51
|
Alam MJ, Puppala V, Uppulapu SK, Das B, Banerjee SK. Human microbiome and cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:231-279. [DOI: 10.1016/bs.pmbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
52
|
Philips CA, Augustine P. Gut Barrier and Microbiota in Cirrhosis. J Clin Exp Hepatol 2022; 12:625-638. [PMID: 35535069 PMCID: PMC9077238 DOI: 10.1016/j.jceh.2021.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota and their homeostatic functions are central to the maintenance of the intestinal mucosal barrier. The gut barrier functions as a structural, biological, and immunological barrier, preventing local and systemic invasion and inflammation of pathogenic taxa, resulting in the propagation or causation of organ-specific (liver disease) or systemic diseases (sepsis) in the host. In health, commensal bacteria are involved in regulating pathogenic bacteria, sinister bacterial products, and antigens; and help control and kill pathogenic organisms by secreting antimicrobial metabolites. Gut microbiota also participates in the extraction, synthesis, and absorption of nutrient metabolites, maintains intestinal epithelial integrity and regulates the development, homeostasis, and function of innate and adaptive immune cells. Cirrhosis is associated with local and systemic immune, vascular, and inflammatory changes directly or indirectly linked to perturbations in quality and quantity of intestinal microbiota and intestinal mucosal integrity. Dysbiosis and gut barrier dysfunction are directly involved in the pathogenesis of compensated cirrhosis and the type and severity of complications in decompensated cirrhosis, such as bacterial infections, encephalopathy, extrahepatic organ failure, and progression to acute on chronic liver failure. This paper reviews the normal gut barrier, gut barrier dysfunction, and dysbiosis-associated clinical events in patients with cirrhosis. The role of dietary interventions, antibiotics, prebiotics, probiotics, synbiotics, and healthy donor fecal microbiota transplantation (FMT) to modulate the gut microbiota for improving patient outcomes is further discussed.
Collapse
Affiliation(s)
- Cyriac A. Philips
- Department of Translational Hepatology, Monarch Liver Laboratory, The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India,Address for correspondence. Cyriac Abby, The Liver Institute, Center of Excellence in GI Sciences, Ground Floor, Phase II, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, 683 112, India.
| | - Philip Augustine
- Department of Gastroenterology and Advanced GI Endoscopy, Center of Excellence in GI Sciences, Rajagiri Hospital, Chunangamvely, Aluva, Ernakulam, Kerala, India
| |
Collapse
|
53
|
Raman M, Ma C, Taylor LM, Dieleman LA, Gkoutos GV, Vallance JK, McCoy KD, Lewis I, Jijon H, McKay DM, Mutch DM, Barkema HW, Gibson D, Rauch M, Ghosh S. Crohn's disease therapeutic dietary intervention (CD-TDI): study protocol for a randomised controlled trial. BMJ Open Gastroenterol 2022; 9:e000841. [PMID: 35046093 PMCID: PMC8772401 DOI: 10.1136/bmjgast-2021-000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Dietary patterns that might induce remission in patients with active Crohn's disease (CD) are of interest to patients, but studies are limited in the published literature. We aim to explore the efficacy of the CD therapeutic dietary intervention (CD-TDI), a novel dietary approach developed from best practices and current evidence, to induce clinical and biomarker remission in adult patients with active CD. METHODS AND ANALYSIS This study is a 13-week, multicentre, randomised controlled trial in patients with mild-to-moderate active CD at baseline. One hundred and two patients will be block randomised, by sex, 2:1 to the intervention (CD-TDI) or conventional management. Coprimary outcomes are clinical and biomarker remission, defined as a Harvey Bradshaw Index of <5 and a faecal calprotectin of <250 µg/g, respectively.Secondary outcomes include gut microbiota diversity and composition, faecal short-chain fatty acids, regulatory macrophage function, serum and faecal metabolomics, C reactive protein, peripheral blood mononuclear cell gene expression profiles, quality of life, sedentary time and physical activity at 7 and/or 13 weeks. Predictive models of clinical response to a CD-TDI will be investigated. ETHICS AND DISSEMINATION The research protocol was approved by the Conjoint Health Research Ethics Board at the University of Calgary (REB19-0402) and the Health Research Ethics Board-Biomedical Panel at the University of Alberta (Pro00090772). Study findings will be presented at national and international conferences, submitted for publication in abstracts and manuscripts, shared on social media and disseminated through patient-education materials. TRIAL REGISTRATION NUMBER NCT04596566.
Collapse
Affiliation(s)
- Maitreyi Raman
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Ma
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lorian M Taylor
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Levinus A Dieleman
- Department of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Georgios V Gkoutos
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Jeff K Vallance
- Faculty of Health Disciplines, Athabasca University, Athabasca, Alberta, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Ian Lewis
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Humberto Jijon
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - David M Mutch
- Department of Human Health & Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, Calgary, Alberta, Canada
| | - Deanna Gibson
- Department of Biology, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | | | - Subrata Ghosh
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| |
Collapse
|
54
|
Probiotics in Intestinal Mucosal Healing: A New Therapy or an Old Friend? Pharmaceuticals (Basel) 2021; 14:ph14111181. [PMID: 34832962 PMCID: PMC8622522 DOI: 10.3390/ph14111181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), Crohn’s disease, and ulcerative colitis are characterized by chronic and relapsing inflammation, while their pathogenesis remains mostly unelucidated. Gut commensal microbiota seem to be one of the various implicated factors, as several studies have shown a significant decrease in the microbiome diversity of patients with IBD. Although the question of whether microbiota dysbiosis is a causal factor or the result of chronic inflammation remains unanswered, one fact is clear; active inflammation in IBD results in the disruption of the mucus layer structure, barrier function, and also, colonization sites. Recently, many studies on IBD have been focusing on the interplay between mucosal and luminal microbiota, underlining their possible beneficial effect on mucosal healing. Regarding this notion, it has now been shown that specific probiotic strains, when administrated, lead to significantly decreased inflammation, amelioration of colitis, and improved mucosal healing. Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate quantity. The aim of this review was to present and discuss the current findings on the role of gut microbiota and their metabolites in intestinal wound healing and the effects of probiotics on intestinal mucosal wound closure.
Collapse
|
55
|
Li Y, Tao Y, Xu J, He Y, Zhang W, Jiang Z, He Y, Liu H, Chen M, Zhang W, Xing Z. Hyperoxia Provokes Time- and Dose-Dependent Gut Injury and Endotoxemia and Alters Gut Microbiome and Transcriptome in Mice. Front Med (Lausanne) 2021; 8:732039. [PMID: 34869425 PMCID: PMC8635731 DOI: 10.3389/fmed.2021.732039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Oxygen therapy usually exposes patients to hyperoxia, which induces injuries in the lung, the heart, and the brain. The gut and its microbiome play key roles in critical illnesses, but the impact of hyperoxia on the gut and its microbiome remains not very clear. We clarified the time- and dose-dependent effects of hyperoxia on the gut and investigated oxygen-induced gut dysbiosis and explored the underlying mechanism of gut injury by transcriptome analysis. Methods: The C57BL/6 mice were randomly divided into the control group and nine different oxygen groups exposed to hyperoxia with an inspired O2 fraction (FiO2) of 40, 60, and 80% for 24, 72, and 168 h (7 days), respectively. Intestinal histopathological and biochemical analyses were performed to explore the oxygen-induced gut injury and inflammatory response. Another experiment was performed to explore the impact of hyperoxia on the gut microbiome by exposing the mice to hyperoxia (FiO2 80%) for 7 days, with the 16S rRNA sequencing method. We prolonged the exposure (up to 14 days) of the mice to hyperoxia (FiO2 80%), and gut transcriptome analysis and western blotting were carried out to obtain differentially expressed genes (DEGs) and signaling pathways related to innate immunity and cell death. Results: Inhaled oxygen induced time- and dose-dependent gut histopathological impairment characterized by mucosal atrophy (e.g., villus shortening: 80% of FiO2 for 24 h: P = 0.008) and enterocyte death (e.g., apoptosis: 40% of FiO2 for 7 days: P = 0.01). Administered time- and dose-dependent oxygen led to intestinal barrier dysfunction (e.g., endotoxemia: 80% of FiO2 for 72 h: P = 0.002) and potentiated gut inflammation by increasing proinflammatory cytokines [e.g., tumor necrosis factor alpha (TNF-α): 40% of FiO2 for 24 h: P = 0.003)] and reducing anti-inflammatory cytokines [Interleukin 10 (IL-10): 80% of FiO2 for 72 h: P < 0.0001]. Hyperoxia induced gut dysbiosis with an expansion of oxygen-tolerant bacteria (e.g., Enterobacteriaceae). Gut transcriptome analysis identified 1,747 DEGs and 171 signaling pathways and immunoblotting verified TLR-4, NOD-like receptor, and apoptosis signaling pathways were activated in oxygen-induced gut injury. Conclusions: Acute hyperoxia rapidly provokes gut injury in a time- and dose-dependent manner and induces gut dysbiosis, and an innate immune response is involved in an oxygen-induced gut injury.
