51
|
Baazaoui N, Iqbal K. COVID-19 and Neurodegenerative Diseases: Prion-Like Spread and Long-Term Consequences. J Alzheimers Dis 2022; 88:399-416. [DOI: 10.3233/jad-220105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
COVID-19 emerged as a global pandemic starting from Wuhan in China and spread at a lightning speed to the rest of the world. One of the potential long-term outcomes that we speculate is the development of neurodegenerative diseases as a long-term consequence of SARS-CoV-2 especially in people that have developed severe neurological symptoms. Severe inflammatory reactions and aging are two very strong common links between neurodegenerative diseases and COVID-19. Thus, patients that have very high viral load may be at high risk of developing long-term adverse neurological consequences such as dementia. We hypothesize that people with neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and aged people are at higher risk of getting the COVID-19 than normal adults. The basis of this hypothesis is the fact that SARS-CoV-2 uses as a receptor angiotensin-converting enzyme 2 to enter the host cell and that this interaction is calcium-dependent. This could then suggest a direct relationship between neurodegenerative diseases, ACE-2 expression, and the susceptibility to COVID-19. The analysis of the available literature showed that COVID-19 virus is neurotropic and was found in the brains of patients infected with this virus. Furthermore, that the risk of having the infection increases with dementia and that infected people with severe symptoms could develop dementia as a long-term consequence. Dementia could be developed following the acceleration of the spread of prion-like proteins. In the present review we discuss current reports concerning the prevalence of COVID-19 in dementia patients, the individuals that are at high risk of suffering from dementia and the potential acceleration of prion-like proteins spread following SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
52
|
Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 2022; 605:146-151. [PMID: 35314834 PMCID: PMC9783543 DOI: 10.1038/s41586-022-04630-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.
Collapse
|
53
|
Pergolizzi JV, Raffa RB, Varrassi G, Magnusson P, LeQuang JA, Paladini A, Taylor R, Wollmuth C, Breve F, Chopra M, Nalamasu R, Christo PJ. Potential neurological manifestations of COVID-19: a narrative review. Postgrad Med 2022; 134:395-405. [PMID: 33089707 PMCID: PMC7799377 DOI: 10.1080/00325481.2020.1837503] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
Abstract
Neurological manifestations are increasingly reported in a subset of COVID-19 patients. Previous infections related to coronaviruses, namely Severe Acute Respiratory Syndrome (SARS) and Middle Eastern Respiratory Syndrome (MERS) also appeared to have neurological effects on some patients. The viruses associated with COVID-19 like that of SARS enters the body via the ACE-2 receptors in the central nervous system, which causes the body to balance an immune response against potential damage to nonrenewable cells. A few rare cases of neurological sequelae of SARS and MERS have been reported. A growing body of evidence is accumulating that COVID-19, particularly in severe cases, may have neurological consequences although respiratory symptoms nearly always develop prior to neurological ones. Patients with preexisting neurological conditions may be at elevated risk for COVID-19-associated neurological symptoms. Neurological reports in COVID-19 patients have described encephalopathy, Guillain-Barré syndrome, myopathy, neuromuscular disorders, encephalitis, cephalgia, delirium, critical illness polyneuropathy, and others. Treating neurological symptoms can pose clinical challenges as drugs that suppress immune response may be contraindicated in COVID-19 patients. It is possible that in some COVID-19 patients, neurological symptoms are being overlooked or misinterpreted. To date, neurological manifestations of COVID-19 have been described largely within the disease trajectory and the long-term effects of such manifestations remain unknown.
Collapse
Affiliation(s)
| | - Robert B. Raffa
- Temple University School of Pharmacy, Temple University, Philadelphia, PA, USA
- University of Arizona College of Pharmacy, Tucson, AZ, USA
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden
- Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | - Frank Breve
- NEMA Research, Inc., Naples, FL, USA
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, PA, USA
| | | | - Rohit Nalamasu
- Department of Physical Medicine and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul J. Christo
- Division of Pain Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
54
|
Zhang R, Sun C, Chen X, Han Y, Zang W, Jiang C, Wang J, Wang J. COVID-19-Related Brain Injury: The Potential Role of Ferroptosis. J Inflamm Res 2022; 15:2181-2198. [PMID: 35411172 PMCID: PMC8994634 DOI: 10.2147/jir.s353467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has caused devastating loss of life and a healthcare crisis worldwide. SARS-CoV-2 is the causative pathogen of COVID-19 and is transmitted mainly through the respiratory tract, where the virus infects host cells by binding to the ACE2 receptor. SARS-CoV-2 infection is associated with acute pneumonia, but neuropsychiatric symptoms and different brain injuries are also present. The possible routes by which SARS-CoV-2 invades the brain are unclear, as are the mechanisms underlying brain injuries with the resultant neuropsychiatric symptoms in patients with COVID-19. Ferroptosis is a unique iron-dependent form of non-apoptotic cell death, characterized by lipid peroxidation with high levels of glutathione consumption. Ferroptosis plays a primary role in various acute and chronic brain diseases, but to date, ferroptosis in COVID-19-related brain injuries has not been explored. This review discusses the mechanisms of ferroptosis and recent evidence suggesting a potential pathogenic role for ferroptosis in COVID-19-related brain injury. Furthermore, the possible routes through which SARS-CoV-2 could invade the brain are also discussed. Discoveries in these areas will open possibilities for treatment strategies to prevent or reduce brain-related complications of COVID-19.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Chen Sun
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Yunze Han
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, People’s Republic of China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
- Correspondence: Jian Wang; Junmin Wang, Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China, Email ;
| |
Collapse
|
55
|
Ebubeogu AF, Ozigbu CE, Maswadi K, Seixas A, Ofem P, Conserve DF. Predicting the number of COVID-19 infections and deaths in USA. Global Health 2022; 18:37. [PMID: 35346262 PMCID: PMC8959784 DOI: 10.1186/s12992-022-00827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Uncertainties surrounding the 2019 novel coronavirus (COVID-19) remain a major global health challenge and requires attention. Researchers and medical experts have made remarkable efforts to reduce the number of cases and prevent future outbreaks through vaccines and other measures. However, there is little evidence on how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection entropy can be applied in predicting the possible number of infections and deaths. In addition, more studies on how the COVID-19 infection density contributes to the rise in infections are needed. This study demonstrates how the SARS-COV-2 daily infection entropy can be applied in predicting the number of infections within a given period. In addition, the infection density within a given population attributes to an increase in the number of COVID-19 cases and, consequently, the new variants. RESULTS Using the COVID-19 initial data reported by Johns Hopkins University, World Health Organization (WHO) and Global Initiative on Sharing All Influenza Data (GISAID), the result shows that the original SAR-COV-2 strain has R0<1 with an initial infection growth rate entropy of 9.11 bits for the United States (U.S.). At close proximity, the average infection time for an infected individual to infect others within a susceptible population is approximately 7 minutes. Assuming no vaccines were available, in the U.S., the number of infections could range between 41,220,199 and 82,440,398 in late March 2022 with approximately, 1,211,036 deaths. However, with the available vaccines, nearly 48 Million COVID-19 cases and 706, 437 deaths have been prevented. CONCLUSION The proposed technique will contribute to the ongoing investigation of the COVID-19 pandemic and a blueprint to address the uncertainties surrounding the pandemic.
