Hong SY, Soh JH, Ravichandraprabhu L, Lim VWX, Chan HM, Ong TZX, Chua YP, Koh SE, Wang H, Leo YS, Ying JY, Sun W. Engineered NS1 for Sensitive, Specific Zika Virus Diagnosis from Patient Serology. Emerg Infect Dis 2021; 27:1427-1437. [PMID: 33900180 PMCID: PMC8084482 DOI: 10.3201/eid2705.190121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) belong to the Flaviviridae family of viruses spread by Aedes aegypti mosquitoes in tropical and subtropical areas. Accurate diagnostic tests to differentiate the 2 infections are necessary for patient management and disease control. Using characterized ZIKV and DENV patient plasma in a blind manner, we validated an ELISA and a rapid immunochromatographic test for ZIKV detection. We engineered the ZIKV nonstructural protein 1 (NS1) for sensitive serologic detection with low cross reactivity against dengue and developed monoclonal antibodies specific for the ZIKV NS1 antigen. As expected, the serologic assays performed better with convalescent than acute plasma samples; the sensitivity ranged from 71% to 88%, depending on the performance of individual tests (IgM/IgG/NS1). Although serologic tests were generally less sensitive with acute samples, our ZIKV NS1 antibodies were able to complement the serologic tests to achieve greater sensitivity for detecting early infections.
Collapse
|
88
|
A Live-Attenuated Zika Virus Vaccine with High Production Capacity Confers Effective Protection in Neonatal Mice. J Virol 2021; 95:e0038321. [PMID: 33910950 DOI: 10.1128/jvi.00383-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy has been linked to congenital abnormalities, such as microcephaly in infants. An efficacious vaccine is desirable for preventing the potential recurrence of ZIKV epidemic. Here, we report the generation of an attenuated ZIKV (rGZ02a) that has sharply decreased virulence in mice but grows to high titers in Vero cells, a widely approved cell line for manufacturing human vaccines. Compared to the wild-type ZIKV (GZ02) and a plasmid-launched rGZ02p, rGZ02a has 3 unique amino acid alterations in the envelope (E, S304F), nonstructural protein 1 (NS1, R103K), and NS5 (W637R). rGZ02a is more sensitive to type I interferon than GZ02 and rGZ02p, and causes no severe neurological disorders in either wild-type neonatal C57BL/6 mice or type I interferon receptor knockout (Ifnar1-/-) C57BL/6 mice. Immunization with rGZ02a elicits robust inhibitory antibody responses with a certain long-term durability. Neonates born to the immunized dams are effectively protected against ZIKV-caused neurological disorders and brain damage. rGZ02a as a booster vaccine greatly improves the protective immunity primed by Ad2-prME, an adenovirus-vectored vaccine expressing ZIKV prM and E proteins. Our results illustrate that rGZ02a-induced maternal immunity can be transferred to the neonates and confer effective protection. Hence, rGZ02a may be developed as an alternative live-attenuated vaccine and warrants further evaluation. IMPORTANCE Zika virus (ZIKV), a mosquito-borne flavivirus that has caused global outbreaks since 2013, is associated with severe neurological disorders, such as Guillian-Barré syndrome in adults and microcephaly in infants. The ZIKV epidemic has gradually subsided, but a safe and effective vaccine is still desirable to prevent its potential recurrence, especially in countries of endemicity with competent mosquito vectors. Here, we describe a novel live-attenuated ZIKV, rGZ02a, that carries 3 unique amino acid alterations compared to the wild-type GZ02 and a plasmid-launched rGZ02p. The growth capacity of rGZ02a is comparable to GZ02 in Vero cells, but the pathogenicity is significantly attenuated in two mice models. Immunization with rGZ02a elicits robust inhibitory antibody responses in the dams and effectively protects their offspring against ZIKV disease. Importantly, in a heterologous prime-boost regimen, rGZ02a effectively boosts the protective immunity primed by an adenovirus-vectored vaccine. Thus, rGZ02a is a promising candidate for a live-attenuated ZIKV vaccine.
