51
|
Ayaz A, Huang H, Zheng M, Zaman W, Li D, Saqib S, Zhao H, Lü S. Molecular Cloning and Functional Analysis of GmLACS2-3 Reveals Its Involvement in Cutin and Suberin Biosynthesis along with Abiotic Stress Tolerance. Int J Mol Sci 2021; 22:9175. [PMID: 34502106 PMCID: PMC8430882 DOI: 10.3390/ijms22179175] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cutin and wax are the main precursors of the cuticle that covers the aerial parts of plants and provide protection against biotic and abiotic stresses. Long-chain acyl-CoA synthetases (LACSs) play diversified roles in the synthesis of cutin, wax, and triacylglycerol (TAG). Most of the information concerned with LACS functions is obtained from model plants, whereas the roles of LACS genes in Glycine max are less known. Here, we have identified 19 LACS genes in Glycine max, an important crop plant, and further focused our attention on 4 LACS2 genes (named as GmLACS2-1, 2, 3, 4, respectively). These GmLACS2 genes display different expression patterns in various organs and also show different responses to abiotic stresses, implying that these genes might play diversified functions during plant growth and against stresses. To further identify the role of GmLACS2-3, greatly induced by abiotic stresses, we transformed a construct containing its full length of coding sequence into Arabidopsis. The expression of GmLACS2-3 in an Arabidopsis atlacs2 mutant greatly suppressed its phenotype, suggesting it plays conserved roles with that of AtLACS2. The overexpression of GmLACS2-3 in wild-type plants significantly increased the amounts of cutin and suberin but had little effect on wax amounts, indicating the specific role of GmLACS2-3 in the synthesis of cutin and suberin. In addition, these GmLACS2-3 overexpressing plants showed enhanced drought tolerance. Taken together, our study deepens our understanding of the functions of LACS genes in different plants and also provides a clue for cultivating crops with strong drought resistance.
Collapse
Affiliation(s)
- Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (A.A.); (H.H.); (M.Z.); (D.L.); (H.Z.)
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (A.A.); (H.H.); (M.Z.); (D.L.); (H.Z.)
| | - Minglü Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (A.A.); (H.H.); (M.Z.); (D.L.); (H.Z.)
| | - Wajid Zaman
- Lushan Botanical Garden, Chinese Academy of Sciences, Nanchang 332900, China;
| | - Donghai Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (A.A.); (H.H.); (M.Z.); (D.L.); (H.Z.)
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (A.A.); (H.H.); (M.Z.); (D.L.); (H.Z.)
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (A.A.); (H.H.); (M.Z.); (D.L.); (H.Z.)
| |
Collapse
|
52
|
Pineau E, Sauveplane V, Grienenberger E, Bassard JE, Beisson F, Pinot F. CYP77B1 a fatty acid epoxygenase specific to flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110905. [PMID: 33902861 DOI: 10.1016/j.plantsci.2021.110905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 05/02/2023]
Abstract
Contrary to animals, little is known in plants about enzymes able to produce fatty acid epoxides. In our attempt to find and characterize a new fatty acid epoxygenase in Arabidopsis thaliana, data mining brought our attention on CYP77B1. Modification of the N-terminus was necessary to get enzymatic activity after heterologous expression in yeast. The common plant fatty acid C18:2 was converted into the diol 12,13-dihydroxy-octadec-cis-9-enoic acid when incubated with microsomes of yeast expressing modified CYP77B1 and AtEH1, a soluble epoxide hydrolase. This diol originated from the hydrolysis by AtEH1 of the epoxide 12,13-epoxy-octadec-cis-9-enoic acid produced by CYP77B1. A spatio-temporal study of CYP77B1 expression performed with RT-qPCR revealed the highest level of transcripts in flower bud while, in open flower, the enzyme was mainly present in pistil. CYP77B1 promoter-driven GUS expression confirmed reporter activities in pistil and also in stamens and petals. In silico co-regulation data led us to hypothesize that CYP77B1 could be involved in cutin synthesis but when flower cutin of loss-of-function mutants cyp77b1 was analyzed, no difference was found compared to cutin of wild type plants. Phylogenetic analysis showed that CYP77B1 is strictly conserved in flowering plants, suggesting a specific function in this lineage.
Collapse
Affiliation(s)
- Emmanuelle Pineau
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Etienne Grienenberger
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| | - Jean-Etienne Bassard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| | - Frédéric Beisson
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA, CNRS, Aix Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
53
|
Elejalde-Palmett C, Martinez San Segundo I, Garroum I, Charrier L, De Bellis D, Mucciolo A, Guerault A, Liu J, Zeisler-Diehl V, Aharoni A, Schreiber L, Bakan B, Clausen MH, Geisler M, Nawrath C. ABCG transporters export cutin precursors for the formation of the plant cuticle. Curr Biol 2021; 31:2111-2123.e9. [PMID: 33756108 DOI: 10.1016/j.cub.2021.02.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
The plant cuticle is deposited on the surface of primary plant organs, such as leaves, fruits, and floral organs, forming a diffusion barrier and protecting the plant against various abiotic and biotic stresses. Cutin, the structural polyester of the plant cuticle, is synthesized in the apoplast. Plasma-membrane-localized ATP-binding cassette (ABC) transporters of the G family have been hypothesized to export cutin precursors. Here, we characterize SlABCG42 of tomato representing an ortholog of AtABCG32 in Arabidopsis. SlABCG42 expression in Arabidopsis complements the cuticular deficiencies of the Arabidopsis pec1/abcg32 mutant. RNAi-dependent downregulation of both tomato genes encoding proteins highly homologous to AtABCG32 (SlABCG36 and SlABCG42) leads to reduced cutin deposition and formation of a thinner cuticle in tomato fruits. By using a tobacco (Nicotiana benthamiana) protoplast system, we show that AtABCG32 and SlABCG42 have an export activity for 10,16-dihydroxy hexadecanoyl-2-glycerol, a cutin precursor in vivo. Interestingly, also free ω-hydroxy hexadecanoic acid as well as hexadecanedioic acid were exported, furthering the research on the identification of cutin precursors in vivo and the respective mechanisms of their integration into the cutin polymer.
Collapse
Affiliation(s)
| | - Ignacio Martinez San Segundo
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Imène Garroum
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurence Charrier
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland; Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aurore Guerault
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
| | - Bénédicte Bakan
- INRAE, Biopolymers Interactions Assemblies UR1268, 44316 Nantes Cedex 3, France
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
54
|
Barraj Barraj R, Segado P, Moreno-González R, Heredia A, Fernández-Muñoz R, Domínguez E. Genome-wide QTL analysis of tomato fruit cuticle deposition and composition. HORTICULTURE RESEARCH 2021; 8:113. [PMID: 33931622 PMCID: PMC8087829 DOI: 10.1038/s41438-021-00548-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 05/24/2023]
Abstract
Genetics of traits related to fruit cuticle deposition and composition was studied in two red-fruited tomato species. Two mapping populations derived from the cross between the cultivated tomato (Solanum lycopersicum L.) and its closest relative wild species Solanum pimpinellifolium L. were employed to conduct a QTL analysis. A combination of fruit cuticle deposition, components and anatomical traits were investigated and the individual effect of each QTL evaluated. A total of 70 QTLs were identified, indicating that all the cuticle traits analyzed have a complex polygenic nature. A combination of additive and epistatic interactions was observed for all the traits, with positive contribution of both parental lines to most of them. Colocalization of QTLs for various traits uncovered novel genomic regions producing extensive changes in the cuticle. Cuticle density emerges as an important trait since it can modulate cuticle thickness and invagination thus providing a strategy for sustaining mechanical strength without compromising palatability. Two genomic regions, located in chromosomes 1 and 12, are responsible for the negative interaction between cuticle waxes and phenolics identified in tomato fruit. Several candidate genes, including transcription factors and structural genes, are postulated and their expression analyzed throughout development.
Collapse
Affiliation(s)
- Rida Barraj Barraj
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Algarrobo-Costa, E-29750, Málaga, Spain
| | - Patricia Segado
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
| | - Rocío Moreno-González
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
- Departament de Bioquímica i Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Antonio Heredia
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Algarrobo-Costa, E-29750, Málaga, Spain
| | - Eva Domínguez
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Algarrobo-Costa, E-29750, Málaga, Spain.
| |
Collapse
|
55
|
Liu Y, Zhang X, Han K, Li R, Xu G, Han Y, Cui F, Fan S, Seim I, Fan G, Li G, Wan S. Insights into amphicarpy from the compact genome of the legume Amphicarpaea edgeworthii. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:952-965. [PMID: 33236503 PMCID: PMC8131047 DOI: 10.1111/pbi.13520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Amphicarpy (seed heteromorphy) is a unique and fascinating reproductive strategy wherein a single plant produces both aerial and subterranean fruits. This strategy is believed to be an adaptation to life under stressful or uncertain environments. Here, we sequenced and de novo assembled a chromosome-level genome assembly of the legume Amphicarpaea edgeworthii Benth. The 299-Mb A. edgeworthii genome encodes 27 899 protein-coding genes and is the most compact sequenced legume genome reported until date. Its reduced genome size may be attributed to the reduced long-terminal repeat retrotransposon content, which stems from the unequal homologous recombination. Gene families related to immunity and stress resistance have been contracted in A. edgeworthii, which is consistent with the notion that the amphicarpic reproductive strategy may be a complementary mechanism for its weak environmental-adaptation ability. We demonstrated the 'ABCE' model for the differentiation of chasmogamous and cleistogamous flowers. In addition, the characteristics of aerial and subterranean seeds in hard-seededness were explored. Thus, we suggest that the A. edgeworthii genome, which is the first of an amphicarpic plant, offers significant insights into its unusual reproductive strategy that is a key resource towards comprehending the evolution of angiosperms.
