51
|
Abstract
Phytohormones mediate plant development and responses to stresses caused by biotic agents or abiotic factors. The functions of phytohormones in responses to viral infection have been intensively studied, and the emerging picture of complex mechanisms provides insights into the roles that phytohormones play in defense regulation as a whole. These hormone signaling pathways are not simple linear or isolated cascades, but exhibit crosstalk with each other. Here, we summarized the current understanding of recent advances for the classical defense hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) and also the roles of abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinins (CKs), and brassinosteroids (BRs) in modulating plant–virus interactions.
Collapse
|
52
|
Chen L, Zhang L, Xiang S, Chen Y, Zhang H, Yu D. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1473-1489. [PMID: 33165597 PMCID: PMC7904156 DOI: 10.1093/jxb/eraa529] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
Necrotrophic fungi cause devastating diseases in both horticultural and agronomic crops, but our understanding of plant defense responses against these pathogens is still limited. In this study, we demonstrated that WRKY75 positively regulates jasmonate (JA)-mediated plant defense against necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, and also affects the sensitivity of plants to JA-inhibited seed germination and root growth. Quantitative analysis indicated that several JA-associated genes, such as OCTADECANOID-RESPONSIVE ARABIDOPSIS (ORA59) and PLANT DEFENSIN 1.2A (PDF1.2), were significantly reduced in expression in wrky75 mutants, and enhanced in WRKY75 overexpressing transgenic plants. Immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of ORA59 and represses itstranscription. In vivo and in vitro experiments suggested that WRKY75 interacts with several JASMONATE ZIM-domain proteins, repressors of the JA signaling pathway. We determined that JASMONATE-ZIM-DOMAIN PROTEIN 8 (JAZ8) represses the transcriptional function of WRKY75, thereby attenuating the expression of its regulation. Overexpression of JAZ8 repressed plant defense responses to B. cinerea. Our study provides evidence that WRKY75 functions as a critical component of the JA-mediated signaling pathway to positively regulate Arabidopsis defense responses to necrotrophic pathogens.
Collapse
Affiliation(s)
- Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Liping Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shengyuan Xiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Correspondence:
| |
Collapse
|
53
|
Mou M, Wang Q, Chen Y, Yu D, Chen L. Functional characterization of the Arabidopsis SERRATE under salt stress. PLANT DIVERSITY 2021; 43:71-77. [PMID: 33778227 PMCID: PMC7987573 DOI: 10.1016/j.pld.2020.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/12/2023]
Abstract
SERRATE (SE) plays critical roles in RNA metabolism and plant growth regulation. However, its function in stress-response processes remains largely unknown. Here, we examined the regulatory role of SE using the se-1 mutant and its complementation line under saline conditions. The expression of SE was repressed by salt treatment at both mRNA and protein levels. After treatment with different NaCl concentrations, the se-1 mutants showed increased sensitivity to salinity. This heightened sensitivity was evidenced by decreased germination, reduced root growth, more serious chlorosis, and increased conductivity of the mutants compared with the wild type. Further analysis revealed that SE regulates the pre-mRNA splicing of several well-characterized marker genes associated with salt stress tolerance. Our data thus imply that SE may function as a key component in plant response to salt stress by modulating the splicing of salt stress-associated genes.
Collapse
Affiliation(s)
- Minghui Mou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qijuan Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
54
|
Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:102-125. [PMID: 33095478 DOI: 10.1111/jipb.13028] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
55
|
Bi M, Li X, Yan X, Liu D, Gao G, Zhu P, Mao H. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. HORTICULTURE RESEARCH 2021; 8:6. [PMID: 33384451 PMCID: PMC7775453 DOI: 10.1038/s41438-020-00436-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 05/12/2023]
Abstract
Chrysanthemum white rust disease, which is caused by the fungus Puccinia horiana Henn., severely reduces the ornamental quality and yield chrysanthemum. WRKY transcription factors function in the disease-resistance response in a variety of plants; however, it is unclear whether members of this family improve resistance to white rust disease in chrysanthemum. In this study, using PCR, we isolated a WRKY15 homologous gene, CmWRKY15-1, from the resistant chrysanthemum cultivar C029. Real-time quantitative PCR (RT-qPCR) revealed that CmWRKY15-1 exhibited differential expression patterns between the immune cultivar C029 and the susceptible cultivar Jinba upon P. horiana infection. In addition, salicylic acid (SA) treatment strongly induced CmWRKY15-1 expression. Overexpression of CmWRKY15-1 in the chrysanthemum-susceptible cultivar Jinba increased tolerance to P. horiana infection. Conversely, silencing CmWRKY15-1 via RNA interference (RNAi) in C029 increased sensitivity to P. horiana infection. We also determined that P. horiana infection increased both the endogenous SA content and the expression of salicylic acid biosynthesis genes in CmWRKY15-1-overexpressing plants, whereas CmWRKY15-1 RNAi plants exhibited the opposite effects under the same conditions. Finally, the transcript levels of pathogenesis-related (PR) genes involved in the SA pathway were positively associated with CmWRKY15-1 expression levels. Our results demonstrated that CmWRKY15-1 plays an important role in the resistance of chrysanthemum to P. horiana by influencing SA signaling.
Collapse
Affiliation(s)
- Mengmeng Bi
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xueying Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Yan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Di Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ge Gao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Hongyu Mao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
56
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
57
|
Alazem M, He MH, Chang CH, Cheng N, Lin NS. Disrupting the Homeostasis of High Mobility Group Protein Promotes the Systemic Movement of Bamboo mosaic virus. FRONTIERS IN PLANT SCIENCE 2020; 11:597665. [PMID: 33424893 PMCID: PMC7793662 DOI: 10.3389/fpls.2020.597665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/11/2020] [Indexed: 05/21/2023]
Abstract
Viruses hijack various organelles and machineries for their replication and movement. Ever more lines of evidence indicate that specific nuclear factors are involved in systemic trafficking of several viruses. However, how such factors regulate viral systemic movement remains unclear. Here, we identify a novel role for Nicotiana benthamiana high mobility group nucleoprotein (NbHMG1/2a) in virus movement. Although infection of N. benthamiana with Bamboo mosaic virus (BaMV) decreased NbHMG1/2a expression levels, nuclear-localized NbHMG1/2a protein was shuttled out of the nucleus into cytoplasm upon BaMV infection. NbHMG1/2a knockdown or even overexpression did not affect BaMV accumulation in inoculated leaves, but it did enhance systemic movement of the virus. Interestingly, the positive regulator Rap-GTPase activation protein 1 was highly upregulated upon infection with BaMV, whereas the negative regulator thioredoxin h protein was greatly reduced, no matter if NbHMG1a/2a was silenced or overexpressed. Our findings indicate that NbHMG1/2a may have a role in plant defense responses. Once its homeostasis is disrupted, expression of relevant host factors may be perturbed that, in turn, facilitates BaMV systemic movement.
Collapse
Affiliation(s)
| | | | | | | | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
58
|
Balti I, Benny J, Perrone A, Caruso T, Abdallah D, Salhi-Hannachi A, Martinelli F. Identification of conserved genes linked to responses to abiotic stresses in leaves among different plant species. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:54-71. [PMID: 32727652 DOI: 10.1071/fp20028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
As a consequence of global climate change, certain stress factors that have a negative impact on crop productivity such as heat, cold, drought and salinity are becoming increasingly prevalent. We conducted a meta-analysis to identify genes conserved across plant species involved in (1) general abiotic stress conditions, and (2) specific and unique abiotic stress factors (drought, salinity, extreme temperature) in leaf tissues. We collected raw data and re-analysed eight RNA-Seq studies using our previously published bioinformatic pipeline. A total of 68 samples were analysed. Gene set enrichment analysis was performed using MapMan and PageMan whereas DAVID (Database for Annotation, Visualisation and Integrated Discovery) was used for metabolic process enrichment analysis. We identified of a total of 5122 differentially expressed genes when considering all abiotic stresses (3895 were upregulated and 1227 were downregulated). Jasmonate-related genes were more commonly upregulated by drought, whereas gibberellin downregulation was a key signal for drought and heat. In contrast, cold stress clearly upregulated genes involved in ABA (abscisic acid), cytokinin and gibberellins. A gene (non-phototrophic hypocotyl) involved in IAA (indoleacetic acid) response was induced by heat. Regarding secondary metabolism, as expected, MVA pathway (mevalonate pathway), terpenoids and alkaloids were generally upregulated by all different stresses. However, flavonoids, lignin and lignans were more repressed by heat (cinnamoyl coA reductase 1 and isopentenyl pyrophosphatase). Cold stress drastically modulated genes involved in terpenoid and alkaloids. Relating to transcription factors, AP2-EREBP, MADS-box, WRKY22, MYB, homoebox genes members were significantly modulated by drought stress whereas cold stress enhanced AP2-EREBPs, bZIP members, MYB7, BELL 1 and one bHLH member. C2C2-CO-LIKE, MADS-box and a homeobox (HOMEOBOX3) were mostly repressed in response to heat. Gene set enrichment analysis showed that ubiquitin-mediated protein degradation was enhanced by heat, which unexpectedly repressed glutaredoxin genes. Cold stress mostly upregulated MAP kinases (mitogen-activated protein kinase). Findings of this work will allow the identification of new molecular markers conserved across crops linked to major genes involved in quantitative agronomic traits affected by different abiotic stress.