Collapse
|
89
|
Seong RK, Lee JK, Cho GJ, Kumar M, Shin OS. mRNA and miRNA profiling of Zika virus-infected human umbilical cord mesenchymal stem cells identifies miR-142-5p as an antiviral factor. Emerg Microbes Infect 2021; 9:2061-2075. [PMID: 32902370 PMCID: PMC7534337 DOI: 10.1080/22221751.2020.1821581] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) infection during pregnancy is associated with congenital brain abnormalities, a finding that highlights the urgent need to understand mother-to-fetus transmission mechanisms. Human umbilical cord mesenchymal stem cells (hUCMSCs) are susceptible to ZIKV infection but the underlying mechanisms of viral susceptibility remain largely unexplored. In this study, we have characterized and compared host mRNA and miRNA expression profiles in hUCMSCs after infection with two lineages of ZIKV, African (MR766) and Asian (PRVABC59). RNA sequencing analysis identified differentially expressed genes involved in anti-viral immunity and mitochondrial dynamics following ZIKV infection. In particular, ZIKV-infected hUCMSCs displayed mitochondrial elongation and the treatment of hUCMSCs with mitochondrial fission inhibitor led to a dose-dependent increase in ZIKV gene expression and decrease in anti-viral signalling pathways. Moreover, small RNA sequencing analysis identified several significantly up- or down-regulated microRNAs. Interestingly, miR-142-5p was significantly downregulated upon ZIKV infection, whereas cellular targets of miR-142-5p, IL6ST and ITGAV, were upregulated. Overexpression of miR-142-5p resulted in the suppression of ZIKV replication. Furthermore, blocking ITGAV expression resulted in a significant suppression of ZIKV binding to cells, suggesting a potential role of ITGAV in ZIKV entry. In conclusion, these results demonstrate both common and specific host responses to African and Asian ZIKV lineages and indicate miR-142-5p as a key regulator of ZIKV replication in the umbilical cords.
Collapse
Affiliation(s)
- Rak-Kyun Seong
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jae Kyung Lee
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynaecology, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
90
|
Lu W, Shi L, Gao J, Zhu H, Hua Y, Cai J, Wu X, Wan C, Zhao W, Zhang B. Piperlongumine Inhibits Zika Virus Replication In vitro and Promotes Up-Regulation of HO-1 Expression, Suggesting An Implication of Oxidative Stress. Virol Sin 2021; 36:510-520. [PMID: 33185862 PMCID: PMC8257849 DOI: 10.1007/s12250-020-00310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Owing to the widespread distribution of mosquitoes capable of transmitting Zika virus, lack of clinical vaccines and treatments, and poor immunity of populations to new infectious diseases, Zika virus has become a global public health concern. Recent studies have found that Zika virus can continuously infect human brain microvascular endothelial cells. These cells are the primary components of the blood-brain barrier of the cerebral cortex, and further infection of brain tissue may cause severe damage such as encephalitis and fetal pituitary disease. The present study found that a biologically active base, piperlongumine (PL), inhibited Zika virus replication in human brain microvascular endothelial cells, Vero cells, and human umbilical vein endothelial cells. PL also significantly increased heme oxygenase-1 (HO-1) gene expression, while silencing HO-1 expression and using the reactive oxygen species scavenger, N-acetylcysteine, attenuated the inhibitory effect of PL on Zika virus replication. These results suggest that PL induces oxidative stress in cells by increasing reactive oxygen species. This, in turn, induces an increase in HO-1 expression, thereby inhibiting Zika virus replication. These findings provide novel clues for drug research on the prevention and treatment of Zika virus.