Collapse
Affiliation(s)
| | - Chamberline Ekene Ozigbu
- Department of Health Services Policy and Management, Arnold School of Public, Health, Columbia, 29208, SC, United States
| | - Kholoud Maswadi
- Department of Management Information Systems, Jazan University, Jazan, 45142, Saudi Arabia
| | - Azizi Seixas
- Department of Psychiatry and Behavioral Sciences, The University of Miami Miller School of Medicine, Miami, 33136, FL, United States
| | - Paulinus Ofem
- Department of Software Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Donaldson F Conserve
- Department of Prevention and Community Health, Milken Institute School of Public Health, The George Washington University, Washington, 20052, United States
| |
Collapse
|
56
|
Donina ZA. Causes of Hypoxemia in COVID-19. J EVOL BIOCHEM PHYS+ 2022; 58:73-80. [PMID: 35283538 PMCID: PMC8897613 DOI: 10.1134/s0022093022010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022]
Abstract
The global pandemic of a new coronavirus disease (COVID-19)
has posed challenges to public health specialists around the world
associated with diagnosis, intensive study of epidemiological and
clinical features of the coronavirus infection, development of preventive
approaches, therapeutic strategies and rehabilitation measures.
However, despite the successes achieved in the study of COVID-19
pathogenesis, many aspects that aggravate the severity of the disease
and cause high mortality of patients remain unclear. The main clinical
manifestation of the new variant of SARS-CoV-2 virus infection is
pneumonia with massive parenchymal lesions of lung tissue, diffuse alveolar
damage, thrombotic manifestations, disruption of ventilation-perfusion
relationships, etc. However, symptoms in patients hospitalized with
COVID pneumonia show a broad diversity: the majority has minimal
manifestations, others develop severe respiratory failure complicated
by acute respiratory distress syndrome (ARDS) with rapidly progressing
hypoxemia that leads to high mortality. Numerous clinical data publications
report that some COVID pneumonia patients without subjective signs
of severe respiratory failure (dyspnea, “air hunger”) have an extremely
low saturation level. As a result, there arises a paradoxical condition
(called “silent hypoxia” or even “happy hypoxia”) contradicting
the very basics of physiology, as it essentially represents a severe life-incompatible
hypoxemia which lacks respiratory discomfort. All this raises numerous
questions among professionals and has already ignited a discussion
in scientific publications concerned with the pathogenesis of COVID-19.
Respiratory failure is a complex clinical problem, many aspects
of which remain controversial. However, according to the majority
of authors, one of the first objective indicators of the clinical
sign of respiratory failure are hypoxemia-associated changes in external
respiration. This review addresses some possible causes of hypoxemia
in COVID-19.
Collapse
Affiliation(s)
- Zh. A. Donina
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
57
|
Zarachi A, Pezoulas V, Milionis O, Lianou AN, Klouras E, Komnos I, Fotiadis D, Kastanioudakis I, Milionis C, Liontos A. The Impact of Age and Gender and Their Association with Chemosensory Dysfunction, in Hospitalized and Self-Quarantine Patients with Covid-19 Infection, in Epirus, Greece. MAEDICA 2022; 17:28-36. [PMID: 35733759 PMCID: PMC9168572 DOI: 10.26574/maedica.2022.17.1.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objective:Olfactory and gustatory dysfunction that relates with the infection from severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) has already improved. The relation between chemosensory dysfunction and age and gender in covid-19 positive patients is the main objective of the present study. Methods:We used a questionnaire to select information about medical history, patient demographics and reported symptoms during infection. Three hundred covid-19 positive patients, who underwent a RT-PCR test in the University Hospital of Ioannina, Grecce, were included in this study; 150 of them recovered at home and the remaining 150 were admitted to hospital. Statistical analysis based on ÉBM-SPSS Statistics 26.0 was done. Results:The total sample included 300 patients, of which 106 females and 194 males. There was a statistically significant difference between the subgroup of patients aged 21-25, 61-65 and 71-75 with loss of smell, that of hospitalized patients aged 41-45 with loss of smell and the subgroup of those aged 31-35 and 71-75 with loss of taste. Conclusion:There is a significant association between chemosensory dysfunction and younger age groups. Olfactory and gustatory dysfunction appears more frequently in women than men. Male gender relates with disease severity.
