51
|
Wang J, Xiao J, Meng X, Chu X, Zhuansun DD, Xiong B, Feng J. NOX5 is expressed aberrantly but not a critical pathogenetic gene in Hirschsprung disease. BMC Pediatr 2021; 21:153. [PMID: 33784990 PMCID: PMC8008622 DOI: 10.1186/s12887-021-02611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/07/2020] [Accepted: 03/11/2021] [Indexed: 01/11/2023] Open
Abstract
Background Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of intramural ganglion cells in the distal gastrointestinal tract (GI), which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. Recent studies have suggested NADPH oxidase 5 (NOX5) as a candidate risk gene for HSCR. In this study, we examined the function of NOX5 to verify its role in the development of the enteric nervous system (ENS). Methods HSCR tissue specimens (n = 10) were collected at the time of pull-through surgery and control specimens (n = 10) were obtained at the time of colostomy closure in patients. The NOX5 expression in aganglionic and ganglionic segments of HSCR colon and normal colon were analyzed by immunohistochemistry (IHC), western blot and real-time quantitative PCR (qPCR). The gene expression levels and spatiotemporal expression spectrum of NOX5 in different development stages of zebrafish embryo were determined using qPCR and in-situ hybridization (ISH). The enteric nervous system in NOX5 Morpholino (MO) knockdown and wild type (WT) zebrafish embryo was analyzed by whole-mount immunofluorescence (IF). Intestinal transit assay was performed to analyze the gastrointestinal motility in NOX5 knockdown and control larvae. Results NOX5 is strongly expressed in the ganglion cells in the proximal segment of HSCR colons and all segments of normal colons. Moreover, the expression of NOX5 is markedly decreased in the aganglionic segment of HSCR colon compared to the ganglionic segment. In zebrafish, NOX5 mRNA level is the highest in the one cell stage embryos and it is decreased overtime with the development of the embryos. Interestingly, the expression of NOX5 appears to be enriched in the nervous system. However, the number of neurons in the GI tract and the GI motility were not affected upon NOX5 knockdown. Conclusions Our study shows that NOX5 markedly decreased in the aganglionic segment of HSCR but didn’t involve in the ENS development of zebrafish. It implies that absence of intestinal ganglion cells may lead to down-regulation of NOX5. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02611-5.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong road, Baofeng street, Qiaokou district, Wuhan, 430030, China
| | - Di Di Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong road, Baofeng street, Qiaokou district, Wuhan, 430030, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
52
|
Gandara ACP, Dias FA, de Lemos PC, Stiebler R, Bombaça ACS, Menna-Barreto R, Oliveira PL. "Urate and NOX5 Control Blood Digestion in the Hematophagous Insect Rhodnius prolixus". Front Physiol 2021; 12:633093. [PMID: 33716782 PMCID: PMC7947236 DOI: 10.3389/fphys.2021.633093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2020] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Low levels of reactive oxygen species (ROS) are now recognized as essential players in cell signaling. Here, we studied the role of two conserved enzymes involved in redox regulation that play a critical role in the control of ROS in the digestive physiology of a blood-sucking insect, the kissing bug Rhodnius prolixus. RNAi-mediated silencing of RpNOX5 and RpXDH induced early mortality in adult females after a blood meal. Recently, a role for RpNOX5 in gut motility was reported, and here, we show that midgut peristalsis is also under the control of RpXDH. Together with impaired peristalsis, silencing either genes impaired egg production and hemoglobin digestion, and decreased hemolymph urate titers. Ultrastructurally, the silencing of RpNOX5 or RpXDH affected midgut cells, changing the cells of blood-fed insects to a phenotype resembling the cells of unfed insects, suggesting that these genes work together in the control of blood digestion. Injection of either allopurinol (an XDH inhibitor) or uricase recapitulated the gene silencing effects, suggesting that urate itself is involved in the control of blood digestion. The silencing of each of these genes influenced the expression of the other gene in a complex way both in the unfed state and after a blood meal, revealing signaling crosstalk between them that influences redox metabolism and nitrogen excretion and plays a central role in the control of digestive physiology.
Collapse
Affiliation(s)
- Ana Caroline P Gandara
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A Dias
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula C de Lemos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Stiebler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
53
|
García JG, Ansorena E, Milagro FI, Zalba G, de Miguel C. Endothelial Nox5 Expression Modulates Glucose Uptake and Lipid Accumulation in Mice Fed a High-Fat Diet and 3T3-L1 Adipocytes Treated with Glucose and Palmitic Acid. Int J Mol Sci 2021; 22:ijms22052729. [PMID: 33800461 PMCID: PMC7962974 DOI: 10.3390/ijms22052729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a global health issue associated with insulin resistance and altered lipid homeostasis. It has been described that reactive oxygen species (ROS) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity are involved in the development of these pathologies. The present study describes the role of endothelial NOX5 expression over adipose tissue by using two experimental systems: NOX5 conditional knock-in mice fed with a high-fat diet and 3T3-L1 adipocytes cultured with conditioned media of NOX5-expressing endothelial cells previously treated with glucose and palmitic acid. Animals expressing NOX5 presented lower body weight gain and less mesenteric and epididymal adipose mass compared to control mice fed with the same diet. NOX5-expressing mice also showed significantly lower glycaemia and improved insulin-induced glucose uptake. In addition, Glut4 and Caveolin 1 (Cav1) expression were significantly increased in the adipose tissue of these animals. Likewise, 3T3-L1 adipocytes treated with conditioned media from NOX5-expressing endothelial cells, incubated with high glucose and palmitic acid, presented a reduction in lipid accumulation and an increase in glucose uptake. Moreover, a significant increase in the expression of Glut4 and Cav1 was also detected in these cells. Taken together, all these data support that, in response to a highly caloric diet, NOX5 endothelial activity may regulate glucose sensitivity and lipid homeostasis in the adipose tissue.
Collapse
Affiliation(s)
- Jorge G. García
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (J.G.G.); (E.A.); (G.Z.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Eduardo Ansorena
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (J.G.G.); (E.A.); (G.Z.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Fermín I. Milagro
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Center for Nutrition Research, Department of Nutrition, Food Science, and Physiology, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobm), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Guillermo Zalba
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (J.G.G.); (E.A.); (G.Z.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Carlos de Miguel
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (J.G.G.); (E.A.); (G.Z.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948-425600 (ext. 806462)
| |
Collapse
|
54
|
Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021; 11:4839-4857. [PMID: 33754031 PMCID: PMC7978298 DOI: 10.7150/thno.56747] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) serve as cell signaling molecules generated in oxidative metabolism and are associated with a number of human diseases. The reprogramming of redox metabolism induces abnormal accumulation of ROS in cancer cells. It has been widely accepted that ROS play opposite roles in tumor growth, metastasis and apoptosis according to their different distributions, concentrations and durations in specific subcellular structures. These double-edged roles in cancer progression include the ROS-dependent malignant transformation and the oxidative stress-induced cell death. In this review, we summarize the notable literatures on ROS generation and scavenging, and discuss the related signal transduction networks and corresponding anticancer therapies. There is no doubt that an improved understanding of the sophisticated mechanism of redox biology is imperative to conquer cancer.
Collapse
|
55
|
Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel) 2021; 10:antiox10020313. [PMID: 33669824 PMCID: PMC7923022 DOI: 10.3390/antiox10020313] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are a chemically defined group of reactive molecules derived from molecular oxygen. ROS are involved in a plethora of processes in cells in all domains of life, ranging from bacteria, plants and animals, including humans. The importance of ROS for macrophage-mediated immunity is unquestioned. Their functions comprise direct antimicrobial activity against bacteria and parasites as well as redox-regulation of immune signaling and induction of inflammasome activation. However, only a few studies have performed in-depth ROS analyses and even fewer have identified the precise redox-regulated target molecules. In this review, we will give a brief introduction to ROS and their sources in macrophages, summarize the versatile roles of ROS in direct and indirect antimicrobial immune defense, and provide an overview of commonly used ROS probes, scavengers and inhibitors.
Collapse
|
56
|
Costa TJ, Barros PR, Arce C, Santos JD, da Silva-Neto J, Egea G, Dantas AP, Tostes RC, Jiménez-Altayó F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic Biol Med 2021; 162:615-635. [PMID: 33248264 DOI: 10.1016/j.freeradbiomed.2020.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.