Collapse
Affiliation(s)
- Imen Balti
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4 Palermo, 90128, Italy; and Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Jubina Benny
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4 Palermo, 90128, Italy
| | - Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, 90128, Italy
| | - Tiziano Caruso
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4 Palermo, 90128, Italy
| | - Donia Abdallah
- Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Amel Salhi-Hannachi
- Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, 50019, Italy; and Corresponding author.
| |
Collapse
|
59
|
Akbar S, Wei Y, Yuan Y, Khan MT, Qin L, Powell CA, Chen B, Zhang M. Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection. BMC PLANT BIOLOGY 2020; 20:532. [PMID: 33228528 PMCID: PMC7685628 DOI: 10.1186/s12870-020-02737-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/12/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Viruses are infectious pathogens, and plant virus epidemics can have devastating consequences to crop yield and quality. Sugarcane mosaic virus (SCMV, belonging to family Potyviridae) is one of the leading pathogens that affect the sugarcane crop every year. To combat the pathogens' attack, plants generate reactive oxygen species (ROS) as the first line of defense whose sophisticated balance is achieved through well-organized antioxidant scavenging pathways. RESULTS In this study, we investigated the changes occurring at the transcriptomic level of ROS associated and ROS detoxification pathways of SCMV resistant (B-48) and susceptible (Badila) sugarcane genotypes, using Saccharum spontaneum L. genome assembly as a reference genome. Transcriptomic data highlighted the significant upregulation of ROS producing genes such as NADH oxidase, malate dehydrogenase and flavin-binding monooxygenase, in Badila genotype after SCMV pathogenicity. To scavenge the ROS, the Badila genotype illustrated a substantial enhancement of antioxidants i.e. glutathione s-transferase (GST), as compared to its resistant counterpart. GST is supposed to be a key indicator of pathogen attacks on the plant. A remarkably lower GST expression in B-48, as compared to Badila, indicated the development of resistance in this genotype. Additionally, we characterized the critical transcription factors (TFs) involved in endowing resistance to B-48. Among these, WRKY, AP2, NAC, bZIP, and bHLH showed enhanced expression in the B-48 genotype. Our results also confirmed the linkage of transcriptomic data with the enzymatic and qPCR data. The estimation of enzymatic activities for superoxide dismutase, catalase, ascorbate peroxidase, and phenylalanine ammonia-lyase supported the transcriptomic data and evinced higher resistance in B-48 genotype. CONCLUSION The current study supported the efficiency of the B-48 genotype under SCMV infection. Moreover, comparative transcriptomic data has been presented to highlight the role of significant transcription factors conferring resistance to this genotype. This study provides an in-depth knowledge of the expression profiling of defense mechanisms in sugarcane.
Collapse
Affiliation(s)
- Sehrish Akbar
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Yao Wei
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | | | - Lifang Qin
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | | | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China.
- IRREC-IFAS, University of Florida, Fort Pierce, FL, 34945, USA.
| |
Collapse
|
60
|
Wu H, Qu X, Dong Z, Luo L, Shao C, Forner J, Lohmann JU, Su M, Xu M, Liu X, Zhu L, Zeng J, Liu S, Tian Z, Zhao Z. WUSCHEL triggers innate antiviral immunity in plant stem cells. Science 2020; 370:227-231. [PMID: 33033220 DOI: 10.1126/science.abb7360] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023]
Abstract
Stem cells in plants constantly supply daughter cells to form new organs and are expected to safeguard the integrity of the cells from biological invasion. Here, we show how stem cells of the Arabidopsis shoot apical meristem and their nascent daughter cells suppress infection by cucumber mosaic virus (CMV). The stem cell regulator WUSCHEL responds to CMV infection and represses virus accumulation in the meristem central and peripheral zones. WUSCHEL inhibits viral protein synthesis by repressing the expression of plant S-adenosyl-l-methionine-dependent methyltransferases, which are involved in ribosomal RNA processing and ribosome stability. Our results reveal a conserved strategy in plants to protect stem cells against viral intrusion and provide a molecular basis for WUSCHEL-mediated broad-spectrum innate antiviral immunity in plants.
Collapse
Affiliation(s)
- Haijun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoya Qu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhicheng Dong
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Linjie Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chen Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Joachim Forner
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg D-69120, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg D-69120, Germany
| | - Meng Su
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mengchu Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaobin Liu
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lei Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Sumei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhaoxia Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
61
|
Yu M, Bi X, Huang Y, Chen Y, Wang J, Zhang R, Lei Y, Xia Z, An M, Wu Y. Chimeric Tobamoviruses With Coat Protein Exchanges Modulate Symptom Expression and Defence Responses in Nicotiana tabacum. Front Microbiol 2020; 11:587005. [PMID: 33240243 PMCID: PMC7677242 DOI: 10.3389/fmicb.2020.587005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/12/2020] [Indexed: 01/14/2023] Open
Abstract
In the pathogen infection and host defence equilibrium, plant viruses have evolved to efficiently replicate their genomes, to resist the attack from host defence responses and to avoid causing severe negative effect on growth and metabolism of the hosts. In this study, we generated chimeric tobacco mosaic virus (TMV) variants, in which the coat protein (CP) sequences were substituted with that of cucumber green mottle mosaic virus (CGMMV) or pepper mild mottle virus (PMMoV) to address the role of these in virus infection and host symptomology. The results showed that the chimeric viruses (TMV-CGCP or TMV-PMCP) induce stunting and necrotic symptoms in tobacco plants. We analyzed the transcriptomic changes in tobacco plants after infection of TMV and its chimeras using a high-throughput RNA sequencing approach and found that infection of the chimeric TMV induced significant up-regulation of host defence responsive genes together with salicylic (SA) or abscisic acid (ABA) responsive genes, but down-regulation of auxin (Aux) responsive genes. We further confirmed the increase in the levels of SA and ABA, together with the reduced levels of Aux after infection of chimeric TMV in tobacco plants. These data suggest novel roles of tobamovirus CP in induction of host symptoms and defence responses.
Collapse
Affiliation(s)
- Man Yu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanmin Huang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yong Chen
- Sichuan Tobacco Company Deyang City Company, Deyang, China
| | - Jun Wang
- Sichuan Tobacco Company Deyang City Company, Deyang, China
| | - Ruina Zhang
- Sichuan Tobacco Company Deyang City Company, Deyang, China
| | - Yunkang Lei
- Sichuan Tobacco Company Deyang City Company, Deyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
62
|
Baruah I, Baldodiya GM, Sahu J, Baruah G. Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Curr Genomics 2020; 21:491-503. [PMID: 33214765 PMCID: PMC7604749 DOI: 10.2174/1389202921999200727213500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022] Open
Abstract
Plants inherently show resistance to pathogen attack but are susceptible to multiple bacteria, viruses, fungi, and phytoplasmas. Diseases as a result of such infection leads to the deterioration of crop yield. Several pathogen-sensitive gene activities, promoters of such genes, associated transcription factors, and promoter elements responsible for crosstalk between the defense signaling pathways are involved in plant resistance towards a pathogen. Still, only a handful of genes and their promoters related to plant resistance have been identified to date. Such pathogen-sensitive promoters are accountable for elevating the transcriptional activity of certain genes in response to infection. Also, a suitable promoter is a key to devising successful crop improvement strategies as it ensures the optimum expression of the required transgene. The study of the promoters also helps in mining more details about the transcription factors controlling their activities and helps to unveil the involvement of new genes in the pathogen response. Therefore, the only way out to formulate new solutions is by analyzing the molecular aspects of these promoters in detail. In this review, we provided an overview of the promoter motifs and cis-regulatory elements having specific roles in pathogen attack response. To elaborate on the importance and get a vivid picture of the pathogen-sensitive promoter sequences, the key motifs and promoter elements were analyzed with the help of PlantCare and interpreted with available literature. This review intends to provide useful information for reconstructing the gene networks underlying the resistance of plants against pathogens.
Collapse
Affiliation(s)
| | | | - Jagajjit Sahu
- Address correspondence to these authors at the Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University (BHU), Varanasi-221005, Uttar Pradesh, India;, E-mail: ; Environment Division, Assam Science Technology & Environment Council, Bigyan Bhawan, Guwahati-781005, Assam, India; E-mail:
| | - Geetanjali Baruah
- Address correspondence to these authors at the Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University (BHU), Varanasi-221005, Uttar Pradesh, India;, E-mail: ; Environment Division, Assam Science Technology & Environment Council, Bigyan Bhawan, Guwahati-781005, Assam, India; E-mail:
| |
Collapse
|
63
|
Ma Z, Li W, Wang H, Yu D. WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age-mediated flowering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1659-1673. [PMID: 32396254 DOI: 10.1111/jipb.12946] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/30/2020] [Indexed: 05/08/2023]
Abstract
WRKY12 and WRKY13 are two WRKY transcription factors that play important roles in the control of flowering time under short-day (SD) conditions. The temporally regulated expression of WRKY12 and WRKY13 indicates that they may be involved in the age-mediated flowering pathway. However, their roles in this pathway are poorly understood. Here, we show that the transcription of WRKY12 and WRKY13 is directly regulated by SQUAMOSA PROMOTER BINDING-LIKE 10 (SPL10), a transcription factor downstream of the age pathway. Binding and activation analyses revealed that SPL10 functions as a positive regulator of WRKY12 and a negative regulator of WRKY13. Further mechanistic investigation revealed that WRKY12 and WRKY13 physically interact with SPL10 and that both of them bind to the promoter of miR172b. Thus, the WRKY12-SPL10 and WRKY13-SPL10 interactions facilitate and inhibit SPL10 transcriptional function, respectively, to regulate miR172b expression. Together, our results show that WRKY12 and WRKY13 participate in the control of age-mediated flowering under SD conditions though physically interacting with SPLs and co-regulating the target gene miR172b.
Collapse
Affiliation(s)
- Zhenbing Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, the Chinese Academy of Sciences, Kunming, 650223, China
| | - Wei Li
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Houping Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, the Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, the Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| |
Collapse
|
64
|
Yang J, Xiao Q, Xu J, Da L, Guo L, Huang L, Liu Y, Xu W, Su Z, Yang S, Pan Q, Jiang W, Zhou T. GelFAP: Gene Functional Analysis Platform for Gastrodia elata. FRONTIERS IN PLANT SCIENCE 2020; 11:563237. [PMID: 33193491 PMCID: PMC7642037 DOI: 10.3389/fpls.2020.563237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Gastrodia elata, also named Tianma, is a valuable traditional Chinese herbal medicine. It has numerous important pharmacological roles such as in sedation and lowering blood pressure and as anticonvulsant and anti-aging, and it also has effects on the immune and cardiovascular systems. The whole genome sequencing of G. elata has been completed in recent years, which provides a strong support for the construction of the G. elata gene functional analysis platform. Therefore, in our research, we collected and processed 39 transcriptome data of G. elata and constructed the G. elata gene co-expression networks, then we identified functional modules by the weighted correlation network analysis (WGCNA) package. Furthermore, gene families of G. elata were identified by tools including HMMER, iTAK, PfamScan, and InParanoid. Finally, we constructed a gene functional analysis platform for G. elata . In our platform, we introduced functional analysis tools such as BLAST, gene set enrichment analysis (GSEA), and cis-elements (motif) enrichment analysis tool. In addition, we analyzed the co-expression relationship of genes which might participate in the biosynthesis of gastrodin and predicted 19 mannose-binding lectin antifungal proteins of G. elata. We also introduced the usage of the G. elata gene function analysis platform (GelFAP) by analyzing CYP51G1 and GFAP4 genes. Our platform GelFAP may help researchers to explore the gene function of G. elata and make novel discoveries about key genes involved in the biological processes of gastrodin.
