51
|
Vieira da Silva Torchelsen FK, Fernandes Pedrosa TC, Rodrigues MP, de Aguiar AR, de Oliveira FM, Amarante GW, Sales-Junior PA, Branquinho RT, Gomes da Silva SP, Talvani A, Fonseca Murta SM, Martins FT, Braun RL, Teixeira RR, Furtado Mosqueira VC, Lana MD. Novel diamides inspired by protein kinase inhibitors as anti- Trypanosoma cruzi agents: in vitro and in vivo evaluations. Future Med Chem 2023; 15:1469-1489. [PMID: 37650735 DOI: 10.4155/fmc-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Chagas disease is a life-threatening illness caused by Trypanosoma cruzi. The involvement of serine-/arginine-rich protein kinase in the T. cruzi life cycle is significant. Aims: To synthesize, characterize and evaluate the trypanocidal activity of diamides inspired by kinase inhibitor, SRPIN340. Material & Methods: Synthesis using a three-step process and characterization by infrared, nuclear magnetic resonance and high-resolution mass spectrometry were conducted. The selectivity index was obtained by the ratio of CC50/IC50 in two in vitro models. The most active compound, 3j, was evaluated using in vitro cytokine assays and assessing in vivo trypanocidal activity. Results: 3j activity in the macrophage J774 lineage showed an anti-inflammatory profile, and mice showed significantly reduced parasitemia and morbidity at low compound dosages. Conclusion: Novel diamide is active against T. cruzi in vitro and in vivo.
Collapse
Affiliation(s)
| | - Tamiles Caroline Fernandes Pedrosa
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Alex Ramos de Aguiar
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | | | - Giovanni Wilson Amarante
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | | | - Renata Tupinambá Branquinho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Sirlaine Pio Gomes da Silva
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - André Talvani
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Felipe Terra Martins
- Departamento de Química, Universidade Federal de Goiás, Goiânia, Goiás, 74001-970, Brazil
| | - Rodrigo Ligabue Braun
- Departamento de Ciências Farmacêuticas, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Marta de Lana
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
52
|
Grund M, Choi SJ, Powell L, Lukomski S. Intranasal immunization with a Bucl8-based vaccine ameliorates bacterial burden and pathological inflammation, and promotes an IgG2a/b dominant response in an outbred mouse model of Burkholderia infection. Front Immunol 2023; 14:1177650. [PMID: 37545515 PMCID: PMC10399622 DOI: 10.3389/fimmu.2023.1177650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Burkholderia pseudomallei is a gram-negative bacterium that is the etiological agent of the tropical disease melioidosis. Currently, there is no licensed vaccine for melioidosis, but numerous candidates are being tested for protective efficacy and characterization of the elicited immune response. Our lab has previously reported the immunogenicity of a Bucl8-protein-based peptide antigen, designated L1-CRM197 (Cross-reacting material 197). When given subcutaneously, this vaccine formulation promoted a strong Th2 (IgG1) antibody response, however immunization did not protect from death. In this study, we hypothesized that an intranasally administered L1-CRM197 vaccine would induce protective mucosal immunity. To evaluate vaccine efficacy, we developed a surrogate Burkholderia infection model that employs outbred CD-1 mice which imitates the immunogenetic diversity of humans. Mice were immunized with either L1-CRM197 adjuvanted with fluorinated cyclic diguanosine monophosphate (FCDG) or with FCDG-only control. These mice were then challenged intranasally with an infectious dose of a luminescent strain of B. thailandensis E264 two weeks post-immunization, and correlates of protection were assessed in euthanized mice on days 1, 2, 3, and 7 post-infection. Overall, intranasal vaccination, compared to subcutaneous administration, induced a stronger Th1 (IgG2a/2b) to Th2 (IgG1) antibody response and promoted anti-L1 nasal, pulmonary, and systemic IgA. Additionally, sera IgG from L1-CRM197-vaccinated mice recognized whole-cell B. thailandensis and B. pseudomallei, a select agent exempt strain Bp82. Vaccination ameliorated disease indicators, including luminescent signal and bacterial cell counts, weight and temperature loss, and organ weight, which negatively correlated with IgG2a antibody levels and mucosa-stimulating cytokines IL-13 and IL-9. L1-CRM197-vaccinated mice also had earlier resolution of inflammatory and tissue-damaging cytokines compared to the FCDG-only controls. These results suggest a balanced humoral and cell-mediated response, along with mucosa-based immunity are beneficial for protection. Future efforts should further assess mucosal cellular and humoral mechanisms of protection and test such protection, using aerosolized B. pseudomallei select agent strain(s).
Collapse
Affiliation(s)
| | | | | | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
53
|
Jan S, Fratzke AP, Felgner J, Hernandez-Davies JE, Liang L, Nakajima R, Jasinskas A, Supnet M, Jain A, Felgner PL, Davies DH, Gregory AE. Multivalent vaccines demonstrate immunogenicity and protect against Coxiella burnetii aerosol challenge. Front Immunol 2023; 14:1192821. [PMID: 37533862 PMCID: PMC10390735 DOI: 10.3389/fimmu.2023.1192821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Vaccines are among the most cost-effective public health measures for controlling infectious diseases. Coxiella burnetii is the etiological agent of Q fever, a disease with a wide clinical spectrum that ranges from mild symptoms, such as fever and fatigue, to more severe disease, such as pneumonia and endocarditis. The formalin-inactivated whole-cell vaccine Q-VAX® contains hundreds of antigens and confers lifelong protection in humans, but prior sensitization from infection or vaccination can result in deleterious reactogenic responses to vaccination. Consequently, there is great interest in developing non-reactogenic alternatives based on adjuvanted recombinant proteins. In this study, we aimed to develop a multivalent vaccine that conferred protection with reduced reactogenicity. We hypothesized that a multivalent vaccine consisting of multiple antigens would be more immunogenic and protective than a monovalent vaccine owing to the large number of potential protective antigens in the C. burnetii proteome. To address this, we identified immunogenic T and B cell antigens, and selected proteins were purified to evaluate with a combination adjuvant (IVAX-1), with or without C. burnetii lipopolysaccharide (LPS) in immunogenicity studies in vivo in mice and in a Hartley guinea pig intratracheal aerosol challenge model using C. burnetii strain NMI RSA 493. The data showed that multivalent vaccines are more immunogenic than monovalent vaccines and more closely emulate the protection achieved by Q-VAX. Although six antigens were the most immunogenic, we also discovered that multiplexing beyond four antigens introduces detectable reactogenicity, indicating that there is an upper limit to the number of antigens that can be safely included in a multivalent Q-fever vaccine. C. burnetii LPS also demonstrates efficacy as a vaccine antigen in conferring protection in an otherwise monovalent vaccine formulation, suggesting that its addition in multivalent vaccines, as demonstrated by a quadrivalent formulation, would improve protective responses.
Collapse
Affiliation(s)
- Sharon Jan
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Alycia P. Fratzke
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
- Department of Pathology, Charles River Laboratories, Reno, NV, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jenny E. Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Li Liang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Medalyn Supnet
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Philip L. Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - D. Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Anthony E. Gregory
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
54
|
Aldahlawi AM, Zaher KSA. Dendritic Cell-Based Immunity: Screening of Dendritic Cell Subsets in Breast Cancer-Bearing Mice. J Microsc Ultrastruct 2023; 11:150-160. [PMID: 38025181 PMCID: PMC10679829 DOI: 10.4103/jmau.jmau_85_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
Background Breast cancer (BC) is the most devastating disease, particularly the lethal invasive form. It is the most underlying cause of death among women worldwide. The expansion of BC is controlled by a variety of alterations in the tumor cells themselves, in addition to the state of the immune system, which has a direct influence on the tumor microenvironment. Numerous receptors expressed by T-cells interact with ligands on antigen-presenting cells to provide activation signals results in mounting effector anti-tumor T-cell responses. On the other hand, there is a dearth of information about the actual interactions and reactions of T-cells and dendritic cells (DCs) all through the progression of tumor development. Aim Immune system response against BC was investigated through tumor induction in mice. The size and volume of the tumor were calculated. Moreover, the phenotypical profile of T-cells and DCs from lymph nodes (LN) and spleens of BC-bearing mice was investigated. In addition, the levels of Transforming growth factor-β, Interferon-gamma (IFN-γ), Interleukin IL-2, IL-10, IL-4, IL-12, and tumor necrosis factor (TNF)-α were determined. Materials and Methods MDA231 cells were utilized to induce BC in 30 white BALB/C mice, whereas the other 30 mice acted as healthy controls and were not treated with any cancer-causing agents. The impact of malignancy was evaluated using flow cytometry based on the marking surface molecules, as well as the titer of specific cytokines of the mice's LN culture using the ELISA method. These cytokines included transforming growth factor-β (TGF-β), IFN-γ, IL-2, IL -10, IL -4, IL -12, and TNF-α. Results The findings showed that the maturation of DCs was inhibited, followed by an accumulation of immature DCs. These immature DCs increase the release of TGF-β and cytokines like IL-10 and inhibit the release of IFN-γ and IL-12 in the culture supernatant of nodal lymph and spleen suspension of BC-bearing mice compared to control. In addition, there was a low expression of CD80 and CD86 on DCs, which indicates a low maturation process. Conclusion According to the findings, the tumor microenvironment may have been responsible for preventing the maturation of DCs. This, in turn, weakened the immune response and facilitated the ability of the tumor to proliferate. Furthermore, the tumor microenvironment increased the number of immature DCs by inhibiting their stimulation by overexpression of TGF-β-produced by regulatory T lymphocytes and stimulation of tumor cells. In addition, the tumor microenvironment stimulated the secretion of cytokines such as IL-10, and CD4 and decreased the secretion of IFN-γ-and IL-12 in tumor-induced mice cultured LN and spleen.
Collapse
Affiliation(s)
- Alia M Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Kawther Sayed Ali Zaher
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
55
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
56
|
Shen Y, Zheng B, Sun H, Wu S, Fan J, Ding J, Gao M, Kong Q, Lou D, Ding H, Zhuo X, Lu S. A live attenuated RHΔompdcΔuprt mutant of Toxoplasma gondii induces strong protective immunity against toxoplasmosis in mice and cats. Infect Dis Poverty 2023; 12:60. [PMID: 37322556 DOI: 10.1186/s40249-023-01109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular apicomplexan parasite and is responsible for zoonotic toxoplasmosis. It is essential to develop an effective anti-T. gondii vaccine for the control of toxoplasmosis, and this study is to explore the immunoprotective effects of a live attenuated vaccine in mice and cats. METHODS First, the ompdc and uprt genes of T. gondii were deleted through the CRISPR-Cas9 system. Then, the intracellular proliferation and virulence of this mutant strain were evaluated. Subsequently, the immune responses induced by this mutant in mice and cats were detected, including antibody titers, cytokine levels, and subsets of T lymphocytes. Finally, the immunoprotective effects were evaluated by challenge with tachyzoites of different strains in mice or cysts of the ME49 strain in cats. Furthermore, to discover the effective immune element against toxoplasmosis, passive immunizations were carried out. GraphPad Prism software was used to conduct the log-rank (Mantel-Cox) test, Student's t test and one-way ANOVA. RESULTS The RHΔompdcΔuprt were constructed by the CRISPR-Cas9 system. Compared with the wild-type strain, the mutant notably reduced proliferation (P < 0.05). In addition, the mutant exhibited virulence attenuation in both murine (BALB/c and BALB/c-nu) and cat models. Notably, limited pathological changes were found in tissues from RHΔompdcΔuprt-injected mice. Furthermore, compared with nonimmunized group, high levels of IgG (IgG1 and IgG2a) antibodies and cytokines (IFN-γ, IL-4, IL-10, IL-2 and IL-12) in mice were detected by the mutant (P < 0.05). Remarkably, all RHΔompdcΔuprt-vaccinated mice survived a lethal challenge with RHΔku80 and ME49 and WH6 strains. The immunized sera and splenocytes, especially CD8+ T cells, could significantly extend (P < 0.05) the survival time of mice challenged with the RHΔku80 strain compared with naïve mice. In addition, compared with nonimmunized cats, cats immunized with the mutant produced high levels of antibodies and cytokines (P < 0.05), and notably decreased the shedding numbers of oocysts in feces (95.3%). CONCLUSIONS The avirulent RHΔompdcΔuprt strain can provide strong anti-T. gondii immune responses, and is a promising candidate for developing a safe and effective live attenuated vaccine.