Collapse
Affiliation(s)
- Tiago J Costa
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| | | | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Júlio da Silva-Neto
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rita C Tostes
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
57
|
Panasenko OM, Reut VE, Borodina IV, Matyushkina DS, Ivanov VA, Grigorieva DV, Gorudko IV, Sokolov AV, Cherenkevich SN. Gallocyanine as a Fluorogen for the Identification of NADPH-Dependent Production of Superoxide Anion Radical by Blood Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
58
|
Abstract
Reactive oxygen species (ROS) are ubiquitous metabolic products and important cellular signaling molecules that contribute to several biological functions. Pathophysiology arises when ROS are generated either in excess or in cell types or subcellular locations that normally do not produce ROS or when non-physiological types of ROS (e.g., superoxide instead of hydrogen peroxide) are formed. In the latter scenario, antioxidants were considered as the apparent remedy but, clinically, have consistently failed and even sometimes induced harm. The obvious reason for that is the non-selective ROS scavenging effects of antioxidants which interfere with both qualities of ROS, physiological and pathological. Therefore, it is essential to overcome this "antidote or neutralizer" strategy. We here review the most promising alternative approach by identifying the disease-relevant enzymatic sources of ROS, target these selectively, but leave physiological ROS signaling through other sources intact. Among all ROS sources, NADPH oxidases (NOX1-5 and DUOX1-2) stand out as their sole function is to produce ROS, whereas most other enzymatic sources only produce ROS as a by-product or upon biochemical uncoupling or damage. This qualifies NOXs as the main potential drug-target candidates in diseases associated with dysfunction in ROS signaling. As a reflection of this, the development of several NOX inhibitors has taken place. Recently, the WHO approved a new stem, "naxib," which refers to NADPH oxidase inhibitors, and thereby recognized NOX inhibitors as a new therapeutic class. This has been announced while clinical trials with the first-in-class compound, setanaxib (initially known as GKT137831) had been initiated. We also review the differences between the seven NOX family members in terms of structure and function in health and disease and then focus on the most advanced NOX inhibitors with an exclusive focus on clinically relevant validations and applications. Therapeutically relevant NADPH oxidase isoforms type 1, 2, 4, and 5 (NOX1, NOX2, NOX4, NOX5). Of note, NOX5 is not present in mice and rats and thus pre-clinically less studied. NOX2, formerly termed gp91phox, has been correlated with many, too many, diseases and is rather relevant as genetic deficiency in chronic granulomatous disease (CGD), treated by gene therapy. Overproduction of ROS through NOX1, NOX4, and NOX5 leads to the indicated diseases states including atherosclerosis (red), a condition where NOX4 is surprisingly protective.
Collapse
Affiliation(s)
- Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
59
|
Shehata AM, Saadeldin IM, Tukur HA, Habashy WS. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals (Basel) 2020; 10:E2407. [PMID: 33339245 PMCID: PMC7766623 DOI: 10.3390/ani10122407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most challenging environmental stresses affecting domestic animal production, particularly commercial poultry, subsequently causing severe yearly economic losses. Heat stress, a major source of oxidative stress, stimulates mitochondrial oxidative stress and cell dysfunction, leading to cell damage and apoptosis. Cell survival under stress conditions needs urgent response mechanisms and the consequent effective reinitiation of cell functions following stress mitigation. Exposure of cells to heat-stress conditions induces molecules that are ready for mediating cell death and survival signals, and for supporting the cell's tolerance and/or recovery from damage. Heat-shock proteins (HSPs) confer cell protection against heat stress via different mechanisms, including developing thermotolerance, modulating apoptotic and antiapoptotic signaling pathways, and regulating cellular redox conditions. These functions mainly depend on the capacity of HSPs to work as molecular chaperones and to inhibit the aggregation of non-native and misfolded proteins. This review sheds light on the key factors in heat-shock responses for protection against cell damage induced by heat stress in chicken.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hammed A. Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walid S. Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
60
|
Lassén E, Daehn IS. Molecular Mechanisms in Early Diabetic Kidney Disease: Glomerular Endothelial Cell Dysfunction. Int J Mol Sci 2020; 21:ijms21249456. [PMID: 33322614 PMCID: PMC7764016 DOI: 10.3390/ijms21249456] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), with prevalence increasing at an alarming rate worldwide and today, there are no known cures. The pathogenesis of DKD is complex, influenced by genetics and the environment. However, the underlying molecular mechanisms that contribute to DKD risk in about one-third of diabetics are still poorly understood. The early stage of DKD is characterized by glomerular hyperfiltration, hypertrophy, podocyte injury and depletion. Recent evidence of glomerular endothelial cell injury at the early stage of DKD has been suggested to be critical in the pathological process and has highlighted the importance of glomerular intercellular crosstalk. A potential mechanism may include reactive oxygen species (ROS), which play a direct role in diabetes and its complications. In this review, we discuss different cellular sources of ROS in diabetes and a new emerging paradigm of endothelial cell dysfunction as a key event in the pathogenesis of DKD.
Collapse
|
61
|
NOX2-Derived Reactive Oxygen Species in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7095902. [PMID: 33312338 PMCID: PMC7721506 DOI: 10.1155/2020/7095902] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We propose that NOX2 may be a targetable immune checkpoint in cancer.
Collapse
|
62
|
Reactive Oxygen Species: Modulators of Phenotypic Switch of Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21228764. [PMID: 33233489 PMCID: PMC7699590 DOI: 10.3390/ijms21228764] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.
Collapse
|
63
|
Abstract
Hydrogen peroxide (H2O2) is an important oxidizing molecule that regulates the metabolisms of aerobic organisms. Redox signaling comprises physiological oxidative stress (eustress), while excessive oxidative stress causes damage to molecules. The main enzymatic generators of H2O2 are nicotinamide adenine dinucleotide phosphate oxidases or NADPH oxidases (NOXs) and mitochondrial respiratory chains, as well as various oxidases. The NOX family is constituted of seven enzyme isoforms that produce a superoxide anion (O2−), which can be converted to H2O2 by superoxide dismutase or spontaneously. H2O2 passes through the membranes by some aquaporins (AQPs), known as peroxyporins. It diffuses through cells and tissues to initiate cellular effects, such as proliferation, the recruitment of immune cells, and cell shape changes. Therefore, it has been proposed that H2O2 has the same importance as Ca2+ or adenosine triphosphate (ATP) to act as modulators in signaling and the metabolism. The present overview focuses on the metabolic processes of liver and adipose tissue, regulated by the H2O2 generated by NOXs.
Collapse
|
64
|
Egea G, Jiménez-Altayó F, Campuzano V. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis and Progression of Genetic Diseases of the Connective Tissue. Antioxidants (Basel) 2020; 9:antiox9101013. [PMID: 33086603 PMCID: PMC7603119 DOI: 10.3390/antiox9101013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Connective tissue is known to provide structural and functional “glue” properties to other tissues. It contains cellular and molecular components that are arranged in several dynamic organizations. Connective tissue is the focus of numerous genetic and nongenetic diseases. Genetic diseases of the connective tissue are minority or rare, but no less important than the nongenetic diseases. Here we review the impact of reactive oxygen species (ROS) and oxidative stress on the onset and/or progression of diseases that directly affect connective tissue and have a genetic origin. It is important to consider that ROS and oxidative stress are not synonymous, although they are often closely linked. In a normal range, ROS have a relevant physiological role, whose levels result from a fine balance between ROS producers and ROS scavenge enzymatic systems. However, pathology arises or worsens when such balance is lost, like when ROS production is abnormally and constantly high and/or when ROS scavenge (enzymatic) systems are impaired. These concepts apply to numerous diseases, and connective tissue is no exception. We have organized this review around the two basic structural molecular components of connective tissue: The ground substance and fibers (collagen and elastic fibers).
Collapse
Affiliation(s)
- Gustavo Egea
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Institut de Nanociencies I Nanotecnologia (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-021-909
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology, Therapeutics, and Toxicology, Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| | - Victoria Campuzano
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
| |
Collapse
|
65
|
Urner S, Ho F, Jha JC, Ziegler D, Jandeleit-Dahm K. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications. Antioxid Redox Signal 2020; 33:415-434. [PMID: 32008354 DOI: 10.1089/ars.2020.8047] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress plays a critical role in the development and progression of serious micro- and macrovascular complications of diabetes. Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-derived reactive oxygen species (ROS) significantly contribute to oxidative stress-associated inflammatory pathways that lead to tissue damage of different organs, including the kidneys, retina, brain, nerves, and the cardiovascular system. Recent Advances: Preclinical studies, including genetic-modified mouse models or cell culture models, have revealed the role of specific NOX isoforms in different diabetic complications, and suggested them as a promising target for the treatment of these diseases. Critical Issues: In this review, we provide an overview of the role of ROS and oxidative stress in macrovascular complications, such as stroke, myocardial infarction, coronary artery disease, and peripheral vascular disease that are all mainly driven by atherosclerosis, as well as microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy. We summarize conducted genetic deletion studies of different Nox isoforms as well as pharmacological intervention studies using NOX inhibitors in the context of preclinical as well as clinical research on diabetic complications. Future Directions: We outline the isoforms that are most promising for future clinical trials in the context of micro- and macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Florence Ho
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Jay C Jha
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
66
|
Abstract
Significance: The primary function of NADPH oxidases (NOX1-5 and dual oxidases DUOX1/2) is to produce reactive oxygen species (ROS). If inadequately regulated, NOX-associated ROS can promote oxidative stress, aberrant signaling, and genomic instability. Correspondingly, NOX isoforms are known to be overexpressed in multiple malignancies, thus constituting potential therapeutic targets in cancer. Recent Advances: Multiple genetic studies aimed at suppressing the expression of NOX proteins in cellular and animal models of cancer have provided support for the notion that NOXs play a pro-tumorigenic role. Further, large drug screens and rational design efforts have yielded inhibitor compounds, such as the diphenylene iodonium (DPI) analog series developed by our group, with increased selectivity and potency over "first generation" NOX inhibitors such as apocynin and DPI. Critical Issues: The precise role of NOX enzymes in tumor biology remains poorly defined. The tumorigenic properties of NOXs vary with cancer type, and precise tools, such as selective inhibitors, are needed to deconvolute NOX contribution to cancer development. Most NOX inhibitors developed to date are unspecific, and/or their mechanistic and pharmacological characteristics are not well defined. A lack of high-resolution crystal structures for NOX functional domains has hindered the development of potent and selective inhibitors. Future Directions: In-depth studies of NOX interactions with the tumor microenvironment (e.g., cytokines, cell-surface antigens) will help identify new approaches for NOX inhibition in cancer.