Collapse
Affiliation(s)
- Athina Zarachi
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Vasileios Pezoulas
- Unit of Medical Technology and Intelligent Information Systems, Departement of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Orestis Milionis
- Faculty of Medicine, Department of Internal Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Aikaterini N Lianou
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eleutherios Klouras
- Faculty of Medicine, Department of Internal Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ioannis Komnos
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dimitrios Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Departement of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Ioannis Kastanioudakis
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Charalampos Milionis
- Faculty of Medicine, Department of Internal Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Angelos Liontos
- Faculty of Medicine, Department of Internal Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
58
|
Saceleanu V, Moreanu MS, Covache-Busuioc RA, Mohan AG, Ciurea AV. SARS-COV-2 - the pandemic of the XXI century, clinical manifestations - neurological implications. J Med Life 2022; 15:319-327. [PMID: 35450003 PMCID: PMC9015186 DOI: 10.25122/jml-2020-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
In December 2019, in Wuhan, China, the first cases of infection with SARS-CoV 2 responsible for COVID-19 disease were identified. SARS-CoV 2 was declared a pandemic on March 11, 2020, and since then has attracted the medical world's attention. The threat to humans' health that this emerging pandemic could leave raises awareness on the importance of understanding the mechanisms that underlie the developing conditions. The epidemiology, clinical picture, and pathogenesis of COVID-19 show that this virus presents new strategies to overcome the past defensive medicine. While all the current data has focused on the pulmonary and cardiovascular manifestations, little has been written about the neurological implications of the disease. This review updates new clinical aspects that SARS-CoV 2 expresses in humans by focusing primarily on neurological manifestations. The damage to the nervous system became more apparent - anosmia, ageusia, polyneuritis, meningitis, meningoencephalitis, stroke, acute necrotizing encephalopathy. Oxygen therapy is vital for those in critical health situations. Finally, prevention is the most important element in breaking the epidemiological chain.
Collapse
Affiliation(s)
- Vicentiu Saceleanu
- Department of Neurosurgery, Faculty of Medicine, Lucian Blaga University, Sibiu, Romania
- Department of Neurosurgery, County Emergency Hospital, Sibiu, Romania
| | - Mihai-Stelian Moreanu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Aurel George Mohan
- Department of Neurosurgery, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Department of Neurosurgery, County Emergency Hospital, Oradea, Romania
| | - Alexandru-Vlad Ciurea
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Sanador Clinical Hospital, Bucharest, Romania
| |
Collapse
|
59
|
Khatoon F, Prasad K, Kumar V. COVID-19 associated nervous system manifestations. Sleep Med 2022; 91:231-236. [PMID: 34321155 PMCID: PMC8267101 DOI: 10.1016/j.sleep.2021.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic in the last year. Along with major respiratory distress, a myriad of neurological manifestations was also reported to be associated with COVID-19 patients. These cases indicate that SARS-CoV-2 can be considered as an opportunistic pathogen of the brain. SARS-CoV-2 enters the brain through the olfactory bulb, retrograde axonal transport from peripheral nerve endings, or via hematogenous or lymphatic routes. Notably, COVID-19 infection can cause or even present with different neurological features including encephalopathy, impaired consciousness, confusion, agitation, seizure, ataxia, headache, anosmia, ageusia, neuropathies, and neurodegenerative diseases. In this paper, we provide a brief review of observed neurological manifestations associated with COVID-19.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP, 201303, India
| | - Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP, 201303, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP, 201303, India.
| |
Collapse
|
60
|
Hok L, Rimac H, Mavri J, Vianello R. COVID-19 infection and neurodegeneration: Computational evidence for interactions between the SARS-CoV-2 spike protein and monoamine oxidase enzymes. Comput Struct Biotechnol J 2022; 20:1254-1263. [PMID: 35228857 PMCID: PMC8868002 DOI: 10.1016/j.csbj.2022.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Although COVID-19 has been primarily associated with pneumonia, recent data show that its causative agent, the SARS-CoV-2 coronavirus, can infect many vital organs beyond the lungs, including the heart, kidneys and the brain. The literature agrees that COVID-19 is likely to have long-term mental health effects on infected individuals, which signifies a need to understand the role of the virus in the pathophysiology of brain disorders that is currently unknown and widely debated. Our docking and molecular dynamics simulations show that the affinity of the spike protein from the wild type (WT) and the South African B.1.351 (SA) variant towards MAO enzymes is comparable to that for its ACE2 receptor. This allows for the WT/SA⋅⋅⋅MAO complex formation, which changes MAO affinities for their neurotransmitter substrates, thereby impacting their metabolic conversion and misbalancing their levels. Knowing that this fine regulation is strongly linked with the etiology of various brain pathologies, these results are the first to highlight the possibility that the interference with the brain MAO catalytic activity is responsible for the increased neurodegenerative illnesses following a COVID-19 infection, thus placing a neurobiological link between these two conditions in the spotlight. Since the obtained insight suggests that a more contagious SA variant causes even larger disturbances, and with new and more problematic strains likely emerging in the near future, we firmly advise that the presented prospect of the SARS-CoV-2 induced neurological complications should not be ignored, but rather requires further clinical investigations to achieve an early diagnosis and timely therapeutic interventions.
Collapse
Affiliation(s)
- Lucija Hok
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Hrvoje Rimac
- Department of Medicinal Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Janez Mavri
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
61
|
Su S, Yu N, Zhang H, Wu D, Cui H, Ma C. Sudan Black B treatment uncovers the distribution of angiotensin-converting enzyme2 in nociceptors. Mol Pain 2022; 18:17448069221080305. [PMID: 35189759 PMCID: PMC8873969 DOI: 10.1177/17448069221080305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nervous system manifestations caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of great concern. Neurological symptoms and the neurological effects induced by SARS-CoV-2, such as the loss of various sensory perceptions, indicate direct viral invasion into sensory neurons. Therefore, it is very important to identify the distribution of angiotensin-converting enzyme 2 (ACE2), the receptor of SARS-CoV-2, in human nervous system. However, autofluorescence from lipofuscin obviously impacted immunofluorescence analysis in previous studies. We demonstrated that Sudan Black B (SBB) remarkably reduced the massive lipofuscin-like autofluorescence and the immunofluorescence signal would be sharpened following the exposure compensation. Additionally, we confirmed that ACE2 was expressed in IB4+, CGRP+, and NF200+ sensory subpopulations. The mapping of ACE2 distribution in hDRG would facilitate the understanding of sensory disorder induced by SARS-CoV-2.
Collapse
Affiliation(s)
- Si Su
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, 196536Peking Union Medical College, Beijing, China
| | - Ning Yu
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, 196536Peking Union Medical College, Beijing, China
| | - Hao Zhang
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, 196536Peking Union Medical College, Beijing, China
| | - Danning Wu
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, 196536Peking Union Medical College, Beijing, China
| | - Huan Cui
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, 196536Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, 196536Peking Union Medical College, Beijing, China
| |
Collapse
|
62
|
Ning Q, Wu D, Wang X, Xi D, Chen T, Chen G, Wang H, Lu H, Wang M, Zhu L, Hu J, Liu T, Ma K, Han M, Luo X. The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduct Target Ther 2022; 7:57. [PMID: 35197452 PMCID: PMC8863906 DOI: 10.1038/s41392-022-00907-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.