Collapse
Affiliation(s)
- Weizhi Lu
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Linjuan Shi
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jing Gao
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huimin Zhu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ying Hua
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jintai Cai
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Chengsong Wan
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhao
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Bao Zhang
- Biosafety Level-3 Lab, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
91
|
Giambiagi Ferrari C, Pinasco JP, Saintier N. Coupling Epidemiological Models with Social Dynamics. Bull Math Biol 2021; 83:74. [PMID: 34008047 PMCID: PMC8130810 DOI: 10.1007/s11538-021-00910-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022]
Abstract
In this work we study a Susceptible-Infected-Susceptible model coupled with a continuous opinion dynamics model. We assume that each individual can take measures to reduce the probability of contagion, and the level of effort each agent applies can change due to social interactions. We propose simple rules to model the propagation of behaviors that modify the level of effort, and analyze their impact on the dynamics of the disease. We derive a two dimensional set of ordinary differential equations describing the dynamic of the proportion of the number of infected individuals and the mean value of the effort parameter, and analyze the equilibria of the system. The stability of the endemic phase and disease free equilibria depends only on the mean value of the levels of efforts, and not on the initial distribution of levels of effort.
Collapse
Affiliation(s)
- Carlo Giambiagi Ferrari
- IMAS, Instituto de Investigaciones Matemáticas Luis A. Santaló, CONICET and Universidad de Buenos Aires, Av Cantilo s/n, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Juan Pablo Pinasco
- IMAS, Instituto de Investigaciones Matemáticas Luis A. Santaló, CONICET and Universidad de Buenos Aires, Av Cantilo s/n, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
| | - Nicolas Saintier
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av Cantilo s/n, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| |
Collapse
|
92
|
A purified inactivated vaccine derived from Vero cell-adapted zika virus elicits protection in mice. Virology 2021; 560:124-130. [PMID: 34087565 DOI: 10.1016/j.virol.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/14/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
The Zika virus (ZIKV) outbreak in 2015-2016 raised public health concerns and created a pressing need for vaccine development. However, no vaccine has been developed and most of the ones under development use a single serotype of ZIKV. In this study, we established a Vero cell-adapted ZIKV strain (GMZ-002) and developed a purified inactivated virus (PIV) vaccine. GMZ-002 presented significantly increased productivity in Vero cells, and IFNAR1-blocked C57BL/6 mice administered two doses of the PIV were fully protected against lethal challenge. Vaccine efficacy was illustrated by the high level of serum neutralizing antibodies and strong innate immune response, along with an absence of detectable viremia in vaccinated mice. Furthermore, anti-sera neutralized both African and Asian genetic lineages of the virus in vitro. Our results suggest that GMZ-002 PIV elicited robust and persistent protective immunity, and therefore represents a promising vaccine candidate for ZIKV.
Collapse
|
93
|
Familiar I, Boivin M, Magen J, Azcorra JA, Phippen C, Barrett EA, Miller S, Ruisenor-Escudero H. Neurodevelopment outcomes in infants born to women with Zika virus infection during pregnancy in Mexico. Child Care Health Dev 2021; 47:311-318. [PMID: 33332632 DOI: 10.1111/cch.12842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Few studies have assessed neurodevelopmental outcomes in normocephalic infants born to women with Zika virus (ZIKV) infection during pregnancy in Mexico. We sought to evaluate ZIKV exposed infants in Yucatan, Mexico, with performance-based and eye-gaze measures of neurodevelopment, removing observer bias. METHODS We enrolled 60 infants about 6-month old born to women with PCR + test for ZIKV during pregnancy. Infants were normocephalic and asymptomatic. Sixty infants born to women without a history of ZIKV infection were included as comparison. Children were assessed with the Mullen scales of early learning (MSEL), a test with scales in motor, language, and overall cognitive skills development, and the Fagan test of infant intelligence (FTII) using automated eye-tracking instrumentation to evaluate infant visual preference of human faces, where longer gaze lengths to unfamiliar (i.e., new) faces are expected. RESULTS All MSEL subscale scores, except expressive language, were significantly lower among ZIKV exposed children compared to controls, including the overall standard composite (80 ± 10 vs. 87 ± 7.4, respectively; p < 0.001). FTII eye-tracking measures of fixation and gaze length were in the expected direction, with longer times recorded among infants in the control group (i.e., higher attention), but none reached statistical significance. In adjusted linear regressions, the FTII high novelty score (expected preference for a novel face) predicted fine motor (β = 3.61, p = 0.04) and receptive language (β = 2.55, p = 0.03) scores. CONCLUSIONS Nonmicrocephalic children born to women with ZIKV during pregnancy in Mexico merit early neurodevelopmental evaluation to allow for appropriate interventions and clinical follow-up. It is possible that long-term monitoring of cognitive deficits may need to be established for a proportion of affected cases.
