51
|
Goldbloom-Helzner L, Bains H, Loll EG, Henson T, Mizenko RR, Kumar P, Tan C, Farmer DL, Carney RP, Wang A. Assessing the conjugation efficiency of surface-modified extracellular vesicles using single nanovesicle analysis technologies. NANOSCALE 2024; 16:20903-20916. [PMID: 39310954 PMCID: PMC11748815 DOI: 10.1039/d4nr01603c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted nanoscale vesicles with important roles in cell-cell communication and drug delivery. Although EVs pose a promising alternative to cell-based therapy, targeted delivery in vivo is lacking. Their surface is often modified to endow them with active targeting molecules to enable specific cell uptake and tailor EV biodistribution. A dominant paradigm has been to evaluate the EV surface functionalization using bulk analysis assays, such as western blotting and bead-based flow cytometry. Yet, the heterogeneity of EVs is now recognized as a major bottleneck for their clinical translation. Here, we engineer the EV surface at the single-vesicle level. We applied orthogonal platforms with single vesicle resolution to determine and optimize the efficiency of conjugating the myelin-targeting aptamer LJM-3064 to single EVs (Apt-EVs). The aptamers were conjugated using either lipid insertion or covalent protein modification, followed by an assessment of single-EV integrity and stability. We observed unique aptamer conjugation to single EVs that depends on EV size. Our study underscores the importance of single vesicle analysis for engineering EVs and provides a novel single-EV-based framework for modifying EV surfaces.
Collapse
Affiliation(s)
- Leora Goldbloom-Helzner
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Children's, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Harjn Bains
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Emma G Loll
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Children's, Sacramento, CA, 95817, USA
| | - Tanner Henson
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817, USA.
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Priyadarsini Kumar
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Children's, Sacramento, CA, 95817, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Diana L Farmer
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Children's, Sacramento, CA, 95817, USA
| | - Randy P Carney
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Children's, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
52
|
Nix C, Sulejman S, Fillet M. Development of complementary analytical methods to characterize extracellular vesicles. Anal Chim Acta 2024; 1329:343171. [PMID: 39396273 DOI: 10.1016/j.aca.2024.343171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) are involved in intercellular communication and various biological processes. They hold clinical promise for the diagnosis and management of a wide range of pathologies, including cancer, cardiovascular diseases and degenerative diseases, and are of interest as regenerative therapies. Understanding the complex structure of these EVs is essential to perceive the current challenges associated with their analysis and characterization. Today, challenges remain in terms of access to high-yield, high-purity isolation methods, as well as analytical methods for characterizing and controlling the quality of these products for clinical use. RESULTS We isolated EVs from the same immortalized human cell culture supernatant using two commonly used approaches, namely differential ultracentrifugation and membrane affinity. Then we evaluated EV morphology, size, zeta potential, particle and protein content, as well as protein identity using cryogenic electron microscopy, nanoparticle tracking analysis, asymmetric field flow fractionation (AF4) and size exclusion chromatography (SEC) coupled to multi angle light scattering, bicinchoninic acid assay, electrophoretic light scattering, western blotting and high-resolution mass spectrometry. Compared to membrane affinity isolation, dUC is a more efficient isolation process for obtaining particles with the characteristics expected for EVs and more specifically for exosomes. To validate an isolation process, cryogenic electron microscopy is essential to confirm vesicles with membranes. High resolution mass spectrometry is powerful for understanding the mechanism of action of vesicles. Separative methods, such as AF4 and SEC, are interesting for separating vesicle subpopulations and contaminants. SIGNIFICANCE This study provides a critical assessment of eight different techniques for analyzing EVs, some of which are mandatory for in-depth characterization and deciphering, while others are more appropriate for routine analysis, once the production and isolation process has been validated. The strengths and limitations of the different approaches used are highlighted.
Collapse
Affiliation(s)
- Cindy Nix
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000, Liège, Belgium
| | - Sanije Sulejman
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000, Liège, Belgium.
| |
Collapse
|
53
|
Matamoros‐Angles A, Karadjuzovic E, Mohammadi B, Song F, Brenna S, Meister SC, Siebels B, Voß H, Seuring C, Ferrer I, Schlüter H, Kneussel M, Altmeppen HC, Schweizer M, Puig B, Shafiq M, Glatzel M. Efficient enzyme-free isolation of brain-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e70011. [PMID: 39508423 PMCID: PMC11541858 DOI: 10.1002/jev2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality. Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs from mouse and human samples (both female and male) revealed their characteristic morphology and size distribution with both approaches. However, we show that even minor enzymatic digestion induces 'artificial' proteolytic processing in key BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrPC), whereas avoiding enzymatic treatment completely preserves their integrity. We found no major differences in mRNA and protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that the same BDEV populations are purified with both approaches. Intriguingly, the lack of Golgi marker GM130 signal, often referred to as contamination indicator (or negative marker) in EV preparations, seems to result from enzymatic digestion rather than from its actual absence in BDEV samples. Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids artificial pruning of proteins while achieving an overall high BDEV yield and purity. This protocol will help to understand the functions of BDEV and their associated proteins in a near-physiological setting, thus opening new research approaches.
Collapse
Affiliation(s)
| | - Emina Karadjuzovic
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Behnam Mohammadi
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Feizhi Song
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Santra Brenna
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | | | - Bente Siebels
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Hannah Voß
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Carolin Seuring
- Multi‐User‐CryoEM‐FacilityCentre for Structural Systems Biology (CSSB)HamburgGermany
- Department of ChemistryUniversität HamburgHamburgGermany
- Leibniz Institute of Virology (LIV)HamburgGermany
| | - Isidre Ferrer
- IDIBELLUniversity of BarcelonaL'Hospitalet de LlobregatSpain
| | - Hartmut Schlüter
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | | | - Michaela Schweizer
- Electron Microscopy Core Facility, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Mohsin Shafiq
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| |
Collapse
|
54
|
Hang NLT, Chuang AEY, Chang CJ, Yen Y, Wong CC, Yang TS. Photobiomodulation associated with alginate-based engineered tissue on promoting chondrocytes-derived biological responses for cartilage regeneration. Int J Biol Macromol 2024; 280:135982. [PMID: 39341321 DOI: 10.1016/j.ijbiomac.2024.135982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Articular cartilage is a connective tissue with limited self-healing potential, frequently affected by trauma and degenerative changes, leading to osteoarthritis. Photobiomodulation paired with engineered tissue can improve cartilage's poor intrinsic healing and overcome its restricted self-regeneration. In this study, alginate-based scaffolds were fabricated with varying concentrations of CaCl₂ to achieve optimal mechanical, biocompatible, and biodegradable properties. The fluence-dependence of near-infrared (NIR) laser irradiation (830 nm) on chondrocyte viability and proliferation was investigated in a 2D environment across fluences (2.5-10 J/cm2). Optimal conditions of 3 % w/v CaCl₂ and 5 J/cm2 were identified to construct alginate scaffolds and promote chondrocyte growth in 2D and 3D cultures. Single PBM (830 nm, 5 J/cm2) further exhibited a significant relative intensity of collagen type II immunostaining and stimulation of Col2a1 expression in 2D culture. Multiple PBM sessions (830 nm, 5 J/cm2) significantly enhanced chondrocyte proliferation and glycosaminoglycan production in alginate scaffolds, with a protocol of one session every four days being the most effective. Scanning electron microscopy revealed PBM-induced secretory granule formation, corresponding to a significant increase in extracellular vesicle release. Consequently, integrating PBM and alginate-based scaffolds is a promising technique for accelerating and optimizing cartilage regeneration, with potential application in tissue engineering.
Collapse
Affiliation(s)
- Nguyen Le Thanh Hang
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan; Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Cheng-Jen Chang
- Department of Plastic Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yun Yen
- College of Medical Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Research Center of Biomedical Devices Prototyping Production, Taipei Medical University, Taipei 110, Taiwan; International PhD Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Tzu-Sen Yang
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan; Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
55
|
Zhang Y, Zhang C, Wu N, Feng Y, Wang J, Ma L, Chen Y. The role of exosomes in liver cancer: comprehensive insights from biological function to therapeutic applications. Front Immunol 2024; 15:1473030. [PMID: 39497820 PMCID: PMC11532175 DOI: 10.3389/fimmu.2024.1473030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
In recent years, cancer, especially primary liver cancer (including hepatocellular carcinoma and intrahepatic cholangiocarcinoma), has posed a serious threat to human health. In the field of liver cancer, exosomes play an important role in liver cancer initiation, metastasis and interaction with the tumor microenvironment. Exosomes are a class of nanoscale extracellular vesicles (EVs)secreted by most cells and rich in bioactive molecules, including RNA, proteins and lipids, that mediate intercellular communication during physiological and pathological processes. This review reviews the multiple roles of exosomes in liver cancer, including the initiation, progression, and metastasis of liver cancer, as well as their effects on angiogenesis, epithelial-mesenchymal transformation (EMT), immune evasion, and drug resistance. Exosomes have great potential as biomarkers for liver cancer diagnosis and prognosis because they carry specific molecular markers that facilitate early detection and evaluation of treatment outcomes. In addition, exosomes, as a new type of drug delivery vector, have unique advantages in the targeted therapy of liver cancer and provide a new strategy for the treatment of liver cancer. The challenges and prospects of exosome-based immunotherapy in the treatment of liver cancer were also discussed. However, challenges such as the standardization of isolation techniques and the scalability of therapeutic applications remain significant hurdles.
Collapse
Affiliation(s)
- Yinghui Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuan Feng
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiayi Wang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yulong Chen
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
56
|
Walker SN, Lucas K, Dewey MJ, Badylak SF, Hussey GS, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using "Catch and Display" on Ultrathin Nanoporous Silicon Nitride Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405505. [PMID: 39358943 PMCID: PMC11961765 DOI: 10.1002/smll.202405505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Extracellular vesicles (EVs) are particles released from cells that facilitate intercellular communication and have tremendous diagnostic and therapeutic potential. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are often undermined by complicated detection schemes and prohibitive instrumentation. To address these issues, a microfluidic technique for EV characterization called "catch and display for liquid biopsy (CAD-LB)" is proposed. In this method, minimally processed samples are pipette-injected and fluorescently labeled EVs are captured in the nanopores of an ultrathin membrane. This enables the rapid assessment of EV number and biomarker colocalization by light microscopy. Here, nanoparticles are used to define the accuracy and dynamic range for counting and colocalization. The same assessments are then made for purified EVs and for unpurified EVs in plasma. Biomarker detection is validated using CD9 and Western blot analysis to confirm that CAD-LB accurately reports relative protein expression levels. Using unprocessed conditioned media, CAD-LB captures the known increase in EV-associated ICAM-1 following endothelial cell cytokine stimulation. Finally, to demonstrate CAD-LB's clinical potential, EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients treated with immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States, Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
57
|
Kowkabany G, Bao Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules 2024; 29:4672. [PMID: 39407601 PMCID: PMC11477862 DOI: 10.3390/molecules29194672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that have attracted much attention for their potential in disease diagnosis and therapy. However, the clinical translation is limited by the dosing consistency due to their heterogeneity. Among various characterization techniques, nanoparticle tracking analysis (NTA) offers distinct benefits for EV characterization. In this review, we will discuss the NTA technique with a focus on factors affecting the results; then, we will review the two modes of the NTA techniques along with suitable applications in specific areas of EV studies. EVs are typically characterized by their size, size distribution, concentration, protein markers, and RNA cargos. The light-scattering mode of NTA offers accurate size, size distribution, and concentration information in solution, which is useful for comparing EV isolation methods, storage conditions, and EV secretion conditions. In contrast, fluorescent mode of NTA allows differentiating EV subgroups based on specific markers. The success of fluorescence NTA heavily relies on fluorescent tags (e.g., types of dyes and labeling methods). When EVs are labeled with disease-specific markers, fluorescence NTA offers an effective tool for disease detection in biological fluids, such as saliva, blood, and serum. Finally, we will discuss the limitations and future directions of the NTA technique in EV characterization.