Collapse
Affiliation(s)
- Qin Ning
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Di Wu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xi
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwu Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiling Lu
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Zhu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Liu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ma
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Luo
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
63
|
Stolp B, Stern M, Ambiel I, Hofmann K, Morath K, Gallucci L, Cortese M, Bartenschlager R, Ruggieri A, Graw F, Rudelius M, Keppler OT, Fackler OT. SARS-CoV-2 variants of concern display enhanced intrinsic pathogenic properties and expanded organ tropism in mouse models. Cell Rep 2022; 38:110387. [PMID: 35134331 PMCID: PMC8795826 DOI: 10.1016/j.celrep.2022.110387] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) display enhanced transmissibility and resistance to antibody neutralization. Comparing the early 2020 isolate EU-1 to the VOCs Alpha, Beta, and Gamma in mice transgenic for human ACE2 reveals that VOCs induce a broadened scope of symptoms, expand systemic infection to the gastrointestinal tract, elicit the depletion of natural killer cells, and trigger variant-specific cytokine production patterns. Gamma infections result in accelerated disease progression associated with increased immune activation and inflammation. All four SARS-CoV-2 variants induce pDC depletion in the lungs, paralleled by reduced interferon responses. Remarkably, VOCs also use the murine ACE2 receptor for infection to replicate in the lungs of wild-type animals, which induce cellular and innate immune responses that apparently curtail the spread of overt disease. VOCs thus display distinct intrinsic pathogenic properties with broadened tissue and host range. The enhanced pathogenicity of VOCs and their potential for reverse zoonotic transmission pose challenges to clinical and pandemic management.
Collapse
Affiliation(s)
- Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Marcel Stern
- Max von Pettenkofer Institute and Gene Center, Virology, Faculty of Medicine, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Ina Ambiel
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Katharina Hofmann
- Max von Pettenkofer Institute and Gene Center, Virology, Faculty of Medicine, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Katharina Morath
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lara Gallucci
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Frederik Graw
- BioQuant-Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Oliver Till Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, Faculty of Medicine, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; German Centre for Infection Research (DZIF), Partner Site München, 80336 Munich, Germany
| | - Oliver Till Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
64
|
Sood A, Goyal R, Singh H, Behl T, Arora S, Saini B, Kaur R. Implication of Covid-19 on Neurological Complications with Specific Emphasis on Alzheimer's and Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:235-245. [PMID: 34414876 DOI: 10.2174/1871527320666210820092817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/02/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023]
Abstract
It is noticeable how the novel coronavirus has spread from the Wuhan region of China to the whole world, devastating the lives of people worldwide. All the data related to the precautionary measures, diagnosis, treatment, and even the epidemiological data are being made freely accessible and reachable in a very little time as well as being rapidly published to save humankind from this pandemic. There might be neurological complications of COVID-19 and patients suffering from neurodegenerative conditions like Alzheimer's disease and Parkinson's disease might have repercussions as a result of the pandemic. In this review article, we have discussed the effect of SARS-CoV-2 viral infection on the people affected with neurodegenerative disorders such as Parkinson's and Alzheimer's. It primarily emphasizes two issues, i.e., vulnerability to infection and modifications of course of the disease concerning the clinical neurological manifestations, the advancement of the disease and novel approaches to support health care professionals in disease management, the susceptibility to these diseases, and impact on the severity of disease and management.
Collapse
Affiliation(s)
- Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab,India
| | - Ravi Goyal
- Chitkara College of Pharmacy, Chitkara University, Punjab,India
| | - Harshdeep Singh
- Chitkara College of Applied Engineering, Chitkara University, Punjab,India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab,India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab,India
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab,India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab,India
| |
Collapse
|
65
|
Mahboubi Mehrabani M, Karvandi MS, Maafi P, Doroudian M. Neurological complications associated with Covid-19; molecular mechanisms and therapeutic approaches. Rev Med Virol 2022; 32:e2334. [PMID: 35138001 PMCID: PMC9111040 DOI: 10.1002/rmv.2334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
With the progression of investigations on the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), neurological complications have emerged as a critical aspect of the ongoing coronavirus disease 2019 (Covid‐19) pandemic. Besides the well‐known respiratory symptoms, many neurological manifestations such as anosmia/ageusia, headaches, dizziness, seizures, and strokes have been documented in hospitalised patients. The neurotropism background of coronaviruses has led to speculation that the neurological complications are caused by the direct invasion of SARS‐CoV‐2 into the nervous system. This invasion is proposed to occur through the infection of peripheral nerves or via systemic blood circulation, termed neuronal and haematogenous routes of invasion, respectively. On the other hand, aberrant immune responses and respiratory insufficiency associated with Covid‐19 are suggested to affect the nervous system indirectly. Deleterious roles of cytokine storm and hypoxic conditions in blood‐brain barrier disruption, coagulation abnormalities, and autoimmune neuropathies are well investigated in coronavirus infections, as well as Covid‐19. Here, we review the latest discoveries focussing on possible molecular mechanisms of direct and indirect impacts of SARS‐CoV‐2 on the nervous system and try to elucidate the link between some potential therapeutic strategies and the molecular pathways.