Collapse
Affiliation(s)
- Itziar Familiar
- Department of Psychiatry, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Michael Boivin
- Department of Psychiatry and Department of Neurology and Ophthalmology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jed Magen
- Department of Psychiatry, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Colton Phippen
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Elizabeth Ann Barrett
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sydney Miller
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Horacio Ruisenor-Escudero
- Department of Psychiatry, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
94
|
Shereen MA, Bashir N, Su R, Liu F, Wu K, Luo Z, Wu J. Zika virus dysregulates the expression of astrocytic genes involved in neurodevelopment. PLoS Negl Trop Dis 2021; 15:e0009362. [PMID: 33891593 PMCID: PMC8099136 DOI: 10.1371/journal.pntd.0009362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/05/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) is a kind of flavivirus emerged in French Polynesia and Brazil, and has led to a worldwide public health concern since 2016. ZIKV infection causes various neurological conditions, which are associated with fetus brain development or peripheral and central nervous systems (PNS/CNS) functional problems. To date, no vaccine or any specific antiviral therapy against ZIKV infection are available. It urgently needs efforts to explore the underlying molecular mechanisms of ZIKV-induced neural pathogenesis. ZIKV favorably infects neural and glial cells specifically astrocytes, consequently dysregulating gene expression and pathways with impairment of process neural cells. In this study, we applied a model for ZIKV replication in mouse primary astrocytes (MPAs) and profiled temporal alterations in the host transcriptomes upon ZIKV infection. Among the RNA-sequencing data of 27,812 genes, we examined 710 genes were significantly differentially expressed by ZIKV, which lead to dysregulation of numerous functions including neurons development and migration, glial cells differentiation, myelinations, astrocytes projection, neurogenesis, and brain development, along with multiple pathways including Hippo signaling pathway, tight junction, PI3K-Akt signaling pathway, and focal adhesion. Furthermore, we confirmed the dysregulation of the selected genes in MPAs and human astroglioma U251 cells. We found that PTBP1, LIF, GHR, and PTBP3 were upregulated while EDNRB and MBP were downregulated upon ZIKV infection. The current study highlights the ZIKV-mediated potential genes associated with neurodevelopment or related diseases. Zika virus (ZIKV) infection causes serious neurological disorders of central and peripheral nervous system, and fetal brain development disorders including microcephaly. There are still uncovered explorations for the underlying molecular mechanism of ZIKV-infected pathogenesis. This study reveals a series of dysregulation of neuropathic genes mRNA and protein expression in mouse and human astrocytes upon ZIKV infection. As an ideal ZIKV infection model in mouse primary astrocytes (MPAs), RNA-seq was performed to profile transcriptome alteration by ZIKV infection. Bioinformatics analysis demonstrated the significant alterations of the 710 genes that were linked to glial cell differentiation and projection, neurogenesis and migration of neurons, myelination, as well as synaptic control. Among the top selected differentially expressed genes, such as PTBP1, LIF, GHR, PTBP3, EDNRB, and MBP, the mRNA and protein expressions were confirmed to identify the dysregulation of the transcriptome in MPAs upon ZIKV infection. Furthermore, ZIKV infection altered the mRNA and protein expression of these astrocytic genes involved in neurodevelopment in U251 cells following the analysis of the transcriptome. In conclusion, the alteration of astrocytic gene functions or associated-pathways suggest a novel clue of a mechanism involved in the ZIKV-induced neurodevelopment disorders.