Collapse
Affiliation(s)
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
58
|
Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, Vainio S, Wingsle G, Boerjan W, Vanholme R, Kärkönen A. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. PLANT PHYSIOLOGY 2024; 196:788-809. [PMID: 38771246 PMCID: PMC11444294 DOI: 10.1093/plphys/kiae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di-, and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, β-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes, such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and radical coupling of monolignols can occur in these vesicles.
Collapse
Affiliation(s)
- Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Enni Väisänen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Developmental Biology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ruben Vanholme
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Production Systems, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
59
|
Fu SW, Tang C, Tan X, Srivastava S. Liquid biopsy for early cancer detection: technological revolutions and clinical dilemma. Expert Rev Mol Diagn 2024; 24:937-955. [PMID: 39360748 DOI: 10.1080/14737159.2024.2408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Liquid biopsy is an innovative advancement in oncology, offering a noninvasive method for early cancer detection and monitoring by analyzing circulating tumor cells, DNA, RNA, and other biomarkers in bodily fluids. This technique has the potential to revolutionize precision oncology by providing real-time analysis of tumor dynamics, enabling early detection, monitoring treatment responses, and tailoring personalized therapies based on the molecular profiles of individual patients. AREAS COVERED In this review, the authors discuss current methodologies, technological challenges, and clinical applications of liquid biopsy. This includes advancements in detecting minimal residual disease, tracking tumor evolution, and combining liquid biopsy with other diagnostic modalities for precision oncology. Key areas explored are the sensitivity, specificity, and integration of multi-omics, AI, ML, and LLM technologies. EXPERT OPINION Liquid biopsy holds great potential to revolutionize cancer care through early detection and personalized treatment strategies. However, its success depends on overcoming technological and clinical hurdles, such as ensuring high sensitivity and specificity, interpreting results amidst tumor heterogeneity, and making tests accessible and affordable. Continued innovation and collaboration are crucial to fully realize the potential of liquid biopsy in improving early cancer detection, treatment, and monitoring.
Collapse
Affiliation(s)
- Sidney W Fu
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xiaohui Tan
- Division of LS Research, LSBioscience, LLC, Frederick, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
60
|
Sani F, Shafiei F, Dehghani F, Mohammadi Y, Khorraminejad‐Shirazi M, Anvari‐Yazdi AF, Moayedfard Z, Azarpira N, Sani M. Unveiling exosomes: Cutting-edge isolation techniques and their therapeutic potential. J Cell Mol Med 2024; 28:e70139. [PMID: 39431552 PMCID: PMC11492151 DOI: 10.1111/jcmm.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Exosomes are one type of nanosized membrane vesicles with an endocytic origin. They are secreted by almost all cell types and play diverse functional roles. It is essential for research purposes to differentiate exosomes from microvesicles and isolate them from other components in a fluid sample or cell culture medium. Exosomes are important mediators in cell-cell communication. They deliver their cargos, such as mRNA transcripts, microRNA, lipids, cytosolic and membrane proteins and enzymes, to target cells with or without physical connections between cells. They are highly heterogeneous in size, and their biological functions can vary depending on the cell type, their ability to interact with recipient cells and transport their contents, and the environment in which they are produced. This review summarized the recent progress in exosome isolation and characterization techniques. Moreover, we review the therapeutic approaches, biological functions of exosomes in disease progression, tumour metastasis regulation, immune regulation and some ongoing clinical trials.
Collapse
Affiliation(s)
- Farnaz Sani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Faezeh Shafiei
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Farshad Dehghani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Yasaman Mohammadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical ScienceShirazIran
| | - Mohammadhossein Khorraminejad‐Shirazi
- Department of Pathology, School of MedicineShiraz University of Medical SciencesShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Department of Pathology, School of MedicineJahrom University of Medical SciencesJahromIran
| | | | - Zahra Moayedfard
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell & Regenerative MedicineShiraz University of Medical SciencesShirazIran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
61
|
Zhang Y, Deng Y, Zhai Y, Li Y, Li Y, Li J, Gu Y, Li S. A bispecific nanosystem activates endogenous natural killer cells in the bone marrow for haematologic malignancies therapy. NATURE NANOTECHNOLOGY 2024; 19:1558-1568. [PMID: 39043825 DOI: 10.1038/s41565-024-01736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/20/2024] [Indexed: 07/25/2024]
Abstract
Haematologic malignancies commonly arise from the bone marrow lesion, yet there are currently no effective targeted therapies against tumour cells in this location. Here we constructed a bone-marrow-targeting nanosystem, CSF@E-Hn, which is based on haematopoietic-stem-cell-derived nanovesicles adorned with gripper ligands (aPD-L1 and aNKG2D) and encapsulated with colony-stimulating factor (CSF) for the treatment of haematologic malignancies. CSF@E-Hn targets the bone marrow and, thanks to the gripper ligands, pulls together tumour cells and natural killer cells, activating the latter for specific tumour cell targeting and elimination. The therapeutic efficacy was validated in mice bearing acute myeloid leukaemia and multiple myeloma. The comprehensive assessment of the post-treatment bone marrow microenvironment revealed that the integration of CSF into a bone-marrow-targeted nanosystem promoted haematopoietic stem cell differentiation, boosted memory T cell generation and maintained bone homoeostasis, with long-term prevention of relapse. Our nanosystem represents a promising strategy for the treatment of haematologic malignancies.
Collapse
MESH Headings
- Animals
- Mice
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Bone Marrow/drug effects
- Bone Marrow/pathology
- Humans
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/pathology
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Nanoparticles/chemistry
- Hematopoietic Stem Cells/drug effects
- Multiple Myeloma/drug therapy
- Multiple Myeloma/pathology
- Multiple Myeloma/immunology
- Female
Collapse
Affiliation(s)
- Yanqin Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yanfang Deng
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuewen Zhai
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yu Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuting Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Juequan Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.
| | - Siwen Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
62
|
Batista IA, Machado JC, Melo SA. Advances in exosomes utilization for clinical applications in cancer. Trends Cancer 2024; 10:947-968. [PMID: 39168775 DOI: 10.1016/j.trecan.2024.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Exosomes are regarded as having transformative potential for clinical applications. Exosome-based liquid biopsies offer a noninvasive method for early cancer detection and real-time disease monitoring. Clinical trials are underway to validate the efficacy of exosomal biomarkers for enhancing diagnostic accuracy and predicting treatment responses. Additionally, engineered exosomes are being developed as targeted drug delivery systems that can navigate the bloodstream to deliver therapeutic agents to tumor sites, thus enhancing treatment efficacy while minimizing systemic toxicity. Exosomes also exhibit immunomodulatory properties, which are being harnessed to boost antitumor immune responses. In this review, we detail the latest advances in clinical trials and research studies, underscoring the potential of exosomes to revolutionize cancer care.
Collapse
Affiliation(s)
- Inês A Batista
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; P.CCC Porto Comprehensive Cancer Centre, Raquel Seruca, Portugal.
| |
Collapse
|
63
|
Senigagliesi B, Geiss O, Valente S, Vondracek H, Cefarin N, Ceccone G, Calzolai L, Ballerini L, Parisse P, Casalis L. Substrate stiffness modulates extracellular vesicles' release in a triple-negative breast cancer model. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:553-568. [PMID: 39697626 PMCID: PMC11648499 DOI: 10.20517/evcna.2024.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 12/20/2024]
Abstract
Aim The microenvironment effect on the tumoral-derived Extracellular Vesicle release, which is of significant interest for biomedical applications, still represents a rather unexplored field. The aim of the present work is to investigate the interrelation between extracellular matrix (ECM) stiffness and the release of small EVs from cancer cells. Here, we focus on the interrelation between the ECM and small extracellular vesicles (sEVs), specifically investigating the unexplored aspect of the influence of ECM stiffness on the release of sEVs. Methods We used a well-studied metastatic Triple-Negative Breast Cancer (TNBC) cell line, MDA-MB-231, as a model to study the release of sEVs by cells cultured on substrates of different stiffness. We have grown MDA-MB-231 cells on two collagen-coated polydimethylsiloxane (PDMS) substrates at different stiffness (0.2 and 3.6 MPa), comparing them with a hard glass substrate as control, and then we isolated the respective sEVs by differential ultracentrifugation. After checking the cell growth conditions [vitality, morphology by immunofluorescence microscopy, stiffness by atomic force microscopy (AFM)], we took advantage of a multi-parametric approach based on complementary techniques (AFM, Nanoparticle Tracking Analysis, and asymmetric flow field flow fractionation with a multi-angle light scattering detector) to characterize the TNBC-derived sEV obtained in the different substrate conditions. Results We observe that soft substrates induce TNBC cell softening and rounding. This effect promotes the release of a high number of larger sEVs. Conclusion Here, we show the role of ECM physical properties in the regulation of sEV release in a TNBC model. While the molecular mechanisms regulating this effect need further investigation, our report represents a step toward an improved understanding of ECM-cell-sEVs crosstalk.