Collapse
Affiliation(s)
- Yunhang Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanfa Tao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wen Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhigang Jiang
- Department of Statistics, Zunyi Medical University, Zunyi, China
| | - Ying He
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Houmei Liu
- Department of Endodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhouxiong Xing
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
56
|
Yuan Y, Lu L, Bo N, Chaoyue Y, Haiyang Y. Allicin Ameliorates Intestinal Barrier Damage via Microbiota-Regulated Short-Chain Fatty Acids-TLR4/MyD88/NF-κB Cascade Response in Acrylamide-Induced Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12837-12852. [PMID: 34694121 DOI: 10.1021/acs.jafc.1c05014] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrylamide (AA) is a heat-induced toxicant, which can cause severe damage to health. In the present study, SD rats were used to investigate the potential therapeutic effects of allicin dietary supplementation in the rats with AA-induced intestinal injury. The elevated expression of occludin, claudin-1, zonula occludens-1 (ZO-1), mucin 2, and mucin 3 indicated that oral allicin alleviated the intestinal epithelial barrier breakage induced by AA, compared with the AA-treated group. In the gut microbiota, Bacteroides, Escherichia_Shigella, Dubosiella, and Alloprevotella related to the synthesis of short-chain fatty acids (SCFAs) were negatively affected by AA, while allicin regulated cascade response of the microbiota-SCFAs signaling to reverse the reduction of acetic acid and propionic acid by AA treatment. Allicin also dramatically down-regulated the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), NF-κB signaling pathway proteins, and proinflammatory cytokines by promoting the production of SCFAs in AA-treated rats. Allicin relieved the intestinal barrier injury and inflammation caused by AA as evidenced by the regulation cascade response of the microbiota-SCFAs-TLR4/MyD88/NF-κB signaling pathway. In conclusion, allicin is highly effective in the treatment and prevention of AA-induced intestinal injury.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Li Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Nan Bo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yang Chaoyue
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yan Haiyang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
57
|
Tian J, Bai B, Gao Z, Yang Y, Wu H, Wang X, Wang J, Li M, Tong X. Alleviation Effects of GQD, a Traditional Chinese Medicine Formula, on Diabetes Rats Linked to Modulation of the Gut Microbiome. Front Cell Infect Microbiol 2021; 11:740236. [PMID: 34692563 PMCID: PMC8531589 DOI: 10.3389/fcimb.2021.740236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 01/14/2023] Open
Abstract
Gegen Qinlian Decoction (GQD) is a Chinese herbal medicine that has been reported to significantly decrease blood glucose levels, which is suggested to be related to interactions with the gut microbiota. However, the protective effect of GQD on intestinal barrier function with regard to its influence on the gut microbiota has not been explored to date. In this study, we investigated the role of the gut microbiota in mediating the hypoglycemic mechanism of GQD in type 2 diabetes mellitus (T2DM) rats induced by a single intraperitoneal injection of streptozotocin after 4 weeks of high-fat diet feeding. The T2DM rats were randomly allocated to receive GQD, metformin (Met), or saline for 12 consecutive weeks, and changes in metabolic parameters, intestinal barrier function, and inflammation were investigated. Gut microbiota was analyzed using 16S rRNA gene sequencing from fecal samples, and statistical analyses were performed to correlate microbiota composition with phenotypes of the T2DM rats. GQD administration decreased the levels of blood glucose and inflammatory cytokines, and increased the levels of tight junction proteins. Besides, GQD had a protective effect on islet function, restoring intestinal permeability, and inhibiting inflammation, as evidenced by increases in the levels of serum C-peptide, occludin, and claudin-1 in the colon, and also improved the expression of serum inflammatory factors. In addition, GQD regulated the structure of the gut microbiota by increasing the proportions of short-chain fatty acids-producing and anti-inflammatory bacteria, and decreasing the proportions of conditioned pathogenic bacteria associated with the diabetic phenotype. Overall, these findings suggest that GQD could ameliorate hyperglycemia and protect islet function by regulating the structure of the gut microbiota, thereby restoring intestinal permeability and inhibiting inflammation in T2DM rats. Our study thus suggests that the hypoglycemic mechanism of GQD is mediated by its modulation of the gut microbiota.
Collapse
Affiliation(s)
- Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingbing Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoran Wu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Min Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
58
|
Jia M, He J, Bai W, Lin Q, Deng J, Li W, Bai J, Fu D, Ma Y, Ren J, Xiong S. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct 2021; 12:9549-9562. [PMID: 34664582 DOI: 10.1039/d1fo01156a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As non-coding RNA molecules, microRNAs (miRNAs) are widely known for their critical role in gene regulation. Recent studies have shown that plant miRNAs obtained through dietary oral administration can survive in the gastrointestinal (GI) tract, enter the circulatory system and regulate endogenous mRNAs. Diet-derived plant miRNAs have 2'-O-methylated modified 3'ends and high cytosine and guanine (GC) content, as well as exosomal packaging, which gives them high stability even in the harsh environment of the digestive system and circulatory system. The latest evidence shows that dietary plant miRNAs can not only be absorbed in the intestine, but also be absorbed and packaged by gastric epithelial cells and then secreted into the circulatory system. Alternatively, these biologically active plant-derived miRNAs may also affect the health of the host by affecting the function of the microbiome, while not need to be taken into the host's circulatory system and transferred to remote tissues. This cross-kingdom regulation of miRNAs gives us hope for exploring their therapeutic potential and as dietary supplements. However, doubts have also been raised about the cross-border regulation of miRNAs, suggesting that technical flaws in the experiments may have led to this hypothesis. In this article, we summarize the visibility of dietary plant miRNAs in the development of human health and recent research data on their use in therapeutics. The regulation of plant miRNAs across kingdoms is a novel concept. Continued efforts in this area will broaden our understanding of the biological role of plant miRNAs and will open the way for the development of new approaches to prevent or treat human diseases.
Collapse
Affiliation(s)
- MingXi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - JinTao He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - WeiDong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - QinLu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - YuShui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - JiaLi Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - ShouYao Xiong
- College of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
59
|
Regueiro C, Codesido L, García-Nimo L, Zarraquiños S, Remedios D, Rodríguez-Blanco A, Sinde E, Fernández-de-Ana C, Cubiella J. The Effect of the Nutraceutical "MICODIGEST 2.0" on the Colorectal Cancer Surgery With Curative Intent Complications Rate: A Study Protocol for a Placebo-Controlled Double-blind Randomized Clinical Trial (Preprint). JMIR Res Protoc 2021; 11:e34292. [PMID: 35576566 PMCID: PMC9152712 DOI: 10.2196/34292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Background Most colorectal cancer patients diagnosed are candidates for surgical resection with curative intent, although colorectal surgery is associated with some complications that could be life-threatening. Antibiotic prophylaxis is commonly used for the prevention of infectious postoperative complications. However, this intervention can change the composition of intestinal microbiota and promote adverse inflammatory outcomes in colorectal cancer patients. The combination of different fungal extracts could be beneficial because of their role in gut microbiota modulation and their anti-inflammatory activity. Objective Based on this hypothesis, we have designed a double-bind, randomized clinical trial to evaluate the effect of the nutraceutical fungal extract Micodigest 2.0 on complications of surgery for colorectal cancer resection. Methods Colorectal cancer candidates for surgery will be considered for inclusion in the study. After evaluation by the multidisciplinary tumor board, patients who meet selection criteria will be screened, stratified according to tumor location, and randomly allocated to be treated with Micodigest 2.0 or placebo. Treatment will be continued until admission for surgery (4-6 weeks). Participants will undergo a medical and clinical evaluation including baseline and preadmission quality of life, microbiome composition, inflammatory and nutritional status, adverse events, and adherence assessments. The main end point of the study is the surgery complication rate. We will evaluate complications using the Clavien-Dindo classification. It will be necessary to recruit 144 patients to find a relevant clinical difference. We will also evaluate the effect of the nutraceutical on microbiome composition, inflammatory response, nutritional status, and quality of life, as well as the effect of these variables on surgical complications. Results This study was funded in 2020 by the Center for Industrial Technology Development. Recruitment began in September 2021 and is expected to be completed in September 2022. Data will be analyzed and the results will be disseminated in 2023. Conclusions The results of this protocol study could help to reduce surgery complications in patients with colorectal cancer using the new treatment Micodigest. This study could also identify new features associated with colorectal surgery complications. In summary, this study trial could improve the management of colorectal cancer patients. Trial Registration Clinical Trials.gov NCT04821258; https://clinicaltrials.gov/ct2/show/NCT04821258 International Registered Report Identifier (IRRID) DERR1-10.2196/34292
Collapse
Affiliation(s)
- Cristina Regueiro
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Ourense, Spain
| | - Laura Codesido
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Ourense, Spain
| | - Laura García-Nimo
- Clinical Analysis Department, Complexo Hospitalario Universitario de Ourense, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Ourense, Spain
| | - Sara Zarraquiños
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Ourense, Spain
| | - David Remedios
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Ourense, Spain
| | | | | | | | - Joaquín Cubiella
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Ourense, Spain
| |
Collapse
|
60
|
Saxami G, Kerezoudi EN, Mitsou EK, Koutrotsios G, Zervakis GI, Pletsa V, Kyriacou A. Fermentation Supernatants of Pleurotus eryngii Mushroom Ameliorate Intestinal Epithelial Barrier Dysfunction in Lipopolysaccharide-Induced Caco-2 Cells via Upregulation of Tight Junctions. Microorganisms 2021; 9:microorganisms9102071. [PMID: 34683391 PMCID: PMC8539016 DOI: 10.3390/microorganisms9102071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
In recent years, modulation of gut microbiota through prebiotics has garnered interest as a potential to ameliorate intestinal barrier dysfunction. The aim of the study was to examine the in vitro effect of fermentation supernatants (FSs) from rich in β-glucan Pleurotus eryngii mushrooms on the expression levels of tight junctions (TJs) genes in Caco-2 cells stimulated by bacterial lipopolysaccharides (LPS). Mushrooms were fermented using fecal inocula in an in vitro batch culture model. Caco-2 cells were subjected to LPS and FS treatment under three different conditions: pre-incubation with FS, co- and post-incubation. Reverse transcription PCR was applied to measure the expression levels of zonulin-1, occludin and claudin-1 genes. FSs from P. eryngii mushrooms led to a significant upregulation of the TJs gene expression in pre-incubation state, indicating potential preventive action. Down-regulation of all TJs gene expression levels was observed when the cells were challenged with LPS. The FS negative control (gut microbiota of each donor with no carbohydrate source) exhibited a significant upregulation of TJs expression levels compared to the cells that were challenged with LPS, for all three conditions. Overall, our data highlighted the positive and potential protective effects of P. eryngii mushrooms in upregulation of TJs’ genes.