Collapse
Affiliation(s)
- Yu Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bin Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Hao Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Songrui Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiyuan Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianzu Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Meng Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qingming Kong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Di Lou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Haojie Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xunhui Zhuo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| | - Shaohong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
57
|
Pérez-Hernández T, Hernández JN, Machín C, McNeilly TN, Nisbet AJ, Matthews JB, Burgess STG, González JF. Exploring the transcriptomic changes underlying recombinant vaccine efficacy against Teladorsagia circumcincta in 3-month-old lambs. Vet Parasitol 2023; 320:109960. [PMID: 37269732 DOI: 10.1016/j.vetpar.2023.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Teladorsagia circumcincta is an abomasal parasitic nematode that can cause serious issues in small ruminant production, which are aggravated by drug resistance. Vaccines have been suggested as a feasible, long-lasting alternative for control since adaptation to the host's immune mechanisms by helminths develops at a much slower pace than anthelmintic resistance. Recently, a T. circumcincta recombinant subunit vaccine yielded over a 60% reduction in egg excretion and worm burden and induced strong humoral and cellular anti-helminth responses in vaccinated 3-month-old Canaria Hair Breed (CHB) lambs, but Canaria Sheep (CS) of a similar age were not protected by the vaccine. Here, we compared the transcriptomic profiles in the abomasal lymph nodes of such 3-month-old CHB and CS vaccinates 40 days after infection with T. circumcincta to understand differences in responsiveness at the molecular level. In the CS, differentially expressed genes (DEG) identified were related to general immunity processes such as antigen presentation or antimicrobial proteins and down-regulation of inflammation and immune response through regulatory T cell-associated genes. However, upregulated genes in CHB vaccinates were associated with type-2 oriented immune responses, i.e., immunoglobulin production, activation of eosinophils, as well as tissue structure and wound repair-related genes and protein metabolism pathways such as DNA and RNA processing. These results highlight potentially more optimal timing and orientation of immune responses in CHB sheep compared to CS associated with vaccine-induced protection. The data obtained in this study thus deepens our understanding of variations in responsiveness to vaccination in young lamb and provides insights for vaccine refinement strategies.
Collapse
Affiliation(s)
- Tara Pérez-Hernández
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| | - Julia N Hernández
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain.
| | - Cynthia Machín
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| | | | | | | | | | - Jorge F González
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| |
Collapse
|
58
|
Scher G, Bente DA, Mears MC, Cajimat MNB, Schnell MJ. GP38 as a vaccine target for Crimean-Congo hemorrhagic fever virus. NPJ Vaccines 2023; 8:73. [PMID: 37210392 PMCID: PMC10199669 DOI: 10.1038/s41541-023-00663-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/25/2023] [Indexed: 05/22/2023] Open
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a tick-borne virus that causes severe hemorrhagic disease in humans. There is a great need for effective vaccines and therapeutics against CCHFV for humans, as none are currently internationally approved. Recently, a monoclonal antibody against the GP38 glycoprotein protected mice against lethal CCHFV challenge. To show that GP38 is required and sufficient for protection against CCHFV, we used three inactivated rhabdoviral-based CCHFV-M vaccines, with or without GP38 in the presence or absence of the other CCHFV glycoproteins. All three vaccines elicited strong antibody responses against the respective CCHFV glycoproteins. However, only vaccines containing GP38 showed protection against CCHFV challenge in mice; vaccines without GP38 were not protective. The results of this study establish the need for GP38 in vaccines targeting CCHFV-M and demonstrate the efficacy of a CCHFV vaccine candidate based on an established vector platform.
Collapse
Affiliation(s)
- Gabrielle Scher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Dennis A Bente
- Galveston National Laboratory, Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Megan C Mears
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria N B Cajimat
- Galveston National Laboratory, Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Mishra M, Yadav M, Kumar S, Kumar R, Sen P. TIM-3 increases the abundance of type-2 dendritic cells during Leishmania donovani infection by enhancing IL-10 production via STAT3. Cell Death Dis 2023; 14:331. [PMID: 37202419 PMCID: PMC10195822 DOI: 10.1038/s41419-023-05848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
The outcome of the disease visceral leishmaniasis (VL), caused by Leishmania donovani (LD), largely relies on the relative dominance of host-protective type-1 T helper (Th1) cell response versus disease-promoting type-2 T helper (Th2) cell response. The Th1 and Th2 responses, in turn, are believed to be elicited by type-1 conventional dendritic cells (cDC1) and type-2 conventional DCs (cDC2), respectively. However, it is still unknown which DC subtype (cDC1 or cDC2) predominates during chronic LD infection and the molecular mechanism governing such occurrence. Here we report that in chronically infected mice, the splenic cDC1-cDC2 balance shifted toward the cDC2 subtype and that the receptor T cell immunoglobulin and mucin protein-3 (TIM-3) expressed by DCs played a key role in mediating this effect. Transfer of TIM-3-silenced DCs in fact prevented the predominance of the cDC2 subtype in mice with chronic LD infection. We also found that LD actually upregulated TIM-3 expression on DCs by triggering a TIM-3-mediated signaling pathway STAT3 (signal transducer and activator of transcription 3)→interleukin (IL)-10→c-Src→transcription factors Ets1, Ets2, USF1, and USF2. Notably, TIM-3 promoted STAT3 activation via a non-receptor tyrosine kinase Btk. Adoptive transfer experiments further demonstrated a critical role for STAT3-driven TIM-3 upregulation on DCs in increasing cDC2 abundance in chronically infected mice, which ultimately aided disease pathogenesis by augmenting Th2 responses. These findings document a new immunoregulatory mechanism contributing to disease pathology during LD infection and define TIM-3 as a key mediator of this process.
Collapse
Affiliation(s)
- Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Kumar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raj Kumar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Pradip Sen
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
60
|
Scheunemann JF, Risch F, Reichwald JJ, Lenz B, Neumann AL, Garbe S, Frohberger SJ, Koschel M, Ajendra J, Rothe M, Latz E, Coch C, Hartmann G, Schumak B, Hoerauf A, Hübner MP. Potential of Nucleic Acid Receptor Ligands to Improve Vaccination Efficacy against the Filarial Nematode Litomosoides sigmodontis. Vaccines (Basel) 2023; 11:vaccines11050966. [PMID: 37243070 DOI: 10.3390/vaccines11050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
More than two-hundred-million people are infected with filariae worldwide. However, there is no vaccine available that confers long-lasting protection against filarial infections. Previous studies indicated that vaccination with irradiated infective L3 larvae reduces the worm load. This present study investigated whether the additional activation of cytosolic nucleic acid receptors as an adjuvant improves the efficacy of vaccination with irradiated L3 larvae of the rodent filaria Litomosoides sigmodontis with the aim of identifying novel vaccination strategies for filarial infections. Subcutaneous injection of irradiated L3 larvae in combination with poly(I:C) or 3pRNA resulted in neutrophil recruitment to the skin, accompanied by higher IP-10/CXCL10 and IFN-β RNA levels. To investigate the impact on parasite clearance, BALB/c mice received three subcutaneous injections in 2-week intervals with irradiated L3 larvae in combination with poly(I:C) or 3pRNA prior to the challenge infection. Vaccination with irradiated L3 larvae in combination with poly(I:C) or 3pRNA led to a markedly greater reduction in adult-worm counts by 73% and 57%, respectively, compared to the immunization with irradiated L3 larvae alone (45%). In conclusion, activation of nucleic acid-sensing immune receptors boosts the protective immune response against L. sigmodontis and nucleic acid-receptor agonists as vaccine adjuvants represent a promising novel strategy to improve the efficacy of vaccines against filariae and potentially other helminths.
Collapse
Affiliation(s)
- Johanna F Scheunemann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia J Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephan Garbe
- Clinic for Radiotherapy and Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Maximilian Rothe
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Eicke Latz
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph Coch
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Nextevidence GmbH, 81541 Munich, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Beatrix Schumak
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| |
Collapse
|
61
|
Fiala S, Fleit HB. Clinical and experimental treatment of allergic asthma with an emphasis on allergen immunotherapy and its mechanisms. Clin Exp Immunol 2023; 212:14-28. [PMID: 36879430 PMCID: PMC10081111 DOI: 10.1093/cei/uxad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Allergen immunotherapy (AIT) is currently the only form of treatment that modifies allergic asthma. Pharmacotherapy alone seeks to control the symptoms of allergic asthma, allergic rhinitis, and other atopic conditions. In contrast, AIT can induce long-term physiological modifications through the immune system. AIT enables individuals to live improved lives many years after treatment ends, where they are desensitized to the allergen(s) used or no longer have significant allergic reactions upon allergen provocation. The leading forms of treatment with AIT involve injections of allergen extracts with increasing doses via the subcutaneous route or drops/tablets via the sublingual route for several years. Since the initial attempts at this treatment as early as 1911 by Leonard Noon, the mechanisms by which AIT operates remain unclear. This literature-based review provides the primary care practitioner with a current understanding of the mechanisms of AIT, including its treatment safety, protocols, and long-term efficacy. The primary mechanisms underlying AIT include changes in immunoglobulin classes (IgA, IgE, and IgG), immunosuppressive regulatory T-cell induction, helper T cell type 2 to helper T cell type 1 cell/cytokine profile shifts, decreased early-phase reaction activity and mediators, and increased production of IL-10, IL-35, TGF-β, and IFN-γ. Using the databases PubMed and Embase, a selective literature search was conducted searching for English, full-text, reviews published between 2015 and 2022 using the keywords (with wildcards) "allerg*," "immunotherap*," "mechanis*," and "asthma." Among the cited references, additional references were identified using a manual search.
Collapse
Affiliation(s)
- Scott Fiala
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Howard B Fleit
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
62
|
Prakash A, Medved J, Arneja A, Niebuhr C, Li AN, Tarrah S, Boscia AR, Burnett ED, Singh A, Salazar JE, Xu W, Santhanakrishnan M, Hendrickson JE, Luckey CJ. Class switching is differentially regulated in RBC alloimmunization and vaccination. Transfusion 2023; 63:826-838. [PMID: 36907655 PMCID: PMC10851675 DOI: 10.1111/trf.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, although it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. STUDY DESIGN AND METHODS WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. RESULTS When compared with antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b, and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. DISCUSSION Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared with the well-studied immunogen alum vaccination.