Collapse
Affiliation(s)
- Beatrice Senigagliesi
- Neuroscience Area, Scuola Internazionale Superiore di Studi Avanzati, Trieste 34136, Italy
- Nano-Innovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy
- Institute for Health and Consumer Protection, European Commission - Joint Research Centre, Ispra 21027, Italy
| | - Otmar Geiss
- Institute for Health and Consumer Protection, European Commission - Joint Research Centre, Ispra 21027, Italy
| | - Stefano Valente
- Institute for Health and Consumer Protection, European Commission - Joint Research Centre, Ispra 21027, Italy
- Department of Physics, University of Trieste, Trieste 34127, Italy
| | - Hendrik Vondracek
- Nano-Innovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy
| | - Nicola Cefarin
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, CNR-IOM, Trieste 34149, Italy
| | - Giacomo Ceccone
- Institute for Health and Consumer Protection, European Commission - Joint Research Centre, Ispra 21027, Italy
| | - Luigi Calzolai
- Institute for Health and Consumer Protection, European Commission - Joint Research Centre, Ispra 21027, Italy
| | - Laura Ballerini
- Neuroscience Area, Scuola Internazionale Superiore di Studi Avanzati, Trieste 34136, Italy
| | - Pietro Parisse
- Nano-Innovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, CNR-IOM, Trieste 34149, Italy
| | - Loredana Casalis
- Nano-Innovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy
| |
Collapse
|
64
|
Khan A, Raza F, He N. Nanoscale Extracellular Vesicle-Enabled Liquid Biopsy: Advances and Challenges for Lung Cancer Detection. MICROMACHINES 2024; 15:1181. [PMID: 39459055 PMCID: PMC11509190 DOI: 10.3390/mi15101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer is responsible for the death of over a million people worldwide every year. With its high mortality rate and exponentially growing number of new cases, lung cancer is a major threat to public health. The high mortality and poor survival rates of lung cancer patients can be attributed to its stealth progression and late diagnosis. For a long time, intrusive tissue biopsy has been considered the gold standard for lung cancer diagnosis and subtyping; however, the intrinsic limitations of tissue biopsy cannot be overlooked. In addition to being invasive and costly, it also suffers from limitations in sensitivity and specificity, is not suitable for repeated sampling, provides restricted information about the tumor and its molecular landscape, and is inaccessible in several cases. To cope with this, advancements in diagnostic technologies, such as liquid biopsy, have shown great prospects. Liquid biopsy is an innovative non-invasive approach in which cancer-related components called biomarkers are detected in body fluids, such as blood, urine, saliva and others. It offers a less invasive alternative with the potential for applications such as routine screening, predicting treatment outcomes, evaluating treatment effectiveness, detecting residual disease, or disease recurrence. A large number of research articles have indicated extracellular vesicles (EVs) as ideal biomarkers for liquid biopsy. EVs are a heterogeneous collection of membranous nanoparticles with diverse sizes, contents, and surface markers. EVs play a critical role in pathophysiological states and have gained prominence as diagnostic and prognostic biomarkers for multiple diseases, including lung cancer. In this review, we provide a detailed overview of the potential of EV-based liquid biopsy for lung cancer. Moreover, it highlights the strengths and weaknesses of various contemporary techniques for EV isolation and analysis in addition to the challenges that need to be addressed to ensure the widespread clinical application of EV-based liquid biopsies for lung cancer. In summary, EV-based liquid biopsies present interesting opportunities for the development of novel diagnostic and prognostic platforms for lung cancer, one of the most abundant cancers responsible for millions of cancer-related deaths worldwide.
Collapse
Affiliation(s)
- Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
65
|
Dlugolecka M, Czystowska-Kuzmicz M. Factors to consider before choosing EV labeling method for fluorescence-based techniques. Front Bioeng Biotechnol 2024; 12:1479516. [PMID: 39359260 PMCID: PMC11445045 DOI: 10.3389/fbioe.2024.1479516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
A well-designed fluorescence-based analysis of extracellular vesicles (EV) can provide insights into the size, morphology, and biological function of EVs, which can be used in medical applications. Fluorescent nanoparticle tracking analysis with appropriate controls can provide reliable data for size and concentration measurements, while nanoscale flow cytometry is the most appropriate tool for characterizing molecular cargoes. Label selection is a crucial element in all fluorescence methods. The most comprehensive data can be obtained if several labeling approaches for a given marker are used, as they would provide complementary information about EV populations and interactions with the cells. In all EV-related experiments, the influence of lipoproteins and protein corona on the results should be considered. By reviewing and considering all the factors affecting EV labeling methods used in fluorescence-based techniques, we can assert that the data will provide as accurate as possible information about true EV biology and offer precise, clinically applicable information for future EV-based diagnostic or therapeutic applications.
Collapse
|
66
|
Kim JW, Choi SA, Dan K, Koh EJ, Ha S, Phi JH, Kim KH, Han D, Kim SK. Proteomic profiling of cerebrospinal fluid reveals TKT as a potential biomarker for medulloblastoma. Sci Rep 2024; 14:21053. [PMID: 39251709 PMCID: PMC11383936 DOI: 10.1038/s41598-024-71738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Cerebrospinal fluid (CSF) plays an important role in brain tumors, including medulloblastoma (MBL). Recent advancements in mass spectrometry systems and 'Omics' data analysis methods enable unbiased, high proteome depth research. We conducted proteomic profiling of the total CSF in MBL patients with the purpose of finding a potential diagnostic biomarker for MBL. We quantified 1112 proteins per CSF sample. Feature selection identified four elevated soluble proteins (SPTBN1, HSP90AA1, TKT, and NME1-NME2) in MBL CSF. Validation with ELISA confirmed that TKT was significantly elevated in MBL. Additionally, TKT-positive extracellular vesicles were significantly enriched in MBL CSF and correlated with the burden of leptomeningeal seeding. Our results provide insights into the proteomics data of the total CSF of MBL patients. Furthermore, we identified the significance of TKT within the total CSF and its presence within circulating EVs in the CSF. We suggest that TKT may serve as a biomarker for MBL.
Collapse
Affiliation(s)
- Joo Whan Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Eun Jung Koh
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Saehim Ha
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Hyun Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, 03082, South Korea.
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea.
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
67
|
Song W, Guo Y, Liu W, Yao Y, Zhang X, Cai Z, Yuan C, Wang X, Wang Y, Jiang X, Wang H, Yu W, Li H, Zhu Y, Kong L, He Y. Circadian Rhythm-Regulated ADSC-Derived sEVs and a Triphasic Microneedle Delivery System to Enhance Tendon-to-Bone Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408255. [PMID: 39120049 DOI: 10.1002/adma.202408255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Modulating the inflammatory microenvironment to reconstruct the fibrocartilaginous layer while promoting tendon repair is crucial for enhancing tendon-to-bone healing in rotator cuff repair (RCR), a persistent challenge in orthopedics. Small extracellular vesicles (sEVs) hold significant potential to modulate inflammation, yet the efficient production of highly bioactive sEVs remains a substantial barrier to their clinical application. Moreover, achieving minimally invasive local delivery of sEVs to the tendon-to-bone interface presents significant technical difficulties. Herein, the circadian rhythm of adipose-derived stem cells is modulated to increase the yield and enhance the inflammatory regulatory capacity of sEVs. Circadian rhythm-regulated sEVs (CR-sEVs) enhance the cyclic adenosine monophosphate signaling pathway in macrophage (Mφ) via platelet factor 4 delivery, thereby inhibiting Mφ M1 polarization. Subsequently, a triphasic microneedle (MN) scaffold with a tip, stem, and base is designed for the local delivery of CR-sEVs (CR-sEVs/MN) at the tendon-to-bone junction, incorporating tendon-derived decellularized extracellular matrix in the base to facilitate tendon repair. CR-sEVs/MN mitigates inflammation, promotes fibrocartilage regeneration, and enhances tendon healing, thereby improving biomechanical strength and shoulder joint function in a rat RCR model. Combining CR-sEVs with this triphasic microneedle delivery system presents a promising strategy for enhancing tendon-to-bone healing in clinical settings.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Ying Guo
- Department of Cardiology, Heart Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Wencai Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yijing Yao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Xuancheng Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Zhuochang Cai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Chenrui Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xin Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yifei Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xiping Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Haoyuan Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Weilin Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Haiyan Li
- Chemical and Environmental Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe St., Melbourne, Victoria, 3000, Australia
| | - Yanlun Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Lingzhi Kong
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yaohua He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Orthopedic Surgery, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201500, P. R. China
| |
Collapse
|
68
|
O'Toole HJ, Lowe NM, Arun V, Kolesov AV, Palmieri TL, Tran NK, Carney RP. Plasma-derived extracellular vesicles (EVs) as biomarkers of sepsis in burn patients via label-free Raman spectroscopy. J Extracell Vesicles 2024; 13:e12506. [PMID: 39300768 PMCID: PMC11529045 DOI: 10.1002/jev2.12506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Sepsis following burn trauma is a global complication with high mortality, with ∼60% of burn patient deaths resulting from infectious complications. Diagnosing sepsis is complicated by confounding clinical manifestations of the burn injury, and current biomarkers lack the sensitivity and specificity required for prompt treatment. There is a strong rationale to assess circulating extracellular vesicles (EVs) from patient liquid biopsy as sepsis biomarkers due to their release by pathogens from bacterial biofilms and roles in the subsequent immune response. This study applies Raman spectroscopy to patient plasma-derived EVs for rapid, sensitive, and specific detection of sepsis in burn patients, achieving 97.5% sensitivity and 90.0% specificity. Furthermore, spectral differences between septic and non-septic burn patient EVs could be traced to specific glycoconjugates of bacterial strains associated with sepsis morbidity. This work illustrates the potential application of EVs as biomarkers in clinical burn trauma care and establishes Raman analysis as a fast, label-free method to specifically identify features of bacterial EVs relevant to infection amongst the host background.
Collapse
Affiliation(s)
- Hannah J. O'Toole
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Neona M. Lowe
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Vishalakshi Arun
- Department of Neurobiology, Physiology, and BehaviorUniversity of CaliforniaDavisCaliforniaUSA
| | - Anna V. Kolesov
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Tina L. Palmieri
- Division of Burn SurgeryUniversity of California, Davis Health, Firefighters Burn Institute Regional Burn CenterSacramentoCaliforniaUSA
- Shriners Children’s Northern CaliforniaSacramentoCaliforniaUSA
| | - Nam K. Tran
- Department of Pathology and Laboratory MedicineUniversity of California, DavisSacramentoCaliforniaUSA
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
69
|
Guerrero-Alba A, Bansal S, Sankpal AN, Mitra G, Rahman M, Ravichandran R, Poulson C, Fleming TP, Smith MA, Bremner RM, Mohanakumar T, Sankpal NV. Enhanced enrichment of extracellular vesicles for laboratory and clinical research from drop-sized blood samples. Front Mol Biosci 2024; 11:1365783. [PMID: 39211743 PMCID: PMC11358096 DOI: 10.3389/fmolb.2024.1365783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
In the realm of biomedical advancement, extracellular vesicles (EVs) are revolutionizing our capacity to diagnose, monitor, and predict disease progression. However, the comprehensive exploration and clinical application of EVs face significant limitations due to the current isolation techniques. The size exclusion chromatography, commercial precipitation reagents, and ultracentrifugation are frequently employed, necessitating skilled operators and entailing challenges related to consistency, reproducibility, quality, and yields. Notably, the formidable challenge of extracellular vesicle isolation persists when dealing with clinical samples of limited availability. This study addresses these challenges by aiming to devise a rapid, user-friendly, and high-recovery EVs isolation technique tailored for blood samples. The NTI-EXO precipitation method demonstrated a 5-fold increase in the recovery of serum EVs compared to current methodologies. Importantly, we illustrate that a mere two drops of blood (∼100 µL) suffice for the recovery of enriched EVs. The integrity and quality of these isolated EVs were rigorously assessed for the size, purity, and contaminants. This method was validated through the successful isolation of EVs from organ transplant recipients to detect disease-specific exosomal markers, including LKB1, SARS-CoV-2 spike protein, and PD-L1. In conclusion, NTI-EXO method can be used for small clinical samples, thereby advancing discoveries in the EV-centric domain and propelling the frontiers of biomedical research and clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Narendra V. Sankpal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
70
|
Yang M, Guo J, Fang L, Chen Z, Liu Y, Sun Z, Pang X, Peng Y. Quality and efficiency assessment of five extracellular vesicle isolation methods using the resistive pulse sensing strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5536-5544. [PMID: 39046449 DOI: 10.1039/d4ay01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Extracellular vesicles (EVs) have attracted great interest due to their great potential in disease diagnosis and therapy. The separation of EVs from complex biofluids with high purity is essential for the accurate analysis of EVs. Despite various methods, there is still no consensus on the best method for high-quality EV isolation and reliable mass production. Therefore, it is important to offer a standardized method for characterizing the properties (size distribution, particle concentration and purity) of EV preparations from different isolation methods. Herein, we employed a NanoCoulter Counter based on the resistive pulse sensing (RPS) strategy that enabled multi-parameter analysis of single EVs to compare the quality and efficiency of different EV isolation techniques including traditional differential ultracentrifugation, ultrafiltration, size exclusion chromatography, membrane affinity binding and polymer precipitation. The data revealed that the NanoCoulter Counter based on the RPS strategy was reliable and effective for the characterization of EVs. The results suggested that although higher particle concentrations were observed in three commercial isolation kits and ultrafiltration, traditional differential ultracentrifugation showed the highest purity. In conclusion, our results from the NanoCoulter Counter provided reliable evidence for the assessment of different EV isolation methods, which contributed to the development of EV-based disease biomarkers and treatments.