Collapse
Affiliation(s)
- Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
67
|
Ahmed MG, Ibrahim MED, El Sayed HR, Ahmed SM. Short term chronic toxicity of tributyltin on the testes of adult albino rats and the possible protective role of omega-3. Hum Exp Toxicol 2020; 40:214-230. [PMID: 32783468 DOI: 10.1177/0960327120947451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The declining rate of male fertility is a growing concern. Tributyltin (TBT) is a well-known endocrine disruptor (ED), that induces imposex in female gastropods and is widely used in various industrial applications. The aim of this study was to evaluate the toxic effects of TBT on the testes of adult albino rats and the possible role of omega-3. Forty two adult male albino rats were divided into five groups; control group (Group I) and four experimental groups: omega-3 treated group, TBT treated group, TBT & omega-3 treated group and follow up group. At the end of the study, the rats were subjected to biochemical, histological, immunohistochemical staining for Ki-67 and seminal examinations. Our results clarfied that TBT induced a significant decrease in testosterone, FSH, LH and serum glutathione peroxidase levels and a significant increase in the serum Malondialdehyde as compared to the control group. Tributyltin induced disorganization and shrinkage of seminiferous tubules, apoptosis, cellular damage and marked reduction in the germinal epithelium. A significant decrease in the cell proliferation and arrested spermatogenesis were also detected. Seminal analysis of TBT group showed a significant affection of all parameters as compared to other groups. Omega-3 ameliorated all of these hazardous effects. Follow up group still showed toxic effects. In conclusion, TBT has a toxic effect on the testis. Increased testicular oxidative stress, cellular damage and arrest of spermatogenesis with attenuation in antioxidant defenses are all contributing factors. Omega-3 can protect against TBT induced reproductive toxicity.
Collapse
Affiliation(s)
- Marwa G Ahmed
- Department of Forensic Medicine and Clinical Toxicology, 68865Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mona El-Demerdash Ibrahim
- Department of Forensic Medicine and Clinical Toxicology, 68865Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hoda R El Sayed
- Department of Forensic Medicine and Clinical Toxicology, 68865Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samah M Ahmed
- Department of Histology & Cell Biology, 68865Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
68
|
Abstract
Significance: The oxidative stress, resulting from an imbalance in the production and scavenging of reactive oxygen species (ROS), is known to be involved in the development and progression of several pathologies. The excess of ROS production is often due to an overactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and for this reason these enzymes became promising therapeutic targets. However, even if NOX are now well characterized, the development of new therapies is limited by the lack of highly isoform-specific inhibitors. Recent Advances: In the past decade, several groups and laboratories have screened thousands of molecules to identify new specific inhibitors with low off-target effects. These works have led to the characterization of several new potent NOX inhibitors; however, their specificity varies a lot depending on the molecules. Critical Issues: Here, we are reviewing more than 25 known NOX inhibitors, focusing mainly on the newly identified ones such as APX-115, NOS31, Phox-I1 and 2, GLX7013114, and GSK2795039. To have a better overall view of these molecules, the inhibitors were classified according to their specificity, from pan-NOX inhibitors to highly isoform-specific ones. We are also presenting the use of these compounds both in vitro and in vivo. Future Directions: Several of these new molecules are potent and very specific inhibitors that could be good candidates for the development of new drugs. Even if the results are very promising, most of these compounds were only validated in vitro or in mice models and further investigations will be required before using them as potential therapies.
Collapse
Affiliation(s)
- Mathieu Chocry
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| | - Ludovic Leloup
- Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS, Marseille, France
| |
Collapse
|
69
|
Sweeny EA, Schlanger S, Stuehr DJ. Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones. Redox Biol 2020; 36:101656. [PMID: 32738790 PMCID: PMC7394750 DOI: 10.1016/j.redox.2020.101656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
NADPH oxidase 5 (NOX5) is a transmembrane signaling enzyme that produces superoxide in response to elevated cytosolic calcium. In addition to its association with numerous human diseases, NOX5 has recently been discovered to play crucial roles in the immune response and cardiovascular system. Details of NOX5 maturation, and specifically its response to changes in intracellular heme levels have remained unclear. Here we establish an experimental system in mammalian cells that allows us to probe the influence of heme availability on ROS production by NOX5. We identified a mode of dynamic regulatory control over NOX5 activity through modulation of its heme saturation and oligomeric state by intracellular heme levels and Hsp90 binding. This regulatory mechanism allows for fine-tuning and reversible modulation of NOX5 activity in response to stimuli.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
70
|
Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med 2020; 154:33-47. [PMID: 32370993 DOI: 10.1016/j.freeradbiomed.2020.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionary conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate variety of biological processes including hormone synthesis, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. Here, we review the role of Nox-mediated ROS during CNS development. Specifically, we focus on how individual Nox isoforms contribute to signaling in neural stem cell maintenance and neuronal differentiation, as well as neurite outgrowth and guidance. We also discuss how ROS regulates the organization and dynamics of the actin cytoskeleton in the neuronal growth cone. Finally, we review recent evidence that Nox-derived ROS modulate axonal regeneration upon nervous system injury.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
71
|
Gao W, Xu S, Zhang M, Liu S, Siu SPK, Peng H, Ng JCW, Tsao GSW, Chan AWH, Chow VLY, Chan JYW, Wong TS. NADPH oxidase 5α promotes the formation of CD271 tumor-initiating cells in oral cancer. Am J Cancer Res 2020; 10:1710-1727. [PMID: 32642285 PMCID: PMC7339284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) has a distinctive cell sub-population known as tumor-initiating cells (TICs). CD271 is a functional TIC receptor in head and neck cancers. The molecular mechanisms governing CD271 up-regulation remains unclear. Oxidative stress is a contributing factor in TIC development. Here, we explored the potential role of NADPH oxidase 5 (NOX5) and its regulatory mechanism on the development of CD271-expressing OTSCC. Our results showed that the splice variant NOX5α is the most prevalent form expressed in head and neck cancers. NOX5α enhanced OTSCC proliferation, migration, and invasion. Overexpression of NOX5α increased the size of OTSCC xenograft significantly in vivo. The tumor-promoting functions of NOX5α were mediated through the reactive oxygen species (ROS)-generating property. NOX5α activated ERK singling and increased CD271 expression at the transcription level. Also, NOX5α reduces the sensitivity of OTSCC to cisplatin and natural killer cells. The findings indicate that NOX5α plays an important part in the development of TIC in OTSCC.