Collapse
Affiliation(s)
- Yiyang Liu
- Bio‐technology Research CenterShandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyShandong Academy of Agricultural SciencesJi’nanChina
| | - Xuejie Zhang
- College of Life SciencesShandong Normal UniversityJi’nanChina
| | - Kai Han
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
| | - Rongchong Li
- Bio‐technology Research CenterShandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyShandong Academy of Agricultural SciencesJi’nanChina
| | - Guoxin Xu
- Shandong Rice Research InstituteShandong Academy of Agricultural SciencesJi’nanChina
| | - Yan Han
- College of Life SciencesShandong Normal UniversityJi’nanChina
| | - Feng Cui
- Bio‐technology Research CenterShandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyShandong Academy of Agricultural SciencesJi’nanChina
| | - Shoujin Fan
- College of Life SciencesShandong Normal UniversityJi’nanChina
| | - Inge Seim
- Integrative Biology LaboratoryCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Guangyi Fan
- BGI‐QingdaoBGI‐ShenzhenQingdaoChina
- BGI‐ShenzhenShenzhenChina
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Guowei Li
- Bio‐technology Research CenterShandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyShandong Academy of Agricultural SciencesJi’nanChina
| | - Shubo Wan
- Bio‐technology Research CenterShandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyShandong Academy of Agricultural SciencesJi’nanChina
| |
Collapse
|
56
|
Structure, Assembly and Function of Cuticle from Mechanical Perspective with Special Focus on Perianth. Int J Mol Sci 2021; 22:ijms22084160. [PMID: 33923850 PMCID: PMC8072621 DOI: 10.3390/ijms22084160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
This review is devoted to the structure, assembly and function of cuticle. The topics are discussed from the mechanical perspective and whenever the data are available a special attention is paid to the cuticle of perianth organs, i.e., sepals, petals or tepals. The cuticle covering these organs is special in both its structure and function and some of these peculiarities are related to the cuticle mechanics. In particular, strengthening of the perianth surface is often provided by a folded cuticle that functionally resembles profiled plates, while on the surface of the petal epidermis of some plants, the cuticle is the only integral continuous layer. The perianth cuticle is distinguished also by those aspects of its mechanics and development that need further studies. In particular, more investigations are needed to explain the formation and maintenance of cuticle folding, which is typical for the perianth epidermis, and also to elucidate the mechanical properties and behavior of the perianth cuticle in situ. Gaps in our knowledge are partly due to technical problems caused by very small thicknesses of the perianth cuticle but modern tools may help to overcome these obstacles.
Collapse
|
57
|
Razeq FM, Kosma DK, França D, Rowland O, Molina I. Extracellular lipids of Camelina sativa: Characterization of cutin and suberin reveals typical polyester monomers and unusual dicarboxylic fatty acids. PHYTOCHEMISTRY 2021; 184:112665. [PMID: 33524853 DOI: 10.1016/j.phytochem.2021.112665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Camelina sativa is relatively drought tolerant and requires less fertilizer than other oilseed crops. Various lipid- and phenolic-based extracellular barriers of plants help to protect them against biotic and abiotic stresses. These barriers, which consist of solvent-insoluble polymeric frameworks and solvent-extractable waxes, include the cuticle of aerial plant surfaces and suberized cell walls found, for example, in periderms and seed coats. Cutin, the polymeric matrix of the cuticle, and the aliphatic domain of suberin are fatty acid- and glycerol-based polyesters. These polyesters were investigated by base-catalyzed transesterification of C. sativa aerial and underground delipidated tissues followed by gas chromatographic analysis of the released monomer mixtures. Seed coat and root suberin had similar compositions, with 18-hydroxyoctadecenoic and 1,18-octadecenedioic fatty acids being the dominant species. Root suberin presented a typical lamellar ultrastructure, but seed coats showed almost imperceptible, faint dark bands. Leaf and stem lipid polyesters were composed of fatty acids (FA), 1,ω-dicarboxylic fatty acids (DCA), ω-hydroxy fatty acids (HFA) and hydroxycinnamic acids (HCA). Dihydroxypalmitic acid (DHP) and caffeic acid were the major constituents of leaf cutin, whereas stem cutin presented similar molar proportions in several monomers across the four classes. Unlike the leaf cuticle, the C. sativa stem cuticle presented lamellar structure by transmission electron microscopy. Flower cutin was dominated by DHP, did not contain aromatics, and presented substantial amounts (>30%) of hydroxylated 1,ω-dicarboxylic acids. We found striking differences between the lipid polyester monomer compositions of aerial tissues of C. sativa and that of its close relatives Arabidopsis thaliana and Brassica napus.
Collapse
Affiliation(s)
- Fakhria M Razeq
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Débora França
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, Canada
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada.
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, Canada.
| |
Collapse
|
58
|
Liang B, Sun Y, Wang J, Zheng Y, Zhang W, Xu Y, Li Q, Leng P. Tomato protein phosphatase 2C influences the onset of fruit ripening and fruit glossiness. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2403-2418. [PMID: 33345282 DOI: 10.1093/jxb/eraa593] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Abscisic acid (ABA) plays a vital role in coordinating physiological processes during fresh fruit ripening. Binding of ABA to receptors facilitates the interaction and inhibition of type 2C phosphatase (PP2C) co-receptors. However, the exact mechanism of PP2C during fruit ripening is unclear. In this study, we determined the role of the tomato ABA co-receptor type 2C phosphatase SlPP2C3, a negative regulator of ABA signaling and fruit ripening. SlPP2C3 selectively interacted with monomeric ABA receptors and SlSnRK2.8 kinase in both yeast and tobacco epidermal cells. Expression of SlPP2C3 was ABA-inducible, which was negatively correlated with fruit ripening. Tomato plants with suppressed SlPP2C3 expression exhibited enhanced sensitivity to ABA, while plants overexpressing SlPP2C3 were less sensitive to ABA. Importantly, lack of SlPP2C3 expression accelerated the onset of fruit ripening and affected fruit glossiness by altering the outer epidermis structure. There was a significant difference in the expression of cuticle-related genes in the pericarp between wild-type and SlPP2C3-suppressed lines based on RNA sequencing (RNA-seq) analysis. Taken together, our findings demonstrate that SlPP2C3 plays an important role in the regulation of fruit ripening and fruit glossiness in tomato.
Collapse
Affiliation(s)
- Bin Liang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yufei Sun
- College of Horticulture, China Agricultural University, Beijing, PR China
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Juan Wang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yu Zheng
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Wenbo Zhang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yandan Xu
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Qian Li
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Ping Leng
- College of Horticulture, China Agricultural University, Beijing, PR China
| |
Collapse
|
59
|
Sanjari S, Shobbar ZS, Ghanati F, Afshari-Behbahanizadeh S, Farajpour M, Jokar M, Khazaei A, Shahbazi M. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:383-391. [PMID: 33450508 DOI: 10.1016/j.plaphy.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Wax accumulation on the sorghum surface plays an important role in drought tolerance by preventing non-stomatal water loss. Thereby, the effect of post-flowering drought stress (PFDS) on the epicuticular wax (EW) amount, relative water content (RWC), chlorophyll, and grain yield in sorghum drought contrasting genotypes were investigated. The experiment was conducted as a split-plot based on randomized complete block design (RCBD) with two water treatments (normal watering and water holding after 50% flowering stage), and three genotypes (Kimia and KGS23 as drought-tolerant and Sepideh as drought-susceptible). Scanning electron microscopy and GC-MS analyses were used to determine the wax crystals density and its compositions, respectively. In addition, based on literature reviews and publicly available datasets, six wax biosynthesis drought stress-responsive genes were chosen for expression analysis. The results showed that the amounts of EW and wax crystals density were increased in Kimia and Sepideh genotypes and no changed in KGS23 genotype under drought stress. Chemical compositions of wax were classified into six major groups including alkanes, fatty acids, aldehydes, esters, alcohols, and cyclic compounds. Alkanes increment in drought-tolerant genotypes led to make an effective barrier against the drought stress to control water losses. In addition, the drought-tolerant genotypes had higher levels of RWC compared to the drought-susceptible ones, resulted in higher yield produced under drought condition. According to the results, SbWINL1, FATB, and CER1 genes play important roles in drought-induced wax biosynthesis. The results of the present study revealed a comprehensive view of the wax and its compositions and some involved genes in sorghum under drought stress.
Collapse
Affiliation(s)
- Sepideh Sanjari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Faezeh Ghanati
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran.
| | - Mojtaba Jokar
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azim Khazaei
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maryam Shahbazi
- Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
60
|
Xu B, Taylor L, Pucker B, Feng T, Glover BJ, Brockington SF. The land plant-specific MIXTA-MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land. THE NEW PHYTOLOGIST 2021; 229:2324-2338. [PMID: 33051877 DOI: 10.1111/nph.16997] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The evolution of a lipid-based cuticle on aerial plant surfaces that protects against dehydration is considered a fundamental innovation in the colonization of the land by the green plants. However, key evolutionary steps in the early regulation of cuticle synthesis are still poorly understood, owing to limited studies in early-diverging land plant lineages. Here, we characterize a land plant specific subgroup 9 R2R3 MYB transcription factor MpSBG9, in the early-diverging land plant model Marchantia polymorpha, that is homologous to MIXTA proteins in vascular plants. The MpSBG9 functions as a key regulator of cuticle biosynthesis by preferentially regulating expression of orthologous genes for cutin formation, but not wax biosynthesis genes. The MpSBG9 also promotes the formation of papillate cells on the adaxial surface of M. polymorpha, which is consisitent with its canonical role in vascular plants. Our observations imply conserved MYB transcriptional regulation in the control of the cutin biosynthesis pathway as a core genetic network in the common ancestor of all land plants, implicating the land plant-specific MIXTA MYB lineage in the early origin and evolution of the cuticle.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Lin Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Genetics and Genomics of Plants, Center for Biotechnology & Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße, Bochum, 44801, Germany
| | - Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430047, China
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
61
|
Cavallini-Speisser Q, Morel P, Monniaux M. Petal Cellular Identities. FRONTIERS IN PLANT SCIENCE 2021; 12:745507. [PMID: 34777425 PMCID: PMC8579033 DOI: 10.3389/fpls.2021.745507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 05/14/2023]
Abstract
Petals are typified by their conical epidermal cells that play a predominant role for the attraction and interaction with pollinators. However, cell identities in the petal can be very diverse, with different cell types in subdomains of the petal, in different cell layers, and depending on their adaxial-abaxial or proximo-distal position in the petal. In this mini-review, we give an overview of the main cell types that can be found in the petal and describe some of their functions. We review what is known about the genetic basis for the establishment of these cellular identities and their possible relation with petal identity and polarity specifiers expressed earlier during petal development, in an attempt to bridge the gap between organ identity and cell identity in the petal.
Collapse
|
62
|
Roeder AHK. Arabidopsis sepals: A model system for the emergent process of morphogenesis. QUANTITATIVE PLANT BIOLOGY 2021; 2:e14. [PMID: 36798428 PMCID: PMC9931181 DOI: 10.1017/qpb.2021.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During development, Arabidopsis thaliana sepal primordium cells grow, divide and interact with their neighbours, giving rise to a sepal with the correct size, shape and form. Arabidopsis sepals have proven to be a good system for elucidating the emergent processes driving morphogenesis due to their simplicity, their accessibility for imaging and manipulation, and their reproducible development. Sepals undergo a basipetal gradient of growth, with cessation of cell division, slow growth and maturation starting at the tip of the sepal and progressing to the base. In this review, I discuss five recent examples of processes during sepal morphogenesis that yield emergent properties: robust size, tapered tip shape, laminar shape, scattered giant cells and complex gene expression patterns. In each case, experiments examining the dynamics of sepal development led to the hypotheses of local rules. In each example, a computational model was used to demonstrate that these local rules are sufficient to give rise to the emergent properties of morphogenesis.