Collapse
Affiliation(s)
- Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Evangelia N Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Evdokia K Mitsou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios I Zervakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| |
Collapse
|
61
|
Guo X, Lan Z, Wen Y, Zheng C, Rong Z, Liu T, Chen S, Yang X, Zheng H, Wu W. Synbiotics Supplements Lower the Risk of Hand, Foot, and Mouth Disease in Children, Potentially by Providing Resistance to Gut Microbiota Dysbiosis. Front Cell Infect Microbiol 2021; 11:729756. [PMID: 34660342 PMCID: PMC8515124 DOI: 10.3389/fcimb.2021.729756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) is an acute enterovirus-induced disease. Gut microbiota dysbiosis has been identified as a factor that plays an important role in enteral virus infection, but the gut microbiota profile in hand, foot and mouth disease has rarely been studied in a large population. Methods A total of 749 children (HFMD: n = 262, healthy control: n = 487) aged 2 to 7 years were recruited from hospitals and communities in the period from May to July, 2017. Clinical and demographical information was collected by trained personnel, and fecal samples were collected and processed for 16S ribosomal RNA(rRNA) gene sequencing. Results We observed a significant alteration in the microbiota profile of children with HFMD compared with that of control children. Patients with enteroviruses A71(EV71) positive had more dysbiotic gut microbiota than those with coxsackievirus A16 (CAV16) positive. We found that Prevotella and Streptococcus were enriched in children with HFMD, whereas beneficial bacteria, including Bifidobacterium and Faecalibacterium, were depleted. Children with synbiotics supplements had lower risk of HFMD and we observed that the gut microbiota of HFMD patients who were administered synbiotics exhibited potential resistance to the dysbiosis detected in HFMD. Conclusions This study suggested that the gut microbiota of patients with hand, foot and mouth disease exhibits dysbiosis and that synbiotics supplements potentially helps maintain the homeostasis of the gut flora.
Collapse
Affiliation(s)
- Xiaoying Guo
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Zixin Lan
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yaling Wen
- School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guangxi, China
| | - Chanjiao Zheng
- Modern Service Industry Department, Guangzhou Technician College, Guangzhou, China
| | - Zuhua Rong
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Siyi Chen
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xingfen Yang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Huimin Zheng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Wu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
62
|
Vomhof-DeKrey EE, Stover A, Basson MD. Microbiome diversity declines while distinct expansions of Th17, iNKT, and dendritic cell subpopulations emerge after anastomosis surgery. Gut Pathog 2021; 13:51. [PMID: 34376235 PMCID: PMC8353768 DOI: 10.1186/s13099-021-00447-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Anastomotic failure causes morbidity and mortality even in technically correct anastomoses. Initial leaks must be prevented by mucosal reapproximation across the anastomosis. Healing is a concerted effort between intestinal epithelial cells (IECs), immune cells, and commensal bacteria. IEC TLR4 activation and signaling is required for mucosal healing, leading to inflammatory factor release that recruits immune cells to limit bacteria invasion. TLR4 absence leads to mucosal damage from loss in epithelial proliferation, attenuated inflammatory response, and bacteria translocation. We hypothesize after anastomosis, an imbalance in microbiota will occur due to a decrease in TLR4 expression and will lead to changes in the immune milieu. RESULTS We isolated fecal content and small intestinal leukocytes from murine, Roux-en-Y and end-to-end anastomoses, to identify microbiome changes and subsequent alterations in the regulatory and pro-inflammatory immune cells 3 days post-operative. TLR4+ IECs were impaired after anastomosis. Microbiome diversity was reduced, with Firmicutes, Bacteroidetes, and Saccharibacteria decreased and Proteobacteria increased. A distinct TCRβhi CD4+ T cells subset after anastomosis was 10-20-fold greater than in control mice. 84% were Th17 IL-17A/F+ IL-22+ and/or TNFα+. iNKT cells were increased and TCRβhi. 75% were iNKT IL-10+ and 13% iNKTh17 IL-22+. Additionally, Treg IL-10+ and IL-22+ cells were increased. A novel dendritic cell subset was identified in anastomotic regions that was CD11bhi CD103mid and was 93% IL-10+. CONCLUSIONS This anastomotic study demonstrated a decrease in IEC TLR4 expression and microbiome diversity which then coincided with increased expansion of regulatory and pro-inflammatory immune cells and cytokines. Defining the anastomotic mucosal environment could help inform innovative therapeutics to target excessive pro-inflammatory invasion and microbiome imbalance.
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
| | - Allie Stover
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
| | - Marc D. Basson
- Department of Surgery, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
- Department of Pathology, University of North Dakota School of Medicine and the Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND 58202 USA
| |
Collapse
|
63
|
Tang X, Liu X, Zhong J, Fang R. Potential Application of Lonicera japonica Extracts in Animal Production: From the Perspective of Intestinal Health. Front Microbiol 2021; 12:719877. [PMID: 34434181 PMCID: PMC8381474 DOI: 10.3389/fmicb.2021.719877] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023] Open
Abstract
Lonicera japonica (L. japonica) extract is rich in active substances, such as phenolic acids, essential oils, flavones, saponins, and iridoids, which have a broad spectrum of antioxidant, anti-inflammatory, and anti-microbial effect. Previous studies have demonstrated that L. japonica has a good regulatory effect on animal intestinal health, which can be used as a potential antibiotic substitute product. However, previous studies about intestinal health regulation mainly focus on experimental animals or cells, like mice, rats, HMC-1 Cells, and RAW 264.7 cells. In this review, the intestinal health benefits including antioxidant, anti-inflammatory, and antimicrobial activity, and its potential application in animal production were summarized. Through this review, we can see that the effects and mechanism of L. japonica extract on intestinal health regulation of farm and aquatic animals are still rare and unclear. Further studies could focus on the regulatory mechanism of L. japonica extract on intestinal health especially the protective effects of L. japonica extract on oxidative injury, inflammation, and regulation of intestinal flora in farm animals and aquatic animals, thereby providing references for the rational utilization and application of L. japonica and its extracts in animal production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
64
|
Mo J, Gao L, Zhang N, Xie J, Li D, Shan T, Fan L. Structural and quantitative alterations of gut microbiota in experimental small bowel obstruction. PLoS One 2021; 16:e0255651. [PMID: 34347831 PMCID: PMC8336877 DOI: 10.1371/journal.pone.0255651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/21/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate structural and quantitative alterations of gut microbiota in an experimental model of small bowel obstruction. METHOD A rat model of small bowel obstruction was established by using a polyvinyl chloride ring surgically placed surrounding the terminal ileum. The alterations of gut microbiota were studied after intestinal obstruction. Intraluminal fecal samples proximal to the obstruction were collected at different time points (24, 48 and 72 hours after obstruction) and analyzed by 16s rDNA high-throughput sequencing technology and quantitative PCR (qPCR) for target bacterial groups. Furthermore, intestinal claudin-1 mRNA expression was examined by real-time polymerase chain reaction analysis, and serum sIgA, IFABP and TFF3 levels were determined by enzyme-linked immunosorbent assay. RESULTS Small bowel obstruction led to significant bacterial overgrowth and profound alterations in gut microbiota composition and diversity. At the phylum level, the 16S rDNA sequences showed a marked decrease in the relative abundance of Firmicutes and increased abundance of Proteobacteria, Verrucomicrobia and Bacteroidetes. The qPCR analysis showed the absolute quantity of total bacteria increased significantly within 24 hours but did not change distinctly from 24 to 72 hours. Further indicators of intestinal mucosa damage and were observed as claudin-1 gene expression, sIgA and TFF3 levels decreased and IFABP level increased with prolonged obstruction. CONCLUSION Small bowel obstruction can cause significant structural and quantitative alterations of gut microbiota and induce disruption of gut mucosa barrier.