Collapse
Affiliation(s)
- Anupam Prakash
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Jelena Medved
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Conrad Niebuhr
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Andria N. Li
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Soraya Tarrah
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexis R. Boscia
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Emily D. Burnett
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Aanika Singh
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Juan E. Salazar
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Wenhao Xu
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Manjula Santhanakrishnan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
63
|
Barreiro A, Prenafeta A, Bech-Sabat G, Roca M, Perozo Mur E, March R, González-González L, Madrenas L, Corominas J, Fernández A, Moros A, Cañete M, Molas M, Pentinat-Pelegrin T, Panosa C, Moreno A, Puigvert Molas E, Pol Vilarrassa E, Palmada J, Garriga C, Prat Cabañas T, Iglesias-Fernández J, Vergara-Alert J, Lorca-Oró C, Roca N, Fernández-Bastit L, Rodon J, Pérez M, Segalés J, Pradenas E, Marfil S, Trinité B, Ortiz R, Clotet B, Blanco J, Díaz Pedroza J, Ampudia Carrasco R, Rosales Salgado Y, Loubat-Casanovas J, Capdevila Larripa S, Prado JG, Barretina J, Sisteré-Oró M, Cebollada Rica P, Meyerhans A, Ferrer L. Preclinical evaluation of a COVID-19 vaccine candidate based on a recombinant RBD fusion heterodimer of SARS-CoV-2. iScience 2023; 26:106126. [PMID: 36748086 PMCID: PMC9893798 DOI: 10.1016/j.isci.2023.106126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 12/22/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Current COVID-19 vaccines have been associated with a decline in infection rates, prevention of severe disease, and a decrease in mortality rates. However, SARS-CoV-2 variants are continuously evolving, and development of new accessible COVID-19 vaccines is essential to mitigate the pandemic. Here, we present data on preclinical studies in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine (PHH-1V) consisting of an RBD fusion heterodimer comprising the B.1.351 and B.1.1.7 SARS-CoV-2 variants formulated in SQBA adjuvant, an oil-in-water emulsion. A prime-boost immunisation with PHH-1V in BALB/c and K18-hACE2 mice induced a CD4+ and CD8+ T cell response and RBD-binding antibodies with neutralizing activity against several variants, and also showed a good tolerability profile. Significantly, RBD fusion heterodimer vaccination conferred 100% efficacy, preventing mortality in SARS-CoV-2 infected K18-hACE2 mice, but also reducing Beta, Delta and Omicron infection in lower respiratory airways. These findings demonstrate the feasibility of this recombinant vaccine strategy.
Collapse
Affiliation(s)
| | | | | | - Mercè Roca
- HIPRA, Avda. La Selva, 135, Amer, 17170 Girona, Spain
| | | | - Ricard March
- HIPRA, Avda. La Selva, 135, Amer, 17170 Girona, Spain
| | | | - Laia Madrenas
- HIPRA, Avda. La Selva, 135, Amer, 17170 Girona, Spain
| | | | | | | | - Manuel Cañete
- HIPRA, Avda. La Selva, 135, Amer, 17170 Girona, Spain
| | - Mercè Molas
- HIPRA, Avda. La Selva, 135, Amer, 17170 Girona, Spain
| | | | - Clara Panosa
- HIPRA, Avda. La Selva, 135, Amer, 17170 Girona, Spain
| | | | | | | | - Jordi Palmada
- HIPRA, Avda. La Selva, 135, Amer, 17170 Girona, Spain
| | - Carme Garriga
- HIPRA, Avda. La Selva, 135, Amer, 17170 Girona, Spain
| | | | | | - Júlia Vergara-Alert
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
| | - Cristina Lorca-Oró
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
| | - Núria Roca
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
| | - Leira Fernández-Bastit
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Rodon
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Pérez
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
| | - Joaquim Segalés
- Universitat Autònoma de Barcelona, CReSA (IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Cerdanyola del Vallès, Spain
| | - Edwards Pradenas
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
| | - Silvia Marfil
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
| | - Benjamin Trinité
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
| | - Raquel Ortiz
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), Vic, 08500 Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), Vic, 08500 Catalonia, Spain
| | - Jorge Díaz Pedroza
- Comparative Medicine and Bioimage Centre of Catalonia, Germans Trias i Pujol Research Institute (CMCiB-IGTP), 08916 Badalona, Spain
| | - Rosa Ampudia Carrasco
- Comparative Medicine and Bioimage Centre of Catalonia, Germans Trias i Pujol Research Institute (CMCiB-IGTP), 08916 Badalona, Spain
| | - Yaiza Rosales Salgado
- Comparative Medicine and Bioimage Centre of Catalonia, Germans Trias i Pujol Research Institute (CMCiB-IGTP), 08916 Badalona, Spain
| | - Jordina Loubat-Casanovas
- Comparative Medicine and Bioimage Centre of Catalonia, Germans Trias i Pujol Research Institute (CMCiB-IGTP), 08916 Badalona, Spain
| | - Sara Capdevila Larripa
- Comparative Medicine and Bioimage Centre of Catalonia, Germans Trias i Pujol Research Institute (CMCiB-IGTP), 08916 Badalona, Spain
| | - Julia Garcia Prado
- IrsiCaixa. AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916 Badalona, Spain
- Comparative Medicine and Bioimage Centre of Catalonia, Germans Trias i Pujol Research Institute (CMCiB-IGTP), 08916 Badalona, Spain
| | - Jordi Barretina
- Comparative Medicine and Bioimage Centre of Catalonia, Germans Trias i Pujol Research Institute (CMCiB-IGTP), 08916 Badalona, Spain
| | - Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Paula Cebollada Rica
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Laura Ferrer
- HIPRA, Avda. La Selva, 135, Amer, 17170 Girona, Spain
| |
Collapse
|
64
|
Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA, Danielsen PH, Wallin H, Vogel U, Halappanavar S. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061059. [PMID: 36985953 PMCID: PMC10057402 DOI: 10.3390/nano13061059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 μg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.
Collapse
Affiliation(s)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Per Axel Clausen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Pernille Høgh Danielsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Håkan Wallin
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
- Department of Public Health, University of Copenhagen, 1353 Copenhagen, Denmark
- National Institute of Occupational Health, 0304 Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
65
|
Boone AC, Kulkarni RR, Cortes AL, Villalobos T, Esandi J, Gimeno IM. In ovo HVT vaccination enhances cellular responses at hatch and addition of poly I:C offers minimal adjuvant effects. Vaccine 2023; 41:2514-2523. [PMID: 36894394 DOI: 10.1016/j.vaccine.2023.02.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
In ovo vaccination with herpesvirus of turkey (HVT) hastens immunocompetence in chickens and the recommended dose (RD) of 6080 plaque-forming-units (PFU) offers the most optimal effects. In previous studies conducted in egg-type chickens, in ovo vaccination with HVT enhanced lymphoproliferation, wing-web thickness with phytohemagglutinin-L (PHA-L), and increased spleen and lung interferon-gamma(IFN-γ) andToll-like receptor 3 (TLR3) transcripts. Here, we evaluated the cellular mechanisms by which HVT-RD can hasten immunocompetence in one-day-old meat-type chickens, and also determined if HVT adjuvantation with a TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), could enhance vaccine-induced responses and provide dose-sparing effects. Compared to sham-inoculated chickens, HVT-RD significantly increased transcription of splenic TLR3 and IFN γ receptor 2 (R2), and lung IFN γ R2, while the splenic IL-13 transcription was found decreased. Additionally, these birds showed increased wing-web thickness following PHA-L inoculation. The thickness was due to an innate inflammatory cell population, CD3+ T cells, and edema. In another experiment, HVT-1/2 (3040 PFU) supplemented with 50 μg poly(I:C) [HVT-1/2 + poly(I:C)] was administered in ovo and immune responses were compared with those produced by HVT-RD, HVT-1/2, 50 μg poly(I:C), and sham-inoculated. Immunophenotyping of splenocytes showed HVT-RD induced a significantly higher frequency of CD4+, CD4+MHC-II+, CD8+CD44+, and CD4+CD28+ T cells compared to sham-inoculated chickens, and CD8+MHC-II+, CD4+CD8+, CD4+CD8+CD28+, and CD4+CD8+CD44+ T cells compared to all groups. Treatment groups, except HVT-1/2 + poly(I:C), had significantly higher frequencies of γδ T cells and all groups induced significantly higher frequencies of activated monocytes/macrophages, compared to sham-inoculated chickens. Poly(I:C)-induced dose-sparing effect was only observed in the frequency of activated monocytes/macrophages. No differences in the humoral responses were observed. Collectively, HVT-RD downregulated IL-13 transcripts (Th2 immune response) and had strong immunopotentiation effects on innate immune responses and the activation of T cells. However addition of poly(I:C) offered a minimal adjuvant/dose-sparing effect.
Collapse
Affiliation(s)
- Allison C Boone
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States; Experimental Pathology Laboratories Inc, 615 Davis Drive Ste. 500, Durham, NC 27713, United States.
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| | | | - Javier Esandi
- Zoetis-Global Biodevice, 1040 Swabia Ct, Durham, NC 27703, United States.
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, United States.
| |
Collapse
|
66
|
Devi VJ, Radhika A, Biju PG. Adenosine receptor activation promotes macrophage class switching from LPS-induced acute inflammatory M1 to anti-inflammatory M2 phenotype. Immunobiology 2023. [PMID: 36863089 DOI: 10.1016/j.imbio.2023.152362] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Lipopolysaccharide induced monocytes/macrophages exhibit a pro-inflammatory M1 phenotype. Elevated levels of the purine nucleoside adenosine play a major role in this response. The role of adenosine receptor modulation in directing the macrophage phenotype switch from proinflammatory classically activated M1 phenotype to an anti-inflammatory alternatively activated M2 phenotype is investigated in this study. The mouse macrophage cell line RAW 264.7 was used as the experimental model and stimulated with Lipopolysaccharide (LPS) at a dose of 1 μg/ml. Adenosine receptors were activated by treating cells with the receptor agonist NECA (1 μM). Adenosine receptor stimulation in macrophages is found to suppress LPS-induced production of proinflammatory mediators (pro-inflammatory cytokines, Reactive Oxygen Species and nitrite levels). M1 marker CD38 (Cluster of Differentiation 38) and CD83 (Cluster of Differentiation 83) were significantly decreased while M2 markers Th2 cytokines, Arginase, TIMP (Tissue Inhibitor of Metalloproteinases) and CD206 (Cluster of Differentiation 206) exhibited an increase. Hence from our study we observed that activation of adenosine receptors can program the macrophages from a pro-inflammatory classically activated M1 phenotype to an anti-inflammatory alternatively activated M2 phenotype. We report the significance and a time course profile of phenotype switching by receptor activation. Adenosine receptor targeting may be explored as a therapeutic intervention strategy in addressing acute inflammation.
Collapse
Affiliation(s)
- Velayudhan Jayasree Devi
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India
| | - Achuthan Radhika
- Department of Biochemistry, Government College, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | - Prabath Gopalakrishnan Biju
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581, India.
| |
Collapse
|
67
|
Employing T-Cell Memory to Effectively Target SARS-CoV-2. Pathogens 2023; 12:pathogens12020301. [PMID: 36839573 PMCID: PMC9967959 DOI: 10.3390/pathogens12020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Well-trained T-cell immunity is needed for early viral containment, especially with the help of an ideal vaccine. Although most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected convalescent cases have recovered with the generation of virus-specific memory T cells, some cases have encountered T-cell abnormalities. The emergence of several mutant strains has even threatened the effectiveness of the T-cell immunity that was established with the first-generation vaccines. Currently, the development of next-generation vaccines involves trying several approaches to educate T-cell memory to trigger a broad and fast response that targets several viral proteins. As the shaping of T-cell immunity in its fast and efficient form becomes important, this review discusses several interesting vaccine approaches to effectively employ T-cell memory for efficient viral containment. In addition, some essential facts and future possible consequences of using current vaccines are also highlighted.
Collapse
|
68
|
Baya B, Kone B, Somboro A, Kodio O, Somboro AM, Diarra B, Traore FG, Kone D, Traore MA, Kone M, Togo AG, Sarro YS, Maiga A, Maiga M, Toloba Y, Diallo S, Murphy RL, Doumbia S. Prevalence and Clinical Relevance of Schistosoma mansoni Co-Infection with Mycobacterium tuberculosis: A Systematic Literature Review. OPEN JOURNAL OF EPIDEMIOLOGY 2023; 13:97-111. [PMID: 36910425 PMCID: PMC9997105 DOI: 10.4236/ojepi.2023.131008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Tuberculosis disease stands for the second leading cause of death worldwide after COVID-19, most active tuberculosis cases result from the reactivation of latent TB infection through impairment of immune response. Several factors are known to sustain that process. Schistosoma mansoni, a parasite of the helminth genus that possesses switching power from an immune profile type Th1 to Th2 that favors reactivation of latent TB bacteria. The aim of the study was to assess the prevalence of the co-infection between the two endemic infections. Systematic literature was contacted at the University Clinical Research Center at the University of Sciences, Techniques, and Technologies of Bamako in Mali. Original articles were included, and full texts were reviewed to assess the prevalence and better understand the immunological changes that occur during the co-infection. In total, 3530 original articles were retrieved through database search, 53 were included in the qualitative analysis, and data from 10 were included in the meta-analysis. Prevalence of the co-infection ranged from 4% to 34% in the literature. Most of the articles reported that immunity against infection with helminth parasite and more specifically Schistosoma mansoni infection enhances latent TB reactivation through Th1/Th2. In sum, the impact of Schistosoma mansoni co-infection with Mycobacterium tuberculosis is under-investigated. Understanding the role of this endemic tropical parasite as a contributing factor to TB epidemiology and burden could help integrate its elimination as one of the strategies to achieve the END-TB objectives by the year 2035.