Collapse
Affiliation(s)
- Wei Gao
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Shaowei Xu
- Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College7 Raoping Road, Shantou 515031, Guangdong Province, China
| | - Minjuan Zhang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Shuai Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Sharie Pui-Kei Siu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Hanwei Peng
- Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College7 Raoping Road, Shantou 515031, Guangdong Province, China
| | - Judy Chun-Wai Ng
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - George Sai-Wah Tsao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong30-32 Ngan Shing Street, Shatin, NT, China
| | - Velda Ling-Yu Chow
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jimmy Yu-Wai Chan
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Thian-Sze Wong
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
72
|
Laddha AP, Kulkarni YA. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications. Eur J Pharmacol 2020; 881:173206. [PMID: 32442539 DOI: 10.1016/j.ejphar.2020.173206] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
The human body has a mechanism for balancing the generation and neutralization of reactive oxygen species. The body is exposed to many agents that are responsible for the generation of reactive oxygen/nitrogen species, which leads to disruption of the balance between generation of these species and oxidative stress defence mechanisms. Diabetes is a chronic pathological condition associated with prolonged hyperglycaemia. Prolonged elevation of level of glucose in the blood leads to the generation of reactive oxygen species. This generation of reactive oxygen species is responsible for the development of diabetic vasculopathy, which includes micro- and macrovascular diabetic complications. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a membrane-bound enzyme responsible for the development of reactive oxygen species in hyperglycaemia. Phosphorylation of the cytosolic components of NOX, such as p47phox, p67phox, and RAC-1, in hyperglycaemia is one of the important causes of conversion of oxygen to reactive oxygen. Overexpression of NOX in pathological conditions is associated with activation of aldose reductase, advanced glycation end products, protein kinase C and the hexosamine pathway. In addition, NOX also promotes the activation of inflammatory cytokines, such as TGF-β, TNF-α, NF-kβ, IL-6, and IL-18, the activation of endothelial growth factors, such as VEGF and FGF, hyperlipidaemia, and the deposition of collagen. Thus, overexpression of NOX is linked to the development of diabetic complications. The present review focuses on the role of NOX, its associated pathways, and various NOX inhibitors in the management and treatment of diabetic complications, such as diabetic nephropathy, retinopathy, neuropathy and cardiomyopathy.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L Mehta Road, Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
73
|
Lu J, Jiang G, Wu Y, Antony S, Meitzler JL, Juhasz A, Liu H, Roy K, Makhlouf H, Chuaqui R, Butcher D, Konaté MM, Doroshow JH. NADPH oxidase 1 is highly expressed in human large and small bowel cancers. PLoS One 2020; 15:e0233208. [PMID: 32428030 PMCID: PMC7237001 DOI: 10.1371/journal.pone.0233208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2019] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
To facilitate functional investigation of the role of NADPH oxidase 1 (NOX1) and associated reactive oxygen species in cancer cell signaling, we report herein the development and characterization of a novel mouse monoclonal antibody that specifically recognizes the C-terminal region of the NOX1 protein. The antibody was validated in stable NOX1 overexpression and knockout systems, and demonstrates wide applicability for Western blot analysis, confocal microscopy, flow cytometry, and immunohistochemistry. We employed our NOX1 antibody to characterize NOX1 expression in a panel of 30 human colorectal cancer cell lines, and correlated protein expression with NOX1 mRNA expression and superoxide production in a subset of these cells. Although a significant correlation between oncogenic RAS status and NOX1 mRNA levels could not be demonstrated in colon cancer cell lines, RAS mutational status did correlate with NOX1 expression in human colon cancer surgical specimens. Immunohistochemical analysis of a comprehensive set of tissue microarrays comprising over 1,200 formalin-fixed, paraffin-embedded tissue cores from human epithelial tumors and inflammatory disease confirmed that NOX1 is overexpressed in human colon and small intestinal adenocarcinomas, as well as adenomatous polyps, compared to adjacent, uninvolved intestinal mucosae. In contradistinction to prior studies, we did not find evidence of NOX1 overexpression at the protein level in tumors versus histologically normal tissues in prostate, lung, ovarian, or breast carcinomas. This study constitutes the most comprehensive histopathological characterization of NOX1 to date in cellular models of colon cancer and in normal and malignant human tissues using a thoroughly evaluated monoclonal antibody. It also further establishes NOX1 as a clinically relevant therapeutic target in colorectal and small intestinal cancer.
Collapse
Affiliation(s)
- Jiamo Lu
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jennifer L. Meitzler
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hala Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rodrigo Chuaqui
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mariam M. Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - James H. Doroshow
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
74
|
Griffiths HR, Rooney MCO, Perrie Y. Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging? Antioxid Redox Signal 2020; 32:1014-1030. [PMID: 31989832 DOI: 10.1089/ars.2020.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
Abstract
Significance: Antibacterial defense invokes the innate immune system as a first responder, with neutrophils phagocytozing and forming neutrophil extracellular traps around pathogens in a reactive oxygen species (ROS)-dependent manner. Increased NOX2 activity and mitochondrial ROS production in phagocytic, antigen-presenting cells (APCs) affect local cytokine secretion and proteolysis of antigens for presentation to T cells at the immune synapse. Uncontrolled oxidative post-translational modifications to surface and cytoplasmic proteins in APCs during aging can impair innate immunity. Recent Advances: NOX2 plays a role in the maturation of dendritic cells, but paradoxically NOX2 activity has also been shown to promote viral pathogenicity. Accumulating evidence suggests that a reducing environment is essential to inhibit pathogen proliferation, facilitate antigenic processing in the endosomal lumen, and enable an effective immune synapse between APCs and T cells. This suggests that the kinetics and location of ROS production and reducing potential are important for effective innate immunity. Critical Issues: During aging, innate immune cells are less well able to phagocytoze, kill bacteria/viruses, and process proteins into antigenic peptides-three key steps that are necessary for developing a specific targeted response to protect against future exposure. Aberrant control of ROS production and impaired Nrf2-dependent reducing potential may contribute to age-associated immune decline. Future Directions: Local changes in redox potential may be achieved through adjuvant formulations to improve innate immunity. Further work is needed to understand the timing of delivery for redox modulators to facilitate innate immune cell recruitment, survival, antigen processing and presentation activity without disrupting essential ROS-dependent bacterial killing.
Collapse
Affiliation(s)
- Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matthew C O Rooney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yvonne Perrie
- Department of Pharmacy, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
75
|
Al-Saleh F, Khashab F, Fadel F, Al-Kandari N, Al-Maghrebi M. Inhibition of NADPH oxidase alleviates germ cell apoptosis and ER stress during testicular ischemia reperfusion injury. Saudi J Biol Sci 2020; 27:2174-2184. [PMID: 32714044 PMCID: PMC7376125 DOI: 10.1016/j.sjbs.2020.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Testicular torsion and detorsion (TTD) is a serious urological condition affecting young males that is underlined by an ischemia reperfusion injury (tIRI) to the testis as the pathophysiological mechanism. During tIRI, uncontrolled production of oxygen reactive species (ROS) causes DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to explore whether inhibition of NADPH oxidase (NOX), a major source of intracellular ROS, will prevent tIRI-induced GCA and its association with endoplasmic reticulum (ER) stress. Sprague-Dawley rats (n = 36) were divided into three groups: sham, tIRI only and tIRI treated with apocynin (a NOX inhibitor). Rats undergoing tIRI endured an ischemic injury for 1 h followed by 4 h of reperfusion. Spermatogenic damage was evaluated histologically, while cellular damages were assessed using real time PCR, immunofluorescence staining, Western blot and biochemical assays. Disrupted spermatogenesis was associated with increased lipid and protein peroxidation and decreased antioxidant activity of the enzyme superoxide dismutase (SOD) as a result of tIRI. In addition, increased DNA double strand breaks and formation of 8-OHdG adducts associated with increased phosphorylation of the DNA damage response (DDR) protein H2AX. The ASK1/JNK apoptosis signaling pathway was also activated in response to tIRI. Finally, increased immuno-expression of the unfolded protein response (UPR) downstream targets: GRP78, eIF2-α1, CHOP and caspase 12 supported the presence of ER stress. Inhibition of NOX by apocynin protected against tIRI-induced GCA and ER stress. In conclusion, NOX inhibition minimized tIRI-induced intracellular oxidative damages leading to GCA and ER stress.