Collapse
Affiliation(s)
- Jiaotong Yang
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiaoqiao Xiao
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lingling Da
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Wenying Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shiping Yang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi Pan
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
65
|
Pasin F, Shan H, García B, Müller M, San León D, Ludman M, Fresno DH, Fátyol K, Munné-Bosch S, Rodrigo G, García JA. Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response that Is Evaded by a Self-Controlled RNA Virus. PLANT COMMUNICATIONS 2020; 1:100099. [PMID: 32984814 PMCID: PMC7518510 DOI: 10.1016/j.xplc.2020.100099] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 05/13/2023]
Abstract
A complex network of cellular receptors, RNA targeting pathways, and small-molecule signaling provides robust plant immunity and tolerance to viruses. To maximize their fitness, viruses must evolve control mechanisms to balance host immune evasion and plant-damaging effects. The genus Potyvirus comprises plant viruses characterized by RNA genomes that encode large polyproteins led by the P1 protease. A P1 autoinhibitory domain controls polyprotein processing, the release of a downstream functional RNA-silencing suppressor, and viral replication. Here, we show that P1Pro, a plum pox virus clone that lacks the P1 autoinhibitory domain, triggers complex reprogramming of the host transcriptome and high levels of abscisic acid (ABA) accumulation. A meta-analysis highlighted ABA connections with host pathways known to control RNA stability, turnover, maturation, and translation. Transcriptomic changes triggered by P1Pro infection or ABA showed similarities in host RNA abundance and diversity. Genetic and hormone treatment assays showed that ABA promotes plant resistance to potyviral infection. Finally, quantitative mathematical modeling of viral replication in the presence of defense pathways supported self-control of polyprotein processing kinetics as a viral mechanism that attenuates the magnitude of the host antiviral response. Overall, our findings indicate that ABA is an active player in plant antiviral immunity, which is nonetheless evaded by a self-controlled RNA virus.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hongying Shan
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Maren Müller
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - David San León
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - David H. Fresno
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - Sergi Munné-Bosch
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Paterna, Spain
| | | |
Collapse
|
66
|
Guo L, Li C, Jiang Y, Luo K, Xu C. Heterologous Expression of Poplar WRKY18/35 Paralogs in Arabidopsis Reveals Their Antagonistic Regulation on Pathogen Resistance and Abiotic Stress Tolerance via Variable Hormonal Pathways. Int J Mol Sci 2020; 21:E5440. [PMID: 32751641 PMCID: PMC7432504 DOI: 10.3390/ijms21155440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
WRKY transcription factors (WRKY TFs) are one of the largest protein families in plants, and most of them play vital roles in response to biotic and abiotic stresses by regulating related signaling pathways. In this study, we isolated two WRKY TF genes PtrWRKY18 and PtrWRKY35 from Populustrichocarpa and overexpressed them in Arabidopsis. Expression pattern analyses showed that PtrWRKY18 and PtrWRKY35 respond to salicylic acid (SA), methyl JA (MeJA), abscisic acid (ABA), B. cinereal, and P. syringae treatment. The transgenic plants conferred higher B. cinerea tolerance than wild-type (WT) plants, and real-time quantitative (qRT)-PCR assays showed that PR3 and PDF1.2 had higher expression levels in transgenic plants, which was consistent with their tolerance to B. cinereal. The transgenic plants showed lower P. syringae tolerance than WT plants, and qRT-PCR analysis (PR1, PR2, and NPR1) also corresponded to this phenotype. Germination rate and root analysis showed that the transgenic plants are less sensitive to ABA, which leads to the reduced tolerance to osmotic stress and the increase of the death ratio and stomatal aperture. Compared with WT plants, a series of ABA-related genes (RD29A, ABO3, ABI4, ABI5, and DREB1A) were significantly down-regulated in PtrWRKY18 and PtrWRKY35 overexpression plants. All of these results demonstrated that the two WRKY TFs are multifunctional transcription factors in plant resistance.
Collapse
Affiliation(s)
- Li Guo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midori-cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Yuanzhong Jiang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; (L.G.); (C.L.); (Y.J.)
| |
Collapse
|
67
|
|
68
|
Aybeke M. Aspergillus alliaceus infection fatally shifts Orobanche hormones and phenolic metabolism. Braz J Microbiol 2020; 51:883-892. [PMID: 32363566 DOI: 10.1007/s42770-020-00283-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022] Open
Abstract
In this study, the physio pathological effects of Aspergillus alliaceus (Aa, fungi, biocontrol agent) on Orobanche (parasitic plant) were investigated by hormone and phenolic substance tests. In experimental group, Orobanches were treated with the fungi, considering control group was fungus-free. Based on the hormonal tests, in the experimental group, salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) levels significantly decreased, and only indole acetic acid (IAA) hormone levels were fairly higher than the control group. According to phenolic substance tests, it was found that only gallic acid, syringic acid and caffeic acid values significantly increased compared with control, and catechin and p-coumaric acid values were significantly lower. Consequently, it was determined that Aa pathogenesis (1) considerably reduces the effects of all defence hormones (JA, ABA, SA), (2) operates an inadequate defence based solely on the IAA hormone and several phenolic substances (gallic acid, syringic acid and caffeic acid), (3) and inevitably the fungi lead the Orobanche to a slow and continuous death. The results were evaluated in detail in the light of similar recent article and current literature in terms of biocontrol and pathology.
Collapse
Affiliation(s)
- Mehmet Aybeke
- Faculty of Science, Department of Biology, Balkan Campus, Trakya University, 22030, Edirne, Turkey.
| |
Collapse
|
69
|
Dubey O, Dubey S, Schnee S, Glauser G, Nawrath C, Gindro K, Farmer EE. Plant surface metabolites as potent antifungal agents. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:39-48. [PMID: 32112998 DOI: 10.1016/j.plaphy.2020.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 05/24/2023]
Abstract
Triunsaturated fatty acids are substrates for the synthesis of the defense hormone jasmonate which plays roles in resistance to numerous fungal pathogens. However, relatively little is known about other potential roles of di-unsaturated and triunsaturated fatty acids in resistance to fungal pathogens - in particular those that can attack plants at the seedling stage. We examined the roles of polyunsaturated fatty acids (PUFAs) in Arabidopsis thaliana during attack by the necrotrophic pathogen, Botrytis cinerea. We found that PUFA-deficient Arabidopsis mutants (fad2-1, fad2-3 and fad3-2 fad7-2 fad8 [fad trip]) displayed an unexpectedly strong resistance to B. cinerea at the cotyledon stage. Preliminary analyses revealed no changes in the expression of defense genes, however cuticle permeability defects were detected in both fad2-1 and fad trip mutants. Analysis of B. cinerea development on the surface of cotyledons revealed arrested hyphal growth on fad2-3 and fad trip mutants and 28% reduction in fungal adhesion on fad2-3 cotyledons. Surface metabolite analysis from the cotyledons of PUFA mutants led to the identification of 7-methylsulfonylheptyl glucosinolate (7MSOHG), which over-accumulated on the plant surface. We linked the appearance of 7MSOHG to defects in cuticle composition and permeability of mutants and show that its appearance correlates with resistance to B. cinerea.
Collapse
Affiliation(s)
- Olga Dubey
- Agrosustain SA, c/o Agroscope, Route de Duillier 60, CH-1260, Nyon, Switzerland; Agroscope, Swiss Federal Agricultural Research Station in Changins, Route de Duillier 60, CH-1260, Nyon, Switzerland
| | - Sylvain Dubey
- Agrosustain SA, c/o Agroscope, Route de Duillier 60, CH-1260, Nyon, Switzerland; Agroscope, Swiss Federal Agricultural Research Station in Changins, Route de Duillier 60, CH-1260, Nyon, Switzerland; Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Sylvain Schnee
- Agroscope, Swiss Federal Agricultural Research Station in Changins, Route de Duillier 60, CH-1260, Nyon, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Christiane Nawrath
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Katia Gindro
- Agroscope, Swiss Federal Agricultural Research Station in Changins, Route de Duillier 60, CH-1260, Nyon, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
70
|
Noman A, Aqeel M, Qari SH, Al Surhanee AA, Yasin G, Alamri S, Hashem M, M Al-Saadi A. Plant hypersensitive response vs pathogen ingression: Death of few gives life to others. Microb Pathog 2020; 145:104224. [PMID: 32360524 DOI: 10.1016/j.micpath.2020.104224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
The hypersensitive response (HR) is a defense action against pathogen ingression. Typically, HR is predictable with the appearance of the dead, brown cells along with visible lesions. Although death during HR can be limited to the cells in direct contact with pathogens, yet cell death can also spread away from the infection site. The variety in morphologies of plant cell death proposes involvement of different pathways for triggering HR. It is considered that, despite the differences, HR in plants performs the resembling functions like that of animal programmed cell death (PCD) for confining pathogen progression. HR, in fact, crucially initiates systemic signals for activation of defense in distal plant parts that ultimately results in systemic acquired resistance (SAR). Therefore, HR can be separated from other local immune actions/responses at the infection site. HR comprises of serial events inclusive of transcriptional reprograming, Ca2+ influx, oxidative bursts and phyto-hormonal signaling. Although a lot of work has been done on HR in plants but many questions regarding mechanisms and consequences of HRs remain unaddressed.We have summarized the mechanistic roles and cellular events of plant cells during HR in defense regulation. Roles of different genes during HR have been discussed to clarify genetic control of HR in plants. Generally existing ambiguities about HR and programmed cell death at the reader level has been addressed.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan.