Collapse
Affiliation(s)
- Mohammad Mahboubi Mehrabani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Sobhan Karvandi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Pedram Maafi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
66
|
Chen AT, Wang CY, Zhu WL, Chen W. Coagulation Disorders and Thrombosis in COVID-19 Patients and a Possible Mechanism Involving Endothelial Cells: A Review. Aging Dis 2022; 13:144-156. [PMID: 35111367 PMCID: PMC8782553 DOI: 10.14336/ad.2021.0704] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is still an ongoing pandemic worldwide. COVID-19 is an age-related disease with a higher risk of organ dysfunction and mortality in older adults. Coagulation disorders and thrombosis are important pathophysiological changes in COVID-19 infection. Up to 95% of COVID-19 patients have coagulation disorders characterized by an elevated D-dimer, a prolonged prothrombin time, a low platelet count and other laboratory abnormalities. Thrombosis is found in critical cases with an increased risk of death. Endothelial cells are prone to be affected by the novel SARS-CoV-2 and express angiotensin-converting enzyme 2. The evidence, such as the presence of the virus, has been identified, leading to the inflammation and dysfunction. Endothelial cell activation and dysfunction play a pivotal role in the hypercoagulation status in COVID-19 patients. In addition to the direct exposure of subendothelial tissue to blood, Weibel-Palade bodies within the endothelium containing coagulants can be released into the circulation. Endothelial nitric oxide synthase may be impaired, thus facilitating platelet adhesion. Moreover, anti-β2-glycoprotein I antibodies may also contribute to the coagulopathy in COVID-19 by inducing the upregulation of proinflammatory mediators and adhesion molecules. To conclude, coagulation disorders and thrombosis are vital and predict a poor outcome in COVID-19 patients, especially in severe cases. Endothelial cell activation and dysfunction may play an important role in causing clot formation. More basic and clinical research is warranted to further our understanding of the role of coagulopathy and their possible mechanism in COVID-19 patients.
Collapse
Affiliation(s)
- An-tian Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
| | - Chen-yu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wen-ling Zhu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
67
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
68
|
Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022; 17:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The global COVID-19 pandemic has claimed the lives of millions and disrupted nearly every aspect of human society. Currently, vaccines remain the only widely available medical means to address the cause of the pandemic, the SARS-CoV-2 virus. Unfortunately, current scientific consensus deems the emergence of vaccine-resistant SARS-CoV-2 variants highly likely. In this context, the design and development of broad-spectrum, small-molecule based antiviral drugs has been described as a potentially effective, alternative medical strategy to address circulating and re-emerging CoVs. Small molecules are well-suited to target the least-rapidly evolving structures within CoVs such as highly conserved RNA replication enzymes, and this renders them less vulnerable to evolved drug resistance. Examination of the vast literature describing the inhibition of RNA viruses by Amaryllidaceae alkaloids suggests that future, broad-spectrum anti-CoV drugs may be derived from this family of natural products.
Collapse
Affiliation(s)
- Shen Tan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Martin G Banwell
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping Lan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Lorenzo V White
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
69
|
Guardado-Mendoza R, Garcia-Magaña MA, Martínez-Navarro LJ, Macías-Cervantes HE, Aguilar-Guerrero R, Suárez-Pérez EL, Aguilar-García A. Effect of linagliptin plus insulin in comparison to insulin alone on metabolic control and prognosis in hospitalized patients with SARS-CoV-2 infection. Sci Rep 2022; 12:536. [PMID: 35017617 PMCID: PMC8752656 DOI: 10.1038/s41598-021-04511-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
To evaluate the effect of the combination of linagliptin and insulin on metabolic control and prognosis in hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and hyperglycemia. A parallel double-blind randomized clinical trial including hospitalized patients with SARS-CoV-2 infection and hyperglycemia, randomized to receive 5 mg linagliptin + insulin (LI group) or insulin alone (I group) was performed. The main outcomes were the need for assisted mechanical ventilation and glucose levels during hospitalization. Subjects were screened for eligibility at hospital admission if they were not with assisted mechanical ventilation and presented hyperglycemia, and a total of 73 patients with SARS-CoV-2 infection and hyperglycemia were randomized to the LI group (n = 35) or I group (n = 38). The average hospital stay was 12 ± 1 vs 10 ± 1 days for the I and LI groups, respectively (p = 0.343). There were no baseline clinical differences between the study groups, but the percentage of males was higher in the LI group (26 vs 18, p = 0.030). The improvements in fasting and postprandial glucose levels were better in the LI group that the I group (122 ± 7 vs 149 ± 10, p = 0.033; and 137 ± 7 vs 173 ± 12, p = 0.017, respectively), and insulin requirements tended to be lower in the LI group than the I group. Three patients in the LI group and 12 in the I group required assisted mechanical ventilation (HR 0.258, CI 95% 0.092–0.719, p = 0.009); 2 patients in the LI group and 6 in the I group died after a follow-up of 30 days (p = 0.139). No major side effects were observed. The combination of linagliptin and insulin in hospitalized patients with SARS-CoV-2 infection and hyperglycemia reduced the relative risk of assisted mechanical ventilation by 74% and improved better pre and postprandial glucose levels with lower insulin requirements, and no higher risk of hypoglycemia. This study is registered at clinicaltrials.gov, number NCT04542213 on 09/03/2020.
Collapse
Affiliation(s)
- Rodolfo Guardado-Mendoza
- Research Department, Hospital Regional de Alta Especialidad del Bajío, and University of Guanajuato, Blvd.Milenio #130, Col. San Carlos la Roncha, CP 37660, León, Guanajuato, Mexico.