Collapse
Affiliation(s)
- Adrienne H. K. Roeder
- Section of Plant Biology, School of Integrative Plant Science and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Author for correspondence: Adrienne H. K. Roeder, E-mail:
| |
Collapse
|
63
|
Wang L, Xue W, Li X, Li J, Wu J, Xie L, Kawabata S, Li Y, Zhang Y. EgMIXTA1, a MYB-Type Transcription Factor, Promotes Cuticular Wax Formation in Eustoma grandiflorum Leaves. FRONTIERS IN PLANT SCIENCE 2020; 11:524947. [PMID: 33193471 PMCID: PMC7641950 DOI: 10.3389/fpls.2020.524947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/22/2020] [Indexed: 05/31/2023]
Abstract
In the aerial plant organs, cuticular wax forms a hydrophobic layer that can protect cells from dehydration, repel pathogen attacks, and prevent organ fusion during development. The MIXTA gene encodes an MYB-like transcription factor, which is associated with epicuticular wax biosynthesis to increase the wax load on the surface of leaves. In this study, the AmMIXTA-homologous gene EgMIXTA1 was functionally characterized in the Eustoma grandiflorum. EgMIXTA1 was ubiquitously, but highly, expressed in leaves and buds. We identified the Eustoma MIXTA homolog and developed the plants for overexpression. EgMIXTA1-overexpressing plants had more wax crystal deposition on the leaf surface compared to wild-type and considerably more overall cuticular wax. In the leaves of the overexpression line, the cuticular transpiration occurred more slowly than in those of non-transgenic plants. Analysis of gene expression indicated that several genes, such as EgCER3, EgCER6, EgCER10, EgKCS1, EgKCR1, and EgCYP77A6, which are known to be involved in wax biosynthesis, were induced by EgMIXTA1-overexpression lines. Expression of another gene, WAX INDUCER1/SHINE1, encoding a transcription factor that stimulates the production of cutin, was also significantly higher in the overexpressors than in wild-type. However, the expression of a lipid-related gene, EgABCG12, did not change relative to the wild-type. These results suggest that EgMIXTA1 is involved in the biosynthesis of cuticular waxes.
Collapse
Affiliation(s)
- Lishan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wanjie Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xueqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jingyao Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiayan Wu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Linan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo, Japan
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
64
|
Liao P, Ray S, Boachon B, Lynch JH, Deshpande A, McAdam S, Morgan JA, Dudareva N. Cuticle thickness affects dynamics of volatile emission from petunia flowers. Nat Chem Biol 2020; 17:138-145. [PMID: 33077978 DOI: 10.1038/s41589-020-00670-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 02/02/2023]
Abstract
The plant cuticle is the final barrier for volatile organic compounds (VOCs) to cross for release to the atmosphere, yet its role in the emission process is poorly understood. Here, using a combination of reverse-genetic and chemical approaches, we demonstrate that the cuticle imposes substantial resistance to VOC mass transfer, acting as a sink/concentrator for VOCs and hence protecting cells from the potentially toxic internal accumulation of these hydrophobic compounds. Reduction in cuticle thickness has differential effects on individual VOCs depending on their volatility, and leads to their internal cellular redistribution, a shift in mass transfer resistance sources and altered VOC synthesis. These results reveal that the cuticle is not simply a passive diffusion barrier for VOCs to cross, but plays the aforementioned complex roles in the emission process as an integral member of the overall VOC network.
Collapse
Affiliation(s)
- Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Shaunak Ray
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Benoît Boachon
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,BVpam FRE 3727, Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, Saint-Etienne, France
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Arnav Deshpande
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Scott McAdam
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - John A Morgan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA. .,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
65
|
Jin S, Zhang S, Liu Y, Jiang Y, Wang Y, Li J, Ni Y. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus. BMC PLANT BIOLOGY 2020; 20:458. [PMID: 33023503 PMCID: PMC7541215 DOI: 10.1186/s12870-020-02675-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 06/06/2023]
Abstract
BACKGROUND Brassica napus L. is one of the most important oil crops in the world. However, climate-change-induced environmental stresses negatively impact on its yield and quality. Cuticular waxes are known to protect plants from various abiotic/biotic stresses. Dissecting the genetic and biochemical basis underlying cuticular waxes is important to breed cultivars with improved stress tolerance. RESULTS Here a genome-wide association study (GWAS) of 192 B. napus cultivars and inbred lines was used to identify single-nucleotide polymorphisms (SNPs) associated with leaf waxes. A total of 202 SNPs was found to be significantly associated with 31 wax traits including total wax coverage and the amounts of wax classes and wax compounds. Next, epidermal peels from leaves of both high-wax load (HW) and low-wax load (LW) lines were isolated and used to analyze transcript profiles of all GWAS-identified genes. Consequently, 147 SNPs were revealed to have differential expressions between HW and LW lines, among which 344 SNP corresponding genes exhibited up-regulated while 448 exhibited down-regulated expressions in LW when compared to those in HW. According to the gene annotation information, some differentially expressed genes were classified into plant acyl lipid metabolism, including fatty acid-related pathways, wax and cutin biosynthesis pathway and wax secretion. Some genes involved in cell wall formation and stress responses have also been identified. CONCLUSIONS Combination of GWAS with transcriptomic analysis revealed a number of directly or indirectly wax-related genes and their associated SNPs. These results could provide clues for further validation of SNPs for marker-assisted breeding and provide new insights into the genetic control of wax biosynthesis and improving stress tolerance of B. napus.
Collapse
Affiliation(s)
- Shurong Jin
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Shuangjuan Zhang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yuhua Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Youwei Jiang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yanmei Wang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
66
|
Matschi S, Vasquez MF, Bourgault R, Steinbach P, Chamness J, Kaczmar N, Gore MA, Molina I, Smith LG. Structure-function analysis of the maize bulliform cell cuticle and its potential role in dehydration and leaf rolling. PLANT DIRECT 2020; 4:e00282. [PMID: 33163853 PMCID: PMC7598327 DOI: 10.1002/pld3.282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 05/03/2023]
Abstract
The hydrophobic cuticle of plant shoots serves as an important interaction interface with the environment. It consists of the lipid polymer cutin, embedded with and covered by waxes, and provides protection against stresses including desiccation, UV radiation, and pathogen attack. Bulliform cells form in longitudinal strips on the adaxial leaf surface, and have been implicated in the leaf rolling response observed in drought-stressed grass leaves. In this study, we show that bulliform cells of the adult maize leaf epidermis have a specialized cuticle, and we investigate its function along with that of bulliform cells themselves. Bulliform cells displayed increased shrinkage compared to other epidermal cell types during dehydration of the leaf, providing a potential mechanism to facilitate leaf rolling. Analysis of natural variation was used to relate bulliform strip patterning to leaf rolling rate, providing further evidence of a role for bulliform cells in leaf rolling. Bulliform cell cuticles showed a distinct ultrastructure with increased cuticle thickness compared to other leaf epidermal cells. Comparisons of cuticular conductance between adaxial and abaxial leaf surfaces, and between bulliform-enriched mutants versus wild-type siblings, showed a correlation between elevated water loss rates and presence or increased density of bulliform cells, suggesting that bulliform cuticles are more water-permeable. Biochemical analysis revealed altered cutin composition and increased cutin monomer content in bulliform-enriched tissues. In particular, our findings suggest that an increase in 9,10-epoxy-18-hydroxyoctadecanoic acid content, and a lower proportion of ferulate, are characteristics of bulliform cuticles. We hypothesize that elevated water permeability of the bulliform cell cuticle contributes to the differential shrinkage of these cells during leaf dehydration, thereby facilitating the function of bulliform cells in stress-induced leaf rolling observed in grasses.
Collapse
Affiliation(s)
- Susanne Matschi
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
- Present address:
Department Biochemistry of Plant InteractionsLeibniz Institute of Plant BiochemistryWeinberg 3Halle (Saale)Germany
| | - Miguel F. Vasquez
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | | | - Paul Steinbach
- Howard Hughes Medical InstituteUniversity of California San DiegoLa JollaCAUSA
| | - James Chamness
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Present address:
Department of Genetics, Cell Biology, and DevelopmentUniversity of MinnesotaSaint PaulMN55108USA
| | - Nicholas Kaczmar
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Michael A. Gore
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Isabel Molina
- Department of BiologyAlgoma UniversitySault Ste. MarieONCanada
| | - Laurie G. Smith
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
67
|
Camoirano A, Arce AL, Ariel FD, Alem AL, Gonzalez DH, Viola IL. Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5438-5453. [PMID: 32453824 DOI: 10.1093/jxb/eraa257] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Trichomes and the cuticle are two specialized structures of the aerial epidermis that are important for plant organ development and interaction with the environment. In this study, we report that Arabidopsis thaliana plants affected in the function of the class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15 show overbranched trichomes in leaves and stems and increased cuticle permeability. We found that TCP15 regulates the expression of MYB106, a MIXTA-like transcription factor involved in epidermal cell and cuticle development, and overexpression of MYB106 in a tcp14 tcp15 mutant reduces trichome branch number. TCP14 and TCP15 are also required for the expression of the cuticle biosynthesis genes CYP86A4, GPAT6, and CUS2, and of SHN1 and SHN2, two AP2/EREBP transcription factors required for cutin and wax biosynthesis. SHN1 and CUS2 are also targets of TCP15, indicating that class I TCPs influence cuticle formation acting at different levels, through the regulation of MIXTA-like and SHN transcription factors and of cuticle biosynthesis genes. Our study indicates that class I TCPs are coordinators of the regulatory network involved in trichome and cuticle development.