Collapse
MESH Headings
- Animals
- Bacteroidetes/genetics
- Claudin-1/genetics
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Disease Models, Animal
- Feces/microbiology
- Firmicutes/genetics
- Gastrointestinal Microbiome/genetics
- Gene Expression
- Ileum/microbiology
- Ileum/pathology
- Immunoglobulin A, Secretory/blood
- Immunoglobulin A, Secretory/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Intestinal Obstruction/blood
- Intestinal Obstruction/microbiology
- Male
- Phylogeny
- Proteobacteria/genetics
- RNA, Ribosomal, 16S/genetics
- Rats
- Rats, Wistar
- Verrucomicrobia/genetics
Collapse
Affiliation(s)
- Jiali Mo
- Graduate school of Tianjin Medical University, Tianjin, China
| | - Lei Gao
- Graduate school of Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Gastrointestinal Surgery, Nankai Hospital, Tianjin, China
| | - Jiliang Xie
- Department of Gastrointestinal Surgery, Nankai Hospital, Tianjin, China
| | - Donghua Li
- Department of Pharmacology, Tianjin Nankai Hospital, Tianjin, China
| | - Tao Shan
- Department of Gastrointestinal Surgery, Nankai Hospital, Tianjin, China
| | - Liuyang Fan
- Graduate school of Tianjin Medical University, Tianjin, China
| |
Collapse
|
65
|
Shin M. Food allergies and food-induced anaphylaxis: role of cofactors. Clin Exp Pediatr 2021; 64:393-399. [PMID: 33181008 PMCID: PMC8342881 DOI: 10.3345/cep.2020.01088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022] Open
Abstract
Food allergies and food-induced anaphylaxis are important health problems. Several cofactors modulating the onset of anaphylaxis have been identified. In the presence of cofactors, allergic reactions may be induced at lower doses of food allergens and/or become severe. Exercise and concomitant infections are well-documented cofactors of anaphylaxis in children. Other factors such as consumption of nonsteroidal anti-inflammatory drugs, alcohol ingestion, and stress have been reported. Cofactors reportedly play a role in approximately 30% of anaphylactic reactions in adults and 14%-18.3% in children. Food-dependent exercise-induced anaphylaxis (FDEIA) is the best-studied model of cofactor-induced anaphylaxis. Wheat-dependent exercise-induced anaphylaxis, the most common FDEIA condition, has been studied the most. The mechanisms of action of cofactors have not yet been fully identified. This review aims to educate clinicians on recent developments in the role of cofactors and highlight the importance of recognizing cofactors in food allergies and food-induced anaphylaxis.
Collapse
Affiliation(s)
- Meeyong Shin
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Korea
| |
Collapse
|
66
|
Pambianchi E, Pecorelli A, Valacchi G. Gastrointestinal tissue as a "new" target of pollution exposure. IUBMB Life 2021; 74:62-73. [PMID: 34289226 DOI: 10.1002/iub.2530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022]
Abstract
Airborne pollution has become a leading cause of global death in industrialized cities and the exposure to environmental pollutants has been demonstrated to have adverse effects on human health. Among the pollutants, particulate matter (PM) is one of the most toxic and although its exposure has been more commonly correlated with respiratory diseases, gastrointestinal (GI) complications have also been reported as a consequence to PM exposure. Due to its composition, PM is able to exert on intestinal mucosa both direct damaging effects, (by reaching it either via direct ingestion of contaminated food and water or indirect inhalation and consequent macrophagic mucociliary clearance) and indirect ones via generation of systemic inflammation. The relationship between respiratory and GI conditions is well described by the lung-gut axis and more recently, has become even clearer during coronavirus disease 2019 (COVID-19) pandemic, when respiratory symptoms were associated with gastrointestinal conditions. This review aims at pointing out the mechanisms and the models used to evaluate PM induced GI tract damage.
Collapse
Affiliation(s)
- Erika Pambianchi
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA
| | - Alessandra Pecorelli
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA.,Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
67
|
Wang R, Chen T, Wang Q, Yuan XM, Duan ZL, Feng ZY, Ding Y, Bu F, Shi GP, Chen YG. Total Flavone of Abelmoschus manihot Ameliorates Stress-Induced Microbial Alterations Drive Intestinal Barrier Injury in DSS Colitis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2999-3016. [PMID: 34267502 PMCID: PMC8276878 DOI: 10.2147/dddt.s313150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022]
Abstract
Purpose Total flavone of Abelmoschus manihot (TFA), the effective constituents extracted from Flos Abelmoschus Manihot, has been reported to inhibit inflammation. However, the effect of TFA on ulcerative colitis (UC) progression in patients with depression is unknown. The purpose of our research was to explore the anti-UC effects of TFA in the context of depression in mice with UC by regulating the gut microbiota to drive the intestinal barrier. Methods In this study, chronic stress (CS) and dextran sodium sulfate (DSS) were used to induce depression and UC, respectively, in C57BL/6J mice. Fecal microbiota transplantation (FMT) was used to evaluate how treating mice modeling UC and depression with TFA effected their gut microbiota. Results Our results showed that TFA effectively improved UC aggravated by CS. In addition, TFA treatment improved the depression-like phenotype, the disturbed gut microbiota, and the intestinal barrier function in CS mice. It is worth noting that FMT from the CS mice to the receptor group further aggravated the damage of the intestinal barrier and the disturbance of the gut microbiota in the recipient DSS mice, thus further aggravating UC, however, treatment of the intervention of TFA in the CS fecal microbiota transplant with TFA also played its therapeutic outcome. Conclusion Taken together, our results show that CS disrupts the gut microbiota, triggers intestinal barrier injury and aggravates DSS colitis, while TFA is a promising drug for the treatment of UC in patients with depression.
Collapse
Affiliation(s)
- Rong Wang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Tuo Chen
- Department of General Surgery, Affiliated hospital of Yangzhou university, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Qiong Wang
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiao-Min Yuan
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Zheng-Lan Duan
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Ze-Yu Feng
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yang Ding
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Fan Bu
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Guo-Ping Shi
- Collaborative Innovation Center for Cancer Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
68
|
Korlepara V, Kumar N, Banerjee S. Gut Microbiota And Inflammatory Disorders. Curr Drug Targets 2021; 23:156-169. [PMID: 34165407 DOI: 10.2174/1389450122666210623125603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
The gut has been colonized with bacteria, fungi, viruses, archaea, eukarya. The human and bacterial cells are found in a 1:1 ratio, while the variance in the diversity of gut microbiota may result in Dysbiosis. Gut dysbiosis may result in various pathological manifestations. Beneficial gut microbiota may synthesize short-chain fatty acids like acetate, butyrate, propionate, while -gram-negative organisms are the primary source of LPS, a potent pro-inflammatory mediator. Both gut microbiota and microbial products may be involved in immunomodulation as well as inflammation. Prebiotics and probiotics are being explored as therapeutic agents against various inflammatory and autoimmune disorders. Here we discuss the molecular mechanisms involved in gut bacteria-mediated modulation of various inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Vamsi Korlepara
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Naveen Kumar
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
69
|
Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021; 70:1174-1182. [PMID: 33272977 PMCID: PMC8108286 DOI: 10.1136/gutjnl-2020-323071] [Citation(s) in RCA: 571] [Impact Index Per Article: 190.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Metabolic disorders represent a growing worldwide health challenge due to their dramatically increasing prevalence. The gut microbiota is a crucial actor that can interact with the host by the production of a diverse reservoir of metabolites, from exogenous dietary substrates or endogenous host compounds. Metabolic disorders are associated with alterations in the composition and function of the gut microbiota. Specific classes of microbiota-derived metabolites, notably bile acids, short-chain fatty acids, branched-chain amino acids, trimethylamine N-oxide, tryptophan and indole derivatives, have been implicated in the pathogenesis of metabolic disorders. This review aims to define the key classes of microbiota-derived metabolites that are altered in metabolic diseases and their role in pathogenesis. They represent potential biomarkers for early diagnosis and prognosis as well as promising targets for the development of novel therapeutic tools for metabolic disorders.
Collapse
Affiliation(s)
- Allison Agus
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, Île-de-France, France,Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Île-de-France, France
| | - Karine Clément
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Île-de-France, France,Nutrition and Obesity: systemic approach (NutriOmics) research unit, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Sorbonne Universités, INSERM, Paris, Île-de-France, France
| | - Harry Sokol
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Île-de-France, France .,Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, Sorbonne Universite, INSERM, Paris, Île-de-France, France
| |
Collapse
|
70
|
Bossink EGBM, Zakharova M, de Bruijn DS, Odijk M, Segerink LI. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. LAB ON A CHIP 2021; 21:2040-2049. [PMID: 33861228 DOI: 10.1016/j.ooc.2021.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) measurements can be applied in organ-on-chips (OoCs) to estimate the barrier properties of a tissue or cell layer in a continuous, non-invasive, and label-free manner. Assessing the barrier integrity in in vitro models is valuable for studying and developing barrier targeting drugs. Several systems for measuring the TEER have been shown, but each of them having their own drawbacks. This article presents a cleanroom-free fabrication method for the integration of platinum electrodes in a polydimethylsiloxane OoC, allowing the real-time assessment of the barrier function by employing impedance spectroscopy. The proposed method and electrode arrangement allow visual inspection of the cells cultured in the device at the site of the electrodes, and multiplexing of both the electrodes in one OoC and the number of OoCs in one device. The effectiveness of our system is demonstrated by lining the OoC with intestinal epithelial cells, creating a gut-on-chip, where we monitored the formation, as well as the disruption and recovery of the cell barrier during a 21 day culture period. The application is further expanded by creating a blood-brain-barrier, to show that the proposed fabrication method can be applied to monitor the barrier formation in the OoC for different types of biological barriers.