| | - Miguel Angel Garcia-Magaña
- Internal Medicine Department, Hospital Regional de Alta Especialidad del Bajío, León, Guanajuato, Mexico
| | | | - Hilda Elizabeth Macías-Cervantes
- Internal Medicine Department, Unidad Médica de Alta Especialidad T1, Instituto Mexicano del Seguro Social, León, Guanajuato, Mexico
| | - Rodolfo Aguilar-Guerrero
- Internal Medicine Department, Unidad Médica de Alta Especialidad T1, Instituto Mexicano del Seguro Social, León, Guanajuato, Mexico
| | - Erick L Suárez-Pérez
- Department of Biostatistics and Epidemiology, Graduated School of Public Health, University of Puerto Rico, San Juan, USA
| | - Alberto Aguilar-García
- Endocrinology Department, Hospital Regional de Alta Especialidad del Bajío, León, Guanajuato, Mexico
| |
Collapse
|
70
|
Li K, Wohlford-Lenane C, Bartlett JA, McCray PB. Inter-individual Variation in Receptor Expression Influences MERS-CoV Infection and Immune Responses in Airway Epithelia. Front Public Health 2022; 9:756049. [PMID: 35059374 PMCID: PMC8763803 DOI: 10.3389/fpubh.2021.756049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory infection in humans, with symptom severity that ranges from asymptomatic to severe pneumonia. Known risk factors for severe MERS include male sex, older age, and the presence of various comorbidities. MERS-CoV gains entry into cells by binding its receptor, dipeptidyl peptidase 4 (DPP4), on the surface of airway epithelia. We hypothesized that expression of this receptor might be an additional determinant of outcomes in different individuals during MERS-CoV infection. To learn more about the role of DPP4 in facilitating MERS-CoV infection and spread, we used ELISA and immunofluorescent staining to characterize DPP4 expression in well-differentiated primary human airway epithelia (HAE). We noted wide inter-individual variation in DPP4 abundance, varying by as much as 1000-fold between HAE donors. This variability appears to influence multiple aspects of MERS-CoV infection and pathogenesis, with greater DPP4 abundance correlating with early, robust virus replication and increased cell sloughing. We also observed increased induction of interferon and some interferon-stimulated genes in response to MERS-CoV infection in epithelia with the greatest DPP4 abundance. Overall, our results indicate that inter-individual differences in DPP4 abundance are one host factor contributing to MERS-CoV replication and host defense responses, and highlight how HAE may serve as a useful model for identifying risk factors associated with heightened susceptibility to serious respiratory pathogens.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Christine Wohlford-Lenane
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jennifer A. Bartlett
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Paul B. McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
71
|
Young A, Isaacs A, Scott CAP, Modhiran N, McMillan CLD, Cheung STM, Barr J, Marsh G, Thakur N, Bailey D, Li KSM, Luk HKH, Kok KH, Lau SKP, Woo PCY, Furuyama W, Marzi A, Young PR, Chappell KJ, Watterson D. A platform technology for generating subunit vaccines against diverse viral pathogens. Front Immunol 2022; 13:963023. [PMID: 36059532 PMCID: PMC9436389 DOI: 10.3389/fimmu.2022.963023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 12/28/2022] Open
Abstract
The COVID-19 pandemic response has shown how vaccine platform technologies can be used to rapidly and effectively counteract a novel emerging infectious disease. The speed of development for mRNA and vector-based vaccines outpaced those of subunit vaccines, however, subunit vaccines can offer advantages in terms of safety and stability. Here we describe a subunit vaccine platform technology, the molecular clamp, in application to four viruses from divergent taxonomic families: Middle Eastern respiratory syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), Lassa virus (LASV) and Nipah virus (NiV). The clamp streamlines subunit antigen production by both stabilising the immunologically important prefusion epitopes of trimeric viral fusion proteins while enabling purification without target-specific reagents by acting as an affinity tag. Conformations for each viral antigen were confirmed by monoclonal antibody binding, size exclusion chromatography and electron microscopy. Notably, all four antigens tested remained stable over four weeks of incubation at 40°C. Of the four vaccines tested, a neutralising immune response was stimulated by clamp stabilised MERS-CoV spike, EBOV glycoprotein and NiV fusion protein. Only the clamp stabilised LASV glycoprotein precursor failed to elicit virus neutralising antibodies. MERS-CoV and EBOV vaccine candidates were both tested in animal models and found to provide protection against viral challenge.
Collapse
Affiliation(s)
- Andrew Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stacey T M Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer Barr
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Glenn Marsh
- CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Nazia Thakur
- The Pirbright Institute, Woking, United Kingdom.,Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | | - Kenneth S M Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hayes K H Luk
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kin-Hang Kok
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
72
|
Emmi A, Boura I, Raeder V, Mathew D, Sulzer D, Goldman JE, Leta V. Covid-19, nervous system pathology, and Parkinson's disease: Bench to bedside. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:17-34. [PMID: 36208899 PMCID: PMC9361071 DOI: 10.1016/bs.irn.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (Covid-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is primarily regarded as a respiratory disease; however, multisystemic involvement accompanied by a variety of clinical manifestations, including neurological symptoms, are commonly observed. There is, however, little evidence supporting SARS-CoV-2 infection of central nervous system cells, and neurological symptoms for the most part appear to be due to damage mediated by hypoxic/ischemic and/or inflammatory insults. In this chapter, we report evidence on candidate neuropathological mechanisms underlying neurological manifestations in Covid-19, suggesting that while there is mostly evidence against SARS-CoV-2 entry into brain parenchymal cells as a mechanism that may trigger Parkinson's disease and parkinsonism, that there are multiple means by which the virus may cause neurological symptoms.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Iro Boura
- Department of Neurology, University Hospital of Heraklion, Crete, Greece
| | - Vanessa Raeder
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Neurology, Technical University Dresden, Dresden, Germany; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Donna Mathew
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Medical Center, New York State Psychiatric Institute, New York, United States
| | - James E Goldman
- Department of Pathology and Cell Biology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, United States
| | - Valentina Leta
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
73
|
Kukkle PL. COVID-19: The cynosure of rise of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:251-262. [PMID: 36208903 PMCID: PMC9303069 DOI: 10.1016/bs.irn.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is one of the most common age-related disorders globally. The pathophysiological mechanisms and precipitating factors underlying PD manifestations, including genetic and environmental parameters, inflammation/stress and ageing, remain elusive. Speculations about whether the Coronavirus Disease 2019 (Covid-19) pandemic could be a pivotal factor in affecting the prevalence and severity of PD or triggering a wave of new-onset parkinsonism in both the near and distant future have recently become very popular, with researchers wondering if there is a changing trend in current parkinsonism cases. Could the current understanding of the Covid-19 pathophysiology provide clues for an impending rise of parkinsonism cases in the future? Are there any lessons to learn from previous pandemics? Our aim was to look into these questions and available current literature in order to investigate if Covid-19 could constitute a cardinal event affecting the parkinsonism landscape.