| | - Muhammad Aqeel
- School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Sameer Hasan Qari
- Biology Department, Al-jumum University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Ameena A Al Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Saudi Arabia
| | - Ghulam Yasin
- Institute of Pure and Applied Biology, Bahau ud din Zakria University, Multan, Pakistan
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research center for advance materials science (RCAMS), King Khalid University, PO Box 9004 Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assuit University, Botany and Microbiology department, Assuit. 71516, Egypt
| | | |
Collapse
|
71
|
Zhao N, He M, Li L, Cui S, Hou M, Wang L, Mu G, Liu L, Yang X. Identification and expression analysis of WRKY gene family under drought stress in peanut (Arachis hypogaea L.). PLoS One 2020; 15:e0231396. [PMID: 32271855 PMCID: PMC7144997 DOI: 10.1371/journal.pone.0231396] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/22/2020] [Indexed: 11/19/2022] Open
Abstract
WRKY transcription factors play crucial roles in regulation mechanism leading to the adaption of plants to the complex environment. In this study, AhWRKY family was comprehensively analyzed using bioinformatic approaches in combination with transcriptome sequencing data of the drought-tolerant peanut variety ‘L422’. A total of 158 AhWRKY genes were identified and named according to their distribution on the chromosomes. Based on the structural features and phylogenetic analysis of AhWRKY proteins, the AhWRKY family members were classified into three (3) groups, of which group II included five (5) subgroups. Results of structure and conserved motifs analysis for the AhWRKY genes confirmed the accuracy of the clustering analysis. In addition, 12 tandem and 136 segmental duplication genes were identified. The results indicated that segmental duplication events were the main driving force in the evolution of AhWRKY family. Collinearity analysis found that 32 gene pairs existed between Arachis hypogaea and two diploid wild ancestors (Arachis duranensis and Arachis ipaensis), which provided valuable clues for phylogenetic characteristics of AhWRKY family. Furthermore, 19 stress-related cis-acting elements were found in the promoter regions. During the study of gene expression level of AhWRKY family members in response to drought stress, 73 differentially expressed AhWRKY genes were obtained to have been influenced by drought stress. These results provide fundamental insights for further study of WRKY genes in peanut drought resistance.
Collapse
Affiliation(s)
- Nannan Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Meijing He
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Li Li
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Shunli Cui
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Mingyu Hou
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liang Wang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Guojun Mu
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Lifeng Liu
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- * E-mail: (LL); (XY)
| | - Xinlei Yang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- * E-mail: (LL); (XY)
| |
Collapse
|
72
|
Alazem M, Lin NS. Interplay between ABA signaling and RNA silencing in plant viral resistance. Curr Opin Virol 2020; 42:1-7. [PMID: 32222536 DOI: 10.1016/j.coviro.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
Abscisic acid (ABA) regulates plant responses to different stimuli including viral infections through two different defense mechanisms; the antiviral RNA silencing pathway and callose accumulation. In some pathosystems, induction of these defense mechanisms is stronger in plants with resistance (R)-genes than in more susceptible plants. Mutants in several RNA silencing genes are hypersensitive to ABA, which suggests that these genes exert a regulatory feedback loop on ABA signaling. This scenario suggests that the RNA silencing pathway can target genes involved in the ABA pathway to control ABA production/signaling since prolonged production of this stress hormone arrests plant growth and development. Mutations in the ABA or salicylic acid pathways do not completely repress RNA silencing genes, indicating that RNA silencing represents a regulatory hub through which different pathways exert some of their functions, and thus the regulation of RNA silencing could be subject to hormone balancing in plants.
Collapse
Affiliation(s)
- Mazen Alazem
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
73
|
A conserved motif in three viral movement proteins from different genera is required for host factor recruitment and cell-to-cell movement. Sci Rep 2020; 10:4758. [PMID: 32179855 PMCID: PMC7075923 DOI: 10.1038/s41598-020-61741-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Due to their minimal genomes, plant viruses are forced to hijack specific cellular pathways to ensure host colonization, a condition that most frequently involves physical interaction between viral and host proteins. Among putative viral interactors are the movement proteins, responsible for plasmodesma gating and genome binding during viral transport. Two of them, DGBp1 and DGBp2, are required for alpha-, beta- and gammacarmovirus cell-to-cell movement, but the number of DGBp-host interactors identified at present is limited. By using two different approaches, yeast two-hybrid and bimolecular fluorescence complementation assays, we found three Arabidopsis factors, eIF3g1, RPP3A and WRKY36, interacting with DGBp1s from each genus mentioned above. eIF3g1 and RPP3A are mainly involved in protein translation initiation and elongation phases, respectively, while WRKY36 belongs to WRKY transcription factor family, important regulators of many defence responses. These host proteins are not expected to be associated with viral movement, but knocking out WRKY36 or silencing either RPP3A or eIF3g1 negatively affected Arabidopsis infection by Turnip crinkle virus. A highly conserved FNF motif at DGBp1 C-terminus was required for protein-protein interaction and cell-to-cell movement, suggesting an important biological role.
Collapse
|
74
|
Zhu Y, Hu X, Duan Y, Li S, Wang Y, Rehman AU, He J, Zhang J, Hua D, Yang L, Wang L, Chen Z, Li C, Wang B, Song CP, Sun Q, Yang S, Gong Z. The Arabidopsis Nodulin Homeobox Factor AtNDX Interacts with AtRING1A/B and Negatively Regulates Abscisic Acid Signaling. THE PLANT CELL 2020; 32:703-721. [PMID: 31919300 PMCID: PMC7054043 DOI: 10.1105/tpc.19.00604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 05/04/2023]
Abstract
The phytohormone abscisic acid (ABA) and the Polycomb group proteins have key roles in regulating plant growth and development; however, their interplay and underlying mechanisms are not fully understood. Here, we identified an Arabidopsis (Arabidopsis thaliana) nodulin homeobox (AtNDX) protein as a negative regulator in the ABA signaling pathway. AtNDX mutants are hypersensitive to ABA, as measured by inhibition of seed germination and root growth, and the expression of AtNDX is downregulated by ABA. AtNDX interacts with the Polycomb Repressive Complex1 (PRC1) core components AtRING1A and AtRING1B in vitro and in vivo, and together, they negatively regulate the expression levels of some ABA-responsive genes. We identified ABA-INSENSITIVE (ABI4) as a direct target of AtNDX. AtNDX directly binds the downstream region of ABI4 and deleting this region increases the ABA sensitivity of primary root growth. Furthermore, ABI4 mutations rescue the ABA-hypersensitive phenotypes of ndx mutants and ABI4-overexpressing plants are hypersensitive to ABA in primary root growth. Thus, our work reveals the critical functions of AtNDX and PRC1 in some ABA-mediated processes and their regulation of ABI4.
Collapse
Affiliation(s)
- Yujuan Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518100, China
| | - Xiaoying Hu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaofang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Amin Ur Rehman
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Deping Hua
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan, 250000, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng, 475001, China
| | - Qianwen Sun
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
75
|
Jiang Y, Zheng W, Li J, Liu P, Zhong K, Jin P, Xu M, Yang J, Chen J. NbWRKY40 Positively Regulates the Response of Nicotiana benthamiana to Tomato Mosaic Virus via Salicylic Acid Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:603518. [PMID: 33552099 PMCID: PMC7857026 DOI: 10.3389/fpls.2020.603518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/01/2020] [Indexed: 05/05/2023]
Abstract
WRKY transcription factors play important roles in plants, including responses to stress; however, our understanding of the function of WRKY genes in plant responses to viral infection remains limited. In this study, we investigate the role of NbWRKY40 in Nicotiana benthamiana resistance to tomato mosaic virus (ToMV). NbWRKY40 is significantly downregulated by ToMV infection, and subcellular localization analysis indicates that NbWRKY40 is targeted to the nucleus. In addition, NbWRKY40 activates W-box-dependent transcription in plants and shows transcriptional activation in yeast cells. Overexpressing NbWRKY40 (OEWRKY40) inhibits ToMV infection, whereas NbWRKY40 silencing confers susceptibility. The level of salicylic acid (SA) is significantly higher in OEWRKY40 plants compared with that of wild-type plants. In addition, transcript levels of the SA-biosynthesis gene (ICS1) and SA-signaling genes (PR1b and PR2) are dramatically higher in OEWRKY40 plants than in the control but lower in NbWRKY40-silenced plants than in the control. Furthermore, electrophoretic mobility shift assays show that NbWRKY40 can bind the W-box element of ICS1. Callose staining reveals that the plasmodesmata is decreased in OEWRKY40 plants but increased in NbWRKY40-silenced plants. Exogenous application of SA also reduces viral accumulation in NbWRKY40-silenced plants infected with ToMV. RT-qPCR indicates that NbWRKY40 does not affect the replication of ToMV in protoplasts. Collectively, our findings suggest that NbWRKY40 likely regulates anti-ToMV resistance by regulating the expression of SA, resulting in the deposition of callose at the neck of plasmodesmata, which inhibits viral movement.
Collapse
Affiliation(s)
- Yaoyao Jiang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Weiran Zheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Jin
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Miaoze Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jianping Chen,
| |
Collapse
|
76
|
Xu M, Chen J, Huang Y, Shen D, Sun P, Xu Y, Tao X. Dynamic Transcriptional Profiles of Arabidopsis thaliana Infected by Tomato spotted wilt virus. PHYTOPATHOLOGY 2020; 110:153-163. [PMID: 31544594 DOI: 10.1094/phyto-06-19-0199-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a negative-stranded RNA virus that infects hundreds of plant species, causing great economic loss. Infected Arabidopsis thaliana plants develop symptoms including chlorosis and wilt, which can lead to cell death. From 9 to 15 days after TSWV infection, symptoms progress through a three-stage process of appearance, severity, and death. In this study, deep sequencing technology was first used to explore gene expression in response to TSWV infection in model plant A. thaliana at different symptom development stages. We found that plant immune defense and protein degradation are induced by TSWV infection and that both inductions became stronger over time. The photosynthesis pathway was attenuated with TSWV infection. Cell wall metabolism had a large extent of downregulation while some genes were upregulated. These results illustrate the dynamic nature of TSWV infection in A. thaliana at the whole-transcriptome level. The link between biological processes and subpathway metabolism was further analyzed. Our study provides new insight into host regulatory networks and dynamic processes in response to TSWV infection.