Collapse
Affiliation(s)
- Alejandra Camoirano
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Antonela L Alem
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | |
Collapse
|
68
|
Characterization of glycerol-3-phosphate acyltransferase 9 (AhGPAT9) genes, their allelic polymorphism and association with oil content in peanut (Arachis hypogaea L.). Sci Rep 2020; 10:14648. [PMID: 32887939 PMCID: PMC7474056 DOI: 10.1038/s41598-020-71578-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/16/2020] [Indexed: 11/30/2022] Open
Abstract
GPAT, the rate-limiting enzyme in triacylglycerol (TAG) synthesis, plays an important role in seed oil accumulation. In this study, two AhGPAT9 genes were individually cloned from the A- and B- genomes of peanut, which shared a similarity of 95.65%, with 165 site differences. The overexpression of AhGPAT9 or the knock-down of its gene expression increased or decreased the seed oil content, respectively. Allelic polymorphism analysis was conducted in 171 peanut germplasm, and 118 polymorphic sites in AhGPAT9A formed 64 haplotypes (a1 to a64), while 94 polymorphic sites in AhGPAT9B formed 75 haplotypes (b1 to b75). The haplotype analysis showed that a5, b57, b30 and b35 were elite haplotypes related to high oil content, whereas a7, a14, a48, b51 and b54 were low oil content types. Additionally, haplotype combinations a62/b10, a38/b31 and a43/b36 were associated with high oil content, but a9/b42 was a low oil content haplotype combination. The results will provide valuable clues for breeding new lines with higher seed oil content using hybrid polymerization of high-oil alleles of AhGPAT9A and AhGPAT9B genes.
Collapse
|
69
|
Rastogi S, Satapathy S, Shah S, Mytrai, Prakash H. In silico identification of cytochrome P450s involved in Ocimum tenuiflorum subjected to four abiotic stresses. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
70
|
Wang JY, Chen JD, Wang SL, Chen L, Ma CL, Yao MZ. Repressed Gene Expression of Photosynthetic Antenna Proteins Associated with Yellow Leaf Variation as Revealed by Bulked Segregant RNA-seq in Tea Plant Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8068-8079. [PMID: 32633946 DOI: 10.1021/acs.jafc.0c01883] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The young leaves and shoots of albino tea cultivars are usually characterized as having a yellow or pale color, high amino acid, and low catechin. Increasing attention has been paid to albino tea cultivars in recent years because their tea generally shows high umami and reduced astringency. However, the genetic mechanism of yellow-leaf variation in albino tea cultivar has not been elucidated clearly. In this study, bulked segregant RNA-seq (BSR-seq) was performed on bulked yellow- and green-leaf hybrid progenies from a leaf color variation population. A total of 359 and 1134 differentially expressed genes (DEGs) were identified in the yellow and green hybrid bulked groups (Yf vs Gf) and parent plants (Yp vs Gp), respectively. The significantly smaller number of DEGs in Yf versus Gf than in Yp versus Gp indicated that individual differences could be reduced within the same hybrid progeny. Analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes revealed that the photosynthetic antenna protein was most significantly enriched in either the bulked groups or their parents. Interaction was found among light-harvesting chlorophyll a/b -binding proteins (LHC), heat shock proteins (HSPs), and enzymes involved in cuticle formation. Combined with the transcriptomic expression profile, results showed that the repressed genes encoding LHC were closely linked to aberrant chloroplast development in yellow-leaf tea plants. Furthermore, the photoprotection and light stress response possessed by genes involved in HSP protein interaction and cuticle formation were discussed. The expression profile of DEGs was verified via quantitative real-time PCR analysis of the bulked samples and other F1 individuals. In summary, using BSR-seq on a hybrid population eliminated certain disturbing effects of genetic background and individual discrepancy, thereby helping this study to intensively focus on the key genes controlling leaf color variation in yellow-leaf tea plants.
Collapse
Affiliation(s)
- Jun-Ya Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jie-Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Song-Lin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
71
|
Kang H, Jia C, Liu N, Aboagla AAA, Chen W, Gong W, Tang S, Hong Y. Plastid Glycerol-3-phosphate Acyltransferase Enhanced Plant Growth and Prokaryotic Glycerolipid Synthesis in Brassica napus. Int J Mol Sci 2020; 21:ijms21155325. [PMID: 32727046 PMCID: PMC7432870 DOI: 10.3390/ijms21155325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/04/2022] Open
Abstract
Plastid-localized glycerol-3-phosphate acyltransferase (ATS1) catalyzes the first-step reaction in glycerolipid assembly through transferring an acyl moiety to glycerol-3-phosphate (G3P) to generate lysophosphatidic acid (LPA), an intermediate in lipid metabolism. The effect of ATS1 overexpression on glycerolipid metabolism and growth remained to be elucidated in plants, particularly oil crop plants. Here, we found that overexpression of BnATS1 from Brassica napus enhanced plant growth and prokaryotic glycerolipid biosynthesis. BnATS1 is localized in chloroplasts and an in vitro assay showed that BnATS1 had acylation activity toward glycerol 3-phosphate to produce LPA. Lipid profiling showed that overexpression of BnATS1 led to increases in multiple glycerolipids including phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), and phosphatidylinositol (PI), with increased polyunsaturated fatty acids. Moreover, increased MGDG was attributed to the elevation of 34:6- and 34:5-MGDG, which were derived from the prokaryotic pathway. These results suggest that BnATS1 promotes accumulation of polyunsaturated fatty acids in cellular membranes, thus enhances plant growth under low-temperature conditions in Brassica napus.
Collapse
|
72
|
Cahoon EB, Li-Beisson Y. Plant unusual fatty acids: learning from the less common. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:66-73. [PMID: 32304939 DOI: 10.1016/j.pbi.2020.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
The plant kingdom contains an abundance of structurally diverse fatty acids referred to as unusual fatty acids. Unusual fatty acids on plant surfaces can form polyesters that contribute to the function of cutin as a barrier for water loss and pathogen protection. Unusual fatty acids are also found as abundant components of seed oils of selected species and often confer desirable properties for industrial and nutritional applications. Here, we review recent findings on the biosynthesis and metabolism of unusual fatty acids in cutin and seed oils and use of this information for enzyme structure-function studies and seed oil metabolic engineering. We also highlight the recent discovery of unusual fatty acids that are formed from a previously undescribed variation of fatty acid elongation.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-Lez-Durance, France.
| |
Collapse
|
73
|
Philippe G, Sørensen I, Jiao C, Sun X, Fei Z, Domozych DS, Rose JK. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:11-20. [PMID: 32203682 DOI: 10.1016/j.pbi.2020.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 05/19/2023]
Abstract
Cutin and suberin are hydrophobic lipid biopolyester components of the cell walls of specialized plant tissue and cell-types, where they facilitate adaptation to terrestrial habitats. Many steps in their biosynthetic pathways have been characterized, but the basis of their spatial deposition and precursor trafficking is not well understood. Members of the GDSL lipase/esterase family catalyze cutin polymerization, and candidate proteins have been proposed to mediate interactions between cutin or suberin and other wall components. Comparative genomic studies of charophyte algae and early diverging land plants, combined with knowledge of the biosynthesis, trafficking and assembly mechanisms, suggests an origin for the capacity to secrete waxes, as well as aliphatic and phenolic compounds before the first colonization of true terrestrial habitats.
Collapse
Affiliation(s)
- Glenn Philippe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA; U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Jocelyn Kc Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
74
|
Wang XW, Lv JL, Shi YR, Guo LY. Comparative Transcriptome Analysis Revealed Genes Regulated by Histone Acetylation and Genes Related to Sex Hormone Biosynthesis in Phytophthora infestans. Front Genet 2020; 11:508. [PMID: 32508886 PMCID: PMC7253629 DOI: 10.3389/fgene.2020.00508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Late blight caused by Phytophthora infestans, is one of the most devastating diseases of potato, and was responsible for the death of millions of people during the Irish Potato Famine in the nineteenth century. Phytophthora infestans is a heterothallic oomycete that typically requires two compatible types (mating types), A1 and A2, to complete sexual reproduction (i.e., oospore production). Oospores have critical effects on disease epidemiology because they serve as the primary inoculum in subsequent growing seasons. The sexual reproduction of Phytophthora species is regulated by α hormones. In previous studies, we proved that transformants in which selected histone deacetylase (HDAC) genes are silenced exhibit abnormal hormone production. In the current study, we compared the transcriptomes of HDAC-silenced and wild-type strains to explore the genes regulated by HDAC and the genes involved in sex hormone biosynthesis in Phytophthora species. A total of 14,423 transcripts of unigenes were identified in the wild-type strain, the HDAC family-silenced transformant (HDST), and the HDAC7-silenced transformant (H7ST). After comparing the intergroup gene expression levels, 1,612 unigenes were identified as differentially expressed among these strains. The expression levels of 16 differentially expressed genes (DEGs) were validated by quantitative real-time PCR. The functional annotation of the DEGs by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that HDACs affect the expression of genes related to metabolic and biosynthetic processes, RNA processing, translation, ribosome biogenesis, cellular structural constituents, RNA binding, and protein binding. Moreover, HDAC7 specifically influences the transcription of genes associated with transport, methylation, mitochondria, organelle inner membranes, receptors and transporters, and hydrolase activities. We also identified 18 candidate genes related to α hormones biosynthesis, including a gene encoding the NF-Y transcription factor (PITG_10861). The overexpression of PITG_10861 increased the production of hormone α2. The results of this study revealed P. infestans genes affected by histone acetylation. The data presented herein provide useful inputs for future research on the epigenetic mechanisms and mating behaviors of Phytophthora species.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia-Lu Lv
- Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ya-Ru Shi
- Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li-Yun Guo
- Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
75
|
Dubey O, Dubey S, Schnee S, Glauser G, Nawrath C, Gindro K, Farmer EE. Plant surface metabolites as potent antifungal agents. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:39-48. [PMID: 32112998 DOI: 10.1016/j.plaphy.2020.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 05/24/2023]
Abstract
Triunsaturated fatty acids are substrates for the synthesis of the defense hormone jasmonate which plays roles in resistance to numerous fungal pathogens. However, relatively little is known about other potential roles of di-unsaturated and triunsaturated fatty acids in resistance to fungal pathogens - in particular those that can attack plants at the seedling stage. We examined the roles of polyunsaturated fatty acids (PUFAs) in Arabidopsis thaliana during attack by the necrotrophic pathogen, Botrytis cinerea. We found that PUFA-deficient Arabidopsis mutants (fad2-1, fad2-3 and fad3-2 fad7-2 fad8 [fad trip]) displayed an unexpectedly strong resistance to B. cinerea at the cotyledon stage. Preliminary analyses revealed no changes in the expression of defense genes, however cuticle permeability defects were detected in both fad2-1 and fad trip mutants. Analysis of B. cinerea development on the surface of cotyledons revealed arrested hyphal growth on fad2-3 and fad trip mutants and 28% reduction in fungal adhesion on fad2-3 cotyledons. Surface metabolite analysis from the cotyledons of PUFA mutants led to the identification of 7-methylsulfonylheptyl glucosinolate (7MSOHG), which over-accumulated on the plant surface. We linked the appearance of 7MSOHG to defects in cuticle composition and permeability of mutants and show that its appearance correlates with resistance to B. cinerea.