Collapse
Affiliation(s)
- Prashanth Lingappa Kukkle
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India; Center for Parkinson's Disease and Movement Disorders, Manipal Hospital, Miller's Road, Bangalore, India.
| |
Collapse
|
74
|
Emmi A, Sandre M, Porzionato A, Antonini A. Smell deficits in COVID-19 and possible links with Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:91-102. [PMID: 36208908 PMCID: PMC9444897 DOI: 10.1016/bs.irn.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olfactory impairment is a common symptom in Coronavirus Disease 2019 (COVID-19), the disease caused by Severe Acute Respiratory Syndrome—Coronavirus 2 (SARS-CoV-2) infection. While other viruses, such as influenza viruses, may affect the ability to smell, loss of olfactory function is often smoother and associated to various degrees of nasal symptoms. In COVID-19, smell loss may appear also in absence of other symptoms, frequently with a sudden onset. However, despite great clinical interest in COVID-19 olfactory alterations, very little is known concerning the mechanisms underlying these phenomena. Moreover, olfactory dysfunction is observed in neurological conditions like Parkinson's disease (PD) and can precede motor onset by many years, suggesting that viral infections, like COVID-19, and regional inflammatory responses may trigger defective protein aggregation and subsequent neurodegeneration, potentially linking COVID-19 olfactory impairment to neurodegeneration. In the following chapter, we report the neurobiological and neuropathological underpinnings of olfactory impairments encountered in COVID-19 and discuss the implications of these findings in the context of neurodegenerative disorders, with particular regard to PD and alpha-synuclein pathology.
Collapse
|
75
|
Ashour LM. Levels and Predictors of COVID-19-Related Anxiety in Older Adults. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Prolonged quarantine during the COVID-19 outbreak is a stressful factor.
AIM: This study aims to analyze the psycho-emotional state of Jordan’s older population during the Covid-19 pandemic.
MATERIALS AND METHODS: The study on 620 older adults (mean age, 66.4±5.3 years) was conducted in 2020 in Amman (Jordan). All respondents were asked to complete an online survey on coping strategies, a HUDS questionnaire, and a specially designed questionnaire.
RESULTS: The dominant predictors of stress were uncertainty (62%) and a fear other family members getting ill (60%). Of all the respondents, 15% agreed with the necessity to prolong the quarantine period, 47% had a neutral attitude, and 38% exhibited a negative attitude. High levels of anxiety in older population were associated with the lower use of humor (H=11.498, p≤0.002). On the other hand, such respondents demonstrated the higher use of planning (H=6.227, p≤0.039), venting (H=11.087, p≤0.004), avoidance (H=7.457, p≤0.019), and active coping (H=6.043, p≤0.037).
CONCLUSIONS: Most of Covid-19 cases are registered in healthcare institutions and for that reason, there is a need to provide psychiatric care to medical workers who do not have the necessary experience in this area. This may also require the state to promote psychiatric care training.
Collapse
|
76
|
Cavallieri F, Sellner J, Zedde M, Moro E. Neurologic complications of coronavirus and other respiratory viral infections. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:331-358. [PMID: 36031313 PMCID: PMC9418023 DOI: 10.1016/b978-0-323-91532-8.00004-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans, several respiratory viruses can have neurologic implications affecting both central and peripheral nervous system. Neurologic manifestations can be linked to viral neurotropism and/or indirect effects of the infection due to endothelitis with vascular damage and ischemia, hypercoagulation state with thrombosis and hemorrhages, systemic inflammatory response, autoimmune reactions, and other damages. Among these respiratory viruses, recent and huge attention has been given to the coronaviruses, especially the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic started in 2020. Besides the common respiratory symptoms and the lung tropism of SARS-CoV-2 (COVID-19), neurologic manifestations are not rare and often present in the severe forms of the infection. The most common acute and subacute symptoms and signs include headache, fatigue, myalgia, anosmia, ageusia, sleep disturbances, whereas clinical syndromes include mainly encephalopathy, ischemic stroke, seizures, and autoimmune peripheral neuropathies. Although the pathogenetic mechanisms of COVID-19 in the various acute neurologic manifestations are partially understood, little is known about long-term consequences of the infection. These consequences concern both the so-called long-COVID (characterized by the persistence of neurological manifestations after the resolution of the acute viral phase), and the onset of new neurological symptoms that may be linked to the previous infection.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria,Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Marialuisa Zedde
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elena Moro
- Division of Neurology, CHU of Grenoble, Grenoble Alpes University, Grenoble Institute of Neurosciences, Grenoble, France,Correspondence to: Elena Moro, Service de neurologie, CHU de Grenoble (Hôpital Nord), Boulevard de la Chantourne, 38043 La Tronche, France. Tel: + 33-4-76-76-94-52, Fax: +33-4-76-76-56-31
| |
Collapse
|
77
|
Romero A, Ramos E, López-Muñoz F, Gil-Martín E, Escames G, Reiter RJ. Coronavirus Disease 2019 (COVID-19) and Its Neuroinvasive Capacity: Is It Time for Melatonin? Cell Mol Neurobiol 2022; 42:489-500. [PMID: 32772307 PMCID: PMC7415199 DOI: 10.1007/s10571-020-00938-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023]
Abstract
The world faces an exceptional new public health concern caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), subsequently termed the coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). Although the clinical symptoms mostly have been characterized, the scientific community still doesn´t know how SARS-CoV-2 successfully reaches and spreads throughout the central nervous system (CNS) inducing brain damage. The recent detection of SARS-CoV-2 in the cerebrospinal fluid (CSF) and in frontal lobe sections from postmortem examination has confirmed the presence of the virus in neural tissue. This finding reveals a new direction in the search for a neurotherapeutic strategy in the COVID-19 patients with underlying diseases. Here, we discuss the COVID-19 outbreak in a neuroinvasiveness context and suggest the therapeutic use of high doses of melatonin, which may favorably modulate the immune response and neuroinflammation caused by SARS-CoV-2. However, clinical trials elucidating the efficacy of melatonin in the prevention and clinical management in the COVID-19 patients should be actively encouraged.