Collapse
Affiliation(s)
- Min Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jing Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ying Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Peng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
77
|
Zhou C, Lin Q, Lan J, Zhang T, Liu X, Miao R, Mou C, Nguyen T, Wang J, Zhang X, Zhou L, Zhu X, Wang Q, Zhang X, Guo X, Liu S, Jiang L, Wan J. WRKY Transcription Factor OsWRKY29 Represses Seed Dormancy in Rice by Weakening Abscisic Acid Response. FRONTIERS IN PLANT SCIENCE 2020; 11:691. [PMID: 32536934 PMCID: PMC7268104 DOI: 10.3389/fpls.2020.00691] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/01/2020] [Indexed: 05/22/2023]
Abstract
For efficient plant reproduction, seed dormancy delays seed germination until the environment is suitable for the next generation growth and development. The phytohormone abscisic acid (ABA) plays important role in the induction and maintenance of seed dormancy. Previous studies have identified that WRKY transcription factors can regulate ABA signaling pathway. Here, we identified an Oswrky29 mutant with enhanced dormancy in a screen of T-DNA insertion population. OsWRKY29 is a member of WRKY transcription factor family which located in the nuclear. The genetic analyses showed that both knockout and RNAi lines of OsWRKY29 had enhanced seed dormancy whereas its overexpression lines displayed reduced seed dormancy. When treated with ABA, OsWRKY29 knockout and RNAi lines showed greater sensitivity than its overexpression lines. In addition, the expression levels of ABA positive response factors OsVP1 and OsABF1 were higher in the OsWRKY29 mutants but were lower in its overexpression lines. Further assays showed that OsWRKY29 could bind to the promoters of OsABF1 and OsVP1 to inhibit their expression. In summary, we identified a new ABA signaling repressor OsWRKY29 that represses seed dormancy by directly downregulating the expression of OsABF1 and OsVP1.
Collapse
Affiliation(s)
- Chunlei Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Lan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Rong Miao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Changling Mou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Thanhliem Nguyen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Vietnam
| | - Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiao Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Liang Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xingjie Zhu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qian Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijia Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ling Jiang,
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Jianmin Wan, ;
| |
Collapse
|
78
|
Cui X, Yan Q, Gan S, Xue D, Wang H, Xing H, Zhao J, Guo N. GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae. BMC PLANT BIOLOGY 2019; 19:598. [PMID: 31888478 PMCID: PMC6937711 DOI: 10.1186/s12870-019-2132-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 11/12/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The WRKY proteins are a superfamily of transcription factors and members play essential roles in the modulation of diverse physiological processes, such as growth, development, senescence and response to biotic and abiotic stresses. However, the biological roles of the majority of the WRKY family members remains poorly understood in soybean relative to the research progress in model plants. RESULTS In this study, we identified and characterized GmWRKY40, which is a group IIc WRKY gene. Transient expression analysis revealed that the GmWRKY40 protein is located in the nucleus of plant cells. Expression of GmWRKY40 was strongly induced in soybean following infection with Phytophthora sojae, or treatment with methyl jasmonate, ethylene, salicylic acid, and abscisic acid. Furthermore, soybean hairy roots silencing GmWRKY40 enhanced susceptibility to P. sojae infection compared with empty vector transgenic roots. Moreover, suppression of GmWRKY40 decreased the accumulation of reactive oxygen species (ROS) and modified the expression of several oxidation-related genes. Yeast two-hybrid experiment combined with RNA-seq analysis showed that GmWRKY40 interacted with 8 JAZ proteins with or without the WRKY domain or zinc-finger domain of GmWRKY40, suggesting there were different interaction patterns among these interacted proteins. CONCLUSIONS Collectively, these results suggests that GmWRKY40 functions as a positive regulator in soybean plants response to P. sojae through modulating hydrogen peroxide accumulation and JA signaling pathway.
Collapse
Affiliation(s)
- Xiaoxia Cui
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuping Gan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dong Xue
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haitang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
79
|
Liu G, Zeng H, Li X, Wei Y, Shi H. Functional Analysis of MaWRKY24 in Transcriptional Activation of Autophagy-Related Gene 8f/g and Plant Disease Susceptibility to Soil-Borne Fusarium oxysporum f. sp. cubense. Pathogens 2019; 8:pathogens8040264. [PMID: 31775365 PMCID: PMC6963284 DOI: 10.3390/pathogens8040264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
WRKYs play important roles in plant development and stress responses. Although MaWRKYs have been comprehensively identified in the banana (Musa acuminata), their in vivo roles and direct targets remain elusive. In this study, a transcript profile analysis indicated the common regulation of MaWRKYs transcripts in response to fungal pathogen Fusarium oxysporum f. sp. cubense (Foc). Among these MaWRKYs, MaWRKY24 was chosen for further analysis due to its higher expression in response to Foc. The specific nucleus subcellular location and transcription activated activity on W-box indicated that MaWRKY24 was a transcription factor. The correlation analysis of gene expression indicated that MaWRKYs were closely related to autophagy-associated genes (MaATG8s). Further analysis showed that MaWRKY24 directly regulated the transcriptional level of MaATG8f/g through binding to W-box in their promoters, as evidenced by quantitative real-time Polymerase Chain Reaction (PCR), dual luciferase assay, and electrophoretic mobility shift assay. In addition, overexpression of MaWRKY24 and MaATG8f/g resulted in disease susceptibility to Foc, which might be related to the activation of autophagic activity. This study highlights the positive regulation of MaWRKY24 in transcriptional activation of autophagy-related gene 8f/g in the banana and their common roles in disease susceptibility to soil-borne Foc, indicating the effects of MaWRKY24 on autophagy and disease susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Haitao Shi
- Correspondence: ; Tel.: +86-898-66160721
| |
Collapse
|
80
|
Genome-Wide Analysis of Members of the WRKY Gene Family and Their Cold Stress Response in Prunus mume. Genes (Basel) 2019; 10:genes10110911. [PMID: 31717396 PMCID: PMC6896039 DOI: 10.3390/genes10110911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023] Open
Abstract
Prunus mume, which is a rosaceous arbor with very high ornamental, edible and medical values, has a distribution that is mainly restricted by low temperature. WRKY transcription factor genes play crucial roles in the growth, development, and stress responses of plants. However, the WRKY gene family has not been characterised in P. mume. There were 58 PmWRKYs identified from genome of P. mume. They were anchored onto eight link groups and categorised into three broad groups. The gene structure and motif composition were reasonably conservative in each group. Investigation of gene duplication indicated that nine and seven PmWRKYs were arranged in tandem and segmental duplications, respectively. PmWRKYs were discriminately expressed in different tissues (i.e., roots, stems, leaves, flowers and fruits) in P. mume. The 17 cold-related candidate genes were selected based on RNA-seq data. Further, to investigate the function of PmWRKYs in low temperatures, the expression patterns under artificial cold treatments were analysed. The results showed that the expression levels of the 12 PmWRKYs genes significantly and 5 genes slightly changed in stems. In particular, the expression level of PmWRKY18 was up-regulated after ABA treatment. In addition, the spatiotemporal expression patterns of 17 PmWRKYs were analysed in winter. These results indicated that 17 PmWRKYs were potential transcription factors regulating cold resistance in P. mume.
Collapse
|
81
|
Singh A, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR. Understanding the Effect of Structural Diversity in WRKY Transcription Factors on DNA Binding Efficiency through Molecular Dynamics Simulation. BIOLOGY 2019; 8:biology8040083. [PMID: 31690005 PMCID: PMC6956055 DOI: 10.3390/biology8040083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022]
Abstract
A precise understanding of the molecular mechanism involved in stress conditions has great importance for crop improvement. Biomolecules, such as WRKY proteins, which are the largest transcription factor family that is widely distributed in higher plants, plays a significant role in plant defense response against various biotic and abiotic stressors. In the present study, an extensive homology-based three-dimensional model construction and subsequent interaction study of WRKY DNA-binding domain (DBD) in CcWRKY1 (Type I), CcWRKY51 (Type II), and CcWRKY70 (Type III) belonging to pigeonpea, a highly tolerant crop species, was performed. Evaluation of the generated protein models was done to check their reliability and accuracy based on the quantitative and qualitative parameters. The final model was subjected to investigate the comparative binding analysis of different types of WRKY–DBD with DNA-W-box (a cis-acting element) by protein–DNA docking and molecular dynamics (MD) simulation. The DNA binding specificity with WRKY variants was scrutinized through protein–DNA interaction using the HADDOCK server. The stability, as well as conformational changes of protein–DNA complex, was investigated through molecular dynamics (MD) simulations for 100 ns using GROMACS. Additionally, the comparative stability and dynamic behavior of each residue of the WRKY–DBD type were analyzed in terms of root mean square deviation (RMSD), root mean square fluctuation (RMSF)values of the backbone atoms for each frame taking the minimized structure as a reference. The details of DNA binding activity of three different types of WRKY–DBD provided here will be helpful to better understand the regulation of WRKY gene family members in plants.
Collapse
Affiliation(s)
- Akshay Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India.
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 226031, India.
| | - Ajay Kumar Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005, India.
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India.