Collapse
Affiliation(s)
- Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nadia Bashir
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (ZL); (JW)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (ZL); (JW)
| |
Collapse
|
95
|
Burgess C, Nelis L, Huang C. Modeling Zika Vaccination Combined With Vector Interventions in DoD Populations. Mil Med 2021; 186:82-90. [PMID: 33499489 DOI: 10.1093/milmed/usaa340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Zika virus (ZIKV) is a mild febrile illness generally transmitted via the bite of infected Aedes species mosquitoes, including Aedes aegypti, with the potential to cause neurological complications. Nearly 200 U.S. military installations are located within areas where Aedes mosquitos are found, putting thousands of personnel at risk for infection with ZIKV. This analysis aims to quantify the benefits of interventions, including vaccination, to decrease the risk of ZIKV on U.S. military installations. METHODS The authors developed a dynamic transmission model to test the "effectiveness" of vaccination, personal protective measures (PPM), and mosquito control at reducing morbidity within U.S. military populations. ZIKV transmission was modeled as a compartmental susceptible-exposed-infected-recovered model tracking interactions between humans and mosquitos and incorporating seasonality of mosquito populations and the potential for herd immunity. The model included two-dose vaccination as well as symptomatic and asymptomatic infection. The model was calibrated against 2016 public health data in Puerto Rico; sensitivity analyses were performed on model parameters and interventions. RESULTS The greatest reduction in total modeled ZIKV cases resulted from vaccination combined with mosquito control and PPM. All three interventions at their highest estimated level of efficiency reduced ZIKV cases by 99.9% over the baseline case of low-level adherence to PPM. The addition of vaccination had limited additional benefit over effective vector control and PPM since the significant lag to vaccine-induced protection limited effectiveness of vaccination. CONCLUSIONS Given the current vaccine, the model predicted that up to 92.8% of Zika cases occurring in deployment settings over a 10-year period could be prevented by adding vaccination to current low-level PPM. Combining vaccination with other interventions can reduce cases further. A location-specific cost-benefit analysis would be a valuable contribution to outbreak control policy as it could evaluate the economic impact of the interventions versus the reduced level of illness and downtime in this setting.
Collapse
Affiliation(s)
- Colleen Burgess
- Ramboll US Corporation, Amherst, MA 01002, USA.,MathEcology LLC, Health Sciences practice area, Phoenix, AZ 85086, USA
| | - Lis Nelis
- Ramboll US Corporation, Ecosystem Services practice area, Seattle, Washington 98164, USA
| | - Cassie Huang
- Ramboll US Corporation, Health Sciences practice area, Boston, MA 02108, USA
| |
Collapse
|
96
|
Evaluation of Conserved RNA Secondary Structures within and between Geographic Lineages of Zika Virus. Life (Basel) 2021; 11:life11040344. [PMID: 33919874 PMCID: PMC8070784 DOI: 10.3390/life11040344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/28/2023] Open
Abstract
Zika virus (ZIKV), without a vaccine or an effective treatment approved to date, has globally spread in the last century. The infection caused by ZIKV in humans has changed progressively from mild to subclinical in recent years, causing epidemics with greater infectivity, tropism towards new tissues and other related symptoms as a product of various emergent ZIKV–host cell interactions. However, it is still unknown why or how the RNA genome structure impacts those interactions in differential evolutionary origin strains. Moreover, the genomic comparison of ZIKV strains from the sequence-based phylogenetic analysis is well known, but differences from RNA structure comparisons have barely been studied. Thus, in order to understand the RNA genome variability of lineages of various geographic distributions better, 410 complete genomes in a phylogenomic scanning were used to study the conservation of structured RNAs. Our results show the contemporary landscape of conserved structured regions with unique conserved structured regions in clades or in lineages within circulating ZIKV strains. We propose these structures as candidates for further experimental validation to establish their potential role in vital functions of the viral cycle of ZIKV and their possible associations with the singularities of different outbreaks that lead to ZIKV populations to acquire nucleotide substitutions, which is evidence of the local structure genome differentiation.