Collapse
Affiliation(s)
- Bocar Baya
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.,Service of Pneumopthisiology of the University Teaching Hospital of Point G, Bamako, Mali
| | - Bourahima Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Amadou Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Ousmane Kodio
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Anou Moise Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Fah Gaoussou Traore
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Drissa Kone
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali
| | - Mama Adama Traore
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali
| | - Mahamadou Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Antieme Georges Togo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yeya Sadio Sarro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Almoustapha Maiga
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mamoudou Maiga
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali.,Havey Institute for Global Health (Havey IGH), Northwestern University (NU), Chicago, USA
| | - Yacouba Toloba
- Service of Pneumopthisiology of the University Teaching Hospital of Point G, Bamako, Mali
| | - Souleymane Diallo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Robert L Murphy
- Havey Institute for Global Health (Havey IGH), Northwestern University (NU), Chicago, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
69
|
Prevention of Metabolic Syndrome by Phytochemicals and Vitamin D. Int J Mol Sci 2023; 24:ijms24032627. [PMID: 36768946 PMCID: PMC9917154 DOI: 10.3390/ijms24032627] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, attention has focused on the roles of phytochemicals in fruits and vegetables in maintaining and improving the intestinal environment and preventing metabolic syndrome. A high-fat and high-sugar diet, lack of exercise, and excess energy accumulation in the body can cause metabolic syndrome and induce obesity, diabetes, and disorders of the circulatory system and liver. Therefore, the prevention of metabolic syndrome is important. The current review shows that the simultaneous intake of phytochemicals contained in citruses and grapes together with vitamin D improves the state of gut microbiota and immunity, preventing metabolic syndrome and related diseases. Phytochemicals contained in citruses include polyphenols such as hesperidin, rutin, and naringin; those in grapes include quercetin, procyanidin, and oleanolic acid. The intake of these phytochemicals and vitamin D, along with prebiotics and probiotics, nurture good gut microbiota. In general, Firmicutes are obese-prone gut microbiota and Bacteroidetes are lean-prone gut microbiota; good gut microbiota nurture regulatory T cells, which suppress inflammatory responses and upregulate immunity. Maintaining good gut microbiota suppresses TNF-α, an inflammatory cytokine that is also considered to be a pathogenic contributor adipokine, and prevents chronic inflammation, thereby helping to prevent metabolic syndrome. Maintaining good gut microbiota also enhances adiponectin, a protector adipokine that prevents metabolic syndrome. For the prevention of metabolic syndrome and the reduction of various disease risks, the intake of phytochemicals and vitamin D will be important for human health in the future.
Collapse
|
70
|
Chiang KC, Gupta A, Sundd P, Krishnamurti L. Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. Biomedicines 2023; 11:338. [PMID: 36830874 PMCID: PMC9953430 DOI: 10.3390/biomedicines11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
People with sickle cell disease (SCD) are at greater risk of severe illness and death from respiratory infections, including COVID-19, than people without SCD (Centers for Disease Control and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and severe SARS-CoV-2 infection are both characterized by thrombo-inflammation mediated by endothelial injury, complement activation, inflammatory lipid storm, platelet activation, platelet-leukocyte adhesion, and activation of the coagulation cascade. Notably, lipid mediators, including thromboxane A2, significantly increase in severe COVID-19 and SCD. In addition, the release of thromboxane A2 from endothelial cells and macrophages stimulates platelets to release microvesicles, which are harbingers of multicellular adhesion and thrombo-inflammation. Currently, there are limited therapeutic strategies targeting platelet-neutrophil activation and thrombo-inflammation in either SCD or COVID-19 during acute crisis. However, due to many similarities between the pathobiology of thrombo-inflammation in SCD and COVID-19, therapies targeting one disease may likely be effective in the other. Therefore, the preclinical and clinical research spurred by the COVID-19 pandemic, including clinical trials of anti-thrombotic agents, are potentially applicable to VOC. Here, we first outline the parallels between SCD and COVID-19; second, review the role of lipid mediators in the pathogenesis of these diseases; and lastly, examine the therapeutic targets and potential treatments for the two diseases.
Collapse
Affiliation(s)
| | - Ajay Gupta
- KARE Biosciences, Orange, CA 89128, USA
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Irvine, CA 92868, USA
| | - Prithu Sundd
- Vascular Medicine Institute and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lakshmanan Krishnamurti
- Division of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
71
|
Prakash A, Medved J, Arneja A, Niebuhr C, Li AN, Tarrah S, Boscia AR, Burnett ED, Singh A, Salazar JE, Xu W, Santhanakrishnan M, Hendrickson JE, Luckey CJ. Class switching is differentially regulated in RBC alloimmunization and vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523608. [PMID: 36712006 PMCID: PMC9882062 DOI: 10.1101/2023.01.11.523608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, though it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. Study Design and Methods WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. Results When compared to antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. Discussion Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared to the well-studied immunogen alum vaccination.
Collapse
|
72
|
Chang L, Zhang C, Lu J, Shen J, Hamal K, Liu D. Clinical and Pathological Features of Hydroa Vacciniforme-Like Lymphoproliferative Disorder Along with Risk Factors Indicating Poor Prognosis. Infect Drug Resist 2023; 16:1545-1559. [PMID: 36960391 PMCID: PMC10027612 DOI: 10.2147/idr.s402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Purpose To examine the clinical and pathological features, laboratory markers, therapeutic options and risk factors indicating poor prognosis of hydroa vacciniforme-like lymphoproliferative disorder (HVLPD). Patients and Methods Seven patients with HVLPD had their clinical and pathological data collected. Immunohistochemical staining, Epstein-Barr virus-encoded RNA (EBER) in situ hybridization experiments, T-cell receptor (TCR) gene rearrangement, RT-PCR tests and the Elisa assay were carried out. Results The main clinical manifestations were papulovesicular lesions and ulcers on the face, neck, or trunk. Five cases had systemic symptoms. Three of the deceased patients had significant facial edema, deep body necrosis, and ulceration. The pathological results demonstrated that lymphocytes infiltrated blood vessels and sweat glands in addition to the dermis and subcutaneous tissues. All patients tested positive for CD3 and EBER. Six cases tested positive for TCRβF1, but none tested positive for TCRδ. TCRγ monoclonal rearrangement, strongly positive expression of TIA-1 and a Ki67 proliferation index of 40% occurred in 3 fatal cases. When compared to the survival group, the plasma EBV DNA in the deceased group was considerably higher (P<0.05). IFN-γ and TNF-α cytokine levels in patients were higher than in the control group, particularly in the deceased group (P<0.05). The skin lesions on all patients recovered quickly underwent conservative care. Nonetheless, 3 patients passed away as the disease progressed in its latter stages. Conclusion In our cases, the main infiltrating cells were T cells and the dominant lymphocyte subclass was αβT cells. A significant increase in lgE level, plasma EBV DNA, IFN-γ, and TNF-α cytokine levels, decreased hemoglobin level, strongly positive expression of TIA-1, high Ki67 proliferation index, and positive TCR gene rearrangement are all indicators of a poor prognosis.
Collapse
Affiliation(s)
- Li Chang
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Nanning, People’s Republic of China
| | - Chaoyin Zhang
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jingjing Lu
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jiahui Shen
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Krishna Hamal
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Donghua Liu
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Nanning, People’s Republic of China
- Correspondence: Donghua Liu, Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuang Yong Road, Nanning, Guangxi Province, 530021, People’s Republic of China, Tel +86 771-5356752, Email
| |
Collapse
|
73
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
74
|
Zhang Y, Zhang M, Liao X, Yu Y, Liu Q, Luo Y, Luo J, Guo X. Interleukin-25 enhances humoral immune responses caused by the rabies virus. Virulence 2022; 13:1446-1454. [PMID: 35999776 PMCID: PMC9423819 DOI: 10.1080/21505594.2022.2116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Rabies is an important zoonotic disease caused by the rabies virus (RABV). Currently, no effective treatment is available for this condition. The prevention and control of rabies mainly depend on effective vaccination. Therefore, it is crucial to enhance the immune responses induced by the rabies vaccine. Virus neutralizing antibodies (VNA) induced by rabies vaccines are important for the clearance of RABV. Interleukin-25 (IL-25) has been demonstrated to activate T helper type 2 cells that contribute to humoral immune responses. The IL-25 gene was inserted into the genome of RABV, and the immunogenicity of recombinant RABV with IL-25 gene was investigated to develop more efficient rabies vaccines. Here, we found that the expression of IL-25 did not affect RABV production in vitro and pathogenicity in vivo. However, recombinant RABV expression of IL-25 induced a better VNA level than the parental virus in mice. In addition, expression of IL-25 enhanced the IgG1 level induced by RABV. Furthermore, mice immunized with recombinant RABV showed a higher survival rate and milder clinical signs than those immunized with the parent strain after challenge with CVS-11. Thus, these results showed that IL-25 could enhance the humoral immune responses induced by RABV, suggesting that IL-25 can be used as a viral vaccine adjuvant.
Collapse
Affiliation(s)
- Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengwei Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xilan Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yunsong Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
75
|
Grassner L, Klein B, Garcia-Ovejero D, Mach O, Scheiblhofer S, Weiss R, Vargas-Baquero E, Kramer JLK, Leister I, Rohde E, Oeller M, Molina-Holgado E, Griessenauer CJ, Maier D, Aigner L, Arevalo-Martin A. Systemic Immune Profile Predicts the Development of Infections in Patients with Spinal Cord Injuries. J Neurotrauma 2022; 39:1678-1686. [PMID: 35607859 DOI: 10.1089/neu.2021.0448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Patients with spinal cord injury (SCI) frequently develop infections that may affect quality of life, be life-threatening, and impair their neurological recovery in the acute and subacute injury phases. Therefore, identifying patients with SCI at risk for developing infections in this stage is of utmost importance. We determined the systemic levels of immune cell populations, cytokines, chemokines, and growth factors in 81 patients with traumatic SCI at 4 weeks after injury and compared them with those of 26 age-matched healthy control subjects. Patients who developed infections between 4 and 16 weeks after injury exhibited higher numbers of neutrophils and eosinophils, as well as lower numbers of lymphocytes and eotaxin-1 (CCL11) levels. Accordingly, lasso logistic regression showed that incomplete lesions (American Spinal Injury Association Impairment Scale [AIS] C and D grades), the levels of eotaxin-1, and the number of lymphocytes, basophils, and monocytes are predictive of lower odds for infections. On the other hand, the number of neutrophils and eosinophils as well as, in a lesser extent, the levels of IP-10 (CXCL10), MCP-1 (CCL2), BDNF [brain-derived neurotrophic factor], and vascular endothelial growth factor [VEGF]-A, are predictors of increased susceptibility for developing infections. Overall, our results point to systemic immune disbalance after SCI as predictors of infection in a period when infections may greatly interfere with neurological and functional recovery and suggest new pathways and players to further explore novel therapeutic strategies.