| |
Collapse
|
82
|
Heerah S, Katari M, Penjor R, Coruzzi G, Marshall-Colon A. WRKY1 Mediates Transcriptional Regulation of Light and Nitrogen Signaling Pathways. PLANT PHYSIOLOGY 2019; 181:1371-1388. [PMID: 31409699 PMCID: PMC6836853 DOI: 10.1104/pp.19.00685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/24/2019] [Indexed: 05/03/2023]
Abstract
Plant responses to multiple environmental stimuli must be integrated to enable them to adapt their metabolism and development. Light and nitrogen (N) are two such stimuli whose downstream signaling pathways must be intimately connected to each other to control plant energy status. Here, we describe the functional role of the WRKY1 transcription factor in controlling genome-wide transcriptional reprogramming of Arabidopsis (Arabidopsis thaliana) leaves in response to individual and combined light and N signals. This includes a cross-regulatory network consisting of 724 genes regulated by WRKY1 and involved in both N and light signaling pathways. The loss of WRKY1 gene function has marked effects on the light and N response of genes involved in N uptake and assimilation (primary metabolism) as well as stress response pathways (secondary metabolism). Our results at the transcriptome and at the metabolite analysis level support a model in which WRKY1 enables plants to activate genes involved in the recycling of cellular carbon resources when light is limiting but N is abundant and upregulate amino acid metabolism when both light and N are limiting. In this potential energy conservation mechanism, WRKY1 integrates information about cellular N and light energy resources to trigger changes in plant metabolism.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois, 1201 W Gregory Dr., Urbana, Illinois 61801
| | - Manpreet Katari
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, New York 10001
| | - Rebecca Penjor
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, New York 10001
| | - Gloria Coruzzi
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, New York 10001
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois, 1201 W Gregory Dr., Urbana, Illinois 61801
| |
Collapse
|
83
|
Ali M, Gai WX, Khattak AM, Khan A, Haq SU, Ma X, Wei AM, Muhammad I, Jan I, Gong ZH. Knockdown of the chitin-binding protein family gene CaChiIV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants. Mol Genet Genomics 2019. [PMID: 31175439 DOI: 10.1007/s00438-019-01583-1587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Phytophthora capsici has been the most destructive pathogen of pepper plants (Capsicum annuum L.), possessing the ability to quickly overcome the host defense system. In this context, the chitin-binding protein (CBP) family member CaChiIV1 regulates the response to P. capsici and abiotic stresses. The relevance of functional characterization and regulation of CaChiIV1 has not been explored in horticultural crops, especially pepper plants. The target gene (CaChiIV1) was isolated from pepper plants and cloned; the encoded protein carries a chitin-binding domain (CBD) that is rich in cysteine residues and has a hinge region with an abundance of proline and glycine residues. Additionally, the conserved regions in the promoter have a remarkable motif, "TTGACC". The expression of CaChiIV1 was markedly regulated by methyl-jasmonate (MeJA), hydrogen peroxide (H2O2), melatonin, mannitol and P. capsici (PC and HX-9) infection. Knockdown of CaChiIV1 in pepper plants increased sensitivity to P. capsici (PC strain). Higher malondialdehyde (MDA) content and relative electrolyte leakage (REL) but lower antioxidant enzyme activities, chlorophyll content, root activity, and proline content were observed in CaChiIV1-silenced plants than in control plants. In conclusion, CaChiIV1-silenced pepper plants displayed increased susceptibility to P. capsici infection due to changes in expression of defense-related genes, thus showing its coregulation affect in particular conditions. Furthermore, antioxidant enzymes and proline content were largely diminished in CaChiIV1-silenced plants. Therefore, this evidence suggests that the CaChiIV1 gene plays a prominent role in the defense mechanism of pepper plants against P. capsici infection. In the future, the potential role of the CaChiIV1 gene in defense regulatory pathways and its coregulation with other pathogen-related genes should be identified.
Collapse
Affiliation(s)
- Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Saeed Ul Haq
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
84
|
Baillo EH, Kimotho RN, Zhang Z, Xu P. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement. Genes (Basel) 2019; 10:E771. [PMID: 31575043 PMCID: PMC6827364 DOI: 10.3390/genes10100771] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
In field conditions, crops are adversely affected by a wide range of abiotic stresses including drought, cold, salt, and heat, as well as biotic stresses including pests and pathogens. These stresses can have a marked effect on crop yield. The present and future effects of climate change necessitate the improvement of crop stress tolerance. Plants have evolved sophisticated stress response strategies, and genes that encode transcription factors (TFs) that are master regulators of stress-responsive genes are excellent candidates for crop improvement. Related examples in recent studies include TF gene modulation and overexpression approaches in crop species to enhance stress tolerance. However, much remains to be discovered about the diverse plant TFs. Of the >80 TF families, only a few, such as NAC, MYB, WRKY, bZIP, and ERF/DREB, with vital roles in abiotic and biotic stress responses have been intensively studied. Moreover, although significant progress has been made in deciphering the roles of TFs in important cereal crops, fewer TF genes have been elucidated in sorghum. As a model drought-tolerant crop, sorghum research warrants further focus. This review summarizes recent progress on major TF families associated with abiotic and biotic stress tolerance and their potential for crop improvement, particularly in sorghum. Other TF families and non-coding RNAs that regulate gene expression are discussed briefly. Despite the emphasis on sorghum, numerous examples from wheat, rice, maize, and barley are included. Collectively, the aim of this review is to illustrate the potential application of TF genes for stress tolerance improvement and the engineering of resistant crops, with an emphasis on sorghum.
Collapse
Affiliation(s)
- Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Gezira 21111, Sudan.
| | - Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Xu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
85
|
Li D, Zhang H, Mou M, Chen Y, Xiang S, Chen L, Yu D. Arabidopsis Class II TCP Transcription Factors Integrate with the FT-FD Module to Control Flowering. PLANT PHYSIOLOGY 2019; 181:97-111. [PMID: 31235561 PMCID: PMC6716235 DOI: 10.1104/pp.19.00252] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/08/2019] [Indexed: 05/04/2023]
Abstract
The appropriate timing of flowering is critical for plant reproductive success. Although the FLOWERING LOCUS T (FT)-FD module plays crucial roles in the photoperiodic flowering pathway, the underlying mechanisms and signaling pathways involved still remain elusive. Here, we demonstrate that class II TCP transcription factors (TFs) integrate into the FT-FD complex to control floral initiation in Arabidopsis (Arabidopsis thaliana). Class II CINCINNATA (CIN) TCP TFs function as transcriptional activators by directly binding to the promoters of downstream floral meristem identity genes, such as APETALA1 (AP1). In addition, these TCPs directly interact with FD, a basic Leu zipper TF that plays a critical role in photoperiodic flowering, which further activates AP1 expression. Genetic analyses indicated that class II CIN TCP TFs function synergistically with FT and FD, to positively regulate flowering in an AP1-dependent manner. Thus, our results provide compelling evidence that class II CIN TCP TFs act directly at the AP1 promoter to enhance its transcription, thus further elucidating the molecular mechanisms underlying the regulation of photoperiodic flowering in Arabidopsis.
Collapse
Affiliation(s)
- Daibo Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Mou
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyuan Xiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
86
|
Liu W, Wang Y, Yu L, Jiang H, Guo Z, Xu H, Jiang S, Fang H, Zhang J, Su M, Zhang Z, Chen X, Chen X, Wang N. MdWRKY11 Participates in Anthocyanin Accumulation in Red-Fleshed Apples by Affecting MYB Transcription Factors and the Photoresponse Factor MdHY5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8783-8793. [PMID: 31310107 DOI: 10.1021/acs.jafc.9b02920] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Red-fleshed apples are popular as a result of their high anthocyanin content. MdMYB10 and its homologues are known to be important regulators of anthocyanin synthesis in apple, but the roles of other transcription factors are not well-understood. Here, we explored the role of MdWRKY11 in regulating anthocyanin synthesis in apple flesh. Overexpression of MdWRKY11 in apple callus could significantly promote anthocyanin accumulation, and the expression of some MYB transcription factors and structural genes increased significantly. In binding analyses, MdWRKY11 bound to W-box cis-elements in the promoters of MdMYB10, MdMYB11, and MdUFGT. However, MdWRKY11 did not interact with MdMYB10, MdbHLH3, or MdWD40 proteins, the members of the MBW complex. Sequence analyses revealed that another W-box cis-element was present in the promoter of MdHY5 (encoding a photoresponse factor), and MdWRKY11 was able to bind to the promoter of MdHY5 and promote its activity. Our findings clarify the role of MdWRKY11 in anthocyanin synthesis in red-fleshed apple and imply that other novel genes may be involved in anthocyanin synthesis.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Lei Yu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Huiyan Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Zhangwen Guo
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Hongcheng Fang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Xiaoliu Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering , Shandong Agricultural University , Tai'an , Shandong 271018 , People's Republic of China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production , Tai'an , Shandong 271000 , People's Republic of China
| |
Collapse
|
87
|
Wang L, Yao W, Sun Y, Wang J, Jiang T. Association of transcription factor WRKY56 gene from Populus simonii × P. nigra with salt tolerance in Arabidopsis thaliana. PeerJ 2019; 7:e7291. [PMID: 31328047 PMCID: PMC6625503 DOI: 10.7717/peerj.7291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/12/2019] [Indexed: 02/05/2023] Open
Abstract
The WRKY transcription factor family is one of the largest groups of transcription factor in plants, playing important roles in growth, development, and biotic and abiotic stress responses. Many WRKY genes have been cloned from a variety of plant species and their functions have been analyzed. However, the studies on WRKY transcription factors in tree species under abiotic stress are still not well characterized. To understand the effects of the WRKY gene in response to abiotic stress, mRNA abundances of 102 WRKY genes in Populus simonii × P. nigra were identified by RNA sequencing under normal and salt stress conditions. The expression of 23 WRKY genes varied remarkably, in a tissue-specific manner, under salt stress. Since the WRKY56 was one of the genes significantly induced by NaCl treatment, its cDNA fragment containing an open reading frame from P. simonii × P. nigra was then cloned and transferred into Arabidopsis using the floral dip method. Under salt stress, the transgenic Arabidopsis over-expressed the WRKY56 gene, showing an increase in fresh weight, germination rate, proline content, and peroxidase and superoxide dismutase activity, when compared with the wild type. In contrast, transgenic Arabidopsis displayed a decrease in malondialdehyde content under salt stress. Overall, these results indicated that the WRKY56 gene played an important role in regulating salt tolerance in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, PR China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, PR China.,Bamboo Research Institute, Nanjing Forestry University, Nanjing, PR China
| | - Yao Sun
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, PR China
| | - Jiying Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, PR China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
88
|
Zou L, Yang F, Ma Y, Wu Q, Yi K, Zhang D. Transcription factor WRKY30 mediates resistance to Cucumber mosaic virus in Arabidopsis. Biochem Biophys Res Commun 2019; 517:118-124. [PMID: 31311650 DOI: 10.1016/j.bbrc.2019.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
WRKY transcription factors are key regulators in regulating abiotic or biotic stress response in Arabidopsis. Previous studies showed that WRKY30 expression was induced by oxidative stress treatment, fungal elicitor, SA and ABA. However, functions of WRKY30 on viral defense are not well studied. Here, we found that Arabidopsis WRKY DNA binding protein 30 (WRKY30) plays essential roles in regulating Cucumber mosaic virus (CMV) resistance. The expression of WRKY30 was induced by CMV infection and wrky30 mutant displayed more susceptibility (including higher oxidative damages, induced reactive oxygen species synthesis and more PSII photochemistry compromise), while WRKY30 overexpression plants (WRKY30OX) exhibited more resistance to CMV infection. Moreover BRs-induced CMV tolerance is partly dependent on WRKY30. And WRKY30 expression increased after BL treatment. All these demonstrated that WRKY30 works as a positive regulator in plant CMV resistance process.