Collapse
|
97
|
do Amaral BA, Gomes PN, Azevedo ID, Galvão HC, Oliveira AGRDC, Rabelo SGF. Prevalence of malocclusions in children with microcephaly associated with the Zika virus. Am J Orthod Dentofacial Orthop 2021; 159:816-823. [PMID: 33836919 DOI: 10.1016/j.ajodo.2020.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 02/01/2020] [Accepted: 03/01/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The objectives of this study were to determine the prevalence of malocclusion among children with Zika virus-associated microcephaly (MZV) and to describe the most common malocclusion in this population. METHODS This was a cross-sectional study including patients aged between 30 and 36 months diagnosed with MZV. Healthy children were randomly selected with the same sociodemographic characteristics as the control group. Information about arch-type, primate spaces, arch form, overbite, overjet, midline deviation, anterior crossbite, anterior open bite, and the posterior crossbite was recorded. The statistical analysis used descriptive analysis, Pearson chi-square test, and multivariate logistic regression. RESULTS Forty children comprised the MZV group, and 40 comprised the control group. Our results demonstrated a significantly higher prevalence of malocclusions in children who had MZV than the control group (P <0.001). Patients with MZV were more likely to have late eruption (P <0.001), hypoplastic maxillary arch (P <0.001), hypoplastic mandibular arch (P <0.001), excessive overjet (P <0.001), and posterior crossbite (P = 0.004). CONCLUSIONS The prevalence of malocclusion was higher among children with MZV. Late eruption, hypoplastic maxillary arch, hypoplastic mandibular arch, excessive overjet, and posterior crossbite were the most common characteristics for this population.
Collapse
Affiliation(s)
- Beatriz Aguiar do Amaral
- Department of Dentistry, School of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| | - Patrícia Nóbrega Gomes
- Department of Dentistry, School of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Isabelita Duarte Azevedo
- Department of Dentistry, School of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Hebel Cavalcanti Galvão
- Department of Dentistry, School of Dentistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | |
Collapse
|
98
|
do Nascimento Einloft AB, Moreira TR, Wakimoto MD, Franceschini SDCC, Cotta RMM, da Costa GD. Data quality and arbovirus infection associated factors in pregnant and non-pregnant women of childbearing age in Brazil: A surveillance database analysis. One Health 2021; 12:100244. [PMID: 33898725 PMCID: PMC8056397 DOI: 10.1016/j.onehlt.2021.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 10/26/2022] Open
Abstract
The dengue surveillance system in Brazil has registered changes in the disease's morbidity and mortality profile over successive epidemics. Vulnerable groups, such as pregnant women, have been particularly hard hit. This study assessed the quality of notifications of dengue cases among pregnant women and non-pregnant women of childbearing age in Brazil, in addition to discussing the factors associated with arbovirus infection in the group of pregnant women. We carried out a retrospective study of cases registered in the national arbovirus surveillance system between 2007 and 2017. The indicator for assessing quality was incompleteness. Logistic regression was used to analyze the association between dengue during pregnancy and sociodemographic, epidemiological, clinical, and laboratory variables. The incompleteness of the data in the notification form for dengue cases in women of childbearing age and pregnant women indicates a significant loss of information. Dengue was shown to be positively associated with Social Determinants of Health in both groups, with more severe effects among pregnant women. The incompleteness of the data can limit the quality of information from the notification system and the national assessment of the situation of the disease in women of childbearing age and pregnant women.
Collapse
Affiliation(s)
| | - Tiago Ricardo Moreira
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - Mayumi Duarte Wakimoto
- Fundação Oswaldo Cruz (Fiocruz), RJ. Instituto Nacional de Infectologia Evandro Chagas, Brazil
| | | | | | - Glauce Dias da Costa
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
99
|
Quandelacy TM, Healy JM, Greening B, Rodriguez DM, Chung KW, Kuehnert MJ, Biggerstaff BJ, Dirlikov E, Mier-y-Teran-Romero L, Sharp TM, Waterman S, Johansson MA. Estimating incidence of infection from diverse data sources: Zika virus in Puerto Rico, 2016. PLoS Comput Biol 2021; 17:e1008812. [PMID: 33784311 PMCID: PMC8034731 DOI: 10.1371/journal.pcbi.1008812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/09/2021] [Accepted: 02/17/2021] [Indexed: 01/25/2023] Open
Abstract