Collapse
Affiliation(s)
- Olga Dubey
- Agrosustain SA, c/o Agroscope, Route de Duillier 60, CH-1260, Nyon, Switzerland; Agroscope, Swiss Federal Agricultural Research Station in Changins, Route de Duillier 60, CH-1260, Nyon, Switzerland
| | - Sylvain Dubey
- Agrosustain SA, c/o Agroscope, Route de Duillier 60, CH-1260, Nyon, Switzerland; Agroscope, Swiss Federal Agricultural Research Station in Changins, Route de Duillier 60, CH-1260, Nyon, Switzerland; Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Sylvain Schnee
- Agroscope, Swiss Federal Agricultural Research Station in Changins, Route de Duillier 60, CH-1260, Nyon, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Christiane Nawrath
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Katia Gindro
- Agroscope, Swiss Federal Agricultural Research Station in Changins, Route de Duillier 60, CH-1260, Nyon, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
76
|
Wang J, Singh SK, Geng S, Zhang S, Yuan L. Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus. PLANTA 2020; 251:93. [PMID: 32246349 DOI: 10.1007/s00425-020-03384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Genome-wide identification, spatio-temporal expression analysis and functional characterization of selected Brassica napus GPATs highlight their roles in cuticular wax biosynthesis and defense against fungal pathogens. Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is a key enzyme in the biosynthesis of glycerolipids, a major component of cellular membranes and extracellular protective layers, such as cuticles in plants. Brassica napus is an economically important crop and cultivated worldwide mostly for its edible oil. The B. napus GPATs (BnGPATs) are insufficiently characterized. Here, we performed genome-wide analysis to identify putative GPATs in B. napus and its diploid progenitors B. rapa and B oleracea. The 32 B. napus BnGPATs are phylogenetically divided into three major groups, cutin, suberin, and diverse ancient groups. Analysis of transcriptomes of different tissues and seeds at different developmental stages revealed the spatial and temporal expression profiles of BnGPATs. The yield and oil quality of B. napus are adversely affected by the necrotrophic fungus, Sclerotinia sclerotiorum. We showed that several BnGPATs, including cutin-related BnGPAT19 and 21, were upregulated in the S. sclerotiorum resistant line. RNAi-mediated suppression of BnGPAT19 and 21 in B. napus resulted in thinner cuticle, leading to rapid water and chlorophyll loss in toluidine blue staining and leaf bleaching assays. In addition, the RNAi plants also developed severe necrotic lesions following fungal inoculation compared to the wild-type plants, indicating that BnGPAT19 and 21 are likely involved in cuticular wax biosynthesis that is critical for initial pathogen defense. Taken together, we provided a comprehensive account of GPATs B. napus and characterized BnGPAT19 and 21 for their potential roles in cuticular wax biosynthesis and defense against fungal pathogens.
Collapse
Affiliation(s)
- Jingxue Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China.
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Siyu Geng
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Shanshan Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Ling Yuan
- School of Life Science, Shanxi University, Taiyuan, Shanxi, China.
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
77
|
Lee SB, Yang SU, Pandey G, Kim MS, Hyoung S, Choi D, Shin JS, Suh MC. Occurrence of land-plant-specific glycerol-3-phosphate acyltransferases is essential for cuticle formation and gametophore development in Physcomitrella patens. THE NEW PHYTOLOGIST 2020; 225:2468-2483. [PMID: 31691980 DOI: 10.1111/nph.16311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/26/2019] [Indexed: 05/22/2023]
Abstract
During the evolution of land plants from aquatic to terrestrial environments, their aerial surfaces were surrounded by cuticle composed of cutin and cuticular waxes to protect them from environmental stresses. Glycerol-3-phosphate acyltransferase (GPAT) harboring bifunctional sn-2 acyltransferase/phosphatase activity produces 2-monoacylglycerol, a precursor for cutin synthesis. Here, we report that bifunctional sn-2 GPATs play roles in cuticle biosynthesis and gametophore development of Physcomitrella patens. Land plant-type cuticle was observed in gametophores but not in protonema. The expression of endoplasmic reticulum-localized PpGPATs was significantly upregulated in gametophores compared with protonema. Floral organ fusion and permeable cuticle phenotypes of Arabidopsis gpat6-2 petals were rescued to the wild type (WT) by the expression of PpGPAT2 or PpGPAT4. Disruption of PpGPAT2 and PpGPAT4 caused a significant reduction of total cutin loads, and a prominent decrease in the levels of palmitic and 10,16-dihydroxydecanoic acids, which are major cutin monomers in gametophores. Δppgpat2 mutants displayed growth retardation, delayed gametophore development, increased cuticular permeability, and reduced tolerance to drought, osmotic and salt stresses compared to the WT. Genome-wide analysis of genes encoding acyltransferase or phosphatase domains suggested that the occurrence of sn-2 GPATs with both domains may be a key event in cuticle biogenesis of land plants.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Sun Ui Yang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Garima Pandey
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Myung-Shin Kim
- Department of Plant Science, Seoul National University, Seoul, 08826, Korea
| | - Sujin Hyoung
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Doil Choi
- Department of Plant Science, Seoul National University, Seoul, 08826, Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| |
Collapse
|
78
|
Wang Y, Dai M, Cai D, Shi Z. Proteome and transcriptome profile analysis reveals regulatory and stress-responsive networks in the russet fruit skin of sand pear. HORTICULTURE RESEARCH 2020; 7:16. [PMID: 32025319 PMCID: PMC6994700 DOI: 10.1038/s41438-020-0242-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/05/2019] [Accepted: 12/27/2019] [Indexed: 05/07/2023]
Abstract
The epidermal tissues of the cuticular membrane (CM) and periderm membrane (PM) confer first-line protection from environmental stresses in terrestrial plants. Although PM protection is essentially ubiquitous in plants, the protective mechanism, the function of many transcription factors and enzymes, and the genetic control of metabolic signaling pathways are poorly understood. Different microphenotypes and cellular components in russet (PM-covered) and green (CM-covered) fruit skins of pear were revealed by scanning and transmission electron microscopy. The two types of fruit skins showed distinct phytohormone accumulation, and different transcriptomic and proteomic profiles. The enriched pathways were detected by differentially expressed genes and proteins from the two omics analyses. A detailed analysis of the suberin biosynthesis pathways identified the regulatory signaling network, highlighting the general mechanisms required for periderm formation in russet fruit skin. The regulation of aquaporins at the protein level should play an important role in the specialized functions of russet fruit skin and PM-covered plant tissues.
Collapse
Affiliation(s)
- Yuezhi Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province China
| | - Meisong Dai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province China
| | - Danying Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province China
| | - Zebin Shi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province China
| |
Collapse
|
79
|
Lai PH, Huang LM, Pan ZJ, Jane WN, Chung MC, Chen WH, Chen HH. PeERF1, a SHINE-Like Transcription Factor, Is Involved in Nanoridge Development on Lip Epidermis of Phalaenopsis Flowers. FRONTIERS IN PLANT SCIENCE 2020; 10:1709. [PMID: 32082333 PMCID: PMC7002429 DOI: 10.3389/fpls.2019.01709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Phalaenopsis orchids have a spectacular floral morphology with a highly evolved lip that offers a landing platform for pollinators. The typical morphological orchid lip features are essential for the special pollination mechanism of Phalaenopsis flowers. Previously, we found that in the lip, a member of the AP2/EREBP protein family was highly expressed. Here, we further confirmed its high expression and characterized its function during lip development. Phylogenetic analysis showed that AP2/EREBP belongs to the Va2 subgroup of ERF transcription factors. We named it PeERF1. We found that PeERF1 was only expressed at stage 5, as flowers opened. This coincided with both thickening of the cuticle and development of nanoridges. We performed knockdown expression of PeERF1 using CymMV-based virus-induced gene silencing in either the AP2 conserved domain, producing PeERF1_AP2-silenced plants, or the SHN specific domain, producing PeERF1_SHN-silenced plants. Using cryo-SEM, we found that the number of nanoridges was reduced only in the PeERF1_AP2-silenced group. This change was found on both the abaxial and adaxial surfaces of the central lip lobe. Expression of PeERF1 was reduced significantly in PeERF1_AP2-silenced plants. In cutin biosynthesis genes, expression of both PeCYP86A2 and PeDCR was significantly decreased in both groups. The expression of PeCYP77A4 was reduced significantly only in the PeERF1_AP2-silenced plants. Although PeGPAT expression was reduced in both silenced plants, but to a lesser degree. The expression of PeERF1 was significantly reduced in the petal-like lip of a big-lip variant. PeCYP77A4 and PeGPAT in the lip were also reduced, but PeDCR was not. Furthermore, heterologous overexpression of PeERF1 in the genus Arabidopsis produced leaves that were shiny on the adaxial surface. Taken together, our results show that in Phalaenopsis orchids PeERF1 plays an important role in formation of nanoridges during lip epidermis development.
Collapse
Affiliation(s)
- Pei-Han Lai
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Li-Min Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Zhao-Jun Pan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Chu Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
80
|
He M, Ding NZ. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:562785. [PMID: 33013981 PMCID: PMC7500430 DOI: 10.3389/fpls.2020.562785] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 05/21/2023]
Abstract
Land plants are exposed to not only biotic stresses such as pathogen infection and herbivore wounding, but abiotic stresses such as cold, heat, drought, and salt. Elaborate strategies have been developed to avoid or abide the adverse effects, with unsaturated fatty acids (UFAs) emerging as general defenders. In higher plants, the most common UFAs are three 18-carbon species, namely, oleic (18:1), linoleic (18:2), and α-linolenic (18:3) acids. These simple compounds act as ingredients and modulators of cellular membranes in glycerolipids, reserve of carbon and energy in triacylglycerol, stocks of extracellular barrier constituents (e.g., cutin and suberin), precursors of various bioactive molecules (e.g., jasmonates and nitroalkenes), and regulators of stress signaling. Nevertheless, they are also potential inducers of oxidative stress. In this review, we will present an overview of these roles and then shed light on genetic engineering of FA synthetic genes for improving plant/crop stress tolerance.