Collapse
Affiliation(s)
- Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Le Fang
- Department of Neurolog, China Japan Union Hospital, Jilin University, Changchun, 130022, China
| | - Ze Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Ying Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Zepeng Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Xin Pang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
71
|
Dasgupta S, Sharapova T, Mahalingaiah PK, Chorley BN, Shoieb A, Tsuji T, Dos Santos AAC, Chari R, Ebrahimi A, Dalmas Wilk DA, Pettit S, Bawa B, Vaughan E, van Vleet TR, Mitchell CA, Yuen PST. Urinary MicroRNA biomarkers of nephrotoxicity in Macaca fascicularis. Regul Toxicol Pharmacol 2024; 151:105668. [PMID: 38936797 DOI: 10.1016/j.yrtph.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Drug-induced kidney injury (DIKI) refers to kidney damage resulting from the administration of medications. The aim of this project was to identify reliable urinary microRNA (miRNAs) biomarkers that can be used as potential predictors of DIKI before disease diagnosis. This study quantified a panel of six miRNAs (miRs-210-3p, 423-5p, 143-3p, 130b-3p, 486-5p, 193a-3p) across multiple time points using urinary samples from a previous investigation evaluating effects of a nephrotoxicant in cynomolgus monkeys. Exosome-associated miRNA exhibited distinctive trends when compared to miRNAs quantified in whole urine, which may reflect a different urinary excretion mechanism of miRNAs than those released passively into the urine. Although further research and mechanistic studies are required to elucidate how these miRNAs regulate signaling in disease pathways, we present, for the first time, data that several miRNAs displayed strong correlations with histopathology scores, thus indicating their potential use as biomarkers to predict the development of DIKI in preclinical studies and clinical trials. Also, these findings can potentially be translated into other non-clinical species or human for the detection of DIKI.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | | | - Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Takayuki Tsuji
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alef A C Dos Santos
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rohit Chari
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | | | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
72
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
73
|
Ong JLK, Jalaludin NFF, Wong MK, Tan SH, Angelina C, Sukhatme SA, Yeo T, Lim CT, Lee YT, Soh SY, Lim TKH, Tay TKY, Chang KTE, Chen ZX, Loh AH. Exosomal mRNA Cargo are biomarkers of tumor and immune cell populations in pediatric osteosarcoma. Transl Oncol 2024; 46:102008. [PMID: 38852279 PMCID: PMC11220529 DOI: 10.1016/j.tranon.2024.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Osteosarcoma is the commonest malignant bone tumor of children and adolescents and is characterized by a high risk of recurrence despite multimodal therapy, especially in metastatic disease. This suggests the presence of clinically undetected cancer cells that persist, leading to cancer recurrence. We sought to evaluate the utility of peripheral blood exosomes as a more sensitive yet minimally invasive blood test that could aid in evaluating treatment response and surveillance for potential disease recurrence. We extracted exosomes from the blood of pediatric osteosarcoma patients at diagnosis (n=7) and after neoadjuvant chemotherapy (n=5 subset), as well as from age-matched cancer-free controls (n=3). We also obtained matched tumor biopsy samples (n=7) from the cases. Exosome isolation was verified by CD9 immunoblot and characterized on electron microscopy. Profiles of 780 cancer-related transcripts were analysed in mRNA from exosomes of osteosarcoma patients at diagnosis and control patients, matched post-chemotherapy samples, and matched primary tumor samples. Peripheral blood exosomes of osteosarcoma patients at diagnosis were significantly smaller than those of controls and overexpressed extracellular matrix protein gene THBS1 and B cell markers MS4A1 and TCL1A. Immunohistochemical staining of corresponding tumor samples verified the expression of THBS1 on tumor cells and osteoid matrix, and its persistence in a treatment-refractory patient, as well as the B cell origin of the latter. These hold potential as liquid biopsy biomarkers of disease burden and host immune response in osteosarcoma. Our findings suggest that exosomes may provide novel and clinically-important insights into the pathophysiology of cancers such as osteosarcoma.
Collapse
Affiliation(s)
| | | | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Clara Angelina
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarvesh A Sukhatme
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Trifanny Yeo
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - York Tien Lee
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Tony K H Lim
- Duke NUS Medical School, Singapore, Singapore; Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Timothy Kwang Yong Tay
- Duke NUS Medical School, Singapore, Singapore; Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kenneth Tou En Chang
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhi Xiong Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amos Hp Loh
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore.
| |
Collapse
|
74
|
Lowe NM, Mizenko RR, Nguyen BB, Chiu KL, Arun V, Panitch A, Carney RP. Orthogonal analysis reveals inconsistencies in cargo loading of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70003. [PMID: 39185333 PMCID: PMC11342351 DOI: 10.1002/jex2.70003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Since extracellular vesicles (EVs) have emerged as a promising drug delivery system, diverse methods have been used to load them with active pharmaceutical ingredients (API) in preclinical and clinical studies. However, there is yet to be an engineered EV formulation approved for human use, a barrier driven in part by the intrinsic heterogeneity of EVs. API loading is rarely assessed in the context of single vesicle measurements of physicochemical properties but is likely administered in a heterogeneous fashion to the detriment of a consistent product. Here, we applied a suite of single-particle resolution methods to determine the loading of rhodamine 6G (R6G) surrogate cargo mimicking hydrophilic small molecule drugs across four common API loading methods: sonication, electroporation, freeze-thaw cycling and passive incubation. Loading efficiencies and alterations in the physical properties of EVs were assessed, as well as co-localization with common EV-associated tetraspanins (i.e., CD63, CD81 and CD9) for insight into EV subpopulations. Sonication had the highest loading efficiency, yet significantly decreased particle yield, while electroporation led to the greatest number of loaded API particles, albeit at a lower efficiency. Moreover, results were often inconsistent between repeated runs within a given method, demonstrating the difficulty in developing a rigorous loading method that consistently loaded EVs across their heterogeneous subpopulations. This work highlights the significance of how chosen quantification metrics can impact apparent conclusions and the importance of single-particle characterization of EV loading.
Collapse
Affiliation(s)
- Neona M. Lowe
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Bryan B. Nguyen
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Kwan Lun Chiu
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Vishalakshi Arun
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Alyssa Panitch
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
75
|
Capra E, Frigerio R, Lazzari B, Turri F, Gaspari G, Pascucci L, Stella A, Lange Consiglio A, Pizzi F, Cretich M. Effect of cryopreservation and semen extender on extracellular vesicles isolated from bull semen. Front Vet Sci 2024; 11:1437410. [PMID: 39139604 PMCID: PMC11321215 DOI: 10.3389/fvets.2024.1437410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Semen cryopreservation is the most popular practice for semen production for artificial insemination and in vitro fertilization in cattle. The Seminal plasma contains extracellular vesicles (spEVs) which modulate sperm viability and function during oocyte fecundation. The study of spEVs in frozen-thawed semen doses may yield novel indicators for predicting bull fertility, but the presence of the semen extender may hinder molecular profiling of spEVs. The aim of this study was to provide extensive characterization of EVs isolated from seminal plasma before and after the cryopreservation process and the addition of a commercial animal protein-free semen extender to understand the potential influence of EVs originating from the extender in hindering the use of spEVs derived biomarkers for assessment of bull fertility. Methods EVs were isolated from the seminal plasma (with or without the extender), from the cryopreserved straw devoid of spermatozoa, and from the extender using two different methods, ultracentrifugation (UC) and size exclusion chromatography (SEC), and characterized for their structure and composition. Results Physical characterization of EVs showed that size and particle numbers were related to the method of isolation. spEVs were larger but less abundant (UC: 168.9 nm, n = 2.68 × 109; SEC: 197.0 nm, n = 6.42 × 109) compared to extender EVs (UC: 129.0 nm, n = 2.68 × 1011; SEC: 161.8 nm, n = 6.47 × 1011). Western blotting analysis (WB) confirmed the presence of typical EV markers in spEVS: the membrane bound CD9 (25 kDa) and the luminal markers Alix (96 kDa) and TSG101 (48 KDa). Although Transmission Electron Microscopy confirmed the presence of a lipid bilayer structure in all preparations, no specific EV markers were detected in the vesicles isolated from extender when the Single Molecule Array (SiMoa) was used. A total of 724 Bos taurus miRNAs were identified in at least one preparation. The percentage of miRNAs identified in EVs from the extender (0.05%-0.49% of the total reads) was lower than in the preparation containing spEVs (10.56%-63.69% of the total reads). Edge-R identified a total of 111 DE-miRNAs between EVs isolated from the extender by two methods. Among them, 11 DE-miRNAs (bta-miR-11980, bta-miR-11987, bta-miR-12057, bta-miR-1246, bta-miR-125b, bta-miR-181b, bta-miR-2340, bta-miR-2358, bta-miR-2478, bta-miR-2898, and bta-miR-345-3p) were also abundant in EVs isolated from seminal plasma preparations with extender. Conclusion This study clearly demonstrates that the presence of the extender does not prevent the characterization of spEVs in cryopreserved semen. However, the molecular profiling of spEVs can be influenced by the isolation method used and by the presence of some miRNAs from the extender. Therefore, in such studies, it is advisable to characterize both spEVs and the vesicles isolated from the extender.