Collapse
Affiliation(s)
- Lukas Grassner
- Institute of Molecular Regenerative Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Barbara Klein
- Institute of Molecular Regenerative Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Orpheus Mach
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Sandra Scheiblhofer
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iris Leister
- Institute of Molecular Regenerative Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Eva Rohde
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Department for Transfusion Medicine, University Hospital of Salzburg (SALK), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Michaela Oeller
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Department for Transfusion Medicine, University Hospital of Salzburg (SALK), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Christoph J Griessenauer
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Doris Maier
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| |
Collapse
|
76
|
Pelgrim CE, van Ark I, van Berkum RE, Schuitemaker-Borneman AM, Flier I, Leusink-Muis T, Janbazacyabar H, Diks MAP, Gosker HR, Kelders MCJM, Langen RCJ, Schols AMWJ, Hageman RJJ, Braber S, Garssen J, Folkerts G, van Helvoort A, Kraneveld AD. Effects of a nutritional intervention on impaired behavior and cognitive function in an emphysematous murine model of COPD with endotoxin-induced lung inflammation. Front Nutr 2022; 9:1010989. [PMID: 36466426 PMCID: PMC9714332 DOI: 10.3389/fnut.2022.1010989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
One cluster of the extrapulmonary manifestations in chronic obstructive pulmonary disease (COPD) is related to the brain, which includes anxiety, depression and cognitive impairment. Brain-related comorbidities are related to worsening of symptoms and increased mortality in COPD patients. In this study, a murine model of COPD was used to examine the effects of emphysema and repetitive pulmonary inflammatory events on systemic inflammatory outcomes and brain function. In addition, the effect of a dietary intervention on brain-related parameters was assessed. Adult male C57Bl/6J mice were exposed to elastase or vehicle intratracheally (i.t.) once a week on three consecutive weeks. Two weeks after the final administration, mice were i.t. exposed to lipopolysaccharide (LPS) or vehicle for three times with a 10 day interval. A dietary intervention enriched with omega-3 PUFAs, prebiotic fibers, tryptophan and vitamin D was administered from the first LPS exposure onward. Behavior and cognitive function, the degree of emphysema and both pulmonary and systemic inflammation as well as blood-brain barrier (BBB) integrity and neuroinflammation in the brain were assessed. A lower score in the cognitive test was observed in elastase-exposed mice. Mice exposed to elastase plus LPS showed less locomotion in the behavior test. The enriched diet seemed to reduce anxiety-like behavior over time and cognitive impairments associated with the presented COPD model, without affecting locomotion. In addition, the enriched diet restored the disbalance in splenic T-helper 1 (Th1) and Th2 cells. There was a trend toward recovering elastase plus LPS-induced decreased expression of occludin in brain microvessels, a measure of BBB integrity, as well as improving expression levels of kynurenine pathway markers in the brain by the enriched diet. The findings of this study demonstrate brain-associated comorbidities - including cognitive and behavioral impairments - in this murine model for COPD. Although no changes in lung parameters were observed, exposure to the specific enriched diet in this model appeared to improve systemic immune disbalance, BBB integrity and derailed kynurenine pathway which may lead to reduction of anxiety-like behavior and improved cognition.
Collapse
Affiliation(s)
- Charlotte E. Pelgrim
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ronja E. van Berkum
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Anne M. Schuitemaker-Borneman
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Inge Flier
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Hamed Janbazacyabar
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Mara A. P. Diks
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Harry R. Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Marco C. J. M. Kelders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Annemie M. W. J. Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | | | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
77
|
Minott JA, van Vloten JP, Yates JGE, Chan L, Wood GA, Viloria-Petit AM, Karimi K, Petrik JJ, Wootton SK, Bridle BW. Multiplex flow cytometry-based assay for quantifying tumor- and virus-associated antibodies induced by immunotherapies. Front Immunol 2022; 13:1038340. [PMID: 36466867 PMCID: PMC9708883 DOI: 10.3389/fimmu.2022.1038340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 03/22/2024] Open
Abstract
Novel immunotherapies continue to be developed and tested for application against a plethora of diseases. The clinical translation of immunotherapies requires an understanding of their mechanisms. The contributions of antibodies in driving long-term responses following immunotherapies continue to be revealed given their diverse effector functions. Developing an in-depth understanding of the role of antibodies in treatment efficacy is required to optimize immunotherapies and improve the chance of successfully translating them into the clinic. However, analyses of antibody responses can be challenging in the context of antigen-agnostic immunotherapies, particularly in the context of cancers that lack pre-defined target antigens. As such, robust methods are needed to evaluate the capacity of a given immunotherapy to induce beneficial antibody responses, and to identify any therapy-limiting antibodies. We previously developed a comprehensive method for detecting antibody responses induced by antigen-agnostic immunotherapies for application in pre-clinical models of vaccinology and cancer therapy. Here, we extend this method to a high-throughput, flow cytometry-based assay able to identify and quantify isotype-specific virus- and tumor-associated antibody responses induced by immunotherapies using small sample volumes with rapid speed and high sensitivity. This method provides a valuable and flexible protocol for investigating antibody responses induced by immunotherapies, which researchers can use to expand their analyses and optimize their own treatment regimens.
Collapse
Affiliation(s)
- Jessica A. Minott
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Lily Chan
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- ImmunoCeutica Inc., Cambridge, ON, Canada
| |
Collapse
|
78
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Poornajaf Y, Taheri M, Sharifi G. Interplay between programmed death-ligand 1 and non-coding RNAs. Front Immunol 2022; 13:982902. [PMID: 36405753 PMCID: PMC9667550 DOI: 10.3389/fimmu.2022.982902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a transmembrane protein with essential roles in the suppression of adaptive immune responses. As an immune checkpoint molecule, PD-L1 can be exploited by cancer cells to evade the anti-tumor attacks initiated by the immune system. Thus, blockade of the PD1/PD-L1 axis can eliminate the suppressive signals and release the antitumor immune responses. Identification of the underlying mechanisms of modulation of the activity of the PD1/PD-L1 axis would facilitate the design of more efficacious therapeutic options and better assignment of patients for each option. Recent studies have confirmed the interactions between miRNAs/lncRNAs/circ-RNAs and the PD1/PD-L1 axis. In the current review, we give a summary of interactions between these transcripts and PD-L1 in the context of cancer. We also overview the consequences of these interactions in the determination of the response of patients to anti-cancer drugs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
79
|
Bennett B, Tahir H, Ganguly S, Moorthy A. An update on the considerations for patients with rheumatic disease being treated with rituximab during the COVID-19 pandemic and the potential drug treatment strategies. Expert Opin Pharmacother 2022; 23:1695-1700. [PMID: 36180063 DOI: 10.1080/14656566.2022.2131395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Over the last two decades, rituximab has become an increasingly popular drug in the treatment of a wide range of rheumatic diseases. However, with the advent of the COVID-19 pandemic, clinicians face challenges in weighing risk against benefit in its use. AREAS COVERED A review of existing data was performed to examine the relationship between rituximab use, morbidity and mortality from COVID-19, and vaccine efficacy in patients with rheumatic diseases, aiming to guide clinicians in continued use of the medication and consider the direction of future research. A literature review was performed through a search of the PubMed database, using the terms ((SARS-CoV-2) OR (COVID-19)) AND (rituximab) AND (rheumatic), which generated an initial 55 results, with relevant articles then selected for inclusion. EXPERT OPINION In order to safeguard patients with an ongoing need for rituximab therapy, vaccination remains the primary concern. A target of performing booster doses 6 months after last rituximab dose is a reasonable estimate, which may be made more precise by use of B cell counts, although primary immunization should not be delayed. In those patients who remain seronegative, the use of newer antivirals and broadly neutralizing antibody infusions may help provide further safeguards.
Collapse
Affiliation(s)
- Benjamin Bennett
- Department of Rheumatology, Barnet Hospital, Royal Free London NHS Foundation Trust, London, UK
| | - Hasan Tahir
- Department of Rheumatology, Barnet Hospital, Royal Free London NHS Foundation Trust, London, UK.,Division of Medicine, University College London, London, UK
| | - Sujata Ganguly
- University Hospitals of Leicester NHS Foundation Trust, Leicester, UK
| | - Arumugam Moorthy
- University Hospitals of Leicester NHS Foundation Trust, Leicester, UK
| |
Collapse
|
80
|
Wittman TN, Carlson TA, Robinson CD, Bhave RS, Cox RM. Experimental removal of nematode parasites increases growth, sprint speed, and mating success in brown anole lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:852-866. [PMID: 35871281 PMCID: PMC9796785 DOI: 10.1002/jez.2644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
Parasites interact with nearly all free-living organisms and can impose substantial fitness costs by reducing host survival, mating success, and fecundity. Parasites may also indirectly affect host fitness by reducing growth and performance. However, experimentally characterizing these costs of parasitism is challenging in the wild because common antiparasite drug formulations require repeated dosing that is difficult to implement in free-living populations, and because the extended-release formulations that are commercially available for livestock and pets are not suitable for smaller animals. To address these challenges, we developed a method for the long-term removal of nematode parasites from brown anole lizards (Anolis sagrei) using an extended-release formulation of the antiparasite drug ivermectin. This treatment eliminated two common nematode parasites in captive adult males and dramatically reduced the prevalence and intensity of infection by these parasites in wild adult males and females. Experimental parasite removal significantly increased the sprint speed of captive adult males, the mating success of wild adult males, and the growth of wild juveniles of both sexes. Although parasite removal did not have any effect on survival in wild anoles, parasites may influence fitness directly through reduced mating success and indirectly through reduced growth and performance. Our method of long-term parasite manipulation via an extended-release formulation of ivermectin should be readily adaptable to many other small vertebrates, facilitating experimental tests of the extent to which parasites affect host phenotypes, fitness, and eco-evolutionary dynamics in the wild.
Collapse
Affiliation(s)
- Tyler N. Wittman
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Torun A. Carlson
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Rachana S. Bhave
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Robert M. Cox
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
81
|
Reyes AWB, Kim H, Huy TXN, Nguyen TT, Min W, Lee D, Hur J, Lee JH, Kim S. The In Vitro and In Vivo Effect of Lipoxygenase Pathway Inhibitors Nordihydroguaiaretic Acid and Its Derivative Tetra- O-methyl Nordihydroguaiaretic Acid against Brucella abortus 544. J Microbiol Biotechnol 2022; 32:1126-1133. [PMID: 36039381 PMCID: PMC9628969 DOI: 10.4014/jmb.2207.07026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
This study investigated the contribution of lipoxygenase (LOX) inhibitors, nordihydroguaiaretic acid (NDGA), tetra-O-methyl nordihydroguaiaretic acid (M4N) and zileuton (ZIL), and thromboxane A2 (TXA2) inhibitor 4,5-diphenylimidazole (DPI) in the proliferation of Brucella abortus infection. None of the compounds affected the uptake of Brucella into the macrophages. We determined the effect of neutralizing leukotriene B4 (LTB4) receptor and showed that the uptake of the bacteria was inhibited at 30 min post-infection. M4N treatment attenuated intracellular survival of Brucella at 2 h post-incubation but it was not observed in the succeeding time points. DPI treatment showed reduced survival of Brucella at 24 h post-incubation while blocking LTB4 receptor was observed to have a lower intracellular growth at 48 h post-incubation suggesting different action of the inhibitors in the course of the survival of Brucella within the cells. Reduced proliferation of the bacteria in the spleens of mice was observed in animals treated with ZIL or DPI. Increased serum cytokine level of TNF-α and MCP-1 was observed in mice treated with M4N or ZIL while a lower IFN-γ level in ZIL-treated mice and a higher IL-12 serum level in DPI-treated mice were observed at 7 d post-infection. At 14 d post-infection, ZIL-treated mice displayed reduced serum level of IL-12 and IL-10. Overall, inhibition of 5-LOX or TXA2 or a combination therapy promises a potential alternative therapy against B. abortus infection. Furthermore, strong ligands for LTB4 receptor could also be a good candidate for the control of Brucella infection.