Collapse
Affiliation(s)
- Lijuan Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, 637009, China; Ecological Security and Protection Key Laboratory of Sichuan Province and Life Science and Technology College, Mianyang Normal University, Mianyang, Sichuan, 621000, China
| | - Feng Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Rice and Sorghum Institute, Sichuan Academy of Agricultural Sciences, Deyang, 618000, Sichuan, China
| | - Yonghong Ma
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, 637009, China
| | - Qinggui Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, 637009, China; Ecological Security and Protection Key Laboratory of Sichuan Province and Life Science and Technology College, Mianyang Normal University, Mianyang, Sichuan, 621000, China
| | - Kexian Yi
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, 637009, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Dawei Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, 637009, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
89
|
Singh A, Singh PK, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR. Understanding the Role of the WRKY Gene Family under Stress Conditions in Pigeonpea ( Cajanus Cajan L.). PLANTS 2019; 8:plants8070214. [PMID: 31295921 PMCID: PMC6681228 DOI: 10.3390/plants8070214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/26/2022]
Abstract
Pigeonpea (Cajanus cajan L.), a protein-rich legume, is a major food component of the daily diet for residents in semi-arid tropical regions of the word. Pigeonpea is also known for its high level of tolerance against biotic and abiotic stresses. In this regard, understanding the genes involved in stress tolerance has great importance. In the present study, identification, and characterization of WRKY, a large transcription factor gene family involved in numerous biological processes like seed germination, metabolism, plant growth, biotic and abiotic stress responses was performed in pigeonpea. A total of 94 WRKY genes identified in the pigeonpea genome were extensively characterized for gene-structures, localizations, phylogenetic distribution, conserved motif organizations, and functional annotation. Phylogenetic analysis revealed three major groups (I, II, and III) of pigeonpea WRKY genes. Subsequently, expression profiling of 94 CcWRKY genes across different tissues like root, nodule, stem, petiole, petal, sepal, shoot apical meristem (SAM), mature pod, and mature seed retrieved from the available RNAseq data identified tissue-specific WRKY genes with preferential expression in the vegetative and reproductive stages. Gene co-expression networks identified four WRKY genes at the center of maximum interaction which may play a key role in the entire WRKY regulations. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) expression analysis of WRKY genes in root and leaf tissue samples from plants under drought and salinity stress identified differentially expressed WRKY genes. The study will be helpful to understand the evolution, regulation, and distribution of the WRKY gene family, and additional exploration for the development of stress tolerance cultivars in pigeonpea and other legumes crops.
Collapse
Affiliation(s)
- Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 226031, India
| | | | - Ajay Kumar Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005, India
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India.
| |
Collapse
|
90
|
Knockdown of the chitin-binding protein family gene CaChiIV1 increased sensitivity to Phytophthora capsici and drought stress in pepper plants. Mol Genet Genomics 2019; 294:1311-1326. [PMID: 31175439 DOI: 10.1007/s00438-019-01583-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Phytophthora capsici has been the most destructive pathogen of pepper plants (Capsicum annuum L.), possessing the ability to quickly overcome the host defense system. In this context, the chitin-binding protein (CBP) family member CaChiIV1 regulates the response to P. capsici and abiotic stresses. The relevance of functional characterization and regulation of CaChiIV1 has not been explored in horticultural crops, especially pepper plants. The target gene (CaChiIV1) was isolated from pepper plants and cloned; the encoded protein carries a chitin-binding domain (CBD) that is rich in cysteine residues and has a hinge region with an abundance of proline and glycine residues. Additionally, the conserved regions in the promoter have a remarkable motif, "TTGACC". The expression of CaChiIV1 was markedly regulated by methyl-jasmonate (MeJA), hydrogen peroxide (H2O2), melatonin, mannitol and P. capsici (PC and HX-9) infection. Knockdown of CaChiIV1 in pepper plants increased sensitivity to P. capsici (PC strain). Higher malondialdehyde (MDA) content and relative electrolyte leakage (REL) but lower antioxidant enzyme activities, chlorophyll content, root activity, and proline content were observed in CaChiIV1-silenced plants than in control plants. In conclusion, CaChiIV1-silenced pepper plants displayed increased susceptibility to P. capsici infection due to changes in expression of defense-related genes, thus showing its coregulation affect in particular conditions. Furthermore, antioxidant enzymes and proline content were largely diminished in CaChiIV1-silenced plants. Therefore, this evidence suggests that the CaChiIV1 gene plays a prominent role in the defense mechanism of pepper plants against P. capsici infection. In the future, the potential role of the CaChiIV1 gene in defense regulatory pathways and its coregulation with other pathogen-related genes should be identified.
Collapse
|
91
|
Effects of Abscisic Acid and Salicylic Acid on Gene Expression in the Antiviral RNA Silencing Pathway in Arabidopsis. Int J Mol Sci 2019; 20:ijms20102538. [PMID: 31126102 PMCID: PMC6566719 DOI: 10.3390/ijms20102538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
The RNA silencing pathways modulate responses to certain stresses, and can be partially tuned by several hormones such as salicylic acid (SA) and abscisic acid (ABA). Although SA and ABA are often antagonistic and often modulate different stress responses, they have similar effects on virus resistance, which are partially achieved through the antiviral RNA silencing pathway. Whether they play similar roles in regulating the RNA silencing pathway is unclear. By employing coexpression and promoter analyses, we found that some ABA- and SA-related transcription factors (TFs) are coexpressed with several AGO, DCL, and RDR genes, and have multiple binding sites for the identified TFs in the queried promoters. ABA and SA are antagonistic with respect to the expression of AGO1 and RDRs because ABA was able to induce these genes only in the SA mutant. Nevertheless, both hormones showed similarities in the regulation of other genes, for example, the induction of AGO2 by ABA was SA-dependent, indicating that ABA acts upstream of SA in this regulation. We inferred that the similar effects of ABA and SA on some genes resulted in the redundancy of their roles in resistance to bamboo mosaic virus, but that the two hormones are antagonistic with respect to other genes unrelated to their biosynthesis pathways.
Collapse
|
92
|
Scotti R, D’Agostino N, Zaccardelli M. Gene expression profiling of tomato roots interacting with Pseudomonas fluorescens unravels the molecular reprogramming that occurs during the early phases of colonization. Symbiosis 2019. [DOI: 10.1007/s13199-019-00611-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
93
|
Sheng Y, Yan X, Huang Y, Han Y, Zhang C, Ren Y, Fan T, Xiao F, Liu Y, Cao S. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:891-903. [PMID: 30311662 DOI: 10.1111/pce.13457] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 05/17/2023]
Abstract
Cadmium (Cd) extrusion is an important mechanism conferring Cd tolerance by decreasing its accumulation in plants. Previous studies have identified an Arabidopsis ABC transporter, PDR8, as a Cd extrusion pump conferring Cd tolerance. However, the regulation of PDR8 in response to Cd stress is still largely unknown. In this study, we identified an Arabidopsis cadmium-tolerant dominant mutant, designated xcd3-D, from the XVE-tagging T-DNA insertion lines by a gain-of-function genetic screen. The corresponding gene was cloned and shown to encode a nuclear WRKY transcription factor WRKY13. Expression of WRKY13 was induced by Cd stress. Overexpression of WRKY13 resulted in decreased Cd accumulation and enhanced Cd tolerance, whereas loss-of-function of WRKY13 led to increased Cd accumulation and sensitivity. Further analysis showed that WRKY13 activates the transcription of PDR8 by directly binding to its promoter. Genetic analysis indicated that WRKY13 acts upstream of PDR8 to positively regulate Cd tolerance. Our results provide evidence that WRKY13 directly targets PDR8 to positively regulate Cd tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yibao Sheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xingxing Yan
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Ying Huang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yangyang Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Cheng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yongbing Ren
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Tingting Fan
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, Idaho
| | - Yongsheng Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Shuqing Cao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
94
|
Zhao XY, Qi CH, Jiang H, You CX, Guan QM, Ma FW, Li YY, Hao YJ. The MdWRKY31 transcription factor binds to the MdRAV1 promoter to mediate ABA sensitivity. HORTICULTURE RESEARCH 2019; 6:66. [PMID: 31231524 PMCID: PMC6544635 DOI: 10.1038/s41438-019-0147-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 05/02/2023]
Abstract
The phytohormone abscisic acid (ABA) is a major element involved in apple (Malus domestica) production because of its role in seed germination and early seedling development. The WRKY family, which is one of the largest families of transcription factors, plays an important role in ABA signaling in plants. However, the underlying molecular mechanisms of WRKY-mediated ABA sensitivity in apple are poorly understood. A genome-wide transcriptome analysis indicated that MdWRKY31 is a key factor induced by ABA. Quantitative real-time PCR showed that MdWRKY31 is induced by ABA in response to PEG4000, which is used to simulate drought. As a transcription factor, MdWRKY31 is localized in the nucleus. Ectopic expression of MdWRKY31 in Arabidopsis and Nicotiana benthamiana enhanced plant sensitivity to ABA. Overexpression of MdWRKY31 in apple roots and apple calli increased sensitivity to ABA, whereas repression of MdWRKY31 reduced sensitivity to ABA in the roots of 'Royal Gala'. Electrophoretic mobility shift assays, chromatin immunoprecipitation PCR, and yeast one-hybrid assays indicated that MdWRKY31 directly binds to the promoter of MdRAV1. Expression analyses of transgenic apple calli containing MdWRKY31 and pMdRAV1::GUS implied that MdWRKY31 represses the expression of MdRAV1. We also found that MdRAV1 binds directly to the promoters of MdABI3 and MdABI4 and repressed their expression. Our findings reveal a new important regulatory mechanism of MdWRKY31-MdRAV1-MdABIs in the ABA signaling pathway in apple.