Emerging epidemics are challenging to track. Only a subset of cases is recognized and reported, as seen with the Zika virus (ZIKV) epidemic where large proportions of infection were asymptomatic. However, multiple imperfect indicators of infection provide an opportunity to estimate the underlying incidence of infection. We developed a modeling approach that integrates a generic Time-series Susceptible-Infected-Recovered epidemic model with assumptions about reporting biases in a Bayesian framework and applied it to the 2016 Zika epidemic in Puerto Rico using three indicators: suspected arboviral cases, suspected Zika-associated Guillain-Barré Syndrome cases, and blood bank data. Using this combination of surveillance data, we estimated the peak of the epidemic occurred during the week of August 15, 2016 (the 33rd week of year), and 120 to 140 (50% credible interval [CrI], 95% CrI: 97 to 170) weekly infections per 10,000 population occurred at the peak. By the end of 2016, we estimated that approximately 890,000 (95% CrI: 660,000 to 1,100,000) individuals were infected in 2016 (26%, 95% CrI: 19% to 33%, of the population infected). Utilizing multiple indicators offers the opportunity for real-time and retrospective situational awareness to support epidemic preparedness and response. Zika virus (ZIKV) infections, like many infections, are generally underreported due to asymptomatic, mild, or unrecognized cases. Using available surveillance indicators reflecting imperfect proxies of infection, we developed a modeling approach to estimate the weekly incidence of infection by combining independent surveillance indicators and assumptions about system-specific reporting biases in a Bayesian framework. Using our approach, we estimated that approximately 890,000 people in the population were infected with Zika in Puerto Rico in 2016, much higher than the 36,316 reported confirmed infections. Our framework has broad application to other diseases where cases may be underreported through traditional disease surveillance and can provide near real-time changes in incidences.
Collapse
Affiliation(s)
- Talia M. Quandelacy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
- * E-mail:
| | - Jessica M. Healy
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bradford Greening
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Dania M. Rodriguez
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
| | - Koo-Whang Chung
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew J. Kuehnert
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Brad J. Biggerstaff
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Emilio Dirlikov
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Luis Mier-y-Teran-Romero
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
| | - Tyler M. Sharp
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
- United States Public Health Service, Silver Springs, Maryland, United States of America
| | - Stephen Waterman
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
- United States Public Health Service, Silver Springs, Maryland, United States of America
| | - Michael A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
100
|
Holeva-Eklund WM, Behrens TK, Hepp CM. Systematic review: the impact of socioeconomic factors on Aedes aegypti mosquito distribution in the mainland United States. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:63-75. [PMID: 32853170 DOI: 10.1515/reveh-2020-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Aedes aegypti mosquitoes are primary vectors of dengue, yellow fever, chikungunya and Zika viruses. Ae. aegypti is highly anthropophilic and relies nearly exclusively on human blood meals and habitats for reproduction. Socioeconomic factors may be associated with the spread of Ae. aegypti due to their close relationship with humans. This paper describes and summarizes the published literature on the association between socioeconomic variables and the distribution of Ae. aegypti mosquitoes in the mainland United States. A comprehensive search of PubMed/Medline, Scopus, Web of Science, and EBSCO Academic Search Complete through June 12, 2019 was used to retrieve all articles published in English on the association of socioeconomic factors and the distribution of Ae. aegypti mosquitoes. Additionally, a hand search of mosquito control association websites was conducted in an attempt to identify relevant grey literature. Articles were screened for eligibility using the process described in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Initially, 3,493 articles were identified through the database searches and previously known literature. After checking for duplicates, 2,145 articles remained. 570 additional records were identified through the grey literature search for a total of 2,715 articles. These articles were screened for eligibility using their titles and abstracts, and 2,677 articles were excluded for not meeting the eligibility criteria. Finally, the full text for each of the remaining articles (n=38) was read to determine eligibility. Through this screening process, 11 articles were identified for inclusion in this review. The findings for these 11 studies revealed inconsistent relationships between the studied socioeconomic factors and the distribution and abundance of Ae. aegypti. The findings of this review suggest a gap in the literature and understanding of the association between anthropogenic factors and the distribution of Ae. aegypti that could hinder efforts to implement effective public health prevention and control strategies should a disease outbreak occur.
Collapse
Affiliation(s)
- Whitney M Holeva-Eklund
- Department of Health Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
| | - Timothy K Behrens
- Department of Health Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Crystal M Hepp
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|