Collapse
Affiliation(s)
- Emanuele Capra
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy
| | - Roberto Frigerio
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC), National Research Council (CNR), Milan, Italy
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy
| | - Federica Turri
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy
| | - Giulia Gaspari
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy
| | - Anna Lange Consiglio
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Flavia Pizzi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy
| | - Marina Cretich
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC), National Research Council (CNR), Milan, Italy
| |
Collapse
|
76
|
Saari H, Marttila H, Poranen MM, Oksanen HM, Zini J, Laitinen S. Inline Raman Spectroscopy Provides Versatile Molecular Monitoring for Platelet Extracellular Vesicle Purification with Anion-Exchange Chromatography. Int J Mol Sci 2024; 25:8130. [PMID: 39125704 PMCID: PMC11311901 DOI: 10.3390/ijms25158130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Extracellular vesicles (EVs) are relatively recently discovered biological nanoparticles that mediate intercellular communication. The development of new methods for the isolation and characterization of EVs is crucial to support further studies on these small and structurally heterogenous vesicles. New scalable production methods are also needed to meet the needs of future therapeutic applications. A reliable inline detection method for the EV manufacturing process is needed to ensure reproducibility and to identify any possible variations in real time. Here, we demonstrate the use of an inline Raman detector in conjunction with anion exchange chromatography for the isolation of EVs from human platelets. Anion-exchange chromatography can be easily coupled with multiple inline detectors and provides an alternative to size-based methods for separating EVs from similar-sized impurities, such as lipoprotein particles. Raman spectroscopy enabled us to identify functional groups in EV samples and trace EVs and impurities in different stages of the process. Our results show a notable separation of impurities from the EVs during anion-exchange chromatography and demonstrate the power of inline Raman spectroscopy. Compared to conventional EV analysis methods, the inline Raman approach does not require hands-on work and can provide detailed, real-time information about the sample and the purification process.
Collapse
Affiliation(s)
- Heikki Saari
- Finnish Red Cross, Blood Service, Härkälenkki 13, 01730 Vantaa, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland
| | - Heli Marttila
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
| | - Jacopo Zini
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland
- Timegate Instruments Ltd., Tutkijantie 7, 90590 Oulu, Finland
| | - Saara Laitinen
- Finnish Red Cross, Blood Service, Härkälenkki 13, 01730 Vantaa, Finland
| |
Collapse
|
77
|
Tsuyama Y, Mawatari K. Nanofluidic Detection Platform for Simultaneous Light Absorption and Scattering Measurement of Individual Nanoparticles in Flow. Anal Chem 2024; 96:11430-11438. [PMID: 38959081 DOI: 10.1021/acs.analchem.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Characterization and quantification of plasmonic nanoparticles at the single particle level have become increasingly important with the advancements in nanotechnology and their application to various biological analyses including diagnostics, photothermal therapy, and immunoassays. While various nanoparticle detection methodologies have been developed and widely used, simultaneous measurement of light absorption and scattering from individual plasmonic nanoparticles in flow is still challenging. Herein, we describe a novel nanofluidic detection platform that enables simultaneous measurement of absorption and scattering signals from individual nanoparticles within a nanochannel. Our detection platform utilized optical diffraction phenomena by a single nanochannel as both a readout signal for photothermal detection and a reference light for interferometric scattering detection. Through the elucidation of the frequency effect on the detection performance and optimization of experimental conditions, we achieved the classification of gold and silver nanoparticles with a diameter of 20-60 nm at an average accuracy score of 82.6 ± 2.1% by measured data sets of absorption and scattering signals. Furthermore, we demonstrated the concentration determination of plasmonic nanoparticle mixtures using a trained Support vector machine (SVM) classifier. Our simple yet sensitive nanofluidic detection platform will be a valuable tool for the analysis of nanoparticles and their applications to chemical and biological assays.
Collapse
Affiliation(s)
- Yoshiyuki Tsuyama
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Graduate School of Information, Production and Systems, Waseda University, 2-7, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
78
|
Shen H, Atiyas Y, Yang Z, Lin AA, Yang J, Liu D, Park J, Guo W, Issadore DA. Ultrasensitive quantification of PD-L1+ extracellular vesicles in melanoma patient plasma using a parallelized high throughput droplet digital assay. LAB ON A CHIP 2024; 24:3403-3411. [PMID: 38899443 PMCID: PMC11235413 DOI: 10.1039/d4lc00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The expression of programmed death-ligand 1 (PD-L1) on extracellular vesicles (EVs) is an emerging biomarker for cancer, and has gained particular interest for its role mediating immunotherapy. However, precise quantification of PD-L1+ EVs in clinical samples remains challenging due to their sparse concentration and the enormity of the number of background EVs in human plasma, limiting applicability of conventional approaches. In this study, we develop a high-throughput droplet-based extracellular vesicle analysis (DEVA) assay for ultrasensitive quantification of EVs in plasma that are dual positive for both PD-L1 and tetraspanin (CD81) known to be expressed on EVs. We achieve a performance that significantly surpasses conventional approaches, demonstrating 360× enhancement in the limit of detection (LOD) and a 750× improvement in the limit of quantitation (LOQ) compared to conventional plate enzyme-linked immunoassay (ELISA). Underlying this performance is DEVA's high throughput analysis of individual EVs one at a time and the high specificity to targeted EVs versus background. We achieve a 0.006% false positive rate per droplet by leveraging avidity effects that arise from EVs having multiple copies of their target ligands on their surface. We use parallelized optofluidics to rapidly process 10 million droplets per minute, ∼100× greater than conventional approaches. A validation study on a cohort of 14 patients with melanoma confirms DEVA's ability to match conventional ELISA measurements with reduced plasma sample volume and without the need for prior EV purification. This proof-of-concept study demonstrates DEVA's potential for clinical utility to enhance prognosis as well as guide treatment for cancer.
Collapse
Affiliation(s)
- Hanfei Shen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Zijian Yang
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Andrew A Lin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jingbo Yang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Diao Liu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Juhwan Park
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wei Guo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
79
|
Vanpouille C, Brichacek B, Pushkarsky T, Dubrovsky L, Fitzgerald W, Mukhamedova N, Garcia‐Hernandez S, Matthies D, Popratiloff A, Sviridov D, Margolis L, Bukrinsky M. HIV-1 Nef is carried on the surface of extracellular vesicles. J Extracell Vesicles 2024; 13:e12478. [PMID: 39016173 PMCID: PMC11252832 DOI: 10.1002/jev2.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Extracellular vesicles (EVs) serve as pivotal mediators of intercellular communication in both health and disease, delivering biologically active molecules from vesicle-producing cells to recipient cells. In the context of HIV infection, EVs have been shown to carry the viral protein Nef, a key pathogenic factor associated with HIV-related co-morbidities. Despite this recognition, the specific localisation of Nef within the vesicles has remained elusive. This study addresses this critical knowledge gap by investigating Nef-containing EVs. Less than 1% of the total released Nef was associated with EVs; most Nef existed as free protein released by damaged cells. Nevertheless, activity of EV-associated Nef in downregulating the major cholesterol transporter ABCA1, a critical aspect linked to the pathogenic effects of Nef, was comparable to that of free Nef present in the supernatant. Through a series of biochemical and microscopic assays, we demonstrate that the majority of EV-associated Nef molecules are localised on the external surface of the vesicles. This distinctive distribution prompts the consideration of Nef-containing EVs as potential targets for immunotherapeutic interventions aimed at preventing or treating HIV-associated co-morbidities. In conclusion, our results shed light on the localisation and functional activity of Nef within EVs, providing valuable insights for the development of targeted immunotherapies to mitigate the impact of HIV-associated co-morbidities.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Beda Brichacek
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Tatiana Pushkarsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | | | - Sofia Garcia‐Hernandez
- Nanofabrication and Imaging CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Anastas Popratiloff
- Nanofabrication and Imaging CenterThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Dmitri Sviridov
- Baker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
- Faculty of Natural Sciences and MedicineIlia State UniversityTbilisiRepublic of Georgia
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
80
|
Medeiros EG, Valente MR, Honorato L, Ferreira MDS, Mendoza SR, Gonçalves DDS, Martins Alcântara L, Gomes KX, Pinto MR, Nakayasu ES, Clair G, da Rocha IFM, dos Reis FCG, Rodrigues ML, Alves LR, Nimrichter L, Casadevall A, Guimarães AJ. Comprehensive characterization of extracellular vesicles produced by environmental (Neff) and clinical (T4) strains of Acanthamoeba castellanii. mSystems 2024; 9:e0122623. [PMID: 38717186 PMCID: PMC11237502 DOI: 10.1128/msystems.01226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/01/2024] [Indexed: 06/19/2024] Open
Abstract
We conducted a comprehensive comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains, Neff (environmental) and T4 (clinical). Morphological analysis via transmission electron microscopy revealed slightly larger Neff EVs (average = 194.5 nm) compared to more polydisperse T4 EVs (average = 168.4 nm). Nanoparticle tracking analysis (NTA) and dynamic light scattering validated these differences. Proteomic analysis of the EVs identified 1,352 proteins, with 1,107 common, 161 exclusive in Neff, and 84 exclusively in T4 EVs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed distinct molecular functions and biological processes and notably, the T4 EVs enrichment in serine proteases, aligned with its pathogenicity. Lipidomic analysis revealed a prevalence of unsaturated lipid species in Neff EVs, particularly triacylglycerols, phosphatidylethanolamines (PEs), and phosphatidylserine, while T4 EVs were enriched in diacylglycerols and diacylglyceryl trimethylhomoserine, phosphatidylcholine and less unsaturated PEs, suggesting differences in lipid metabolism and membrane permeability. Metabolomic analysis indicated Neff EVs enrichment in glycerolipid metabolism, glycolysis, and nucleotide synthesis, while T4 EVs, methionine metabolism. Furthermore, RNA-seq of EVs revealed differential transcript between the strains, with Neff EVs enriched in transcripts related to gluconeogenesis and translation, suggesting gene regulation and metabolic shift, while in the T4 EVs transcripts were associated with signal transduction and protein kinase activity, indicating rapid responses to environmental changes. In this novel study, data integration highlighted the differences in enzyme profiles, metabolic processes, and potential origins of EVs in the two strains shedding light on the diversity and complexity of A. castellanii EVs and having implications for understanding host-pathogen interactions and developing targeted interventions for Acanthamoeba-related diseases.IMPORTANCEA comprehensive and fully comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains of distinct virulence, a Neff (environmental) and T4 (clinical), revealed striking differences in their morphology and protein, lipid, metabolites, and transcripts levels. Data integration highlighted the differences in enzyme profiles, metabolic processes, and potential distinct origin of EVs from both strains, shedding light on the diversity and complexity of A. castellanii EVs, with direct implications for understanding host-pathogen interactions, disease mechanisms, and developing new therapies for the clinical intervention of Acanthamoeba-related diseases.