Collapse
Affiliation(s)
- Xian-Yan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chen-Hui Qi
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Feng-Wang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yuan-Yuan Li
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| |
Collapse
|
95
|
Islam W, Naveed H, Zaynab M, Huang Z, Chen HYH. Plant defense against virus diseases; growth hormones in highlights. PLANT SIGNALING & BEHAVIOR 2019; 14:1596719. [PMID: 30957658 PMCID: PMC6546145 DOI: 10.1080/15592324.2019.1596719] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
Phytohormones are critical in various aspects of plant biology such as growth regulations and defense strategies against pathogens. Plant-virus interactions retard plant growth through rapid alterations in phytohormones and their signaling pathways. Recent research findings show evidence of how viruses impact upon modulation of various phytohormones affecting plant growth regulations. The opinion is getting stronger that virus-mediated phytohormone disruption and alteration weaken plant defense strategies through enhanced replication and systemic spread of viral particles. These hormones regulate plant-virus interactions in various ways that may involve antagonism and cross talk to modulate small RNA (sRNA) systems. The article aims to highlight the recent research findings elaborating the impact of viruses upon manipulation of phytohormones and virus biology.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
| | - Hassan Naveed
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Madiha Zaynab
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Zhiqun Huang Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Han Y. H. Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Faculty of Natural Resources Management, Lakehead University, Ontario, Canada
- CONTACT Han Y. H. Chen Faculty of Natural Resources Management, Lakehead University, Ontario Canada
| |
Collapse
|
96
|
Chakraborty J, Ghosh P, Sen S, Das S. Epigenetic and transcriptional control of chickpea WRKY40 promoter activity under Fusarium stress and its heterologous expression in Arabidopsis leads to enhanced resistance against bacterial pathogen. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:250-267. [PMID: 30348325 DOI: 10.1016/j.plantsci.2018.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 05/27/2023]
Abstract
Promoters of many defense related genes are enriched with W-box elements serving as binding sites for plant specific WRKY transcription factors. In this study, expression of WRKY40 transcription factor was analyzed in two contrasting susceptible (JG62) and resistant (WR315) genotypes of chickpea infected with Foc1. The resistant plants showed up-regulation of WRKY40 under Fusarium stress, whereas in susceptible plants WRKY40 expression was absent. Additionally, global changes in the histone modification patterns were studied in above two chickpea genotypes by immunoblotting and real-time PCR analyses under control and Fusarium infected conditions. Notably, region specific Histone 3 lysine 9 acetylation, a positive marker of transcription gets enriched at WRKY40 promoter during resistant interaction with Foc1. H3K9 Ac is less enriched at WRKY40 promoter in Foc1 infected susceptible plants. WRKY40 promoter activity was induced by jasmonic acid and pathogen treatment, while salicylic acid failed to stimulate such activity. Moreover, WRKY40 was found to bind to its own promoter and auto-regulates its activity. The present study also showed that heterologous over-expression of chickpea WRKY40 triggers defense response in Arabidopsis against Pseudomonas syringae. Overall, we present epigenetic and transcriptional control of WRKY40 in chickpea under Fusarium stress and its immunomodulatory role is tested in Arabidopsis.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Senjuti Sen
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| |
Collapse
|
97
|
Yang T, Lv R, Li J, Lin H, Xi D. Phytochrome A and B Negatively Regulate Salt Stress Tolerance of Nicotiana tobacum via ABA-Jasmonic Acid Synergistic Cross-Talk. PLANT & CELL PHYSIOLOGY 2018; 59:2381-2393. [PMID: 30124925 DOI: 10.1093/pcp/pcy164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/04/2018] [Indexed: 05/25/2023]
Abstract
Light signaling and phytohormones play important roles in plant growth, development, and biotic and abiotic stress responses. However, the roles of phytochromes and cross-talk between these two signaling pathways in response to salt stress in tobacco plants remain underexplored. Here, we explored the defense response in phytochrome-defective mutants under salt stress. We monitored the physiological and molecular changes of these mutants under salt stress conditions. The results showed that phytochrome A (phyA), phytochrome B (phyB) and phyAphyB (phyAB) mutants exhibited improved salt stress tolerance compared with wild-type (WT) plants. The mutant plants had a lower electrolyte leakage (EL) and malondialdehyde (MDA) concentration than WT plants, and the effect was clearly synergistic in the phyAB double mutant plants. Furthermore, the data showed that the transcript levels of defense-associated genes and the activities of some antioxidant enzymes in the mutant plants were much higher than those in WT plants. Additionally, the results indicated that phytochrome signaling strongly modulates the expression of endogenous abscisic acid (ABA) and jasmonic acid (JA) of Nicotiana tobacum in response to salt stress. To illustrate further the relationship between phytochrome and phytohormone, we measured the expression of defense genes and phytochrome. The results displayed that salt stress and application of methyl jasmonate (MeJA) or ABA up-regulated the transcript levels of salt response-associated genes and inhibited the expression of NtphyA and NtphyB. Foliar application of inhibitors of ABA and JA further confirmed that JA co-operated with ABA in phytochrome-mediated salt stress tolerance.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Rui Lv
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiahao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
98
|
Zhang J, Yang Y, Zheng K, Xie M, Feng K, Jawdy SS, Gunter LE, Ranjan P, Singan VR, Engle N, Lindquist E, Barry K, Schmutz J, Zhao N, Tschaplinski TJ, LeBoldus J, Tuskan GA, Chen JG, Muchero W. Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus. THE NEW PHYTOLOGIST 2018; 220:502-516. [PMID: 29992670 DOI: 10.1111/nph.15297] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/29/2018] [Indexed: 05/18/2023]
Abstract
3-O-caffeoylquinic acid, also known as chlorogenic acid (CGA), functions as an intermediate in lignin biosynthesis in the phenylpropanoid pathway. It is widely distributed among numerous plant species and acts as an antioxidant in both plants and animals. Using GC-MS, we discovered consistent and extreme variation in CGA content across a population of 739 4-yr-old Populus trichocarpa accessions. We performed genome-wide association studies (GWAS) from 917 P. trichocarpa accessions and expression-based quantitative trait loci (eQTL) analyses to identify key regulators. The GWAS and eQTL analyses resolved an overlapped interval encompassing a hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase 2 (PtHCT2) that was significantly associated with CGA and partially characterized metabolite abundances. PtHCT2 leaf expression was significantly correlated with CGA abundance and it was regulated by cis-eQTLs containing W-box for WRKY binding. Among all nine PtHCT homologs, PtHCT2 is the only one that responds to infection by the fungal pathogen Sphaerulina musiva (a Populus pathogen). Validation using protoplast-based transient expression system suggests that PtHCT2 is regulated by the defense-responsive WRKY. These results are consistent with reports of CGA functioning as an antioxidant in response to biotic stress. This study provides insights into data-driven and omics-based inference of gene function in woody species.
Collapse
Affiliation(s)
- Jin Zhang
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Yongil Yang
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Kaijie Zheng
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Meng Xie
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Kai Feng
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Sara S Jawdy
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Lee E Gunter
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Priya Ranjan
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Vasanth R Singan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Nancy Engle
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Nan Zhao
- Institute of Agriculture, University of Tennessee, Knoxville, TN, 37996, USA
| | - Timothy J Tschaplinski
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Jared LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Gerald A Tuskan
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Jin-Gui Chen
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| | - Wellington Muchero
- Oak Ridge National Laboratory, Biosciences Division and Center for Bioenergy Innovation, Oak Ridge, TN, 37831, USA
| |
Collapse
|
99
|
Hu Z, Wang R, Zheng M, Liu X, Meng F, Wu H, Yao Y, Xin M, Peng H, Ni Z, Sun Q. TaWRKY51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:372-388. [PMID: 30044519 DOI: 10.1111/tpj.14038] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 05/27/2023]
Abstract
Common wheat (Triticum aestivum L.) is an important staple food crop worldwide. Lateral roots (LRs), as the major component of root architecture, affect water and nutrient uptake in wheat. The phytohormone ethylene is known to affect LR formation; however, the factor(s) modulating ethylene during this process have not yet been elucidated in wheat. Here we identified wheat TaWRKY51 as a key factor that functions in LR formation by modulating ethylene biosynthesis. Wheat TaWRKY51RNA interference lines (TaWRKY51-RNAi) and the homozygous mutants tawrky51-2a and tawrky51-2b all produced fewer LRs than the wild type and negative transgenic plants, whereas the TaWRKY51 overexpression lines (TaWRKY51-OE) had the opposite phenotype. Transcription analysis revealed that 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes (TaACS2, TaACS7 and TaACS8) involved in ethylene biosynthesis were downregulated in TaWRKY51-OE lines but upregulated in TaWRKY51-RNAi lines. The rate of ethylene production also decreased in TaWRKY51-OE lines but increased in TaWRKY51-RNAi lines compared with their respective negative transgenic controls. Electrophoretic mobility shift and transient expression assays revealed that TaWRKY51 inhibits the expression of ACS genes by binding to the W-box cis-element present in their promoter region. Moreover, overexpression of ACS2 or exogenous application of 1-aminocyclopropane-1-carboxylic acid reversed the phenotype of enhanced LR number in TaWRKY51-OE Arabidopsis lines, and overexpression of TaWRKY51 in the ethylene-overproducing mutant eto1-1 rescued its LR defect phenotype. In addition, genetic evidence demonstrates that TaWRKY51-regulated LR formation is also dependent on ethylene and auxin signaling pathways. Our findings reveal a molecular genetic mechanism by which a WRKY gene coordinates ethylene production and LR formation in wheat.
Collapse
Affiliation(s)
- Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Rui Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mei Zheng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xingbei Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Fei Meng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Hualing Wu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
100
|
Xie K, Li L, Zhang H, Wang R, Tan X, He Y, Hong G, Li J, Ming F, Yao X, Yan F, Sun Z, Chen J. Abscisic acid negatively modulates plant defence against rice black-streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. PLANT, CELL & ENVIRONMENT 2018; 41:2504-2514. [PMID: 29920686 DOI: 10.1111/pce.13372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/12/2018] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) plays a multifaceted role in plant immunity and can either increase resistance or increase susceptibility to some bacterial and fungal pathogens depending on the pathosystem. ABA is also known to mediate plant defence to some viruses. In this study, the relationship between the ABA pathway and rice black-streaked dwarf virus (RBSDV) was investigated in rice. The expression of ABA pathway genes was significantly reduced upon RBSDV infection. Application of exogenous hormones and various ABA pathway mutants revealed that the ABA pathway plays a negative role in rice defence against RBSDV. Exogenous hormone treatment and virus inoculation showed that ABA inhibits the jasmonate-mediated resistance to RBSDV. ABA treatment also suppressed accumulation of reactive oxygen species by inducing the expression of superoxidase dismutases and catalases. Thus, ABA modulates the rice-RBSDV interaction by suppressing the jasmonate pathway and regulating reactive oxygen species levels. This is the first example of ABA increasing susceptibility to a plant virus.
Collapse
Affiliation(s)
- Kaili Xie
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lulu Li
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hehong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoxiang Tan
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqing He
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaojie Hong
- Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key laboratory of Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junmin Li
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Feng Ming
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xuefeng Yao
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongtao Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|