Collapse
Affiliation(s)
- Elsbeth G B M Bossink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mariia Zakharova
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Douwe S de Bruijn
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Loes I Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
71
|
Crawford MS, Nordgren TM, McCole DF. Every breath you take: Impacts of environmental dust exposure on intestinal barrier function-from the gut-lung axis to COVID-19. Am J Physiol Gastrointest Liver Physiol 2021; 320:G586-G600. [PMID: 33501887 PMCID: PMC8054554 DOI: 10.1152/ajpgi.00423.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
As countries continue to industrialize, major cities experience diminished air quality, whereas rural populations also experience poor air quality from sources such as agricultural operations. These exposures to environmental pollution from both rural and populated/industrialized sources have adverse effects on human health. Although respiratory diseases (e.g., asthma and chronic obstructive pulmonary disease) are the most commonly reported following long-term exposure to particulate matter and hazardous chemicals, gastrointestinal complications have also been associated with the increased risk of lung disease from inhalation of polluted air. The interconnectedness of these organ systems has offered valuable insights into the roles of the immune system and the micro/mycobiota as mediators of communication between the lung and the gut during disease states. A topical example of this relationship is provided by reports of multiple gastrointestinal symptoms in patients with coronavirus disease 2019 (COVID-19), whereas the rapid transmission and increased risk of COVID-19 has been linked to poor air quality and high levels of particulate matter. In this review, we focus on the mechanistic effects of environmental pollution on disease progression with special emphasis on the gut-lung axis.
Collapse
Affiliation(s)
- Meli'sa S Crawford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| |
Collapse
|
72
|
Rashmi, More SK, Wang Q, Vomhof-DeKrey EE, Porter JE, Basson MD. ZINC40099027 activates human focal adhesion kinase by accelerating the enzymatic activity of the FAK kinase domain. Pharmacol Res Perspect 2021; 9:e00737. [PMID: 33715263 PMCID: PMC7955952 DOI: 10.1002/prp2.737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Focal adhesion kinase (FAK) regulates gastrointestinal epithelial restitution and healing. ZINC40099027 (Zn27) activates cellular FAK and promotes intestinal epithelial wound closure in vitro and in mice. However, whether Zn27 activates FAK directly or indirectly remains unknown. We evaluated Zn27 potential modulation of the key phosphatases, PTP-PEST, PTP1B, and SHP2, that inactivate FAK, and performed in vitro kinase assays with purified FAK to assess direct Zn27-FAK interaction. In human Caco-2 cells, Zn27-stimulated FAK-Tyr-397 phosphorylation despite PTP-PEST inhibition and did not affect PTP1B-FAK interaction or SHP2 activity. Conversely, in vitro kinase assays demonstrated that Zn27 directly activates both full-length 125 kDa FAK and its 35 kDa kinase domain. The ATP-competitive FAK inhibitor PF573228 reduced basal and ZN27-stimulated FAK phosphorylation in Caco-2 cells, but Zn27 increased FAK phosphorylation even in cells treated with PF573228. Increasing PF573228 concentrations completely prevented activation of 35 kDa FAK in vitro by a normally effective Zn27 concentration. Conversely, increasing Zn27 concentrations dose-dependently activated kinase activity and overcame PF573228 inhibition of FAK, suggesting the direct interactions of Zn27 with FAK may be competitive. Zn27 increased the maximal activity (Vmax ) of FAK. The apparent Km of the substrate also increased under laboratory conditions less relevant to intracellular ATP concentrations. These results suggest that Zn27 is highly potent and enhances FAK activity via allosteric interaction with the FAK kinase domain to increase the Vmax of FAK for ATP. Understanding Zn27 enhancement of FAK activity will be important to redesign and develop a clinical drug that can promote mucosal wound healing.
Collapse
Affiliation(s)
- Rashmi
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Shyam K More
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Emilie E Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| | - Marc D Basson
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
73
|
Cuozzo M, Castelli V, Avagliano C, Cimini A, d’Angelo M, Cristiano C, Russo R. Effects of Chronic Oral Probiotic Treatment in Paclitaxel-Induced Neuropathic Pain. Biomedicines 2021; 9:biomedicines9040346. [PMID: 33808052 PMCID: PMC8066538 DOI: 10.3390/biomedicines9040346] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) represents one of the most prevalent and potentially disabling side effects due to the use of anticancer drugs, one of the primary neuropathies detected is peripheral neuropathy induced by administration of taxanes, including paclitaxel. It has been demonstrated that gut microbiota is crucial for the therapeutic effect of chemotherapeutic drugs for inhibiting tumor growth and contributed to the pathogenesis of the CIPN. The use of nutraceuticals has receiving growing attention from the research community due to their phytochemical, biological, and pharmacological properties. It has been demonstrated that probiotic formulations may both reduce inflammation and modulate the expression of pain receptors. Our studies tested the efficacy of a probiotic formulation, SLAB51, in preventing paclitaxel-induced neuropathy. Interestingly, our probiotic formulation was able to keep the gut integrity, preserving its functionality, in CIPN-mice, moreover, it prevented the mechanical and cold hypersensitivity induced in paclitaxel-mice. Additionally, ex-vivo analysis showed that in CIPN-mice the pro-biotic treatment increased the expression of opioid and cannabinoid receptors in spinal cord, it prevented in the reduction in nerve fiber damage in the paws and modulated the serum proinflammatory cytokines concentration. On basis of these data, the use of this specific probiotic formulation may represent a valid adjuvant agent to paclitaxel, useful and not toxic for long-lasting therapies.
Collapse
Affiliation(s)
- Mariarosaria Cuozzo
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (M.C.); (C.A.); (R.R.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.C.)
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (M.C.); (C.A.); (R.R.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.C.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.C.)
- Correspondence: (M.d.); (C.C.)
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (M.C.); (C.A.); (R.R.)
- Task Force on Microbiome Studies, University of Naples “Federico II”, 80131 Naples, Italy
- Correspondence: (M.d.); (C.C.)
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (M.C.); (C.A.); (R.R.)
- Task Force on Microbiome Studies, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
74
|
Sommer K, Wiendl M, Müller TM, Heidbreder K, Voskens C, Neurath MF, Zundler S. Intestinal Mucosal Wound Healing and Barrier Integrity in IBD-Crosstalk and Trafficking of Cellular Players. Front Med (Lausanne) 2021; 8:643973. [PMID: 33834033 PMCID: PMC8021701 DOI: 10.3389/fmed.2021.643973] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelial barrier is carrying out two major functions: restricting the entry of potentially harmful substances while on the other hand allowing the selective passage of nutrients. Thus, an intact epithelial barrier is vital to preserve the integrity of the host and to prevent development of disease. Vice versa, an impaired intestinal epithelial barrier function is a hallmark in the development and perpetuation of inflammatory bowel disease (IBD). Besides a multitude of genetic, molecular and cellular alterations predisposing for or driving barrier dysintegrity in IBD, the appearance of intestinal mucosal wounds is a characteristic event of intestinal inflammation apparently inducing breakdown of the intestinal epithelial barrier. Upon injury, the intestinal mucosa undergoes a wound healing process counteracting this breakdown, which is controlled by complex mechanisms such as epithelial restitution, proliferation and differentiation, but also immune cells like macrophages, granulocytes and lymphocytes. Consequently, the repair of mucosal wounds is dependent on a series of events including coordinated trafficking of immune cells to dedicated sites and complex interactions among the cellular players and other mediators involved. Therefore, a better understanding of the crosstalk between epithelial and immune cells as well as cell trafficking during intestinal wound repair is necessary for the development of improved future therapies. In this review, we summarize current concepts on intestinal mucosal wound healing introducing the main cellular mediators and their interplay as well as their trafficking characteristics, before finally discussing the clinical relevance and translational approaches to therapeutically target this process in a clinical setting.
Collapse
Affiliation(s)
- Katrin Sommer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja M Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karin Heidbreder
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Caroline Voskens
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
75
|
Trzeciak P, Herbet M. Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression. Nutrients 2021; 13:927. [PMID: 33809367 PMCID: PMC8000572 DOI: 10.3390/nu13030927] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The intestinal microbiota plays an important role in the pathophysiology of depression. As determined, the microbiota influences the shaping and modulation of the functioning of the gut-brain axis. The intestinal microbiota has a significant impact on processes related to neurotransmitter synthesis, the myelination of neurons in the prefrontal cortex, and is also involved in the development of the amygdala and hippocampus. Intestinal bacteria are also a source of vitamins, the deficiency of which is believed to be related to the response to antidepressant therapy and may lead to exacerbation of depressive symptoms. Additionally, it is known that, in periods of excessive activation of stress reactions, the immune system also plays an important role, negatively affecting the tightness of the intestinal barrier and intestinal microflora. In this review, we have summarized the role of the gut microbiota, its metabolites, and diet in susceptibility to depression. We also describe abnormalities in the functioning of the intestinal barrier caused by increased activity of the immune system in response to stressors. Moreover, the presented study discusses the role of psychobiotics in the prevention and treatment of depression through their influence on the intestinal barrier, immune processes, and functioning of the nervous system.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland;
| |
Collapse
|
76
|
Ferguson M, Petkau K, Shin M, Galenza A, Fast D, Foley E. Differential effects of commensal bacteria on progenitor cell adhesion, division symmetry and tumorigenesis in the Drosophila intestine. Development 2021; 148:dev.186106. [DOI: 10.1242/dev.186106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Microbial factors influence homeostatic and oncogenic growth in the intestinal epithelium. However, we know little about immediate effects of commensal bacteria on stem cell division programs. In this study, we examined the effects of commensal Lactobacillus species on homeostatic and tumorigenic stem cell proliferation in the female Drosophila intestine. We identified Lactobacillus brevis as a potent stimulator of stem cell divisions. In a wild-type midgut, L.brevis activates growth regulatory pathways that drive stem cell divisions. In a Notch-deficient background, L.brevis-mediated proliferation causes rapid expansion of mutant progenitors, leading to accumulation of large, multi-layered tumors throughout the midgut. Mechanistically, we showed that L.brevis disrupts expression and subcellular distribution of progenitor cell integrins, supporting symmetric divisions that expand intestinal stem cell populations. Collectively, our data emphasize the impact of commensal microbes on division and maintenance of the intestinal progenitor compartment.