Collapse
Key Words
- 8-OHdG, 8-hydroxy-2′-deoxyguanosine
- ANOVA, analysis of variance
- ASK1, apoptosis signaling kinase 1
- ATF, activating transcription factor
- ATM, ataxia telangiectasia mutated
- BSA, bovine serum albumin
- BTB, blood-testis barrier
- CHOP, CCAAT-enhancer-binding protein homologous protein
- Chk, checkpoint kinase
- DAPI, diamidino phenylindole
- DDR, DNA damage response
- DMSO, dimethyl sulfoxide
- DNA, deoxyribonucleic acid
- ECL, electrochemiluminescence
- ELISA, enzyme-linked immunosorbent assay
- ER stress
- ER, endoplasmic reticulum
- GCA, germ cell apoptosis
- GRP78, glucose-related protein 78
- Germ cell apoptosis
- H&E, hematoxylin and eosin
- H2AX, histone variant
- H2O2, hydrogen peroxide
- IAP, inhibitors of apoptosis
- IF, immunofluorescence
- IRE1, inositol requiring kinase 1
- JNK, c-Jun N-terminal Kinase
- MDA, malondialdehyde
- NADP, nicotinamide adenine dinucleotide phosphate
- NADPH oxidase
- NOX, NADPH oxidase
- O2, molecular oxygen
- O2−, superoxide anion
- OS, oxidative stress
- Oxidative stress
- PARP, poly ADP-ribose polymerase
- PCC, protein carbonyl content
- PCR, polymerase chain reaction
- PERK, pancreatic ER kinase
- PVDF, polyvinylidene difluoride
- RIPA, radioimmunoprecipitation assay
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- RT, reverse transcription
- SD, standard deviation
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SOD, superoxide dismutase
- ST, seminiferous tubule
- TOS, testicular oxidative stress
- TRAF-2, tumor-necrosis-factor receptor-associated factor 2
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- Testicular ischemia Reperfusion Injury
- UPR, unfolded protein response
- cDNA, complementary DNA
- eIF2α1, eukaryotic initiation factor 2α1
- gDNA, genomic DNA
- i.p., intraperitoneal
- kDa, kilodalton
- mRNA, messenger ribonucleic acid
- p-, phosphorylated
- phox, phagocyte oxidase
- γ-H2AX, 139 serine-phosphorylated histone variant
Collapse
Affiliation(s)
- Farah Al-Saleh
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| | - Farah Khashab
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| | - Fatemah Fadel
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| | - Nora Al-Kandari
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| | - May Al-Maghrebi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| |
Collapse
|
76
|
Bouzakri K, Veyrat-Durebex C, Holterman C, Arous C, Barbieux C, Bosco D, Altirriba J, Alibashe M, Tournier BB, Gunton JE, Mouche S, Bietiger W, Forterre A, Berney T, Pinget M, Christofori G, Kennedy C, Szanto I. Beta-Cell-Specific Expression of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 5 Aggravates High-Fat Diet-Induced Impairment of Islet Insulin Secretion in Mice. Antioxid Redox Signal 2020; 32:618-635. [PMID: 31931619 DOI: 10.1089/ars.2018.7579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Aims: Nicotinamide adenine dinucleotide phosphate oxidases (NOX-es) produce reactive oxygen species and modulate β-cell insulin secretion. Islets of type 2 diabetic subjects present elevated expression of NOX5. Here, we sought to characterize regulation of NOX5 expression in human islets in vitro and to uncover the relevance of NOX5 in islet function in vivo using a novel mouse model expressing NOX5 in doxycycline-inducible, β-cell-specific manner (RIP/rtTA/NOX5 mice). Results:In situ hybridization and immunohistochemistry employed on pancreatic sections demonstrated NOX5 messenger ribonucleic acid (mRNA) and protein expressions in human islets. In cultures of dispersed islets, NOX5 protein was observed in somatostatin-positive (δ) cells in basal (2.8 mM glucose) conditions. Small interfering ribonucleic acid (siRNA)-mediated knockdown of NOX5 in human islets cultured in basal glucose concentrations resulted in diminished glucose-induced insulin secretion (GIIS) in vitro. However, when islets were preincubated in high (16.7 mM) glucose media for 12 h, NOX5 appeared also in insulin-positive (β) cells. In vivo, mice with β-cell NOX5 expression developed aggravated impairment of GIIS compared with control mice when challenged with 14 weeks of high-fat diet. Similarly, in vitro palmitate preincubation resulted in more severe reduction of insulin release in islets of RIP/rtTA/NOX5 mice compared with their control littermates. Decreased insulin secretion was most distinct in response to theophylline stimulation, suggesting impaired cyclic adenosine monophosphate (cAMP)-mediated signaling due to increased phosphodiesterase activation. Innovation and Conclusions: Our data provide the first insight into the complex regulation and function of NOX5 in islets implying an important role for NOX5 in δ-cell-mediated intraislet crosstalk in physiological circumstances but also identifying it as an aggravating factor in β-cell failure in diabetic conditions.
Collapse
Affiliation(s)
- Karim Bouzakri
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Chet Holterman
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Caroline Arous
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Charlotte Barbieux
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mohamed Alibashe
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Vulnerability Biomarkers Unit, Division of General Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Jenny E Gunton
- Centre for Diabetes, Obesity and Endocrinology, Westmead Millennium Institute, The University of Sydney, Sydney, Australia.,Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, Australia
| | - Sarah Mouche
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Thierry Berney
- Division of Transplantation, Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Michel Pinget
- Centre Européen d'Etude du Diabète, Strasbourg, France
| | | | - Christopher Kennedy
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Ildiko Szanto
- Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine at the University of Geneva, Geneva, Switzerland
| |
Collapse
|
77
|
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
78
|
Negre-Salvayre A, Guerby P, Gayral S, Laffargue M, Salvayre R. Role of reactive oxygen species in atherosclerosis: Lessons from murine genetic models. Free Radic Biol Med 2020; 149:8-22. [PMID: 31669759 DOI: 10.1016/j.freeradbiomed.2019.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a multifactorial chronic and inflammatory disease of medium and large arteries, and the major cause of cardiovascular morbidity and mortality worldwide. The pathogenesis of atherosclerosis involves a number of risk factors and complex events including hypercholesterolemia, endothelial dysfunction, increased permeability to low density lipoproteins (LDL) and their sequestration on extracellular matrix in the intima of lesion-prone areas. These events promote LDL modifications, particularly by oxidation, which generates acute and chronic inflammatory responses implicated in atherogenesis and lesion progression. Reactive oxygen species (ROS) (which include both free radical and non-free radical oxygen intermediates), play a key-role at each step of atherogenesis, in endothelial dysfunction, LDL oxidation, and inflammatory events involved in the initiation and development of atherosclerosis lesions. Most advanced knowledge supporting the "oxidative theory of atherosclerosis" i.e. the nature and the cellular sources of ROS and antioxidant defences, as well as the mechanisms involved in the redox balance, is based on the use of genetically engineered animals, i.e. transgenic, genetically modified, or altered for systems producing or neutralizing ROS in the vessels. This review summarizes the results obtained from animals genetically manipulated for various sources of ROS or antioxidant defences in the vascular wall, and their relevance (advance or limitation), for understanding the place and role of ROS in atherosclerosis.
Collapse
Affiliation(s)
| | - Paul Guerby
- Inserm U-1048, Université de Toulouse, France; Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | | | | |
Collapse
|
79
|
Netherton JK, Hetherington L, Ogle RA, Gavgani MM, Velkov T, Villaverde AIB, Tanphaichitr N, Baker MA. Mass Spectrometry Reveals New Insights into the Production of Superoxide Anions and 4-Hydroxynonenal Adducted Proteins in Human Sperm. Proteomics 2020; 20:e1900205. [PMID: 31846556 DOI: 10.1002/pmic.201900205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2019] [Revised: 09/10/2019] [Indexed: 01/09/2023]
Abstract
The free-radical theory of male infertility suggests that reactive oxygen species produced by the spermatozoa themselves are a leading cause of sperm dysfunction, including loss of sperm motility. However, the field is overshadowed on several fronts, primarily because: i) the probes used to measure reactive oxygen species (ROS) are imprecise; and ii) many reports suggesting that oxygen radicals are detrimental to sperm function add an exogenous source of ROS. Herein, a more reliable approach to measure superoxide anion production by human spermatozoa based on MS analysis is used. Furthermore, the formation of the lipid-peroxidation product 4-hydroxynonenal (4-HNE) during in vitro incubation using proteomics is also investigated. The data demonstrate that neither superoxide anion nor other free radicals that cause 4-HNE production are related to the loss of sperm motility during incubation. Interestingly, it appears that many of the 4-HNE adducted proteins, found within spermatozoa, originate from the prostate. A quantitative SWATH analysis demonstrate that these proteins transiently bind to sperm and are then shed during in vitro incubation. These proteomics-based findings propose a revised understanding of oxidative stress within the male reproductive tract.
Collapse
Affiliation(s)
| | - Louise Hetherington
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| | - Rachel Anne Ogle
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| | | | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010, Australia
| | | | - Nuch Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Department of Obstetrics and Gynaecology and, Department of Biochemistry, Microbiology, Immunology, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
| | - Mark Andrew Baker
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
80
|
Lee SR, An EJ, Kim J, Bae YS. Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors. Biomol Ther (Seoul) 2020; 28:25-33. [PMID: 31875663 PMCID: PMC6939690 DOI: 10.4062/biomolther.2019.188] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.
Collapse
Affiliation(s)
- Sae Rom Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Jung An
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
81
|
Aitken RJ, Baker MA. The Role of Genetics and Oxidative Stress in the Etiology of Male Infertility-A Unifying Hypothesis? Front Endocrinol (Lausanne) 2020; 11:581838. [PMID: 33101214 PMCID: PMC7554587 DOI: 10.3389/fendo.2020.581838] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the high prevalence of male infertility, very little is known about its etiology. In recent years however, advances in gene sequencing technology have enabled us to identify a large number of rare single point mutations responsible for impeding all aspects of male reproduction from its embryonic origins, through the endocrine regulation of spermatogenesis to germ cell differentiation and sperm function. Such monogenic mutations aside, the most common genetic causes of male infertility are aneuploidies such as Klinefelter syndrome and Y-chromosome mutations which together account for around 20-25% of all cases of non-obstructive azoospermia. Oxidative stress has also emerged as a major cause of male fertility with at least 40% of patients exhibiting some evidence of redox attack, resulting in high levels of lipid peroxidation and oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine (8OHdG). The latter is highly mutagenic and may contribute to de novo mutations in our species, 75% of which are known to occur in the male germ line. An examination of 8OHdG lesions in the human sperm genome has revealed ~9,000 genomic regions vulnerable to oxidative attack in spermatozoa. While these oxidized bases are generally spread widely across the genome, a particular region on chromosome 15 appears to be a hot spot for oxidative attack. This locus maps to a genetic location which has linkages to male infertility, cancer, imprinting disorders and a variety of behavioral conditions (autism, bipolar disease, spontaneous schizophrenia) which have been linked to the age of the father at the moment of conception. We present a hypothesis whereby a number of environmental, lifestyle and clinical factors conspire to induce oxidative DNA damage in the male germ line which then triggers the formation de novo mutations which can have a major impact on the health of the offspring including their subsequent fertility.