Collapse
Affiliation(s)
- Alisha Wehdnesday Bernardo Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Heejin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dongho Lee
- College of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Jin Hur
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding author Phone +82-55-772-2359 Fax: +82-55-772-2349 E-mail:
| |
Collapse
|
82
|
Effects of curcumin-piperine supplementation on systemic immunity in young women with premenstrual syndrome and dysmenorrhea: A randomized clinical trial. Eur J Obstet Gynecol Reprod Biol 2022; 278:131-136. [PMID: 36174434 DOI: 10.1016/j.ejogrb.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Premenstrual syndrome (PMS) and primary dysmenorrhea (PD) are common gynecological complications and there is evidence that inflammation may be an important factor in their etiology. There is a relationship between PMS and PD with susceptibility to allergic disorders. We aimed to assess the effect of curcumin co-administered with piperine on serum IL-10, IL-12 and IgE levels in patients with PD and PMS. MATERIALS AND METHODS A sample of 80 patients were recruited to this triple-blind, placebo-controlled clinical trial. Participants were randomly allocated to curcumin (n = 40) and control groups (n = 40). Each participant received one capsule (500 mg of curcuminoid plus piperine, or placebo) daily, from 7 days before until 3 days after menstruation for three consecutive menstrual cycles. RESULTS Serum IgE, IL-10 and IL-12 levels were quantified by using an ELISA kit. No significant differences were found between the two groups at baseline, including: age, BMI, and dietary intakes (P > 0.05). Curcumin + piperine treatment was associated with a significant reduction in the mean serum levels of IgE [from 223.6 ± 258.7 IU/mL to 161.3 ± 240.7; P = 0.001]; but there were no significant changes in the placebo group (P = 0.12). Serum concentrations of IL-10 and IL-12 before and after the trial period did not differ significantly between the two groups (P > 0.05). CONCLUSION Curcumin plus piperine might be have positive effect on serum IgE levels with no significant changes on serum IL-10 and IL-12 in healthy young women with PMS and PD. Studies with higher doses and longer durations of treatment with curcumin are required to confirm these findings.
Collapse
|
83
|
Bhanja SK, Rath PK, Goel A, Mehra M, Dhara SK, Paswan VK, Attia YA, Alqhtani AH, Ali ABA, Shehata AM. In ovo nano-silver and nutrient supplementation improves immunity and resistance against Newcastle disease virus challenge in broiler chickens. Front Vet Sci 2022; 9:948069. [PMID: 36187823 PMCID: PMC9523696 DOI: 10.3389/fvets.2022.948069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) interact with the microbes and host immune system to protect against diseases. Fertile broiler eggs (n = 900) were allotted to six groups: un-injected control, sham (sterile water), AgNPs (50 μg), AgNPs+Amino acids (Methionine-10 mg + Arginine-25 mg), AgNPs+Vitamins (Vit B1-72μg + Vit B6-140μg), and AgNPs+Trace Elements (Zn-80 μg and Se-0.3 μg) and incubated for 18 days. On 18th embryonic day, 0.6 ml test solution was injected at the broad end of egg using 25 mm needle and transferred to hatcher. Post-hatch, half of the chicks from each group were vaccinated with Newcastle disease (ND) vaccine, and the other half were kept as unvaccinated unit and reared for 42 d with standard management practices. Hatchability, 1st and 42nd d body weight, feed intake, and feed conversion ratio were similar between treatment groups in both vaccinated and unvaccinated units. The relative weight of bursa Fabricius and thymus was similar, but spleen weight was higher (P ≤ 0.05) in AgNPs, AgNPs+Vits, and AgNPs+TEs chicks than control group. Cellular immune response (against mitogen phytohemagglutinin-P) was higher (P ≤ 0.05) in AgNPs+TEs chicks, whereas HA titer against sheep red blood cells antigen, serum IgG, IgM, and HI titer against ND vaccine was apparently higher in AgNPs+Vits group chicks than control. No clinical symptoms were observed in the vaccinated groups except for a few control birds 6 days postchallenge (PC). Three days PC, unvaccinated birds show depression, off feed, greenish diarrhea, and nasal discharge and the control group started dying. The highest cumulative infection (CI) was observed in sham (79.17%) and un-injected control (75%), but lowest in AgNPs+AAs birds (58.33%) on 3rd dpi. The CI reached 100% on 5th dpi in control groups and AgNPs, and 91.67% and 93.75% in AgNPs+TEs and AgNPs+AAs group, respectively. The AgNPs+TEs and AgNPs+AAs group birds lived for more than 90 h compared to 75 h in control groups and also had higher IL-6 and IL-2 gene expressions at 24 h PC. It was concluded that 50 μg/egg AgNPs with vitamins (B1 and B6) and trace elements (Zn and Se) improved performance, but AgNPs with trace elements and amino acids enhanced immune response and resistance against vND virus challenge in broilers.
Collapse
Affiliation(s)
- Subrat Kumar Bhanja
- ICAR-Central Avian Research Institute, Bareilly, UP, India
- *Correspondence: Subrat Kumar Bhanja
| | | | - Akshat Goel
- ICAR-Central Avian Research Institute, Bareilly, UP, India
| | - Manish Mehra
- ICAR-Central Avian Research Institute, Bareilly, UP, India
| | - Sujoy K. Dhara
- ICAR-Indian Veterinary Research Institute, Bareilly, UP, India
| | - Vinod K. Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Youssef A. Attia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Abdulmohsen Hussen Alqhtani
- Animal Production Department, Food and Agriculture Sciences College, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed B. A. Ali
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC, United States
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
84
|
Urrutia-Pereira M, Chong-Neto HJ, Annesi Maesano I, Ansotegui IJ, Caraballo L, Cecchi L, Galán C, López JF, Aguttes MM, Peden D, Pomés A, Zakzuk J, Rosário Filho NA, D'Amato G. Environmental contributions to the interactions of COVID-19 and asthma: A secondary publication and update. World Allergy Organ J 2022; 15:100686. [PMID: 35966894 PMCID: PMC9359502 DOI: 10.1016/j.waojou.2022.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/01/2022] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) started in Wuhan, Hubei Province, China and quickly spread around the world. Current evidence is contradictory on the association of asthma with COVID-19 and associated severe outcomes. Type 2 inflammation may reduce the risk for severe COVID-19. Whether asthma diagnosis may be a risk factor for severe COVID-19, especially for those with severe disease or non-allergic phenotypes, deserves further attention and clarification. In addition, COVID-19 does not appear to provoke asthma exacerbations, and asthma therapeutics should be continued for patients with exposure to COVID-19. Changes in the intensity of pollinization, an earlier start and extension of the pollinating season, and the increase in production and allergenicity of pollen are known direct effects that air pollution has on physical, chemical, and biological properties of the pollen grains. They are influenced and triggered by meteorological variables that could partially explain the effect on COVID-19. SARS-CoV-2 is capable of persisting in the environment and can be transported by bioaerosols which can further influence its transmission rate and seasonality. The COVID-19 pandemic has changed the behavior of adults and children globally. A general trend during the pandemic has been human isolation indoors due to school lockdowns and loss of job or implementation of virtual work at home. A consequence of this behavior change would presumably be changes in indoor allergen exposures and reduction of inhaled outdoor allergens. Therefore, lockdowns during the pandemic might have improved some specific allergies, while worsening others, depending on the housing conditions.
Collapse
Affiliation(s)
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Department of Pediatrics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Isabella Annesi Maesano
- French NIH (INSERM), and EPAR Department, IPLESP, INSERM and Sorbonne University, Paris, France
| | | | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
- SOS Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - David Peden
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc, Charlottesville, VA, United States
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Gennaro D'Amato
- Division of Respiratory and Allergic Diseases, High Specialty Hospital A. Cardarelli, School of Specialization in Respiratory Diseases, Federico II University, Naples, Italy
| |
Collapse
|
85
|
Angrand L, Masson JD, Rubio-Casillas A, Nosten-Bertrand M, Crépeaux G. Inflammation and Autophagy: A Convergent Point between Autism Spectrum Disorder (ASD)-Related Genetic and Environmental Factors: Focus on Aluminum Adjuvants. TOXICS 2022; 10:toxics10090518. [PMID: 36136483 PMCID: PMC9502677 DOI: 10.3390/toxics10090518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
Autism spectrum disorder (ASD), schizophrenia, and bipolar disorder are genetically complex and heterogeneous neurodevelopmental disorders (NDDs) resulting from genetic factors and gene-environment (GxE) interactions for which onset occurs in early brain development. Recent progress highlights the link between ASD and (i) immunogenetics, neurodevelopment, and inflammation, and (ii) impairments of autophagy, a crucial neurodevelopmental process involved in synaptic pruning. Among various environmental factors causing risk for ASD, aluminum (Al)-containing vaccines injected during critical periods have received special attention and triggered relevant scientific questions. The aim of this review is to discuss the current knowledge on the role of early inflammation, immune and autophagy dysfunction in ASD as well as preclinical studies which question Al adjuvant impacts on brain and immune maturation. We highlight the most recent breakthroughs and the lack of epidemiological, pharmacokinetic and pharmacodynamic data constituting a "scientific gap". We propose additional research, such as genetic studies that could contribute to identify populations at genetic risk, improving diagnosis, and potentially the development of new therapeutic tools.
Collapse
Affiliation(s)
- Loïc Angrand
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Jean-Daniel Masson
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico;
- Autlán Regional Hospital, Health Secretariat, Autlán 48900, Jalisco, Mexico
| | - Marika Nosten-Bertrand
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Guillemette Crépeaux
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
86
|
de Mesquita TGR, Junior JDES, da Silva LDO, Silva GAV, de Araújo FJ, Pinheiro SK, Kerr HKA, da Silva LS, de Souza LM, de Almeida SA, Queiroz KLGD, de Souza JL, da Silva CC, Sequera HDG, de Souza MLG, Barbosa AN, Pontes GS, Guerra MVDF, Ramasawmy R. Distinct plasma chemokines and cytokines signatures in Leishmania guyanensis-infected patients with cutaneous leishmaniasis. Front Immunol 2022; 13:974051. [PMID: 36091007 PMCID: PMC9453042 DOI: 10.3389/fimmu.2022.974051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The immunopathology associated with Leishmaniasis is a consequence of inflammation. Upon infection with Leishmania, the type of host-immune response is determinant for the clinical manifestations that can lead to either self-healing or chronic disease. Multiple pathways may determine disease severity. A comparison of systemic immune profiles in patients with cutaneous leishmaniasis caused by L. guyanensis and healthy individuals with the same socio-epidemiological characteristics coming from the same endemic areas as the patients is performed to identify particular immune profile and pathways associated with the progression of disease development. Twenty-seven plasma soluble circulating factors were evaluated between the groups by univariate and multivariate analysis. The following biomarkers pairs IL-17/IL-9 (ρ=0,829), IL-17/IL-12 (ρ=0,786), IL-6/IL-1ra (ρ=0,785), IL-6/IL-12 (ρ=0,780), IL-1β/G-CSF (ρ=0,758) and IL-17/MIP-1β (ρ=0,754) showed the highest correlation mean among the patient while only INF-γ/IL-4 (ρ=0.740), 17/MIP-1β (ρ=0,712) and IL-17/IL-9 (ρ=0,707) exhibited positive correlation among the control group. The cytokine IL-17 and IL1β presented the greater number of positive pair correlation among the patients. The linear combinations of biomarkers displayed IP-10, IL-2 and RANTES as the variables with the higher discriminatory activity in the patient group compared to PDGF, IL-1ra and eotaxin among the control subjects. IP-10, IL-2, IL-1β, RANTES and IL-17 seem to be predictive value of progression to the development of disease among the Lg-infected individuals.