Collapse
|
81
|
Yang SU, Kim J, Kim H, Suh MC. Functional Characterization of Physcomitrella patens Glycerol-3-Phosphate Acyltransferase 9 and an Increase in Seed Oil Content in Arabidopsis by Its Ectopic Expression. PLANTS (BASEL, SWITZERLAND) 2019; 8:E284. [PMID: 31412690 PMCID: PMC6724121 DOI: 10.3390/plants8080284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 02/04/2023]
Abstract
Since vegetable oils (usually triacylglycerol [TAG]) are extensively used as food and raw materials, an increase in storage oil content and production of valuable polyunsaturated fatty acids (PUFAs) in transgenic plants is desirable. In this study, a gene encoding glycerol-3-phosphate acyltransferase 9 (GPAT9), which catalyzes the synthesis of lysophosphatidic acid (LPA) from a glycerol-3-phosphate and acyl-CoA, was isolated from Physcomitrella patens, which produces high levels of very-long-chain PUFAs in protonema and gametophores. P. patens GPAT9 shares approximately 50%, 60%, and 70% amino acid similarity with GPAT9 from Chlamydomonas reinhardtii, Klebsormidium nitens, and Arabidopsis thaliana, respectively. PpGPAT9 transcripts were detected in both the protonema and gametophores. Fluorescent signals from the eYFP:PpGPAT9 construct were observed in the ER of Nicotiana benthamiana leaf epidermal cells. Ectopic expression of PpGPAT9 increased the seed oil content by approximately 10% in Arabidopsis. The levels of PUFAs (18:2, 18:3, and 20:2) and saturated FAs (16:0, 18:0, and 20:0) increased by 60% and 43%, respectively, in the storage oil of the transgenic seeds when compared with the wild type. The transgenic embryos with increased oil content contained larger embryonic cells than the wild type. Thus, PpGPAT9 may be a novel genetic resource to enhance storage oil yields from oilseed crops.
Collapse
Affiliation(s)
- Sun Ui Yang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Hyojin Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
82
|
Fawke S, Torode TA, Gogleva A, Fich EA, Sørensen I, Yunusov T, Rose JKC, Schornack S. Glycerol-3-phosphate acyltransferase 6 controls filamentous pathogen interactions and cell wall properties of the tomato and Nicotiana benthamiana leaf epidermis. THE NEW PHYTOLOGIST 2019; 223:1547-1559. [PMID: 30980530 PMCID: PMC6767537 DOI: 10.1111/nph.15846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/29/2019] [Indexed: 05/30/2023]
Abstract
The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.
Collapse
Affiliation(s)
- Stuart Fawke
- Sainsbury Laboratory (SLCU)University of CambridgeCambridgeUK
| | | | - Anna Gogleva
- Sainsbury Laboratory (SLCU)University of CambridgeCambridgeUK
| | - Eric A. Fich
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Iben Sørensen
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Temur Yunusov
- Sainsbury Laboratory (SLCU)University of CambridgeCambridgeUK
| | - Jocelyn K. C. Rose
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | | |
Collapse
|
83
|
Zhu T, Wu S, Zhang D, Li Z, Xie K, An X, Ma B, Hou Q, Dong Z, Tian Y, Li J, Wan X. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2137-2154. [PMID: 31016347 DOI: 10.1007/s00122-019-03343-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/09/2019] [Indexed: 05/16/2023]
Abstract
Genome-wide analysis of maize GPAT gene family, cytological characterization of ZmMs33/ZmGPAT6 gene encoding an ER-localized protein with four conserved motifs, and its molecular breeding application in maize. Glycerol-3-phosphate acyltransferase (GPAT) mediates the initial step of glycerolipid biosynthesis and plays pivotal roles in plant growth and development. Compared with GPAT genes in Arabidopsis, our understanding to maize GPAT gene family is very limited. Recently, ZmMs33 gene has been identified to encode a sn-2 GPAT protein and control maize male fertility in our laboratory (Xie et al. in Theor Appl Genet 131:1363-1378, 2018). However, the functional mechanism of ZmMs33 remains elusive. Here, we reported the genome-wide analysis of maize GPAT gene family and found that 20 maize GPAT genes (ZmGPAT1-20) could be classified into three distinct clades similar to those of ten GPAT genes in Arabidopsis. Expression analyses of these ZmGPAT genes in six tissues and in anther during six developmental stages suggested that some of ZmGPATs may play crucial roles in maize growth and anther development. Among them, ZmGPAT6 corresponds to the ZmMs33 gene. Systemic cytological observations indicated that loss function of ZmMs33/ZmGPAT6 led to defective anther cuticle, arrested degeneration of anther wall layers, abnormal formation of Ubisch bodies and exine and ultimately complete male sterility in maize. The endoplasmic reticulum-localized ZmMs33/ZmGPAT6 possessed four conserved amino acid motifs essential for acyltransferase activity, while ZmMs33/ZmGPAT6 locus and its surrounding genomic region have greatly diversified during evolution of gramineous species. Finally, a multi-control sterility system was developed to produce ms33 male-sterile lines by using a combination strategy of transgene and marker-assisted selection. This work will provide useful information for further deciphering functional mechanism of ZmGPAT genes and facilitate molecular breeding application of ZmMs33/ZmGPAT6 gene in maize.
Collapse
Affiliation(s)
- Taotao Zhu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Ke Xie
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Quancan Hou
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
84
|
Tang S, Chen N, Song B, He J, Zhou Y, Jenks MA, Xu X. Compositional and transcriptomic analysis associated with cuticle lipid production on rosette and inflorescence stem leaves in the extremophyte Thellungiella salsuginea. PHYSIOLOGIA PLANTARUM 2019; 165:584-603. [PMID: 29761500 DOI: 10.1111/ppl.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
The plant cuticle is a complex structure composed primarily of wax and cutin, but also contains cutan, glycerolipids, phenolics, polysaccharides and proteins. The cuticle plays an important protective role as barrier between plants and their environment. In this paper, 4-week-old leaves produced either on the rosette or on the inflorescence stem of the model extremophyte Thellungiella salsuginea were examined using scanning electron microscopy, cuticle permeability assays and chemical composition analysis. Results showed that stem leaves (SL) had more abundant cuticle lipids and lower cuticle permeability than rosette leaves (RL). SL were dominated by alkanes, especially the C29 and C31 homologs, whereas in RL the most abundant wax class was free very long-chain acids. The major cutin monomers for both leaf types were C18:2 dioic acids and 18-OH C18:2 acids. We performed Illumina high-throughput sequencing for SL and RL, and 3577 differentially expressed genes were identified. Sixty-five genes possibly involved in cuticular lipid biosynthesis, transport, or regulation was selected for further analysis. Many cuticle-associated genes exhibited differential expression levels that could be associated with compositional differences between these two leaf types. Furthermore, transcription factors and other regulatory proteins previously associated with cuticle production were expressed at higher levels in SL than in RL. The associations between gene expression and characteristics of this extremophile's leaf cuticles sheds new light on cuticle as an adaptive trait in extreme environments, and contributes new information that may guide efforts to modify crop cuticles for improved stress tolerance.
Collapse
Affiliation(s)
- Shuai Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ningmei Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Buerbatu Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Junqing He
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Matthew A Jenks
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Xiaojing Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
85
|
Maraschin FDS, Kulcheski FR, Segatto ALA, Trenz TS, Barrientos-Diaz O, Margis-Pinheiro M, Margis R, Turchetto-Zolet AC. Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Prog Lipid Res 2019; 73:46-64. [DOI: 10.1016/j.plipres.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 12/01/2018] [Indexed: 01/30/2023]
|
86
|
Zhang L, Luo H, Zhao Y, Chen X, Huang Y, Yan S, Li S, Liu M, Huang W, Zhang X, Jin W. Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC PLANT BIOLOGY 2018. [PMID: 30509161 DOI: 10.1186/s12870-018-1543-1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The anther cuticle, which is primarily composed of lipid polymers, is crucial for pollen development and plays important roles in sexual reproduction in higher plants. However, the mechanism underlying the biosynthesis of lipid polymers in maize (Zea mays. L.) remains unclear. RESULTS Here, we report that the maize male-sterile mutant shrinking anther 1 (sa1), which is allelic to the classic mutant male sterile 33 (ms33), displays defective anther cuticle development and premature microspore degradation. We isolated MS33 via map-based cloning. MS33 encodes a putative glycerol-3-phosphate acyltransferase and is preferentially expressed in tapetal cells during anther development. Gas chromatography-mass spectrometry revealed a substantial reduction in wax and cutin in ms33 anthers compared to wild type. Accordingly, RNA-sequencing analysis showed that many genes involved in wax and cutin biosynthesis are differentially expressed in ms33 compared to wild type. CONCLUSIONS Our findings suggest that MS33 may contribute to anther cuticle and microspore development by affecting lipid polyester biosynthesis in maize.
Collapse
Affiliation(s)
- Lei Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Yue Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Suxing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Meishan Liu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
87
|
Zhang L, Luo H, Zhao Y, Chen X, Huang Y, Yan S, Li S, Liu M, Huang W, Zhang X, Jin W. Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC PLANT BIOLOGY 2018; 18:318. [PMID: 30509161 PMCID: PMC6276174 DOI: 10.1186/s12870-018-1543-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 11/20/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The anther cuticle, which is primarily composed of lipid polymers, is crucial for pollen development and plays important roles in sexual reproduction in higher plants. However, the mechanism underlying the biosynthesis of lipid polymers in maize (Zea mays. L.) remains unclear. RESULTS Here, we report that the maize male-sterile mutant shrinking anther 1 (sa1), which is allelic to the classic mutant male sterile 33 (ms33), displays defective anther cuticle development and premature microspore degradation. We isolated MS33 via map-based cloning. MS33 encodes a putative glycerol-3-phosphate acyltransferase and is preferentially expressed in tapetal cells during anther development. Gas chromatography-mass spectrometry revealed a substantial reduction in wax and cutin in ms33 anthers compared to wild type. Accordingly, RNA-sequencing analysis showed that many genes involved in wax and cutin biosynthesis are differentially expressed in ms33 compared to wild type. CONCLUSIONS Our findings suggest that MS33 may contribute to anther cuticle and microspore development by affecting lipid polyester biosynthesis in maize.