Collapse
Affiliation(s)
- Meghan Ferguson
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kristina Petkau
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Anthony Galenza
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David Fast
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
77
|
Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Front Nutr 2021; 8:586564. [PMID: 33768107 PMCID: PMC7985180 DOI: 10.3389/fnut.2021.586564] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules from 18 to 24 nucleotides that are produced by prokaryote and eukaryote organisms, which play a crucial role in regulating gene expression through binding to their mRNA targets. MiRNAs have acquired special attention for their potential in cross kingdom communication, notably food-derived microRNAs (xenomiRs), which could have an impact on microorganism and mammal physiology. In this review, we mainly aim to deal with new perspectives on: (1) The mechanism by which food-derived xenomiRs (mainly dietary plant xenomiRs) could be incorporated into humans through diet, in a free form, associated with proteins or encapsulated in exosome-like nanoparticles. (2) The impact of dietary plant-derived miRNAs in modulating gut microbiota composition, which in turn, could regulate intestinal barrier permeability and therefore, affect dietary metabolite, postbiotics or food-derived miRNAs uptake efficiency. Individual gut microbiota signature/composition could be also involved in xenomiR uptake efficiency through several mechanisms such us increasing the bioavailability of exosome-like nanoparticles miRNAs. (3) Gut microbiota dysbiosis has been proposed to contribute to disease development by affecting gut epithelial barrier permeability. For his reason, the availability and uptake of dietary plant xenomiRs might depend, among other factors, on this microbiota-related permeability of the intestine. We hypothesize and critically review that xenomiRs-microbiota interaction, which has been scarcely explored yet, could contribute to explain, at least in part, the current disparity of evidences found dealing with dietary miRNA uptake and function in humans. Furthermore, dietary plant xenomiRs could be involved in the establishment of the multiple gut microenvironments, in which microorganism would adapt in order to optimize the resources and thrive in them. Additionally, a particular xenomiR could preferentially accumulate in a specific region of the gastrointestinal tract and participate in the selection and functions of specific gut microbial communities.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J. Alfredo Martínez
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
78
|
Zhou JM, Zhang HJ, Wu SG, Qiu K, Fu Y, Qi GH, Wang J. Supplemental Xylooligosaccharide Modulates Intestinal Mucosal Barrier and Cecal Microbiota in Laying Hens Fed Oxidized Fish Oil. Front Microbiol 2021; 12:635333. [PMID: 33692770 PMCID: PMC7937631 DOI: 10.3389/fmicb.2021.635333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 12/05/2022] Open
Abstract
Our previous study indicated that dietary xylooligosaccharide (XOS) supplementation improved feed efficiency, ileal morphology, and nutrient digestibility in laying hens. The objective of this study was to evaluate the mitigative effects of XOS on intestinal mucosal barrier impairment and microbiota dysbiosis induced by oxidized fish oil (OFO) in laying hens. A total of 384 Hy-Line Brown layers at 50 weeks of age were randomly divided into four dietary treatments, including the diets supplemented with 20 g/kg of fresh fish oil (FFO group) or 20 g/kg of oxidized fish oil (OFO group), and the OFO diets with XOS addition at 200 mg/kg (OFO/XOS200 group) or 400 mg/kg (OFO/XOS400 group). Each treatment had eight replicates with 12 birds each. The OFO treatment decreased (P < 0.05) the production performance of birds from 7 to 12 weeks of the experiment, reduced (P < 0.05) ileal mucosal secretory immunoglobulin A (sIgA) content, and increased (P < 0.05) serum endotoxin concentration, as well as downregulated (P < 0.05) mRNA expression of claudin-1 (CLDN1) and claudin-5 (CLDN5) in the ileal mucosa at the end of the experiment. Dietary XOS addition (400 mg/kg) recovered (P < 0.05) these changes and further improved (P < 0.05) ileal villus height (VH) and the villus height-to-crypt depth ratio (VCR). In addition, OFO treatment altered cecal microbial composition of layers, and these alterations were probably involved in OFO-induced ileal mucosal impairment as causes or consequences. Supplemental XOS remodeled cecal microbiota of layers fed the OFO diet, characterized by an elevation in microbial richness and changes in microbial composition, including increases in Firmicutes, Ruminococcaceae, Verrucomicrobia (Akkermansia), Paraprevotella, Prevotella_9, and Oscillospira, along with a decrease in Erysipelatoclostridium. The increased abundance of Verrucomicrobia (Akkermansia) had positive correlations with the improved ileal VH and ileal mucosal expression of CLDN1. The abundance of Erysipelatoclostridium decreased by XOS addition was negatively associated with ileal VH, VCR, ileal mucosal sIgA content, and the relative expression of zonula occludens-2, CLDN1, and CLDN5. Collectively, supplemental XOS alleviated OFO-induced intestinal mucosal barrier dysfunction and performance impairment in laying hens, which could be at least partially attributed to the modulation of gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
79
|
Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol 2021; 11:1463-1482. [PMID: 33610769 PMCID: PMC8025057 DOI: 10.1016/j.jcmgh.2021.02.007] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
The human gastrointestinal tract (GI) harbors a diverse population of microbial life that continually shapes host pathophysiological responses. Despite readily available abundant metagenomic data, the functional dynamics of gut microbiota remain to be explored in various health and disease conditions. Microbiota generate a variety of metabolites from dietary products that influence host health and pathophysiological functions. Since gut microbial metabolites are produced in close proximity to gut epithelium, presumably they have significant impact on gut barrier function and immune responses. The goal of this review is to discuss recent advances on gut microbial metabolites in the regulation of intestinal barrier function. While the mechanisms of action of these metabolites are only beginning to emerge, they mainly point to a small group of shared pathways that control gut barrier functions. Amidst expanding technology and broadening knowledge, exploitation of beneficial microbiota and their metabolites to restore pathophysiological balance will likely prove to be an extremely useful remedial tool.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Caleb Samuel Whitley
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
80
|
Franzin M, Stefančič K, Lucafò M, Decorti G, Stocco G. Microbiota and Drug Response in Inflammatory Bowel Disease. Pathogens 2021; 10:211. [PMID: 33669168 PMCID: PMC7919657 DOI: 10.3390/pathogens10020211] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
A mutualistic relationship between the composition, function and activity of the gut microbiota (GM) and the host exists, and the alteration of GM, sometimes referred as dysbiosis, is involved in various immune-mediated diseases, including inflammatory bowel disease (IBD). Accumulating evidence suggests that the GM is able to influence the efficacy of the pharmacological therapy of IBD and to predict whether individuals will respond to treatment. Additionally, the drugs used to treat IBD can modualate the microbial composition. The review aims to investigate the impact of the GM on the pharmacological therapy of IBD and vice versa. The GM resulted in an increase or decrease in therapeutic responses to treatment, but also to biotransform drugs to toxic metabolites. In particular, the baseline GM composition can help to predict if patients will respond to the IBD treatment with biologic drugs. On the other hand, drugs can affect the GM by incrementing or reducing its diversity and richness. Therefore, the relationship between the GM and drugs used in the treatment of IBD can be either beneficial or disadvantageous.
Collapse
Affiliation(s)
- Martina Franzin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Katja Stefančič
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| | - Marianna Lucafò
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (K.S.); (G.S.)
| |
Collapse
|
81
|
Agnes A, Puccioni C, D'Ugo D, Gasbarrini A, Biondi A, Persiani R. The gut microbiota and colorectal surgery outcomes: facts or hype? A narrative review. BMC Surg 2021; 21:83. [PMID: 33579260 PMCID: PMC7881582 DOI: 10.1186/s12893-021-01087-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) has been proposed as one of the main determinants of colorectal surgery complications and theorized as the "missing factor" that could explain still poorly understood complications. Herein, we investigate this theory and report the current evidence on the role of the GM in colorectal surgery. METHODS We first present the findings associating the role of the GM with the physiological response to surgery. Second, the change in GM composition during and after surgery and its association with colorectal surgery complications (ileus, adhesions, surgical-site infections, anastomotic leak, and diversion colitis) are reviewed. Finally, we present the findings linking GM science to the application of the enhanced recovery after surgery (ERAS) protocol, for the use of oral antibiotics with mechanical bowel preparation and for the administration of probiotics/synbiotics. RESULTS According to preclinical and translational evidence, the GM is capable of influencing colorectal surgery outcomes. Clinical evidence supports the application of an ERAS protocol and the preoperative administration of multistrain probiotics/synbiotics. GM manipulation with oral antibiotics with mechanical bowel preparation still has uncertain benefits in right-sided colic resection but is very promising for left-sided colic resection. CONCLUSIONS The GM may be a determinant of colorectal surgery outcomes. There is an emerging need to implement translational research on the topic. Future clinical studies should clarify the composition of preoperative and postoperative GM and the impact of the GM on different colorectal surgery complications and should assess the validity of GM-targeted measures in effectively reducing complications for all colorectal surgery locations.