Collapse
Affiliation(s)
- Tirza Gabrielle Ramos de Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - José do Espírito Santo Junior
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | | | - George Allan Villarouco Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Felipe Jules de Araújo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | - Suzana Kanawati Pinheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | | | - Lener Santos da Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Luciane Macedo de Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | | | - Josué Lacerda de Souza
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | - Cilana Chagas da Silva
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Héctor David Graterol Sequera
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Mara Lúcia Gomes de Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | | | - Gemilson Soares Pontes
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Department of Virology, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas – REGESAM, Manaus, Amazonas, Brazil
| | - Marcus Vinitius de Farias Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas – REGESAM, Manaus, Amazonas, Brazil
- *Correspondence: Rajendranath Ramasawmy,
| |
Collapse
|
87
|
Lin M, Marin A, Ellis B, Eubanks LM, Andrianov AK, Janda KD. Polyphosphazene: A New Adjuvant Platform for Cocaine Vaccine Development. Mol Pharm 2022; 19:3358-3366. [PMID: 35984034 DOI: 10.1021/acs.molpharmaceut.2c00489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cocaine is a highly addictive drug that has seen a steady uptrend causing severe health problems worldwide. Currently, there are no approved therapeutics for treating cocaine use disorder; hence, there is an urgent need to identify new medications. Immunopharmacotherapeutics is a promising approach utilizing endogenous antibodies generated through active vaccination, and if properly programmed, can blunt a drug's psychoactive and addictive effects. However, drug vaccine efficacy has largely been limited by the modest levels of antibodies induced. Herein, we explored an adjuvant system consisting of a polyphosphazene macromolecule, specifically poly[di(carboxylatoethylphenoxy)-phosphazene] (PCEP), a biocompatible synthetic polymer that was solicited for improved cocaine conjugate vaccine delivery performance. Our results demonstrated PCEP's superior assembling efficiency with a cocaine hapten as well as with the combined adjuvant CpG oligodeoxynucleotide (ODN). Importantly, this combination led to a higher titer response, balanced immunity, successful sequestering of cocaine in the blood, and a reduction in the drug in the brain. Moreover, a PCEP-cocaine conjugate vaccine was also found to function well via intranasal administration, where its efficacy was demonstrated through the antibody titer, affinity, mucosal IgA production, and a reduction in cocaine's locomotor activity. Overall, a comprehensive evaluation of PCEP integrated within a cocaine vaccine established an advance in the use of synthetic adjuvants in the drugs of abuse vaccine field.
Collapse
Affiliation(s)
- Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
88
|
The Role of Immunometabolism in HIV-1 Pathogenicity: Links to Immune Cell Responses. Viruses 2022; 14:v14081813. [PMID: 36016435 PMCID: PMC9415820 DOI: 10.3390/v14081813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
With the successful roll-out of combination antiretroviral treatment, HIV is currently managed as a chronic illness. Of note, immune activation and chronic inflammation are hallmarks of HIV-1 infection that persists even though patients are receiving treatments. Despite strong evidence linking immune activation and low-grade inflammation to HIV-1 pathogenesis, the underlying mechanisms remain less well-understood. As intracellular metabolism is emerging as a crucial factor determining the fate and activity of immune cells, this review article focuses on how links between early immune responses and metabolic reprograming may contribute to HIV pathogenicity. Here, the collective data reveal that immunometabolism plays a key role in HIV-1 pathogenesis. For example, the shift from quiescent immune cells to its activation leads to perturbed metabolic circuits that are major drivers of immune cell dysfunction and an altered phenotype. These findings suggest that immunometabolic perturbations play a key role in the onset of non-AIDS-associated comorbidities and that they represent an attractive target to develop improved diagnostic tools and novel therapeutic strategies to help blunt HIV-1 pathogenesis.
Collapse
|
89
|
Biryukov SS, Cote CK, Klimko CP, Dankmeyer JL, Rill NO, Shoe JL, Hunter M, Shamsuddin Z, Velez I, Hedrick ZM, Rosario-Acevedo R, Talyansky Y, Schmidt LK, Orne CE, Fetterer DP, Burtnick MN, Brett PJ, Welkos SL, DeShazer D. Evaluation of two different vaccine platforms for immunization against melioidosis and glanders. Front Microbiol 2022; 13:965518. [PMID: 36060742 PMCID: PMC9428723 DOI: 10.3389/fmicb.2022.965518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei and the closely related species, Burkholderia mallei, produce similar multifaceted diseases which range from rapidly fatal to protracted and chronic, and are a major cause of mortality in endemic regions. Besides causing natural infections, both microbes are Tier 1 potential biothreat agents. Antibiotic treatment is prolonged with variable results, hence effective vaccines are urgently needed. The purpose of our studies was to compare candidate vaccines that target both melioidosis and glanders to identify the most efficacious one(s) and define residual requirements for their transition to the non-human primate aerosol model. Studies were conducted in the C57BL/6 mouse model to evaluate the humoral and cell-mediated immune response and protective efficacy of three Burkholderia vaccine candidates against lethal aerosol challenges with B. pseudomallei K96243, B. pseudomallei MSHR5855, and B. mallei FMH. The recombinant vaccines generated significant immune responses to the vaccine antigens, and the live attenuated vaccine generated a greater immune response to OPS and the whole bacterial cells. Regardless of the candidate vaccine evaluated, the protection of mice was associated with a dampened cytokine response within the lungs after exposure to aerosolized bacteria. Despite being delivered by two different platforms and generating distinct immune responses, two experimental vaccines, a capsule conjugate + Hcp1 subunit vaccine and the live B. pseudomallei 668 ΔilvI strain, provided significant protection and were down-selected for further investigation and advanced development.
Collapse
Affiliation(s)
- Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- *Correspondence: Christopher K. Cote
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zain Shamsuddin
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Ivan Velez
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zander M. Hedrick
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Caitlyn E. Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Susan L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- David DeShazer
| |
Collapse
|
90
|
Kumar J, Kumar M, Sharma S, Srivastava N, Singh R, Hussain MA, Mazumder S. Th1-Th2 and M1-M2 interplay sculpt Aeromonas hydrophila pathogenesis in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2022; 127:357-365. [PMID: 35772676 DOI: 10.1016/j.fsi.2022.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is an important aquatic zoonotic pathogen that causes septicemia, necrotizing fasciitis and gastroenteritis in various aquatic and non-aquatic animals. However, the pathogenesis of A. hydrophila is not fully understood. Here, we examined the pathogenicity and histopathology of A. hydrophila in the zebrafish (Danio rerio) model system. We found that the intensity of symptoms and mortality is dose-dependent. Bacterial colonization studies demonstrated that A. hydrophila never cleared out from the fish body but stayed in a state of inactivity till it enters a fresh host. Reinfection studies showed that exposure to A. hydrophila provides immunity against future infection and hence improves fish survival. Gene expression studies revealed the crosstalk between T-helper cell and macrophage responses in fish immune system in response to A. hydrophila and infection memory. Histopathological studies showed that symptoms of tissue damage and inflammation lasted for less duration with less intensity in immunized fish when compared to non-immunized fish. Together, our results suggest that the zebrafish model is a useful system in studying the interplay between A. hydrophila pathogenesis, persistence and immunity.
Collapse
Affiliation(s)
- Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Department of Zoology, School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, 174103, India
| | - Rashmi Singh
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
91
|
Næsborg-Nielsen C, Wilkinson V, Mejia-Pacheco N, Carver S. Evidence underscoring immunological and clinical pathological changes associated with Sarcoptes scabiei infection: synthesis and meta-analysis. BMC Infect Dis 2022; 22:658. [PMID: 35902827 PMCID: PMC9335973 DOI: 10.1186/s12879-022-07635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Sarcoptes scabiei is one of the most impactful mammalian parasites. There has been much research on immunological and clinical pathological changes associated with S. scabiei parasitism across a range of host species. This rich body of literature is complex, and we seek to bring that complexity together in this study. We first (1) synthesise narrative reviews of immunopathological relationships to S. scabiei infection to construct overarching hypotheses; then (2) undertake a systematic meta-analysis of primary literature on immunological and clinical pathological changes; and lastly (3) contrast our findings from the meta-analysis to our synthesis from narrative reviews. METHODS We synthesised 55 narrative reviews into two overarching hypotheses representing type I and type IV immune responses to S. scabiei infection. We then systematically extracted all literature reporting immunological variables, acute phase proteins, oxidant/antioxidant status, and erythrocytic, hepatological and nephrological changes, calculating 565 effect sizes between controls and sarcoptic mange affected groupings, refining (simplifying) hypotheses from narrative reviews. RESULTS Immunological and clinical pathological parameters were most often studied in dogs (n = 12) and humans (n = 14). Combining immunological and clinical pathological information across mammalian species (n = 19) helped yield general insights into observed disease responses. This is evidenced by interspecific consensus in 27 immunological and clinical pathology variables (6/26 type I hypersensitivity, 3/20 type IV hypersensitivity, 6/10 oxidant/antioxidant status, 3/6 acute phase protein, 4/7 erythrocytic, and 5/10 hepatological/nephrological). CONCLUSIONS Elevated IgE, eosinophils and mast cells in type I hypersensitivity response corresponded to what was described in narrative reviews. Results from type IV hypersensitivity response suggested typical antibody response, however cell-mediated response was less evident. Some consensus of acute phase protein response and shifted oxidant/antioxidant balance and slight evidence of anemia. We highlight the need for mange/scabies studies to more routinely compare immunological and clinical pathological changes against controls, and include collection of a more standardised suite of variables among studies.
Collapse
Affiliation(s)
| | - Vicky Wilkinson
- Department of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, Australia
| | - Natalia Mejia-Pacheco
- Department of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, Australia
| |
Collapse
|
92
|
Sekaran SD, Liew ZM, Yam HC, Raju CS. The association between diabetes and obesity with Dengue infections. Diabetol Metab Syndr 2022; 14:101. [PMID: 35864519 PMCID: PMC9301891 DOI: 10.1186/s13098-022-00870-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Dengue, an arboviral disease is a global threat to public health as the number of Dengue cases increases through the decades and this trend is predicted to continue. Non-communicable diseases such as diabetes and obesity are also on an upward trend. Moreover, past clinical studies have shown comorbidities worsen the clinical manifestation of especially Severe Dengue. However, discussion regarding the underlying mechanisms regarding the association between these comorbidities and dengue are lacking. The hallmark of Severe Dengue is plasma leakage which is due to several factors including presence of pro-inflammatory cytokines and dysregulation of endothelial barrier protein expression. The key factors of diabetes affecting endothelial functions are Th1 skewed responses and junctional-related proteins expression. Additionally, obesity alters the lipid metabolism and immune response causing increased viral replication and inflammation. The similarity between diabetes and obesity individuals is in having chronic inflammation resulting in endothelial dysfunction. This review outlines the roles of diabetes and obesity in severe dengue and gives some insights into the plausible mechanisms of comorbidities in Severe Dengue.