Collapse
Affiliation(s)
- Lei Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Hongbing Luo
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128 China
| | - Yue Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Xiaoyang Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Yumin Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193 China
| | - Suxing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Meishan Liu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Wei Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193 China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
88
|
Kawade K, Li Y, Koga H, Sawada Y, Okamoto M, Kuwahara A, Tsukaya H, Hirai MY. The cytochrome P450 CYP77A4 is involved in auxin-mediated patterning of the Arabidopsis thaliana embryo. Development 2018; 145:145/17/dev168369. [PMID: 30213790 DOI: 10.1242/dev.168369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
Metabolism often plays an important role in developmental control, in addition to supporting basal physiological requirements. However, our understanding of this interaction remains limited. Here, we performed quantitative phenome analysis of Arabidopsis thaliana cytochrome P450 mutants to identify a novel interaction between development and metabolism. We found that cyp77a4 mutants exhibit specific defects in cotyledon development, including asymmetric positioning and cup-shaped morphology, which could be rescued by introducing the CYP77A4 gene. Microscopy revealed that the abnormal patterning was detected at least from the 8-cell stage of the cyp77a4 embryos. We next analysed auxin distribution in mutant embryos, as the phenotypes resembled those of auxin-related mutants. We found that the auxin response pattern was severely perturbed in the cyp77a4 embryos owing to an aberrant distribution of the auxin efflux carrier PIN1. CYP77A4 intracellularly localised to the endoplasmic reticulum, which is consistent with the notion that this enzyme acts as an epoxidase of unsaturated fatty acids in the microsomal fraction. We propose that the CYP77A4-dependent metabolic pathway is an essential element for the establishment of polarity in plant embryos.
Collapse
Affiliation(s)
- Kensuke Kawade
- Okazaki Institute for Integrative Bioscience, 5-1, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan .,National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yimeng Li
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mami Okamoto
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hirokazu Tsukaya
- Okazaki Institute for Integrative Bioscience, 5-1, Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
89
|
Aliscioni SS, Gotelli M, Torretta JP. Structure of the stigma and style of Callaeum psilophyllum (Malpighiaceae) and its relation with potential pollinators. PROTOPLASMA 2018; 255:1433-1442. [PMID: 29594351 DOI: 10.1007/s00709-018-1245-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The family Malpighiaceae, particularly in the Neotropic, shows a similar floral morphology. Although floral attraction and rewards to pollinators are alike, stigmas and styles show more diversity. The stigmas were described covered with a thin and impermeable cuticle that needs to be ruptured by the mechanical action of the pollinators. However, this characteristic was only mentioned for a few species and the anatomy and ultrastructure of the stigmas were not explored. In this work, we analyze the morphology, anatomy, and ultrastructure of the stigma and style of Callaeum psilophyllum. Moreover, we identify the potential pollinators in order to evaluate how the disposition of the stigmas is related with their size and its role in the exposure of the receptive stigmatic surface. Our observations indicate that Centris flavifrons, C. fuscata, C. tarsata, and C. trigonoides are probably efficient pollinators of C. psilophyllum. The three stigmas are covered by a cuticle that remained intact in bagged flowers. The flowers exposed to visitors show the cuticle broken, more secretion in the intercellular spaces between sub-stigmatic cells and abundant electron-dense components inside vacuoles in stigmatic papillae. This indicates that the stigmas prepares in similar ways to receive pollen grains, but the pollinator action is required to break the cuticle, and once pollen tubes start growing, stigmatic and sub-stigmatic cells release more secretion by a granulocrine process.
Collapse
Affiliation(s)
- Sandra Silvina Aliscioni
- Instituto de Botánica Darwinion (IBODA), Casilla de Correo 22, B1642HYD, San Isidro, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Marina Gotelli
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan Pablo Torretta
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
90
|
Jayawardhane KN, Singer SD, Weselake RJ, Chen G. Plant sn-Glycerol-3-Phosphate Acyltransferases: Biocatalysts Involved in the Biosynthesis of Intracellular and Extracellular Lipids. Lipids 2018; 53:469-480. [PMID: 29989678 DOI: 10.1002/lipd.12049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023]
Abstract
Acyl-lipids such as intracellular phospholipids, galactolipids, sphingolipids, and surface lipids play a crucial role in plant cells by serving as major components of cellular membranes, seed storage oils, and extracellular lipids such as cutin and suberin. Plant lipids are also widely used to make food, renewable biomaterials, and fuels. As such, enormous efforts have been made to uncover the specific roles of different genes and enzymes involved in lipid biosynthetic pathways over the last few decades. sn-Glycerol-3-phosphate acyltransferases (GPAT) are a group of important enzymes catalyzing the acylation of sn-glycerol-3-phosphate at the sn-1 or sn-2 position to produce lysophosphatidic acids. This reaction constitutes the first step of storage-lipid assembly and is also important in polar- and extracellular-lipid biosynthesis. Ten GPAT have been identified in Arabidopsis, and many homologs have also been reported in other plant species. These enzymes differentially localize to plastids, mitochondria, and the endoplasmic reticulum, where they have different biological functions, resulting in distinct metabolic fate(s) for lysophosphatidic acid. Although studies in recent years have led to new discoveries about plant GPAT, many gaps still exist in our understanding of this group of enzymes. In this article, we highlight current biochemical and molecular knowledge regarding plant GPAT, and also discuss deficiencies in our understanding of their functions in the context of plant acyl-lipid biosynthesis.
Collapse
Affiliation(s)
- Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St & 85 Ave, Edmonton, Alberta, T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 - 1st Avenue South, Lethbridge, Alberta, T1J 4B1, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St & 85 Ave, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St & 85 Ave, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
91
|
Rains MK, Gardiyehewa de Silva ND, Molina I. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. TREE PHYSIOLOGY 2018; 38:340-361. [PMID: 28575526 DOI: 10.1093/treephys/tpx060] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/18/2017] [Indexed: 05/09/2023]
Abstract
The tree bark periderm confers the first line of protection against pathogen invasion and abiotic stresses. The phellogen (cork cambium) externally produces cork (phellem) cells that are dead at maturity; while metabolically active, these tissues synthesize cell walls, as well as cell wall modifications, namely suberin and waxes. Suberin is a heteropolymer with aliphatic and aromatic domains, composed of acylglycerols, cross-linked polyphenolics and solvent-extractable waxes. Although suberin is essentially ubiquitous in vascular plants, the biochemical functions of many enzymes and the genetic regulation of its synthesis are poorly understood. We have studied suberin and wax composition in four developmental stages of hybrid poplar (Populus tremula x Populus alba) stem periderm. The amounts of extracellular ester-linked acyl lipids per unit area increased with tissue age, a trend not observed with waxes. We used RNA-Seq deep-sequencing technology to investigate the cork transcriptome at two developmental stages. The transcript analysis yielded 455 candidates for the biosynthesis and regulation of poplar suberin, including genes with proven functions in suberin metabolism, genes highlighted as candidates in other plant species and novel candidates. Among these, a gene encoding a putative lipase/acyltransferase of the GDSL-motif family emerged as a suberin polyester synthase candidate, and specific isoforms of peroxidase and laccase genes were preferentially expressed in cork, suggesting that their corresponding proteins may be involved in cross-linking aromatics to form lignin-like polyphenolics. Many transcriptional regulators with possible roles in meristem identity, cork differentiation and acyl-lipid metabolism were also identified. Our work provides the first large-scale transcriptomic dataset on the suberin-synthesizing tissue of poplar bark, contributing to our understanding of tree bark development at the molecular level. Based on these data, we have proposed a number of hypotheses that can be used in future research leading to novel biological insights into suberin biosynthesis and its physiological function.
Collapse
Affiliation(s)
- Meghan K Rains
- Department of Biology, Biosciences Complex, Queen's University, 116 Barrie St., Kingston, ON, Canada K7L 3N6
- Department of Biology, Essar Convergence Centre, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, Canada P6A 2G4
| | - Nayana Dilini Gardiyehewa de Silva
- Department of Biology and Institute of Biochemistry, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Isabel Molina
- Department of Biology, Biosciences Complex, Queen's University, 116 Barrie St., Kingston, ON, Canada K7L 3N6
- Department of Biology, Essar Convergence Centre, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, Canada P6A 2G4
| |
Collapse
|
92
|
Woolfson KN, Haggitt ML, Zhang Y, Kachura A, Bjelica A, Rey Rincon MA, Kaberi KM, Bernards MA. Differential induction of polar and non-polar metabolism during wound-induced suberization in potato (Solanum tuberosum L.) tubers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:931-942. [PMID: 29315972 DOI: 10.1111/tpj.13820] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 05/11/2023]
Abstract
Wound-induced suberin deposition involves the temporal and spatial coordination of phenolic and fatty acid metabolism. Phenolic metabolism leads to both soluble metabolites that accumulate as defense compounds as well as hydroxycinnamoyl derivatives that form the basis of the poly(phenolic) domain found in suberized tissue. Fatty acid metabolism involves the biosynthesis of very-long-chain fatty acids, 1-alkanols, ω-hydroxy fatty acids and α,ω-dioic acids that form a poly(aliphatic) domain, commonly referred to as suberin. Using the abscisic acid (ABA) biosynthesis inhibitor fluridone (FD), we reduced wound-induced de novo biosynthesis of ABA in potato tubers, and measured the impact on the expression of genes involved in phenolic metabolism (StPAL1, StC4H, StCCR, StTHT), aliphatic metabolism (StCYP86A33, StCYP86B12, StFAR3, StKCS6), metabolism linking phenolics and aliphatics (StFHT) or acyl chains and glycerol (StGPAT5, StGPAT6), and in the delivery of aliphatic monomers to the site of suberization (StABCG1). In FD-treated tissue, both aliphatic gene expression and accumulation of aliphatic suberin monomers were delayed. Exogenous ABA restored normal aliphatic suberin deposition in FD-treated tissue, and enhanced aliphatic gene expression and poly(aliphatic) domain deposition when applied alone. By contrast, phenolic metabolism genes were not affected by FD treatment, while FD + ABA and ABA treatments slightly enhanced the accumulation of polar metabolites. These data support a role for ABA in the differential induction of phenolic and aliphatic metabolism during wound-induced suberization in potato.
Collapse
Affiliation(s)
- Kathlyn N Woolfson
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Meghan L Haggitt
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Yanni Zhang
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Alexandra Kachura
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Anica Bjelica
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - M Alejandra Rey Rincon
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Karina M Kaberi
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Mark A Bernards
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
93
|
Ingram G, Nawrath C. The roles of the cuticle in plant development: organ adhesions and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5307-5321. [PMID: 28992283 DOI: 10.1093/jxb/erx313] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cuticles, which are composed of a variety of aliphatic molecules, impregnate epidermal cell walls forming diffusion barriers that cover almost all the aerial surfaces in higher plants. In addition to revealing important roles for cuticles in protecting plants against water loss and other environmental stresses and aggressions, mutants with permeable cuticles show major defects in plant development, such as abnormal organ formation as well as altered seed germination and viability. However, understanding the mechanistic basis for these developmental defects represents a significant challenge due to the pleiotropic nature of phenotypes and the altered physiological status/viability of some mutant backgrounds. Here we discuss both the basis of developmental phenotypes associated with defects in cuticle function and mechanisms underlying developmental processes that implicate cuticle modification. Developmental abnormalities in cuticle mutants originate at early developmental time points, when cuticle composition and properties are very difficult to measure. Nonetheless, we aim to extract principles from existing data in order to pinpoint the key cuticle components and properties required for normal plant development. Based on our analysis, we will highlight several major questions that need to be addressed and technical hurdles that need to be overcome in order to advance our current understanding of the developmental importance of plant cuticles.