Collapse
Affiliation(s)
- Elisa Gonçalves Medeiros
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Michele Ramos Valente
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Leandro Honorato
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marina da Silva Ferreira
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucas Martins Alcântara
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Kamilla Xavier Gomes
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcia Ribeiro Pinto
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Ernesto S. Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Flavia C. G. dos Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
- Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Lysangela R. Alves
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Fiocruz, Curitiba, Paraná, Brazil
| | - Leonardo Nimrichter
- Departamento de Microbiologia Geral, Laboratório de Glicobiologia de Eucariotos, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ–Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Laboratório de Bioquímica e Imunologia das Micoses, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ–Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
81
|
Ma RY, Deng ZL, Du QY, Dai MQ, Luo YY, Liang YE, Dai XZ, Guo SM, Zhao WH. Enterococcus faecalis Extracellular Vesicles Promote Apical Periodontitis. J Dent Res 2024; 103:672-682. [PMID: 38679731 DOI: 10.1177/00220345241230867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Enterococcus faecalis is an important contributor to the persistence of chronic apical periodontitis. However, the mechanism by which E. faecalis infection in the root canals and dentinal tubules affects periapical tissue remains unclear. Bacterial extracellular vesicles (EVs) act as natural carriers of microbe-associated molecular patterns (MAMPs) and have recently attracted considerable attention. In this study, we investigated the role of EVs derived from E. faecalis in the pathogenesis of apical periodontitis. We observed that E. faecalis EVs can induce inflammatory bone destruction in the periapical areas of mice. Double-labeling immunofluorescence indicated that M1 macrophage infiltration was increased by E. faecalis EVs in apical lesions. Moreover, in vitro experiments demonstrated the internalization of E. faecalis EVs into macrophages. Macrophages tended to polarize toward the M1 profile after treatment with E. faecalis EVs. Pattern recognition receptors (PRRs) can recognize MAMPs of bacterial EVs and, in turn, trigger inflammatory responses. Thus, we performed further mechanistic exploration, which showed that E. faecalis EVs considerably increased the expression of NOD2, a cytoplasmic PRR, and that inhibition of NOD2 markedly reduced macrophage M1 polarization induced by E. faecalis EVs. RIPK2 ubiquitination is a major downstream of NOD2. We also observed increased RIPK2 ubiquitination in macrophages treated with E. faecalis EVs, and E. faecalis EV-induced macrophage M1 polarization was notably alleviated by the RIPK2 ubiquitination inhibitor. Our study revealed the potential for EVs to be considered a virulence factor of E. faecalis and found that E. faecalis EVs can promote macrophage M1 polarization via NOD2/RIPK2 signaling. To our knowledge, this is the first report to investigate apical periodontitis development from the perspective of bacterial vesicles and demonstrate the role and mechanism of E. faecalis EVs in macrophage polarization. This study expands our understanding of the pathogenic mechanism of E. faecalis and provides novel insights into the pathogenesis of apical periodontitis.
Collapse
Affiliation(s)
- R Y Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z L Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Q Y Du
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - M Q Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y Y Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y E Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Z Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - S M Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - W H Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
82
|
Padinharayil H, George A. Small extracellular vesicles: Multi-functional aspects in non-small cell lung carcinoma. Crit Rev Oncol Hematol 2024; 198:104341. [PMID: 38575042 DOI: 10.1016/j.critrevonc.2024.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India.
| |
Collapse
|
83
|
Zhang S, Wang Q, Tan DEL, Sikka V, Ng CH, Xian Y, Li D, Muthiah M, Chew NWS, Storm G, Tong L, Wang J. Gut-liver axis: Potential mechanisms of action of food-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12466. [PMID: 38887165 PMCID: PMC11183959 DOI: 10.1002/jev2.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease. Interestingly, therapeutic effects of FEVs have recently also been observed in non-gastrointestinal diseases. However, the mechanisms remain unclear or even mysterious. It is speculated that orally administered FEVs could enter the bloodstream, reach remote organs, and thus exert therapeutic effects therein. However, emerging evidence suggests that the amount of FEVs reaching organs beyond the gastrointestinal tract is marginal and may be insufficient to account for the significant therapeutic effects achieved regarding diseases involving remote organs such as the liver. Thus, we herein propose that FEVs primarily act locally in the intestine by modulating intestinal microenvironments such as barrier integrity and microbiota, thereby eliciting therapeutic impact remotely on the liver in non-gastrointestinal diseases via the gut-liver axis. Likewise, drugs delivered to the gastrointestinal system through FEVs may act via the gut-liver axis. As the liver is the main metabolic hub, the intestinal microenvironment may be implicated in other metabolic diseases. In fact, many patients with non-alcoholic fatty liver disease, obesity, diabetes and cardiovascular disease suffer from a leaky gut and dysbiosis. In this review, we provide an overview of the recent progress in FEVs and discuss their biomedical applications as therapeutic agents and drug delivery systems, highlighting the pivotal role of the gut-liver axis in the mechanisms of action of FEVs for the treatment of gut disorders and metabolic diseases.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qiyue Wang
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Daniel En Liang Tan
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vritika Sikka
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
| | - Yan Xian
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dan Li
- Department of Food Science and Technology, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
- National University Centre for Organ TransplantationNational University Health SystemSingaporeSingapore
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart CentreNational University Health SystemSingaporeSingapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lingjun Tong
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute (CVRI)National University Heart Centre Singapore (NUHCS)SingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
84
|
Yasamineh S, Nikben N, Hamed Ahmed M, Abdul Kareem R, Kadhim Al-Aridhy A, Hosseini Hooshiar M. Increasing the sensitivity and accuracy of detecting exosomes as biomarkers for cancer monitoring using optical nanobiosensors. Cancer Cell Int 2024; 24:189. [PMID: 38816782 PMCID: PMC11138050 DOI: 10.1186/s12935-024-03379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The advancement of nanoscience and material design in recent times has facilitated the creation of point-of-care devices for cancer diagnosis and biomolecule sensing. Exosomes (EXOs) facilitate the transfer of bioactive molecules between cancer cells and diverse cells in the local and distant microenvironments, thereby contributing to cancer progression and metastasis. Specifically, EXOs derived from cancer are likely to function as biomarkers for early cancer detection due to the genetic or signaling alterations they transport as payload within the cancer cells of origin. It has been verified that EXOs circulate steadily in bodily secretions and contain a variety of information that indicates the progression of the tumor. However, acquiring molecular information and interactions regarding EXOs has presented significant technical challenges due to their nanoscale nature and high heterogeneity. Colorimetry, surface plasmon resonance (SPR), fluorescence, and Raman scattering are examples of optical techniques utilized to quantify cancer exosomal biomarkers, including lipids, proteins, RNA, and DNA. Many optically active nanoparticles (NPs), predominantly carbon-based, inorganic, organic, and composite-based nanomaterials, have been employed in biosensing technology. The exceptional physical properties exhibited by nanomaterials, including carbon NPs, noble metal NPs, and magnetic NPs, have facilitated significant progress in the development of optical nanobiosensors intended for the detection of EXOs originating from tumors. Following a summary of the biogenesis, biological functions, and biomarker value of known EXOs, this article provides an update on the detection methodologies currently under investigation. In conclusion, we propose some potential enhancements to optical biosensors utilized in detecting EXO, utilizing various NP materials such as silicon NPs, graphene oxide (GO), metal NPs, and quantum dots (QDs).
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | | | | - Ameer Kadhim Al-Aridhy
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | |
Collapse
|
85
|
Gao Y, Li L, Zhang SN, Mang YY, Zhang XB, Feng SM. HepG2.2.15-derived exosomes facilitate the activation and fibrosis of hepatic stellate cells. World J Gastroenterol 2024; 30:2553-2563. [PMID: 38817658 PMCID: PMC11135406 DOI: 10.3748/wjg.v30.i19.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/05/2024] [Accepted: 04/25/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The role of exosomes derived from HepG2.2.15 cells, which express hepatitis B virus (HBV)-related proteins, in triggering the activation of LX2 liver stellate cells and promoting liver fibrosis and cell proliferation remains elusive. The focus was on comprehending the relationship and influence of differentially expressed microRNAs (DE-miRNAs) within these exosomes. AIM To elucidate the effect of exosomes derived from HepG2.2.15 cells on the activation of hepatic stellate cell (HSC) LX2 and the progression of liver fibrosis. METHODS Exosomes from HepG2.2.15 cells, which express HBV-related proteins, were isolated from parental HepG2 and WRL68 cells. Western blotting was used to confirm the presence of the exosomal marker protein CD9. The activation of HSCs was assessed using oil red staining, whereas DiI staining facilitated the observation of exosomal uptake by LX2 cells. Additionally, we evaluated LX2 cell proliferation and fibrosis marker expression using 5-ethynyl-2'-deoxyuracil staining and western blotting, respectively. DE-miRNAs were analyzed using DESeq2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to annotate the target genes of DE-miRNAs. RESULTS Exosomes from HepG2.2.15 cells were found to induced activation and enhanced proliferation and fibrosis in LX2 cells. A total of 27 miRNAs were differentially expressed in exosomes from HepG2.2.15 cells. GO analysis indicated that these DE-miRNA target genes were associated with cell differentiation, intracellular signal transduction, negative regulation of apoptosis, extracellular exosomes, and RNA binding. KEGG pathway analysis highlighted ubiquitin-mediated proteolysis, the MAPK signaling pathway, viral carcinogenesis, and the toll-like receptor signaling pathway, among others, as enriched in these targets. CONCLUSION These findings suggest that exosomes from HepG2.2.15 cells play a substantial role in the activation, proliferation, and fibrosis of LX2 cells and that DE-miRNAs within these exosomes contribute to the underlying mechanisms.
Collapse
Affiliation(s)
- Yang Gao
- Department of Hepatobiliary Pancreatic and Vascular Surgery, The Affiliated Calmette Hospital of Kunming Medical University and The First Hospital of Kunming, Kunming 650011, Yunnan Province, China
| | - Li Li
- Department of Hepatobiliary Pancreatic and Vascular Surgery, The Affiliated Calmette Hospital of Kunming Medical University and The First Hospital of Kunming, Kunming 650011, Yunnan Province, China
| | - Sheng-Ning Zhang
- Department of Hepatobiliary Pancreatic and Vascular Surgery, The Affiliated Calmette Hospital of Kunming Medical University and The First Hospital of Kunming, Kunming 650011, Yunnan Province, China
| | - Yuan-Yi Mang
- Department of Hepatobiliary Pancreatic and Vascular Surgery, The Affiliated Calmette Hospital of Kunming Medical University and The First Hospital of Kunming, Kunming 650011, Yunnan Province, China
| | - Xi-Bing Zhang
- Department of Hepatobiliary Pancreatic and Vascular Surgery, The Affiliated Calmette Hospital of Kunming Medical University and The First Hospital of Kunming, Kunming 650011, Yunnan Province, China
| | - Shi-Ming Feng
- Department of Hepatobiliary Pancreatic and Vascular Surgery, The Affiliated Calmette Hospital of Kunming Medical University and The First Hospital of Kunming, Kunming 650011, Yunnan Province, China
| |
Collapse
|
86
|
Stollmann A, Garcia-Guirado J, Hong JS, Rüedi P, Im H, Lee H, Ortega Arroyo J, Quidant R. Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform. Nat Commun 2024; 15:4109. [PMID: 38750038 PMCID: PMC11096335 DOI: 10.1038/s41467-024-48132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Label-free detection of multiple analytes in a high-throughput fashion has been one of the long-sought goals in biosensing applications. Yet, for all-optical approaches, interfacing state-of-the-art label-free techniques with microfluidics tools that can process small volumes of sample with high throughput, and with surface chemistry that grants analyte specificity, poses a critical challenge to date. Here, we introduce an optofluidic platform that brings together state-of-the-art digital holography with PDMS microfluidics by using supported lipid bilayers as a surface chemistry building block to integrate both technologies. Specifically, this platform fingerprints heterogeneous biological nanoparticle populations via a multiplexed label-free immunoaffinity assay with single particle sensitivity. First, we characterise the robustness and performance of the platform, and then apply it to profile four distinct ovarian cell-derived extracellular vesicle populations over a panel of surface protein biomarkers, thus developing a unique biomarker fingerprint for each cell line. We foresee that our approach will find many applications where routine and multiplexed characterisation of biological nanoparticles are required.