Collapse
Affiliation(s)
- Robert John Aitken
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Robert John Aitken
| | - Mark A. Baker
- Faculty of Science and Faculty of Health and Medicine, Priority Research Centre in Reproductive Science, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
82
|
From Past to Present: The Link Between Reactive Oxygen Species in Sperm and Male Infertility. Antioxidants (Basel) 2019; 8:antiox8120616. [PMID: 31817049 PMCID: PMC6943565 DOI: 10.3390/antiox8120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/13/2023] Open
Abstract
Reactive oxygen species (ROS) can be generated in mammalian cells via both enzymatic and non-enzymatic mechanisms. In sperm cells, while ROS may function as signalling molecules for some physiological pathways, the oxidative stress arising from the ubiquitous production of these compounds has been implicated in the pathogenesis of male infertility. In vitro studies have undoubtedly shown that spermatozoa are indeed susceptible to free radicals. However, many reports correlating ROS with sperm function impairment are based on an oxidative stress scenario created in vitro, lacking a more concrete observation of the real capacity of sperm in the production of ROS. Furthermore, sample contamination by leukocytes and the drawbacks of many dyes and techniques used to measure ROS also greatly impact the reliability of most studies in this field. Therefore, in addition to a careful scrutiny of the data already available, many aspects of the relationship between ROS and sperm physiopathology are still in need of further controlled and solid experiments before any definitive conclusions are drawn.
Collapse
|
83
|
Radiation-Induced Normal Tissue Damage: Oxidative Stress and Epigenetic Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3010342. [PMID: 31781332 PMCID: PMC6875293 DOI: 10.1155/2019/3010342] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/07/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/23/2023]
Abstract
Radiotherapy (RT) is currently one of the leading treatments for various cancers; however, it may cause damage to healthy tissue, with both short-term and long-term side effects. Severe radiation-induced normal tissue damage (RINTD) frequently has a significant influence on the progress of RT and the survival and prognosis of patients. The redox system has been shown to play an important role in the early and late effects of RINTD. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the main sources of RINTD. The free radicals produced by irradiation can upregulate several enzymes including nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), lipoxygenases (LOXs), nitric oxide synthase (NOS), and cyclooxygenases (COXs). These enzymes are expressed in distinct ways in various cells, tissues, and organs and participate in the RINTD process through different regulatory mechanisms. In recent years, several studies have demonstrated that epigenetic modulators play an important role in the RINTD process. Epigenetic modifications primarily contain noncoding RNA regulation, histone modifications, and DNA methylation. In this article, we will review the role of oxidative stress and epigenetic mechanisms in radiation damage, and explore possible prophylactic and therapeutic strategies for RINTD.
Collapse
|
84
|
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
85
|
Vatannejad A, Tavilani H, Sadeghi MR, Karimi M, Lakpour N, Amanpour S, Shabani Nashtaei M, Doosti M. Evaluation of the NOX5 protein expression and oxidative stress in sperm from asthenozoospermic men compared to normozoospermic men. J Endocrinol Invest 2019; 42:1181-1189. [PMID: 30963466 DOI: 10.1007/s40618-019-01035-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/31/2018] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE NADPH oxidase 5 (NOX5), the main isoform of NOX in spermatozoa, has been recognized as the main active generators of reactive oxygen species (ROS), including superoxide anion (O 2 -. ) and hydrogen peroxide (H2O2). ROS have been shown to play important roles in many physiological and pathological conditions in spermatozoa. The present study aims to investigate the alterations of NOX5 protein expression and oxidative stress (OS) status in asthenozoospermic men compared to normozoospermic men. METHODS Semen samples were collected from 25 asthenozoospermic men and 28 normozoospermic men. In this study, NOX5 protein expression was evaluated by Western blotting. An OS status was evaluated by measuring of ROS (O 2 -. and H2O2), DNA damage and plasma membrane integrity in spermatozoa. RESULTS The protein expression of NOX5 (p < 0.0001) was remarkably higher in asthenozoospermic men in comparison to normozoospermic men. In addition, the percentages of intracellular O 2 -. (p < 0.0001), H2O2 (p < 0.0001) in viable spermatozoa, apoptotic sperm cells with altered plasma membrane (p < 0.001) and DNA damage (p = 0.001) were significantly increased in asthenozoospermic men compared to normozoospermic men. CONCLUSIONS The present study provides evidence that the overexpression of NOX5 protein may induce excessive ROS production and oxidative stress damages to DNA and plasma membrane integrity in asthenozoospermic men.
Collapse
Affiliation(s)
- A Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - H Tavilani
- Urology and Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M R Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - M Karimi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - N Lakpour
- Reproductive Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Pathology, Faculty of Medicine, Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - S Amanpour
- Cancer Biology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - M Shabani Nashtaei
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences Faculty of Medicine, Tehran, Iran
| | - M Doosti
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
86
|
Aparnak P, Saberivand A. Effects of curcumin on canine semen parameters and expression of NOX5 gene in cryopreserved spermatozoa. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:221-226. [PMID: 31737231 PMCID: PMC6828172 DOI: 10.30466/vrf.2019.76137.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/02/2017] [Accepted: 02/21/2018] [Indexed: 12/26/2022]
Abstract
Canine seminal plasma contains antioxidant enzymes to protect sperm against internally generated ROS. These enzymes are removed from seminal plasma during the process of cryopreservation. The freezing/thawing process can cause some morphological and functional changes via ice crystallization and osmolality imbalance. The present study was conducted to evaluate the effects of curcumin supplementation on sperm total count, motility, progressive motility, viability, morphology, total antioxidant capacity (TAC), DNA integrity and NOX5 gene expression of dog frozen semen. The pooled semen was allocated to fresh (Group 1) and frozen (Group 2) controls, curcumin (2.50 mM) (Group 3) and curcumin (5.00 mM), (Group 4). Sperm parameters including total sperm count, morphology, motility, progressive motility, sperm concentration and DNA integrity in addition to TAC were evaluated in fresh and frozen-thawed semen samples. Real-time RT-PCR was used to investigate NOX5 and GADPH (reference gene) genes expressions. Curcumin at 2.50 mM provided a greater protective effect on the DNA integrity compared to 5.00 mM and control groups. TAC was significantly higher in 2.50 mM group than other groups. NOX5 gene expression in curcumin 2.50 mM was higher than 5.00 mM group. In conclusion, curcumin seems to emolliate sperm parameters and to protect sperm against sperm reactive oxygen stress and increases NOX5 gene expression.
Collapse
Affiliation(s)
- Parisa Aparnak
- PhD Candidate, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Adel Saberivand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
87
|
Doğan HO, Yildiz ÖK. Serum NADPH oxidase concentrations and the associations with iron metabolism in relapsing remitting multiple sclerosis. J Trace Elem Med Biol 2019; 55:39-43. [PMID: 31345363 DOI: 10.1016/j.jtemb.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/10/2019] [Revised: 05/08/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Overproduction of reactive oxygen species (ROS) and impaired iron metabolism are considered to be possible factors in the pathogenesis of Multiple sclerosis (MS). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are the primary sources of regulated ROS production. The NADPH oxidase (NOX) family consists of seven catalytic homologues, NOX1-5 and two dual oxidases. NOX1 and NOX5 are associated with endothelial dysfunction and inflammation but NOX4 has a protective effect on vascular function. The aims of this study were to investigate the status of NOX1, NOX4 and NOX5 and its relationship with serum iron metabolism biomarkers in relapsing-remitting MS patients. METHODS The study included 53 RRMS patients and 45 control subjects. Serum NOX1,4,5, ferritin, iron, unbound-iron binding capacity, C-reactive protein (CRP), white blood count (WBC) and erythrocyte sedimentation rate (ESR) levels were measured in all the study subjects. RESULTS Higher serum NOX5 (p < 0.0001), CRP (p = 0.014), ferritin (p = 0.040) and lower serum NOX4 (p < 0.0001) and iron (p = 0.013) concentrations were found in the patients than in controls. No correlation was found between NOXs, CRP, WBC, ESR and iron metabolism biomarkers in patients. CONCLUSION Our data suggest that increased NOX5 expression and decreased levels of NOX4 might be related with oxidative stress related vascular changes in MS patients. These findings provide future opportunities to combat MS with separately target individual NOX isoforms.