Collapse
Affiliation(s)
- Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, CNRS, INRA, UCB Lyon 1, Ecole Normale Supérieure de Lyon, F-69342 Lyon, France
| | - Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
94
|
Saffer AM, Irish VF. Isolation of mutants with abnormal petal epidermal cell morphology. PLANT SIGNALING & BEHAVIOR 2017; 12:e1382794. [PMID: 29072548 PMCID: PMC5703263 DOI: 10.1080/15592324.2017.1382794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/16/2017] [Indexed: 05/29/2023]
Abstract
Plants consist of many different cell types with specific shapes optimized for their particular functions. For example, most flowering plants have conically shaped epidermal cells on the upper surface of their petals that are important for pollinator attraction. The control of cell morphology in organs such as roots and leaves has been extensively studied, but much less is known about the genes that promote conical expansion of petal epidermal cells. We have developed a technique to rapidly assay the morphology of conical petal epidermal cells, and we employed this method in an unbiased genetic screen to identify mutants that alter the development of these cells. Mutants isolated in this screen affected cell shape, cell size, cuticle synthesis, and cellular chirality. This approach allowed for the identification of novel cellular components that are critical for the morphology of conical petal cells, and demonstrates the usefulness of petal epidermal cells as a model system for studying cellular morphogenesis.
Collapse
Affiliation(s)
- Adam M. Saffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Vivian F. Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
95
|
Misra A, Khan K, Niranjan A, Kumar V, Sane VA. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:79-88. [PMID: 28818386 DOI: 10.1016/j.plantsci.2017.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Oils and fats are stored in endosperm during seed development in the form of triacylglycerols. Three acyltransferases: glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) are involved in the storage lipid biosynthesis and catalyze the stepwise acylation of glycerol backbone. In this study two members of GPAT gene family (JcGPAT1 and JcGPAT2) from Jatropha seeds were identified and characterized. Sequence analysis suggested that JcGPAT1 and JcGPAT2 are homologous to Arabidopsis acyltransferase-1 (ATS1) and AtGPAT9 respectively. The sub-cellular localization studies of these two GPATs showed that JcGPAT1 localizes into plastid whereas JcGPAT2 localizes in to endoplasmic reticulum. JcGPAT1 and JcGPAT2 expressed throughout the seed development with higher expression in fully matured seed compared to immature seed. The transcript levels of JcGPAT2 were higher in comparison to JcGPAT1 in different developmental stages of seed. Over-expression of JcGPAT1 and JcGPAT2 under constitutive and seed specific promoters in Arabidopsis thaliana increased total oil content. Transgenic seeds of JcGPAT2-OE lines accumulated 43-60% more oil than control seeds whereas seeds of Arabidopsis lines over-expressing plastidial GPAT lead to only 13-20% increase in oil content. Functional characterization of GPAT homologues of Jatropha in Arabidopsis suggested that these are involved in oil biosynthesis but might have specific roles in Jatropha.
Collapse
Affiliation(s)
- Aparna Misra
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Kasim Khan
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Abhishek Niranjan
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Vinod Kumar
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow-226001, India
| | - Vidhu A Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow-226001, India.
| |
Collapse
|
96
|
Rhamnose-Containing Cell Wall Polymers Suppress Helical Plant Growth Independently of Microtubule Orientation. Curr Biol 2017; 27:2248-2259.e4. [DOI: 10.1016/j.cub.2017.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/01/2017] [Accepted: 06/12/2017] [Indexed: 11/18/2022]
|
97
|
Cui L, Qiu Z, Wang Z, Gao J, Guo Y, Huang Z, Du Y, Wang X. Fine Mapping of a Gene ( ER4.1) that Causes Epidermal Reticulation of Tomato Fruit and Characterization of the Associated Transcriptome. FRONTIERS IN PLANT SCIENCE 2017; 8:1254. [PMID: 28798753 PMCID: PMC5526902 DOI: 10.3389/fpls.2017.01254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/03/2017] [Indexed: 05/29/2023]
Abstract
The hydrophobic cuticle that covers the surface of tomato (Solanum lycopersicum) fruit plays key roles in development and protection against biotic and abiotic stresses, including water loss, mechanical damage, UV radiation, pathogens, and pests. However, many details of the genes and regulatory mechanisms involved in cuticle biosynthesis in fleshy fruits are not well understood. In this study, we describe a novel tomato fruit phenotype, characterized by epidermal reticulation (ER) of green fruit and a higher water loss rate than wild type (WT) fruit. The ER phenotype is controlled by a single gene, ER4.1, derived from an introgressed chromosomal segment from the wild tomato species S. pennellii (LA0716). We performed fine mapping of the single dominant gene to an ~300 kb region and identified Solyc04g082540, Solyc04g082950, Solyc04g082630, and Solyc04g082910as potential candidate genes for the ER4.1 locus, based on comparative RNA-seq analysis of ER and WT fruit peels. In addition, the transcriptome analysis revealed that the expression levels of genes involved in cutin, wax and flavonoid biosynthesis were altered in the ER fruit compared with WT. This study provides new insights into the regulatory mechanisms and metabolism of the fruit cuticle.
Collapse
Affiliation(s)
- Lipeng Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhengkun Qiu
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Zhirong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianchang Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yanmei Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
98
|
Pineau E, Xu L, Renault H, Trolet A, Navrot N, Ullmann P, Légeret B, Verdier G, Beisson F, Pinot F. Arabidopsis thaliana EPOXIDE HYDROLASE1 (AtEH1) is a cytosolic epoxide hydrolase involved in the synthesis of poly-hydroxylated cutin monomers. THE NEW PHYTOLOGIST 2017; 215:173-186. [PMID: 28497532 DOI: 10.1111/nph.14590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Epoxide hydrolases (EHs) are present in all living organisms. They have been extensively characterized in mammals; however, their biological functions in plants have not been demonstrated. Based on in silico analysis, we identified AtEH1 (At3g05600), a putative Arabidopsis thaliana epoxide hydrolase possibly involved in cutin monomer synthesis. We expressed AtEH1 in yeast and studied its localization in vivo. We also analyzed the composition of cutin from A. thaliana lines in which this gene was knocked out. Incubation of recombinant AtEH1 with epoxy fatty acids confirmed its capacity to hydrolyze epoxides of C18 fatty acids into vicinal diols. Transfection of Nicotiana benthamiana leaves with constructs expressing AtEH1 fused to enhanced green fluorescent protein (EGFP) indicated that AtEH1 is localized in the cytosol. Analysis of cutin monomers in loss-of-function Ateh1-1 and Ateh1-2 mutants showed an accumulation of 18-hydroxy-9,10-epoxyoctadecenoic acid and a concomitant decrease in corresponding vicinal diols in leaf and seed cutin. Compared with wild-type seeds, Ateh1 seeds showed delayed germination under osmotic stress conditions and increased seed coat permeability to tetrazolium red. This work reports a physiological role for a plant EH and identifies AtEH1 as a new member of the complex machinery involved in cutin synthesis.
Collapse
Affiliation(s)
- Emmanuelle Pineau
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Lin Xu
- Institute of Biosciences and Biotechnologies, CEA-CNRS-Aix Marseille Université, UMR 7265, LB3M, F-13108, Cadarache, France
| | - Hugues Renault
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Adrien Trolet
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Nicolas Navrot
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Pascaline Ullmann
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Bertrand Légeret
- Institute of Biosciences and Biotechnologies, CEA-CNRS-Aix Marseille Université, UMR 7265, LB3M, F-13108, Cadarache, France
| | - Gaëtan Verdier
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| | - Fred Beisson
- Institute of Biosciences and Biotechnologies, CEA-CNRS-Aix Marseille Université, UMR 7265, LB3M, F-13108, Cadarache, France
| | - Franck Pinot
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000, Strasbourg, France
| |
Collapse
|
99
|
Kim H, Choi D, Suh MC. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves. PLANT CELL REPORTS 2017; 36:815-827. [PMID: 28280927 DOI: 10.1007/s00299-017-2112-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/26/2017] [Indexed: 05/03/2023]
Abstract
An increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis and may allow plants to cope with oxygen deficiency. The hydrophobic cuticle layer consisting of cutin polyester and cuticular wax is the first barrier to protect the aerial parts of land plants from environmental stresses. In the present study, we investigated the role of cuticle membrane in Arabidopsis responses to oxygen deficiency. TEM analysis showed that the epidermal cells of hypoxia-treated Arabidopsis stems and leaves possessed a thinner electron-translucent cuticle proper and a more electron-dense cuticular layer. A reduction in epicuticular wax crystal deposition was observed in SEM images of hypoxia-treated Arabidopsis stem compared with normoxic control. Cuticular transpiration was more rapid in hypoxia-stressed leaves than in normoxic control. Total wax and cutin loads decreased by approximately 6-12 and 12-22%, respectively, and the levels of C29 alkanes, secondary alcohols, and ketones, C16:0 ω-hydroxy fatty acids, and C18:2 dicarboxylic acids were also prominently reduced in hypoxia-stressed Arabidopsis leaves and/or stems relative to normoxic control. Genome-wide transcriptome and quantitative RT-PCR analyses revealed that the expression of several genes involved in the biosynthesis and transport of cuticular waxes and cutin monomers were downregulated more than fourfold, but no significant alterations were detected in the transcript levels of fatty acid biosynthetic genes, BCCP2, PDH-E1α, and ENR1 in hypoxia-treated Arabidopsis stems and leaves compared with normoxic control. Taken together, an increased permeability of the cuticle is closely associated with downregulation of genes involved in cuticular lipid synthesis in hypoxia-stressed Arabidopsis. The present study elucidates one of the cuticle-related adaptive responses that may allow plants to cope with low oxygen levels.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dongsu Choi
- Department of Biology, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
100
|
Smyth DR. Wrinkles on Sepals: Cuticular Ridges Form when Cuticle Production Outpaces Epidermal Cell Expansion. MOLECULAR PLANT 2017; 10:540-541. [PMID: 28284751 DOI: 10.1016/j.molp.2017.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 05/19/2023]
Affiliation(s)
- David R Smyth
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|