Collapse
Affiliation(s)
- Alexia Stollmann
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Jose Garcia-Guirado
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Pascal Rüedi
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
87
|
O'Toole HJ, Lowe N, Arun V, Kolesov AV, Palmieri TL, Tran NK, Carney RP. Plasma-derived Extracellular Vesicles (EVs) as Biomarkers of Sepsis in Burn Patients via Label-free Raman Spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593634. [PMID: 38798662 PMCID: PMC11118394 DOI: 10.1101/2024.05.14.593634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Sepsis following burn trauma is a global complication with high mortality, with ~60% of burn patient deaths resulting from infectious complications. Sepsis diagnosis is complicated by confounding clinical manifestations of the burn injury, and current biomarkers markers lack the sensitivity and specificity required for prompt treatment. Circulating extracellular vesicles (EVs) from patient liquid biopsy as biomarkers of sepsis due to their release by pathogens from bacterial biofilms and roles in subsequent immune response. This study applies Raman spectroscopy to patient plasma derived EVs for rapid, sensitive, and specific detection of sepsis in burn patients, achieving 97.5% sensitivity and 90.0% specificity. Furthermore, spectral differences between septic and non-septic burn patient EVs could be traced to specific glycoconjugates of bacterial strains associated with sepsis morbidity. This work illustrates the potential application of EVs as biomarkers in clinical burn trauma care, and establishes Raman analysis as a fast, label-free method to specifically identify features of bacterial EVs relevant to infection amongst the host background.
Collapse
Affiliation(s)
- Hannah J O'Toole
- Department of Biomedical Engineering, University of California, Davis, 1 Shields Ave, Davis., CA 95616, USA
| | - Neona Lowe
- Department of Biomedical Engineering, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Vishalakshi Arun
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Anna V Kolesov
- Department of Biomedical Engineering, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Tina L Palmieri
- Division of Burn Surgery & Reconstruction, Department of Surgery, University of California, Davis Health, Firefighters Burn Institute Regional Burn Center, 2315 X Street, Sacramento, CA 95616, USA; Shriners Hospitals for Children Northern California, 2425 Stockton Blvd., Sacramento, CA 95817, USA
| | - Nam K Tran
- Department of Pathology and Laboratory Medicine, University of California, Davis, 4400 V. St., Sacramento, CA 95817, USA
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
88
|
Tian Y, Tian D, Peng X, Qiu H. Critical parameters to standardize the size and concentration determination of nanomaterials by nanoparticle tracking analysis. Int J Pharm 2024; 656:124097. [PMID: 38609058 DOI: 10.1016/j.ijpharm.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and ∼ 10 μl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.
Collapse
Affiliation(s)
- Youxi Tian
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Dong Tian
- Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China.
| | - Hong Qiu
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China.
| |
Collapse
|
89
|
Sánchez-López V, Marín-Romero S, Ferrer-Galván M, Elías-Hernández T, Lobo Beristain JL, Ballaz Quincoces A, Jara-Palomares L, Rodríguez Martorell FJ, Castro MJ, Marín Hinojosa C, López-Campos JL, Otero-Candelera R. Occult cancer in patients with unprovoked venous thromboembolism: A nested case-control study. Am J Clin Pathol 2024; 161:501-511. [PMID: 38340336 PMCID: PMC11063558 DOI: 10.1093/ajcp/aqad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Detecting occult cancer in patients with unprovoked venous thromboembolism (VTE) remains a significant challenge. Our objective was to investigate the potential predictive role of coagulation-related biomarkers in the diagnosis of occult malignancies. METHODS We conducted a nested case-control study with a 1-year prospective cohort of 214 patients with unprovoked VTE, with a focus on identifying occult cancer. At the time of VTE diagnosis, we measured various biomarkers, including soluble P-selectin (sP-selectin), dimerized plasmin fragment D (D-dimer), platelets, leukocytes, hemoglobin, total extracellular vesicles (EVs), EVs expressing tissue factor on their surface (TF+EVs), and EVs expressing P-selectin on their surface (Psel+EVs) in all participants. RESULTS We observed statistically significant increased levels of sP-selectin (P = .015) in patients with occult cancer. Despite an increase in Psel+EVs, TF+EVs, D-dimer, and platelets within this group, however, no significant differences were found. When sP-selectin exceeded 62 ng/mL and D-dimer surpassed 10,000 µg/L, the diagnosis of occult cancer demonstrated a specificity of up to 91% (95% CI, 79.9%-96.7%). CONCLUSIONS The combination of sP-selectin and D-dimer can be a valuable biomarker in detecting occult cancer in patients with unprovoked VTE. Further research is necessary to ascertain whether easily measurable biomarkers such as sP-selectin and D-dimer can effectively distinguish between patients who have VTE with and without hidden malignancies.
Collapse
Affiliation(s)
- Verónica Sánchez-López
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Samira Marín-Romero
- Medical Surgical Unit of Respiratory Diseases, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Marta Ferrer-Galván
- Medical Surgical Unit of Respiratory Diseases, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Teresa Elías-Hernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
- Medical Surgical Unit of Respiratory Diseases, Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | | | - Luis Jara-Palomares
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
- Medical Surgical Unit of Respiratory Diseases, Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - María José Castro
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Carmen Marín Hinojosa
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - José Luis López-Campos
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
- Medical Surgical Unit of Respiratory Diseases, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Remedios Otero-Candelera
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Madrid, Spain
- Medical Surgical Unit of Respiratory Diseases, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
90
|
Walker SN, Lucas K, Dewey MJ, Badylak S, Hussey G, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using 'Catch and Display' on Ultrathin Nanoporous Silicon Nitride Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.589900. [PMID: 38746341 PMCID: PMC11092443 DOI: 10.1101/2024.04.29.589900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are particles secreted by all cells that carry bioactive cargo and facilitate intercellular communication with roles in normal physiology and disease pathogenesis. EVs have tremendous diagnostic and therapeutic potential and accordingly, the EV field has grown exponentially in recent years. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are undermined by complicated detection schemes often coupled with prohibitive instrumentation. To address these issues, we propose a microfluidic technique for EV characterization called 'catch and display for liquid biopsy (CAD-LB)'. CAD-LB rapidly captures fluorescently labeled EVs in the similarly-sized pores of an ultrathin silicon nitride membrane. Minimally processed sample is introduced via pipette injection into a simple microfluidic device which is directly imaged using fluorescence microscopy for a rapid assessment of EV number and biomarker colocalization. In this work, nanoparticles were first used to define the accuracy and dynamic range for counting and colocalization by CAD-LB. Following this, the same assessments were made for purified EVs and for unpurified EVs in plasma. Biomarker detection was validated using CD9 in which Western blot analysis confirmed that CAD-LB faithfully recapitulated differing expression levels among samples. We further verified that CAD-LB captured the known increase in EV-associated ICAM-1 following the cytokine stimulation of endothelial cells. Finally, to demonstrate CAD-LB's clinical potential, we show that EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients undergoing immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
91
|
Guo H, Wang D, Feng S, Zhang K, Luo Y, Zhao J. A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration. BIOMICROFLUIDICS 2024; 18:034107. [PMID: 38947280 PMCID: PMC11210975 DOI: 10.1063/5.0208417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Kaihuan Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yuan Luo
- Authors to whom correspondence should be addressed: and
| | - Jianlong Zhao
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
92
|
Fan Z, Zhou J, Shu Q, Dong Y, Li Y, Zhang T, Bai G, Yu H, Lu F, Li J, Zhao X. Aptamer-bivalent-cholesterol-mediated proximity entropy-driven exosomal protein reporter for tumor diagnosis. Biosens Bioelectron 2024; 251:116104. [PMID: 38368644 DOI: 10.1016/j.bios.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Exosomal proteins from the parental cells are considered to be promising biomarker sets for precise tumor diagnostics and monitoring. However, the accurate quantitative analysis of low-abundance exosomal proteins remains challenging due to the heterogeneity of clinical samples. Here, we standardized the exosomal concentration with a fluorogenic membrane probe and developed an aptamer-bivalent-cholesterol-mediated Proximity Entropy-driven Exosomal Protein Reporter (PEEPR). The proposed PEEPR enables the in-situ analysis of multiple exosomal proteins by integrating bivalent cholesterol anchor (exosomal lipid bilayer) and aptamer (exosomal proteins) with a proximity entropy-driven circuit. Based on this strategy, we successfully achieved detection limits of 3.9 pg/mL exosomal GPC-3 and 3.4 pg/mL exosomal PD-L1. Notably, the standardization of exosome concentrations is designed to avoid errors due to biological heterogeneity. The results showed that evaluating the levels of exosomal GPC-3 and PD-L1 in clinical samples via this strategy could accurately differentiate healthy individuals, hepatitis B patients, and hepatocellular carcinoma patients. In summary, PEEPR is a promising clinical diagnostic strategy for the quantitative analysis of a variety of tumor-associated exosomal proteins for the precise diagnosis and personalized treatment monitoring of tumors.
Collapse
Affiliation(s)
- Zhichao Fan
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Zhou
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Laboratory Medicine, Xingcheng Special Service Sanatorium of Strategic Support Force, Huludao, 125100, China
| | - Qiuxia Shu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yingxue Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingrui Zhang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gang Bai
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Fanghao Lu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
93
|
Mohamed NA, Wang Z, Liu Q, Chen P, Su X. Label-Free Light Scattering Imaging with Purified Brownian Motion Differentiates Small Extracellular Vesicles in Cell Microenvironments. Anal Chem 2024; 96:6321-6328. [PMID: 38595097 DOI: 10.1021/acs.analchem.3c05889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Small extracellular vesicles (sEVs) are heterogeneous biological nanoparticles (NPs) with wide biomedicine applications. Tracking individual nanoscale sEVs can reveal information that conventional microscopic methods may lack, especially in cellular microenvironments. This usually requires biolabeling to identify single sEVs. Here, we developed a light scattering imaging method based on dark-field technology for label-free nanoparticle diffusion analysis (NDA). Compared with nanoparticle tracking analysis (NTA), our method was shown to determine the diffusion probabilities of a single NP. It was demonstrated that accurate size determination of NPs of 41 and 120 nm in diameter is achieved by purified Brownian motion (pBM), without or within the cell microenvironments. Our pBM method was also shown to obtain a consistent size estimation of the normal and cancerous plasma-derived sEVs without and within cell microenvironments, while cancerous plasma-derived sEVs are statistically smaller than normal ones. Moreover, we showed that the velocity and diffusion coefficient are key parameters for determining the diffusion types of the NPs and sEVs in a cancerous cell microenvironment. Our light scattering-based NDA and pBM methods can be used for size determination of NPs, even in cell microenvironments, and also provide a tool that may be used to analyze sEVs for many biomedical applications.