Collapse
Affiliation(s)
- Annamaria Agnes
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy
| | - Caterina Puccioni
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
| | - Domenico D'Ugo
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy
| | - Antonio Gasbarrini
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy
| | - Alberto Biondi
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy.
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy.
| | - Roberto Persiani
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy
| |
Collapse
|
82
|
Gu BH, Kim M, Yun CH. Regulation of Gastrointestinal Immunity by Metabolites. Nutrients 2021; 13:nu13010167. [PMID: 33430497 PMCID: PMC7826526 DOI: 10.3390/nu13010167] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract contains multiple types of immune cells that maintain the balance between tolerance and activation at the first line of host defense facing non-self antigens, including dietary antigens, commensal bacteria, and sometimes unexpected pathogens. The maintenance of homeostasis at the gastrointestinal tract requires stringent regulation of immune responses against various environmental conditions. Dietary components can be converted into gut metabolites with unique functional activities through host as well as microbial enzymatic activities. Accumulating evidence demonstrates that gastrointestinal metabolites have significant impacts on the regulation of intestinal immunity and are further integrated into the immune response of distal mucosal tissue. Metabolites, especially those derived from the microbiota, regulate immune cell functions in various ways, including the recognition and activation of cell surface receptors, the control of gene expression by epigenetic regulation, and the integration of cellular metabolism. These mucosal immune regulations are key to understanding the mechanisms underlying the development of gastrointestinal disorders. Here, we review recent advancements in our understanding of the role of gut metabolites in the regulation of gastrointestinal immunity, highlighting the cellular and molecular regulatory mechanisms by macronutrient-derived metabolites.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Myunghoo Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
- Correspondence: (M.K.); (C.-H.Y.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
- Correspondence: (M.K.); (C.-H.Y.)
| |
Collapse
|
83
|
Mumolo MG, Rettura F, Melissari S, Costa F, Ricchiuti A, Ceccarelli L, de Bortoli N, Marchi S, Bellini M. Is Gluten the Only Culprit for Non-Celiac Gluten/Wheat Sensitivity? Nutrients 2020; 12:E3785. [PMID: 33321805 PMCID: PMC7762999 DOI: 10.3390/nu12123785] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The gluten-free diet (GFD) has gained increasing popularity in recent years, supported by marketing campaigns, media messages and social networks. Nevertheless, real knowledge of gluten and GF-related implications for health is still poor among the general population. The GFD has also been suggested for non-celiac gluten/wheat sensitivity (NCG/WS), a clinical entity characterized by intestinal and extraintestinal symptoms induced by gluten ingestion in the absence of celiac disease (CD) or wheat allergy (WA). NCG/WS should be regarded as an "umbrella term" including a variety of different conditions where gluten is likely not the only factor responsible for triggering symptoms. Other compounds aside from gluten may be involved in the pathogenesis of NCG/WS. These include fructans, which are part of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), amylase trypsin inhibitors (ATIs), wheat germ agglutinin (WGA) and glyphosate. The GFD might be an appropriate dietary approach for patients with self-reported gluten/wheat-dependent symptoms. A low-FODMAP diet (LFD) should be the first dietary option for patients referring symptoms more related to FODMAPs than gluten/wheat and the second-line treatment for those with self-reported gluten/wheat-related symptoms not responding to the GFD. A personalized approach, regular follow-up and the help of a skilled dietician are mandatory.
Collapse
Affiliation(s)
| | - Francesco Rettura
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.M.); (S.M.); (F.C.); (A.R.); (L.C.); (N.d.B.); (S.M.); (M.B.)
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Salvo E, Stokes P, Keogh CE, Brust-Mascher I, Hennessey C, Knotts TA, Sladek JA, Rude KM, Swedek M, Rabasa G, Gareau MG. A murine model of pediatric inflammatory bowel disease causes microbiota-gut-brain axis deficits in adulthood. Am J Physiol Gastrointest Liver Physiol 2020; 319:G361-G374. [PMID: 32726162 PMCID: PMC7509259 DOI: 10.1152/ajpgi.00177.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic intestinal diseases, frequently associated with comorbid psychological and cognitive deficits. These neuropsychiatric effects include anxiety, depression, and memory impairments that can be seen both during active disease and following remission and are more frequently seen in pediatric patients. The mechanism(s) through which these extraintestinal deficits develop remain unknown, and the study of these phenomenon is hampered by a lack of murine pediatric IBD models. Herein we describe microbiota-gut-brain (MGB) axis deficits following induction of colitis in a pediatric setting. Acute colitis was induced by administration of 2% dextran sodium sulfate (DSS) for 5 days starting at weaning [postnatal day (P)21] causing reduced weight gain, colonic shortening, and colonic inflammation by 8 days post-DSS (P29), which were mostly resolved in adult (P56) mice. Despite resolution of acute disease, cognitive deficits (novel object recognition task) and anxiety-like behavior (light/dark box) were identified in the absence of changes in exploratory behavior (open field test) in P56 mice previously treated with DSS at weaning. Behavioral deficits were found in conjunction with neuroinflammation, decreased neurogenesis, and altered expression of pattern recognition receptor genes in the hippocampus. Additionally, persistent alterations in the gut microbiota composition were observed at P56, including reduced butyrate-producing species. Taken together, these results describe for the first time the presence of MGB axis deficits following induction of colitis at weaning, which persist in adulthood.NEW & NOTEWORTHY Here we describe long-lasting impacts on the microbiota-gut-brain (MGB) axis following administration of low-dose dextran sodium sulfate (DSS) to weaning mice (P21), including gut dysbiosis, colonic inflammation, and brain/behavioral deficits in adulthood (P56). Early-life DSS leads to acute colonic inflammation, similar to adult mice; however, it results in long-lasting deficits in the MGB axis in adulthood (P56), in contrast to the transient deficits seen in adult DSS. This model highlights the unique features of pediatric inflammatory bowel disease.
Collapse
Affiliation(s)
- Eloisa Salvo
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| | - Patricia Stokes
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| | - Ciara E. Keogh
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| | - Ingrid Brust-Mascher
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| | - Carly Hennessey
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| | - Trina A. Knotts
- 2Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Jessica A. Sladek
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| | - Kavi M. Rude
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| | - Michelle Swedek
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| | - Gonzalo Rabasa
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| | - Mélanie G. Gareau
- 1Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California
| |
Collapse
|
85
|
Elias-Oliveira J, Leite JA, Pereira ÍS, Guimarães JB, Manso GMDC, Silva JS, Tostes RC, Carlos D. NLR and Intestinal Dysbiosis-Associated Inflammatory Illness: Drivers or Dampers? Front Immunol 2020; 11:1810. [PMID: 32903730 PMCID: PMC7438795 DOI: 10.3389/fimmu.2020.01810] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiome maintains a close relationship with the host immunity. This connection fosters a health state by direct and indirect mechanisms. Direct influences occur mainly through the production of short-chain fatty acids (SCFAs), gastrointestinal hormones and precursors of bioactive molecules. Indirect mechanisms comprise the crosstalk between bacterial products and the host's innate immune system. Conversely, intestinal dysbiosis is a condition found in a large number of chronic intestinal inflammatory diseases, such as ulcerative colitis and Crohn's disease, as well as in diseases associated with low-grade inflammation, such as obesity, type 1 and 2 diabetes mellitus and cardiovascular diseases. NOD-Like receptors (NLRs) are cytoplasmic receptors expressed by adaptive and innate immune cells that form a multiprotein complex, termed the inflammasome, responsible for the release of mature interleukin (IL)-1β and IL-18. NLRs are also involved in the recognition of bacterial components and production of antimicrobial molecules that shape the gut microbiota and maintain the intestinal homeostasis. Recent novel findings show that NLRs may act as positive or negative regulators of inflammation by modulating NF-κB activation. This mini-review presents current and updated evidence on the interplay between NLRs and gut microbiota and their dual role, contributing to progression or conferring protection, in diabetes and other inflammatory diseases.
Collapse
Affiliation(s)
- Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Antônio Leite
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ítalo Sousa Pereira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jhefferson Barbosa Guimarães
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel Martins da Costa Manso
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita Cássia Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
86
|
Zhang F, Qiao S, Li C, Wu B, Reischl S, Neumann PA. The immunologic changes during different phases of intestinal anastomotic healing. J Clin Lab Anal 2020; 34:e23493. [PMID: 32692419 PMCID: PMC7676198 DOI: 10.1002/jcla.23493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023] Open
Abstract
Intestinal anatomosis is a complex and multicellular process that involving three overlapped phases: exudative phase, proliferative phase, and reparative phase. Undisturbed anastomotic healings are crucial for the recovery of patients after operations but unsuccessful healings are linked with a considerable mortality. This time, we concentrate on the immunologic changes during different phases of intestinal anastomotic healing and select several major immune cells and cytokines of each phase to get a better understanding of these immunologic changes in different phases, which will be significant for more precise therapy strategies in anastomoses.