Collapse
Affiliation(s)
- S D Sekaran
- Faculty of Medicine and Health Sciences, UCSI University Springhill Campus, Port Dickson, 70100, Negri Sembilan, Malaysia.
| | - Z M Liew
- Faculty of Applied Science, UCSI University Kuala Lumpur, Kuala Lumpur, 56000, Malaysia
| | - H C Yam
- Faculty of Applied Science, UCSI University Kuala Lumpur, Kuala Lumpur, 56000, Malaysia
| | - C S Raju
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
93
|
Ma YH, Wu MH, Chung LY, Yen CM, Juan YS, Lin RJ. Cestocidal activities of bioactive garlic compounds against Hymenolepis nana. Acta Trop 2022; 235:106580. [DOI: 10.1016/j.actatropica.2022.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/01/2022]
|
94
|
Raihan MO, Espelien BM, Hanson C, McGregor BA, Velaris NA, Alvine TD, Al Golovko S, Bradley DS, Nilles M, Glovko MY, Hur J, Porter JE. Characterization of prostanoids response to Bordetella pertussis antigen BscF and Tdap in LPS-challenged monocytes. Prostaglandins Leukot Essent Fatty Acids 2022; 182:102452. [PMID: 35690004 DOI: 10.1016/j.plefa.2022.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/29/2022]
Abstract
Prostanoids are potent inflammatory mediators that play a regulatory role in the innate immune activation of the adaptive immune response to determine the duration of protection against infection. We aim to quantify the modulation of prostanoids profiles in lipopolysaccharide (LPS)-stimulated THP-1 cells treated with the novel pertussis antigen BscF. We compared the effect with pertussis antigens present in the current Tdap vaccine to understand the immunomodulatory effect that might contribute to the diminished Tdap vaccine effectiveness. The inflammatory challenge with LPS induced a robust elevation of most prostanoid family members compared to the control treatment. Treatment with BscF and Tdap significantly reduced the LPS-stimulated elevation of prostaglandins (PGs) D2, E2, and F2α, as well as thromboxane (TX) A2 levels. An opposite trend was observed for PGI2, as both antigens accelerated the LPS-stimulated upregulation. Further, we quantified cyclooxygenases (COXs) that catalyze the biosynthesis of prostanoids and found that both antigens significantly reduced LPS-stimulated COX-1 and COX-2, demonstrating that the waning of acellular pertussis vaccines' protective immunity may be due to other downstream enzymes not related to COXs. Our present study validates the potential role of BscF as an adjuvant, resulting in the next-generation pertussis vaccine discovery.
Collapse
Affiliation(s)
- Md Obayed Raihan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Brenna M Espelien
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Courtney Hanson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Brett A McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Nathan A Velaris
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Travis D Alvine
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Svetlana Al Golovko
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - David S Bradley
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Matthew Nilles
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Mikhail Y Glovko
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States.
| |
Collapse
|
95
|
Cabral N, de Figueiredo V, Gandini M, de Souza CF, Medeiros RA, Lery LMS, Lara FA, de Macedo CS, Pessolani MCV, Pereira GMB. Modulation of the Response to Mycobacterium leprae and Pathogenesis of Leprosy. Front Microbiol 2022; 13:918009. [PMID: 35722339 PMCID: PMC9201476 DOI: 10.3389/fmicb.2022.918009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
The initial infection by the obligate intracellular bacillus Mycobacterium leprae evolves to leprosy in a small subset of the infected individuals. Transmission is believed to occur mainly by exposure to bacilli present in aerosols expelled by infected individuals with high bacillary load. Mycobacterium leprae-specific DNA has been detected in the blood of asymptomatic household contacts of leprosy patients years before active disease onset, suggesting that, following infection, the bacterium reaches the lymphatic drainage and the blood of at least some individuals. The lower temperature and availability of protected microenvironments may provide the initial conditions for the survival of the bacillus in the airways and skin. A subset of skin-resident macrophages and the Schwann cells of peripheral nerves, two M. leprae permissive cells, may protect M. leprae from effector cells in the initial phase of the infection. The interaction of M. leprae with these cells induces metabolic changes, including the formation of lipid droplets, that are associated with macrophage M2 phenotype and the production of mediators that facilitate the differentiation of specific T cells for M. leprae-expressed antigens to a memory regulatory phenotype. Here, we discuss the possible initials steps of M. leprae infection that may lead to active disease onset, mainly focusing on events prior to the manifestation of the established clinical forms of leprosy. We hypothesize that the progressive differentiation of T cells to the Tregs phenotype inhibits effector function against the bacillus, allowing an increase in the bacillary load and evolution of the infection to active disease. Epigenetic and metabolic mechanisms described in other chronic inflammatory diseases are evaluated for potential application to the understanding of leprosy pathogenesis. A potential role for post-exposure prophylaxis of leprosy in reducing M. leprae-induced anti-inflammatory mediators and, in consequence, Treg/T effector ratios is proposed.
Collapse
Affiliation(s)
- Natasha Cabral
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vilma de Figueiredo
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cíntia Fernandes de Souza
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rychelle Affonso Medeiros
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Letícia Miranda Santos Lery
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Flávio Alves Lara
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cristiana Santos de Macedo
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Geraldo Moura Batista Pereira
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
96
|
Potential Pro-Tumorigenic Effect of Bisphenol A in Breast Cancer via Altering the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123021. [PMID: 35740686 PMCID: PMC9221131 DOI: 10.3390/cancers14123021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Bisphenol A (BPA) is primarily used to produce polycarbonate plastics, such as water bottles. Exposure to BPA has been shown to increase the growth of breast cancer cells that depend on estrogen for growth due to its ability to mimic estrogen. More recent studies have suggested that BPA also affects the cellular and non-cellular components that compose tumor microenvironments (TMEs), namely the environment around a tumor, thereby potentially promoting breast cancer growth via altering the TME. The TME plays an essential role in cancer development and promotion. Therefore, it is crucial to understand the effect of BPA on breast TMEs to assess its role in the risk of breast cancer adequately. This review examines the potential effects of BPA on immune cells, fibroblasts, extracellular matrices, and adipocytes to highlight their roles in mediating the carcinogenic effect of BPA, and thereby proposes considerations for the risk assessment of BPA exposure. Abstract BPA, a chemical used in the preparation of polycarbonate plastics, is an endocrine disruptor. Exposure to BPA has been suggested to be a risk factor for breast cancer because of its potential to induce estrogen receptor signaling in breast cancer cells. More recently, it has been recognized that BPA also binds to the G protein-coupled estrogen receptor and other nuclear receptors, in addition to estrogen receptors, and acts on immune cells, adipocytes, and fibroblasts, potentially modulating the TME. The TME significantly impacts the behavior of cancer cells. Therefore, understanding how BPA affects stromal components in breast cancer is imperative to adequately assess the association between exposure to BPA and the risk of breast cancer. This review examines the effects of BPA on stromal components of tumors to highlight their potential role in the carcinogenic effect of BPA. As a result, I propose considerations for the risk assessment of BPA exposure and studies needed to improve understanding of the TME-mediated, breast cancer-promoting effect of BPA.
Collapse
|
97
|
Pathophysiology of Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:521-532. [DOI: 10.1016/j.iac.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
98
|
Th1 cytokine endotype discriminates and predicts severe complications in COVID-19. Eur Cytokine Netw 2022; 33:25-36. [PMID: 36266985 PMCID: PMC9595088 DOI: 10.1684/ecn.2022.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment of severe and critical cases of coronavirus disease 2019 (COVID-19) is still a top priority in public health. Previously, we reported distinct Th1 cytokines related to the pathophysiology of severe COVID-19 condition. In the present study, we investigated the association of Th1 and Th2 cytokine/chemokine endotypes with cell-mediated immunity via multiplex immunophenotyping, single-cell RNA-Seq analysis of peripheral blood mononuclear cells, and analysis of the clinical features of COVID-19 patients. Based on serum cytokine and systemic inflammatory markers, COVID-19 cases were classified into four clusters of increasing (I-IV) severity. Two prominent clusters were of interest and could be used as prognostic reference for a targeted treatment of severe COVID-19 cases. Cluster III reflected severe/critical pathology and was characterized by decreased in CCL17 levels and increase in IL-6, C-reactive protein CXCL9, IL-18, and IL-10 levels. The second cluster (Cluster II) showed mild to moderate pathology and was characterized by predominated CXCL9 and IL-18 levels, levels of IL-6 and CRP were relatively low. Cluster II patients received anti-inflammatory treatment in early-stage, which may have led prevent disease prognosis which is accompanied to IL-6 and CRP induction. In Cluster III, a decrease in the proportion of effector T cells with signs of T cell exhaustion was observed. This study highlights the mechanisms of endotype clustering based on specific inflammatory markers in related the clinical outcome of COVID-19.
Collapse
|
99
|
Tsai MK, Sytwu HK, Hsieh TY, Chien WC, Lai CH, Chen HC. Association Between Depression or Anxiety and the Risk of Hepatitis B Flares: A Nationwide Population-Based Cohort Study. J Inflamm Res 2022; 15:2983-2993. [PMID: 35615105 PMCID: PMC9126231 DOI: 10.2147/jir.s355314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/30/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Depression and anxiety have been reported to increase the risk of infectious diseases and reactivation of latent infection. We conducted a nationwide population-based retrospective cohort study to determine the relationship between hepatitis B flares and depression or anxiety, utilizing outpatient and inpatient data from the Taiwan National Health Insurance Research database collected from 2000 to 2015. Patients and Methods A total of 12,992 patients with chronic hepatitis B and newly diagnosed anxiety/depression, without advanced liver disease, were propensity score-matched for age, sex, and comorbidities in a 1:4 ratio to 51,968 controls with chronic hepatitis B without depression/anxiety or advanced liver disease. Both groups were followed-up until December 31, 2015. Cox proportional hazards regression was used to determine the risk factors for hepatitis B flares. The Log rank test and Kaplan-Meier analysis were performed to assess differences in the cumulative incidence of hepatitis B flares according to anxiety/depression status. Results The incidence of hepatitis B flares was higher in the depression/anxiety cohort than in the control cohort (log-rank; p < 0.001). Patients with depression/anxiety had a significantly higher incidence rate of hepatitis B flares than those without depression/anxiety (3017 per 105 person-years versus 2042 per 105 person-years, p = 0.003). After adjusting for age and comorbidities, anxiety/depression was independently associated with an increased risk of hepatitis B flares (hazard ratio, 1.173; 95% confidence interval, 1.033-1.277; p = 0.003). Conclusion This analysis suggests that in patients with chronic hepatitis B without advanced liver disease, those with concomitant depression or anxiety may be at higher risk of hepatitis B flares.
Collapse
Affiliation(s)
- Meng-Ko Tsai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Hsiang-Cheng Chen
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
100
|
Li J, Sun H, Wang C, Li S, Cai Y. Subchronic Toxicity of Microcystin-LR on Young Frogs (Xenopus laevis) and Their Gut Microbiota. Front Microbiol 2022; 13:895383. [PMID: 35633706 PMCID: PMC9134123 DOI: 10.3389/fmicb.2022.895383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Although toxic effects of microcystins (MCs) in mammals and fish have been extensively studied, the effects of MCs on the immune system and gut microbiota of amphibians have not received sufficient attention. As MCs cause general damage to the vertebrate liver and immune system and trigger an inflammatory response, and the gut microbiota is closely related to host metabolism and immunity, we speculated that MCs can cause changes in the immune system and gut microbiota of amphibians. To verify this, we examined the intestinal and liver injury of Xenopus laevis exposed to different microcystin-leucine-arginine (MC-LR) concentrations and the effects on the gut microbiota through high-throughput sequencing of 16S rDNA of the gut microbiota combined with histopathological analysis, enzyme activity determination, and qRT-PCR. Our results showed that MC-LR caused focal infiltration of inflammatory cells and increased the number of T cells and local congestion and vacuolization in X. laevis liver, but reduced the number, density, height, and regularity of villi. These liver and intestinal injuries became more obvious with an increase in MC-LR concentration. MC-LR significantly decreased the activities of malondialdehyde and alkaline phosphatase and the expression of TGF-β in the liver. Moreover, MC-LR significantly altered the gut microbiota of X. laevis. The relative abundance of Firmicutes and Bacteroidetes in high-concentration MC-LR groups was significantly reduced compared to that in low-concentration MC-LR groups, whereas Fusobacteria was significantly enriched. The metabolic gene composition of the gut microbiota in low-concentration MC-LR (≤5 μg/L) groups was significantly different from that in high-concentration MC-LR (≥20 μg/L) groups. These results deepen our understanding of the toxicity of MCs to aquatic organisms and assessment of the ecological risk of MCs in amphibians.
Collapse
Affiliation(s)
- Jinjin Li
- School of Life Sciences, Qilu Normal University, Jinan, China
- *Correspondence: Jinjin Li,
| | - Hongzhao Sun
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China
| | - Shangchun Li
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Yunfei Cai
- School of Life Sciences, Qilu Normal University, Jinan, China
| |
Collapse
|