Collapse
Affiliation(s)
- Nebras Ahmed Mohamed
- School of Integrated Circuits, Shandong University, Jinan 250101, China
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Zhuo Wang
- School of Integrated Circuits, Shandong University, Jinan 250101, China
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Qiao Liu
- Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xuantao Su
- School of Integrated Circuits, Shandong University, Jinan 250101, China
| |
Collapse
|
94
|
Du X, Hua R, He X, Hou W, Li S, Yang A, Yang G. Echinococcus granulosus ubiquitin-conjugating enzymes (E2D2 and E2N) promote the formation of liver fibrosis in TGFβ1-induced LX-2 cells. Parasit Vectors 2024; 17:190. [PMID: 38643149 PMCID: PMC11031992 DOI: 10.1186/s13071-024-06222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFβ1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.
Collapse
Affiliation(s)
- Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Hou
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
95
|
Goldbloom-Helzner L, Bains H, Wang A. Approaches to Characterize and Quantify Extracellular Vesicle Surface Conjugation Efficiency. Life (Basel) 2024; 14:511. [PMID: 38672781 PMCID: PMC11051464 DOI: 10.3390/life14040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-secreted nanovesicles that play an important role in long-range cell-cell communication. Although EVs pose a promising alternative to cell-based therapy, targeted in vivo delivery still falls short. Many studies have explored the surface modification of EVs to enhance their targeting capabilities. However, to our knowledge, there are no standardized practices to confirm the successful surface modification of EVs or calculate the degree of conjugation on EV surfaces (conjugation efficiency). These pieces of information are essential in the reproducibility of targeted EV therapeutics and the determination of optimized conjugation conditions for EVs to see significant therapeutic effects in vitro and in vivo. This review will discuss the vast array of techniques adopted, technologies developed, and efficiency definitions made by studies that have calculated EV/nanoparticle surface conjugation efficiency and how differences between studies may contribute to differently reported conjugation efficiencies.
Collapse
Affiliation(s)
- Leora Goldbloom-Helzner
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817, USA;
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Harjn Bains
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817, USA;
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| |
Collapse
|
96
|
Li W, Zhu J, Li J, Jiang Y, Sun J, Xu Y, Pan H, Zhou Y, Zhu J. Research advances of tissue-derived extracellular vesicles in cancers. J Cancer Res Clin Oncol 2024; 150:184. [PMID: 38598014 PMCID: PMC11006789 DOI: 10.1007/s00432-023-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) can mediate cell-to-cell communication and affect various physiological and pathological processes in both parent and recipient cells. Currently, extensive research has focused on the EVs derived from cell cultures and various body fluids. However, insufficient attention has been paid to the EVs derived from tissues. Tissue EVs can reflect the microenvironment of the specific tissue and the cross-talk of communication among different cells, which can provide more accurate and comprehensive information for understanding the development and progression of diseases. METHODS We review the state-of-the-art technologies involved in the isolation and purification of tissue EVs. Then, the latest research progress of tissue EVs in the mechanism of tumor occurrence and development is presented. And finally, the application of tissue EVs in the clinical diagnosis and treatment of cancer is anticipated. RESULTS We evaluate the strengths and weaknesses of various tissue processing and EVs isolation methods, and subsequently analyze the significance of protein characterization in determining the purity of tissue EVs. Furthermore, we focus on outlining the importance of EVs derived from tumor and adipose tissues in tumorigenesis and development, as well as their potential applications in early tumor diagnosis, prognosis, and treatment. CONCLUSION When isolating and characterizing tissue EVs, the most appropriate protocol needs to be specified based on the characteristics of different tissues. Tissue EVs are valuable in the diagnosis, prognosis, and treatment of tumors, and the potential risks associated with tissue EVs need to be considered as therapeutic agents.
Collapse
Affiliation(s)
- Wei Li
- Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, People's Republic of China
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jingyao Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiayuan Li
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yiyun Jiang
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jiuai Sun
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yan Xu
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 200120, People's Republic of China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Jun Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
97
|
Kistenmacher S, Schwämmle M, Martin G, Ulrich E, Tholen S, Schilling O, Gießl A, Schlötzer-Schrehardt U, Bucher F, Schlunck G, Nazarenko I, Reinhard T, Polisetti N. Enrichment, Characterization, and Proteomic Profiling of Small Extracellular Vesicles Derived from Human Limbal Mesenchymal Stromal Cells and Melanocytes. Cells 2024; 13:623. [PMID: 38607062 PMCID: PMC11011788 DOI: 10.3390/cells13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells (LMSC) remain limited, and there are no studies on sEVs from limbal melanocytes (LM). In this study, we isolated sEV from conditioned media of LMSC and LM using a combination of tangential flow filtration and size exclusion chromatography and characterized them by nanoparticle tracking analysis, transmission electron microscopy, Western blot, multiplex bead arrays, and quantitative mass spectrometry. The internalization of sEV by LEPC was studied using flow cytometry and confocal microscopy. The isolated sEVs exhibited typical EV characteristics, including cell-specific markers such as CD90 for LMSC-sEV and Melan-A for LM-sEV. Bioinformatics analysis of the proteomic data suggested a significant role of sEVs in extracellular matrix deposition, with LMSC-derived sEV containing proteins involved in collagen remodeling and cell matrix adhesion, whereas LM-sEV proteins were implicated in other cellular bioprocesses such as cellular pigmentation and development. Moreover, fluorescently labeled LMSC-sEV and LM-sEV were taken up by LEPC and localized to their perinuclear compartment. These findings provide valuable insights into the complex role of sEV from niche cells in regulating the human limbal stem cell niche.
Collapse
Affiliation(s)
- Sebastian Kistenmacher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D–79104 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Eva Ulrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, Faculty of Medicine, Freiburg, Medical Center, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Freiburg, Medical Center, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlan-gen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlan-gen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Naresh Polisetti
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
98
|
Kankaanpää S, Nurmi M, Lampimäki M, Leskinen H, Nieminen A, Samoylenko A, Vainio SJ, Mäkinen S, Ahonen L, Kangasluoma J, Petäjä T, Viitala S. Comparative analysis of the effects of different purification methods on the yield and purity of cow milk extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e149. [PMID: 38938848 PMCID: PMC11080921 DOI: 10.1002/jex2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 06/29/2024]
Abstract
Isolation of extracellular vesicles (EV) has been developing rapidly in parallel with the interest in EVs. However, commonly utilized protocols may not suit more challenging sample matrixes and could potentially yield suboptimal results. Knowing and assessing the pitfalls of isolation procedure to be used, should be involved to some extent for EV analytics. EVs in cow milk are of great interest due to their abundancy and large-scale availability as well as their cross-species bioavailability and possible use as drug carriers. However, the characteristics of milk EVs overlap with those of other milk components. This makes it difficult to isolate and study EVs individually. There exists also a lack of consensus for isolation methods. In this study, we demonstrated the differences between various differential centrifugation-based approaches for isolation of large quantities of EVs from cow milk. Samples were further purified with gradient centrifugation and size exclusion chromatography (SEC) and differences were analyzed. Quality measurements were conducted on multiple independent platforms. Particle analysis, electron microscopy and RNA analysis were used, to comprehensively characterize the isolated samples and to identify the limitations and possible sources of contamination in the EV isolation protocols. Vesicle concentration to protein ratio and RNA to protein ratios were observed to increase as samples were purified, suggesting co-isolation with major milk proteins in direct differential centrifugation protocols. We demonstrated a novel size assessment of vesicles using a particle mobility analyzer that matched the sizing using electron microscopy in contrast to commonly utilized nanoparticle tracking analysis. Based on the standards of the International Society for Extracellular Vesicles and the quick checklist of EV-Track.org for EV isolation, we emphasize the need for complete characterization and validation of the isolation protocol with all EV-related work to ensure the accuracy of results and allow further analytics and experiments.
Collapse
Affiliation(s)
| | - Markus Nurmi
- Natural Resources Institute FinlandJokioinenFinland
| | - Markus Lampimäki
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | | | - Anni Nieminen
- Metabolomics Unit, Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Anatoliy Samoylenko
- University of Oulu, Kvantum Institute, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, Disease Networks Research UnitOulu UniversityOuluFinland
| | - Seppo J. Vainio
- University of Oulu, Kvantum Institute, Infotech Oulu, Faculty of Biochemistry and Molecular Medicine, Disease Networks Research UnitOulu UniversityOuluFinland
| | - Sari Mäkinen
- Natural Resources Institute FinlandJokioinenFinland
| | - Lauri Ahonen
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR) / PhysicsUniversity of HelsinkiHelsinkiFinland
| | | |
Collapse
|
99
|
Leung J, Pollalis D, Nair GKG, Bailey JK, Pennington BO, Khan AI, Kelly KR, Yeh AK, Sundaram KS, Clegg DO, Peng CC, Xu L, Lee SY. Isolation and Characterization of Extracellular Vesicles Through Orthogonal Approaches for the Development of Intraocular EV Therapy. Invest Ophthalmol Vis Sci 2024; 65:6. [PMID: 38466285 PMCID: PMC10929743 DOI: 10.1167/iovs.65.3.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Purpose Isolating extracellular vesicles (EVs) with high yield, replicable purity, and characterization remains a bottleneck in the development of EV therapeutics. To address these challenges, the current study aims to establish the necessary framework for preclinical and clinical studies in the development of stem cell-derived intraocular EV therapeutics. Methods Small EVs (sEVs) were separated from the conditioned cell culture medium (CCM) of the human embryogenic stem cell-derived fully polarized retinal pigment epithelium (hESC-RPE-sEV) by a commercially available microfluidic tangential flow filtration (TFF) device ExoDisc (ED) or differential ultracentrifugation (dUC). The scaling and concentration capabilities and purity of recovered sEVs were assessed. Size, number, and surface markers of sEVs were determined by orthogonal approaches using multiple devices. Results ED yielded higher numbers of sEVs, ranging from three to eight times higher depending on the measurement device, compared to dUC using the same 5 mL of CCM input. Within the same setting, the purity of ED-recovered hESC-RPE-sEVs was higher than that for dUC-recovered sEVs. ED yielded a higher concentration of particles, which is strongly correlated with the input volume, up to 10 mL (r = 0.98, P = 0.016). Meanwhile, comprehensive characterization profiles of EV surface markers between ED- and dUC-recovered hESC-RPE-sEVs were compatible. Conclusions Our study supports TFF as a valuable strategy for separating sEVs for the development of intraocular EV therapeutics. However, there is a growing need for diverse devices to optimize TFF for use in EV preparation. Using orthogonal approaches in EV characterization remains ideal for reliably characterizing heterogeneous EV.
Collapse
Affiliation(s)
- Justin Leung
- USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, United States
| | - Dimitrios Pollalis
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, United States
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Gopa K. G. Nair
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, United States
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Jeffrey K. Bailey
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Britney O. Pennington
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Amir I. Khan
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Kaitlin R. Kelly
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Ashley K. Yeh
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- College of Creative Studies, Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Kartik S. Sundaram
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Dennis O. Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Chen-Ching Peng
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Children's Hospital Los Angeles Vision Center, Los Angeles, California, United States
| | - Liya Xu
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Children's Hospital Los Angeles Vision Center, Los Angeles, California, United States
| | - Sun Young Lee
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, United States
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
100
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|