Collapse
Affiliation(s)
- Feng Zhang
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China.,Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Song Qiao
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China
| | - Chunqiao Li
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Bo Wu
- Department of General Surgery, Tongren Municipal People's Hospital of Guizhou Medical University(GMU), Guizhou, 554300, China
| | - Stefan Reischl
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| | - Philipp-Alexander Neumann
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich(TUM), Munich, 81675, Germany
| |
Collapse
|
87
|
Molecular and Microbial Signatures Predictive of Prebiotic Action of Neoagarotetraose in a Dextran Sulfate Sodium-Induced Murine Colitis Model. Microorganisms 2020; 8:microorganisms8070995. [PMID: 32635315 PMCID: PMC7409226 DOI: 10.3390/microorganisms8070995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023] Open
Abstract
Neoagarotetraose (NT), a hydrolytic product of agar by β-agarase, is known to possess bioactive properties. However, the mechanisms via which NT alleviates intestinal inflammation remain unknown. In this study, a dextran sulfate sodium (DSS)-induced murine model was developed to evaluate the effect of NT on gut microbiome and microbial metabolism using 16S rRNA gene sequencing and untargeted metabolomics. Our data demonstrate that NT ingestion improved gut integrity and inflammation scores. NT reversed the abundance of Proteobacteria from an elevated level induced by DSS and significantly increased the abundance of Verrucomicrobia. Further, NT significantly increased the abundance of Akkermansia and Lactobacillus and concomitantly decreased that of Sutterella, which were among the important features identified by random forests analysis contributing to classification accuracy for NT supplementation. A microbial signature consisting of Adlercreutzia (denominator) and Turicibacter (numerator) predicted the NT supplementation status. Moreover, NT significantly modulated multiple gut metabolites, particularly those related to histidine, polyamine and tocopherol metabolism. Together, our findings provided novel insights into the mechanisms by which NT modulated the gut microbiome and metabolome and should facilitate the development of NT as a potent prebiotic for colitis management.
Collapse
|
88
|
Do Antibiotics Reduce the Incidence of Infections After Percutaneous Endoscopic Gastrostomy Placement in Children? J Pediatr Gastroenterol Nutr 2020; 71:23-28. [PMID: 32205769 DOI: 10.1097/mpg.0000000000002709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Percutaneous endoscopic gastrostomy (PEG) provides a long-term solution for tube dependency. Pediatric guidelines recommend prophylactic antibiotic treatment (ABT) based on adult studies. AIM To compare wound infection and other complications in children receiving a PEG with and without prophylactic ABT. METHODS Retrospective study including children 0 to 18 years undergoing PEG placement. Patients with (2010-2013) and without (2000-2010) ABT were compared with respect to the occurrence of wound infection and other complications. RESULTS In total, 297 patients were included (median age 2.9 years, 53% boys). Patients receiving ABT per PEG protocol (n = 78) had a similar wound infection rate (17.9% vs 21%, P = 0.625), significantly less fever (3.8% vs 14.6%, P = 0.013), leakage (0% vs 9.1%, P = 0.003) and shorter hospital admission (2 vs 4 days, P = 0.000), but more overgranulation (28.2% vs 8.7%, P = 0.000) compared with those without (n = 219). Patients receiving any ABT, per PEG protocol or clinical indication (n = 115), had similar occurrence of wound infection (19.1% vs 20.9%, P = 0.768), fever (7.8% vs 14.3%, P = 0.100) and leakage (3.5% vs 8.8%, P = 0.096), a significantly shorter hospital admission (3 vs 4 days, P = 0.000), but more overgranulation (21.7% vs 8.8%, P =0.003) compared with those without (n = 182). CONCLUSIONS Prophylactic ABT does not seem to reduce the occurrence of wound infection but it might be beneficial with respect to fever, leakage and duration of hospital admission, but not overgranulation. A randomized controlled trial is needed to confirm our results.
Collapse
|
89
|
Suárez J, Stencel A. A part‐dependent account of biological individuality: why holobionts are individuals
and
ecosystems simultaneously. Biol Rev Camb Philos Soc 2020; 95:1308-1324. [DOI: 10.1111/brv.12610] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Javier Suárez
- Department of Philosophy, Logos/BIAP University of Barcelona C/Montalegre 6 Barcelona E‐08001 Spain
- Egenis – The Centre for the Study of Life Sciences University of Exeter St. German's Rd Exeter EX4 4PJ U.K
| | - Adrian Stencel
- Institute of Philosophy Jagiellonian University Kraków 31‐044 Poland
| |
Collapse
|
90
|
Zundler S, Tauschek V, Neurath MF. Immune Cell Circuits in Mucosal Wound Healing: Clinical Implications. Visc Med 2020; 36:129-136. [PMID: 32355670 DOI: 10.1159/000506846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background An intact mucosal barrier is essential for homeostasis in the gastrointestinal tract. Various pathological conditions such as infection or immune-mediated inflammation as well as therapeutic interventions like bowel surgery can result in injury of the intestinal mucosa. To counteract potential negative sequelae and to restore integrity of the tissue, a tightly regulated machinery of mechanisms exists, which crucially depends on the presence and absence of various immune cell subsets in different phases of intestinal wound healing. Cell trafficking is an increasingly acknowledged process that steers the localization of cells in tissues and the circulation. Thus, such cell circuits also crucially impact on the recruitment of immune cells in wound healing. Summary We performed a selective literature research. In our review, we will shortly delineate some basic principles of intestinal immune cell trafficking before discussing the contribution of different immune cells to wound healing. Finally, we will discuss potential clinical implications of immune cell trafficking and wound healing interactions in inflammatory bowel disease (IBD) and bowel surgery. Key Messages Intestinal wound healing has immense importance in pathological conditions like IBD, anastomotic healing, and others. Immune cell trafficking is indispensable for the correct temporal and spatial interaction of the cells involved. Further research is required to understand the final consequences of interfering with immune cell trafficking for intestinal wound healing.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| | - Verena Tauschek
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaul Campus for Medical Research & Translational Research Center, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
91
|
Gao X, Wang F, Zhao P, Zhang R, Zeng Q. Effect of heat-killed Streptococcus thermophilus on type 2 diabetes rats. PeerJ 2019; 7:e7117. [PMID: 31223540 PMCID: PMC6571132 DOI: 10.7717/peerj.7117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS The link between gut microbiota and type 2 diabetes (T2D) has been addressed by numerous studies. Streptococcus thermophilus from fermented milk products, has been used as a probiotic in previous research. However, whether heat-killed S. thermophilus can improve the glycemic parameters of diabetic rats remains unanswered. In this study, we evaluated the effect of heat-killed S. thermophilus on T2D model rats and the potential mechanisms of the effect. METHODS Zucker diabetic fatty (ZDF) rats were used to generate a diabetic rat model induced by feeding a high-fat diet. Heat-killed S. thermophilus were orally administered to normal and diabetic rats for 12 weeks. Intestinal microbiota analysis, histology analysis, oral glucose tolerance test and measurement of inflammatory factors were performed. RESULTS We found that heat-killed S. thermophilus treatment reduced fasting blood glucose levels and alleviated glucose intolerance and total cholesterol in diabetic ZDF rats. Additionally, heat-killed S. thermophilus increased the interleukin 10 while reducing the levels of lipopolysaccharide, interleukin 6, and tumor necrosis factor-α in diabetic ZDF rats. The heat-killed S. thermophilus treatment can normalize the structure of the intestinal and colon mucosal layer of diabetic rats. The characteristics of the gut microbiota in heat-killed S. thermophilus-treated and control rats were similar. At the genus level, the abundances of beneficial bacteria, including Ruminococcaceae, Veillonella, Coprococcus, and Bamesiella, were all significantly elevated by heat-killed S. thermophilus treatment in ZDF diabetic rats. CONCLUSION Our study supports the hypothesis that treatment with heat-killed S. thermophilus could effectively improve glycemic parameters in T2D model rats. In addition, the potential mechanisms underlying the protection maybe include changing the composition of gut microbiota, reinforcing the intestinal epithelial barrier and the immunity of the intestinal mucosa, decreasing the level of inflammation, and then reducing the insulin resistance.
Collapse
Affiliation(s)
- Xiangyang Gao
- Health Management Institute, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fei Wang
- Health Management Institute, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhao
- Health Management Institute, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
- Health Management Center, HangZhou Special Service Convalescent Center of Air Force, PLA, Hangzhou, China
| | - Rong Zhang
- Health Management Institute, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
92
|
Basmaciyan L, Bon F, Paradis T, Lapaquette P, Dalle F. " Candida Albicans Interactions With The Host: Crossing The Intestinal Epithelial Barrier". Tissue Barriers 2019; 7:1612661. [PMID: 31189436 PMCID: PMC6619947 DOI: 10.1080/21688370.2019.1612661] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023] Open
Abstract
Formerly a commensal organism of the mucosal surfaces of most healthy individuals, Candida albicans is an opportunistic pathogen that causes infections ranging from superficial to the more life-threatening disseminated infections, especially in the ever-growing population of vulnerable patients in the hospital setting. In these situations, the fungus takes advantage of its host following a disturbance in the host defense system and/or the mucosal microbiota. Overwhelming evidence suggests that the gastrointestinal tract is the main source of disseminated C. albicans infections. Major risk factors for disseminated candidiasis include damage to the mucosal intestinal barrier, immune dysfunction, and dysbiosis of the resident microbiota. A better understanding of C. albicans' interaction with the intestinal epithelial barrier will be useful for designing future therapies to avoid systemic candidiasis. In this review, we provide an overview of the current knowledge regarding the mechanisms of pathogenicity that allow the fungus to reach and translocate the gut barrier.
Collapse
Affiliation(s)
- Louise Basmaciyan
- Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon France
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Fabienne Bon
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Tracy Paradis
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Pierre Lapaquette
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Frédéric Dalle
- Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon France
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| |
Collapse
|