Collapse
Affiliation(s)
- Halef Okan Doğan
- Department of Biochemistry, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Özlem Kayim Yildiz
- Department of Neurology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
88
|
Meitzler JL, Konaté MM, Doroshow JH. Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer. Arch Biochem Biophys 2019; 675:108076. [PMID: 31415727 DOI: 10.1016/j.abb.2019.108076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/03/2023]
Abstract
The cellular microenvironment plays a critical role in cancer initiation and progression. Exposure to oxidative stress, specifically hydrogen peroxide (H2O2), has been linked to aberrant cellular signaling through which the development of cancer may be promoted. Three members of the NADPH oxidase family (NOX4, DUOX1 and DUOX2) explicitly generate this non-radical oxidant in a wide range of tissues, often in support of the inflammatory response. This review summarizes the contributions of each H2O2-producing NOX to the invasive behaviors of tumors and/or the epithelial-mesenchymal transition (EMT) in cancer that plays an essential role in metastasis. Tissue localization in tumorigenesis is also highlighted, with patient-derived TCGA microarray data profiled across 31 cancer cohorts to provide a comprehensive guide to the relevance of NOX4/DUOX1/DUOX2 in cancer studies.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
89
|
Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H. Biochemical basis and metabolic interplay of redox regulation. Redox Biol 2019; 26:101284. [PMID: 31400697 PMCID: PMC6831867 DOI: 10.1016/j.redox.2019.101284] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulated evidence strongly indicates that oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidants in favor of oxidants, plays an important role in disease pathogenesis. However, ROS can act as signaling molecules and fulfill essential physiological functions at basal levels. Each ROS would be different in the extent to stimulate and contribute to different pathophysiological effects. Importantly, multiple ROS generators can be activated either concomitantly or sequentially by relevant signaling molecules for redox biological functions. Here, we summarized the current knowledge related to chemical and biochemical features of primary ROS species and corresponding antioxidants. Metabolic pathways of five major ROS generators and five ROS clearance systems were described, including their ROS products, specific ROS enriched tissue, cell and organelle, and relevant functional implications. We provided an overview of ROS generation and induction at different levels of metabolism. We classified 11 ROS species into three types based on their reactivity and target selectivity and presented ROS homeostasis and functional implications in pathological and physiological status. This article intensively reviewed and refined biochemical basis, metabolic signaling and regulation, functional insights, and provided guidance for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Lixiao Zhang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Ramón Cueto
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Comfort Effi
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-sen Memorial Hospital, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, China
| | - Xuebin Qin
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
90
|
Avian Stress-Related Transcriptome and Selenotranscriptome: Role during Exposure to Heavy Metals and Heat Stress. Antioxidants (Basel) 2019; 8:antiox8070216. [PMID: 31295914 PMCID: PMC6680911 DOI: 10.3390/antiox8070216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium, through incorporation into selenoproteins, is one of the key elements of the antioxidant system. Over the past few years there has been increased interest in exploring those molecular mechanisms in chicken, responsible for the development of this protection system. In more detail, Cd/Pb poisoning and heat stress increase oxidation, mRNA levels of inflammatory proteins, and apoptotic proteins. Selenium seems to enhance the antioxidant status and alleviates these effects via upregulation of antioxidant proteins and other molecular effects. In this review, we analyze avian transcriptome key elements with particular emphasis on interactions with heavy metals and on relation to heat stress.
Collapse
|
91
|
Touyz RM, Anagnostopoulou A, Rios F, Montezano AC, Camargo LL. NOX5: Molecular biology and pathophysiology. Exp Physiol 2019; 104:605-616. [PMID: 30801870 PMCID: PMC6519284 DOI: 10.1113/ep086204] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review provides a comprehensive overview of Nox5 from basic biology to human disease and highlights unique features of this Nox isoform What advances does it highlight? Major advances in Nox5 biology relate to crystallization of the molecule and new insights into the pathophysiological role of Nox5. Recent discoveries have unravelled the crystal structure of Nox5, the first Nox isoform to be crystalized. This provides new opportunities to develop drugs or small molecules targeted to Nox5 in an isoform-specific manner, possibly for therapeutic use. Moreover genome wide association studies (GWAS) identified Nox5 as a new blood pressure-associated gene and studies in mice expressing human Nox5 in a cell-specific manner have provided new information about the (patho) physiological role of Nox5 in the cardiovascular system and kidneys. Nox5 seems to be important in the regulation of vascular contraction and kidney function. In cardiovascular disease and diabetic nephropathy, Nox5 activity is increased and this is associated with increased production of reactive oxygen species and oxidative stress implicated in tissue damage. ABSTRACT Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), comprise seven family members (Nox1-Nox5 and dual oxidase 1 and 2) and are major producers of reactive oxygen species in mammalian cells. Reactive oxygen species are crucially involved in cell signalling and function. All Noxs share structural homology comprising six transmembrane domains with two haem-binding regions and an NADPH-binding region on the intracellular C-terminus, whereas their regulatory systems, mechanisms of activation and tissue distribution differ. This explains the diverse function of Noxs. Of the Noxs, NOX5 is unique in that rodents lack the gene, it is regulated by Ca2+ , it does not require NADPH oxidase subunits for its activation, and it is not glycosylated. NOX5 localizes in the perinuclear and endoplasmic reticulum regions of cells and traffics to the cell membrane upon activation. It is tightly regulated through numerous post-translational modifications and is activated by vasoactive agents, growth factors and pro-inflammatory cytokines. The exact pathophysiological significance of NOX5 remains unclear, but it seems to be important in the physiological regulation of sperm motility, vascular contraction and lymphocyte differentiation, and NOX5 hyperactivation has been implicated in cardiovascular disease, kidney injury and cancer. The field of NOX5 biology is still in its infancy, but with new insights into its biochemistry and cellular regulation, discovery of the NOX5 crystal structure and genome-wide association studies implicating NOX5 in disease, the time is now ripe to advance NOX5 research. This review provides a comprehensive overview of our current understanding of NOX5, from basic biology to human disease, and highlights the unique characteristics of this enigmatic Nox isoform.
Collapse
Affiliation(s)
- Rhian M. Touyz
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Aikaterini Anagnostopoulou
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Francisco Rios
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Livia L. Camargo
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| |
Collapse
|
92
|
RBOH-Dependent ROS Synthesis and ROS Scavenging by Plant Specialized Metabolites To Modulate Plant Development and Stress Responses. Chem Res Toxicol 2019; 32:370-396. [PMID: 30781949 DOI: 10.1021/acs.chemrestox.9b00028] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) regulate plant growth and development. ROS are kept at low levels in cells to prevent oxidative damage, allowing them to be effective signaling molecules upon increased synthesis. In plants and animals, NADPH oxidase/respiratory burst oxidase homolog (RBOH) proteins provide localized ROS bursts to regulate growth, developmental processes, and stress responses. This review details ROS production via RBOH enzymes in the context of plant development and stress responses and defines the locations and tissues in which members of this family function in the model plant Arabidopsis thaliana. To ensure that these ROS signals do not reach damaging levels, plants use an array of antioxidant strategies. In addition to antioxidant machineries similar to those found in animals, plants also have a variety of specialized metabolites that scavenge ROS. These plant specialized metabolites exhibit immense structural diversity and have highly localized accumulation. This makes them important players in plant developmental processes and stress responses that use ROS-dependent signaling mechanisms. This review summarizes the unique properties of plant specialized metabolites, including carotenoids, ascorbate, tocochromanols (vitamin E), and flavonoids, in modulating ROS homeostasis. Flavonols, a subclass of flavonoids with potent antioxidant activity, are induced during stress and development, suggesting that they have a role in maintaining ROS homeostasis. Recent results using genetic approaches have shown how flavonols regulate development and stress responses through their action as antioxidants.
Collapse
|
93
|
Touyz RM, Anagnostopoulou A, Camargo LL, Rios FJ, Montezano AC. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease. Antioxid Redox Signal 2019; 30:1027-1040. [PMID: 30334629 PMCID: PMC6354601 DOI: 10.1089/ars.2018.7583] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE NADPH oxidases (Noxs), of which there are seven isoforms (Nox1-5, Duox1/Duox2), are professional oxidases functioning as reactive oxygen species (ROS)-generating enzymes. ROS are signaling molecules important in physiological processes. Increased ROS production and altered redox signaling in the vascular system have been implicated in the pathophysiology of cardiovascular diseases, including hypertension, and have been attributed, in part, to increased Nox activity. Recent Advances: Nox1, Nox2, Nox4, and Nox5 are expressed and functionally active in human vascular cells. While Nox1, Nox2, and Nox4 have been well characterized in models of cardiovascular disease, little is known about Nox5. This may relate to the lack of experimental models because rodents lack NOX5. However, recent studies have advanced the field by (i) elucidating mechanisms of Nox5 regulation, (ii) identifying Nox5 variants, (iii) characterizing Nox5 expression, and (iv) discovering the Nox5 crystal structure. Moreover, studies in human Nox5-expressing mice have highlighted a putative role for Nox5 in cardiovascular disease. CRITICAL ISSUES Although growing evidence indicates a role for Nox-derived ROS in cardiovascular (patho)physiology, the exact function of each isoform remains unclear. This is especially true for Nox5. FUTURE DIRECTIONS Future directions should focus on clinically relevant studies to discover the functional significance of Noxs, and Nox5 in particular, in human health and disease. Two important recent studies will impact future directions. First, Nox5 is the first Nox to be crystallized. Second, a genome-wide association study identified Nox5 as a novel blood pressure-associated gene. These discoveries, together with advancements in Nox5 biology and biochemistry, will facilitate discovery of drugs that selectively target Noxs to interfere in uncontrolled ROS generation.
Collapse
Affiliation(s)
- Rhian M. Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Aikaterini Anagnostopoulou
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Livia L. Camargo
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francisco J. Rios
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Augusto C. Montezano
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
94
|
Ghanbari H, Keshtgar S, Zare HR, Gharesi-Fard B. Inhibition of CatSper and Hv1 Channels and NOX5 Enzyme Affect Progesterone-Induced Increase of Intracellular Calcium Concentration and ROS Generation in Human Sperm. IRANIAN JOURNAL OF MEDICAL SCIENCES 2019; 44:127-134. [PMID: 30936599 PMCID: PMC6423429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Normal sperm function depends on appropriate intracellular calcium (Cai 2+) and reactive oxygen species (ROS) levels. Calcium activates NADPH oxidase-5 (NOX5) that leads to ROS generation. The calcium channel of sperm (CatSper) is activated by progesterone and intracellular alkalization. Herein, the interactive role of CatSper, Hv1 channels, and NOX5 enzyme on Cai 2+ and ROS generation in human sperm is investigated. METHODS The present laboratory in vitro study was carried out in the School of Medicine, Shiraz University of Medical Sciences (Shiraz, Iran) during 2016. Normal semen samples (n=15) were washed and diluted to 20×106 sperm/mL. The diluted samples were divided into 16 groups containing Ham's F-10 (the control group), 2 µM NNC (CatSper inhibitor), 1 mM ZnCl2 (Hv1 inhibitor), 1 µM DPI (NOX5 inhibitor), NNC+Zn, NNC+DPI, and NNC+Zn+DPI. The other 8 groups were the same as the above except that they contained 1 µM progesterone. Cell viability and Cai 2+ were analyzed by flou-3 AM probe and PI staining, respectively, using flow cytometric method. ROS generation was assessed by chemiluminescence method. Statistical analysis was performed using the one-way ANOVA followed by Tukey's test. P values <0.05 were considered statistically significant. RESULTS Progesterone increased Cai 2+ and ROS generation. The addition of NNC, Zn, or NNC+Zn significantly decreased Cai 2+ in the control and progesterone containing groups. Progesterone-induced ROS generation was decreased significantly in all groups containing NNC, Zn, or DPI and reached to the control level when DPI was added to NNC or Zn. CONCLUSION There is a functional relationship between CatSper and Hv1 channels in increasing Cai 2++. The activity of CatSper and Hv1 channels are required for progesterone-induced ROS generation by NOX5 enzyme.
Collapse
Affiliation(s)
- Hamideh Ghanbari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Hamid Reza Zare
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Behrouz Gharesi-Fard
- Department of Immunology, Infertility Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
95
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
96
|
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives. Initially, they were considered as metabolic by-products (of mitochondria in particular), which consistently lead to aging and disease. Over the last decades, however, it became increasingly apparent that virtually all eukaryotic cells possess specifically ROS-producing enzymes, namely, NOX NADPH oxidases. In most mammals, there are seven NOX isoforms: three closely related isoforms, NOX1, 2, 3, which are activated by cytoplasmic subunits; NOX4, which appears to be constitutively active; and the EF-hand-containing Ca2+-activated isoforms NOX5 and DUOX1 and 2. Loss-of-function mutations in NOX genes can lead to serious human disease. NOX2 deficiency leads to primary immune deficiency, while DUOX2 deficiency presents as congenital hypothyroidism. Nox-deficient mice provide important tools to explore the physiological functions of various NADPH oxidases as a loss of function in Nox2, Nox3, and Duox2 leads to a spontaneous phenotype. The genetic absence of Nox1, Nox4, and Duox1 does not result in an obvious mouse phenotype (the NOX5 gene is absent in rodents and can therefore not be studied using knockout mice). Since the discovery of the NOX family at the turn of the millennium, much progress in understanding the biochemistry and the physiology of NOX has been made; however many questions remain unanswered to date. This chapter is an overview of our present knowledge on mammalian NOX/DUOX enzymes.
Collapse
Affiliation(s)
- Hélène Buvelot
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
97
|
Covantes-Rosales CE, Trujillo-Lepe AM, Díaz-Reséndiz KJG, Toledo-Ibarra GA, Ventura-Ramón GH, Ortiz-Lazareno PC, Girón-Pérez MI. Phagocytosis and ROS production as biomarkers in Nile tilapia (Oreochromis niloticus) leukocytes by exposure to organophosphorus pesticides. FISH & SHELLFISH IMMUNOLOGY 2019; 84:189-195. [PMID: 30291982 DOI: 10.1016/j.fsi.2018.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/02/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus pesticides (OPs) are broad-spectrum insecticides. One of the commonly used OPs is diazinon (DZN). The aim of this study was to evaluate the immunotoxic effect of DZN on phagocytic parameters of blood leukocytes using the teleost fish Oreochromis niloticus as a study model. For this purpose, fish were exposed in vivo to 0.97, 1.95 and 3.97 mg/L of DZN for 6 and 24 h. Our results indicated that phagocytic active cells decreased in fish exposed in vivo to 0.97 and 1.95 mg/L of DZN for 6 and 24 h. Regarding ROS production, H2O2 and O2- levels were higher on fish exposed to 1.95 mg/L for 6 and 24 h, while H2O2 production increased at 0.97 mg/L for 24 h. From this we can conclude that phagocytic parameters are sensitive to assess the effect of acute intoxication with organophosphorus pesticides on Nile tilapia.
Collapse
Affiliation(s)
- C E Covantes-Rosales
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd. de la Cultura Amado Nervo, C.P. 63000, Tepic, Nayarit, Mexico
| | - A M Trujillo-Lepe
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd. de la Cultura Amado Nervo, C.P. 63000, Tepic, Nayarit, Mexico
| | - K J G Díaz-Reséndiz
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd. de la Cultura Amado Nervo, C.P. 63000, Tepic, Nayarit, Mexico
| | - G A Toledo-Ibarra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd. de la Cultura Amado Nervo, C.P. 63000, Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n, Cd Industrial, Tepic, Nayarit, Mexico
| | - G H Ventura-Ramón
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd. de la Cultura Amado Nervo, C.P. 63000, Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n, Cd Industrial, Tepic, Nayarit, Mexico
| | - P C Ortiz-Lazareno
- Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara Jalisco, Mexico
| | - M I Girón-Pérez
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd. de la Cultura Amado Nervo, C.P. 63000, Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C., Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n, Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
98
|
Abstract
SIGNIFICANCE G protein-coupled receptors (GPCR) are the largest group of cell surface receptors, which link cells to their environment. Reactive oxygen species (ROS) can act as important cellular signaling molecules. The family of NADPH oxidases generates ROS in response to activated cell surface receptors. Recent Advances: Various signaling pathways linking GPCRs and activation of NADPH oxidases have been characterized. CRITICAL ISSUES Still, a more detailed analysis of G proteins involved in the GPCR-mediated activation of NADPH oxidases is needed. In addition, a more precise discrimination of NADPH oxidase activation due to either upregulation of subunit expression or post-translational subunit modifications is needed. Also, the role of noncanonical modulators of NADPH oxidase activation in the response to GPCRs awaits further analyses. FUTURE DIRECTIONS As GPCRs are one of the most popular classes of investigational drug targets, further detailing of G protein-coupled mechanisms in the activation mechanism of NADPH oxidases as well as better understanding of the link between newly identified NADPH oxidase interaction partners and GPCR signaling will provide new opportunities for improved efficiency and decreased off target effects of therapies targeting GPCRs.
Collapse
Affiliation(s)
- Andreas Petry
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich , TU Munich, Munich, Germany
| | - Agnes Görlach
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich , TU Munich, Munich, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
99
|
Abstract
NOX (NADPH oxidases) are a family of NADPH-dependent transmembrane enzymes that synthesize superoxide and other reactive oxygen species. There are seven isoforms (NOX1-5 and DUOX1-2) which derive from a common ancestral NOX. NOX enzymes are distinguished by different modes of activation, the types of ROS that are produced, the cell types where they are expressed, and distinct functional roles. NOX5 was one of the earliest eukaryotic Nox enzymes to evolve and ironically the last isoform to be discovered in humans. In the time since its discovery, our knowledge of the regulation of NOX5 has expanded tremendously, and we now have a more comprehensive understanding of the molecular mechanisms underlying NOX5-dependent ROS production. In contrast, the cell types where NOX5 is robustly expressed and its functional significance in health and disease remain an underdeveloped area. The goal of this chapter is to provide an up-to-date overview of the mechanisms regulating NOX5 function and its importance in human physiology and pathophysiology.
Collapse
Affiliation(s)
- David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
100
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|