Collapse
Affiliation(s)
- Alejandro Romero
- grid.4795.f0000 0001 2157 7667Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Eva Ramos
- grid.4795.f0000 0001 2157 7667Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- grid.449750.b0000 0004 1769 4416Faculty of Health Sciences, University Camilo José Cela, C/ Castillo de Alarcón 49, 28692 Villanueva de la Cañada, Madrid, Spain ,grid.144756.50000 0001 1945 5329Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i+12), Avda. Córdoba, s/n, 28041 Madrid, Spain ,grid.410919.40000 0001 2152 2367Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal ,grid.413448.e0000 0000 9314 1427Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| | - Emilio Gil-Martín
- grid.6312.60000 0001 2097 6738Nutrition and Food Science Group, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Germaine Escames
- grid.4489.10000000121678994Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain ,grid.4489.10000000121678994Department of Physiology, University of Granada, 18016 Granada, Spain ,grid.507088.2Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Investigación Biosanitaria CIBERFES, IBS. Granada, Granada Hospital Complex, 18016 Granada, Spain
| | - Russel J. Reiter
- grid.267309.90000 0001 0629 5880Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
78
|
Dutta D, Liu J, Xiong H. NLRP3 inflammasome activation and SARS-CoV-2-mediated hyperinflammation, cytokine storm and neurological syndromes. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2022; 14:138-160. [PMID: 35891930 PMCID: PMC9301183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 04/13/2023]
Abstract
Despite the introduction of vaccines and drugs for SARS-CoV-2, the COVID-19 pandemic continues to spread throughout the world. In severe COVID-19 patients, elevated levels of proinflammatory cytokines have been detected in the blood, lung cells, and bronchoalveolar lavage, which is referred to as a cytokine storm, a consequence of overactivation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome and resultant excessive cytokine production. The hyperinflammatory response and cytokine storm cause multiorgan impairment including the central nervous system, in addition to a detriment to the respiratory system. Hyperactive NLRP3 inflammasome, due to dysregulated immune response, is the primary cause of COVID-19 severity. The severity could be enhanced due to viral evolution leading to the emergence of mutated variants of concern, such as delta and omicron. In this review, we elaborate on the inflammatory responses associated with the NLRP3 inflammasome activation in COVID-19 pathogenesis, the mechanisms for the NLRP3 inflammasome activation and pathway involved, cytokine storm, and neurological complications as long-term consequences of SARS-CoV-2 infection. Also discussed is the therapeutic potential of NLRP3 inflammasome inhibitors for the treatment of COVID-19.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| | - Jianuo Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE 68198-5880, USA
| |
Collapse
|
79
|
Ku M, Authié P, Bourgine M, Anna F, Noirat A, Moncoq F, Vesin B, Nevo F, Lopez J, Souque P, Blanc C, Fert I, Chardenoux S, Lafosse L, Cussigh D, Hardy D, Nemirov K, Guinet F, Langa Vives F, Majlessi L, Charneau P. Brain cross-protection against SARS-CoV-2 variants by a lentiviral vaccine in new transgenic mice. EMBO Mol Med 2021; 13:e14459. [PMID: 34647691 PMCID: PMC8646827 DOI: 10.15252/emmm.202114459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 vaccines already in use or in clinical development may have reduced efficacy against emerging SARS-CoV-2 variants. In addition, although the neurotropism of SARS-CoV-2 is well established, the vaccine strategies currently developed have not taken into account protection of the central nervous system. Here, we generated a transgenic mouse strain expressing the human angiotensin-converting enzyme 2, and displaying unprecedented brain permissiveness to SARS-CoV-2 replication, in addition to high permissiveness levels in the lung. Using this stringent transgenic model, we demonstrated that a non-integrative lentiviral vector, encoding for the spike glycoprotein of the ancestral SARS-CoV-2, used in intramuscular prime and intranasal boost elicits sterilizing protection of lung and brain against both the ancestral virus, and the Gamma (P.1) variant of concern, which carries multiple vaccine escape mutations. Beyond induction of strong neutralizing antibodies, the mechanism underlying this broad protection spectrum involves a robust protective T-cell immunity, unaffected by the recent mutations accumulated in the emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Min‐Wen Ku
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Pierre Authié
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Maryline Bourgine
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - François Anna
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Amandine Noirat
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Fanny Moncoq
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Benjamin Vesin
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Fabien Nevo
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Jodie Lopez
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Philippe Souque
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Catherine Blanc
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Ingrid Fert
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Sébastien Chardenoux
- Plate‐Forme Centre d'Ingénierie Génétique Murine CIGMInstitut PasteurParisFrance
| | - llta Lafosse
- Plate‐Forme Centre d'Ingénierie Génétique Murine CIGMInstitut PasteurParisFrance
| | - Delphine Cussigh
- Plate‐Forme Centre d'Ingénierie Génétique Murine CIGMInstitut PasteurParisFrance
| | - David Hardy
- Experimental Neuropatholgy UnitInstitut PasteurParisFrance
| | - Kirill Nemirov
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Françoise Guinet
- Lymphocytes and Immunity UnitImmunology DepartmentInstitut PasteurParisFrance
| | - Francina Langa Vives
- Plate‐Forme Centre d'Ingénierie Génétique Murine CIGMInstitut PasteurParisFrance
| | - Laleh Majlessi
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| | - Pierre Charneau
- Virology DepartmentInstitut Pasteur‐TheraVectys Joint LabParisFrance
| |
Collapse
|
80
|
Azzam AY, Ghozy S, Azab MA. Vitamin D and its' role in Parkinson's disease patients with SARS-CoV-2 infection. A review article. INTERDISCIPLINARY NEUROSURGERY : ADVANCED TECHNIQUES AND CASE MANAGEMENT 2021; 27:101441. [PMID: 34868885 PMCID: PMC8627384 DOI: 10.1016/j.inat.2021.101441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
A novel coronavirus reportedly called 2019-nCoV started to spread around the world at the end of 2019. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was later renamed after links with SARS were observed. Multiple studies have reported possible connections between the COVID-19 virus and neurodegenerative diseases, including Parkinson's disease. Theories support that vitamin D deficiency plays a part in the pathogenicity of Parkinson's disease or the credibility of the associated dopamine system. Administration of vitamin D3 was shown to significantly enhance the motor and non-motor manifestations of Parkinson's disease and enhance the quality of life. Also, multiple recent reviews have shown specific ways in which vitamin D reduces the risk of pathogenic infections. Recent studies supported the potential role of vitamin D in reducing the risk of COVID-19 infections and mortality. On the immunological level, immune response regulation remains one of the well-recognized actions of vitamin D. Vitamin D deficiency has been linked to complications in patients with SARS-CoV-2 infection and Parkinson's disease. Whereas more studies are required, Vitamin D supplementation with a moderate and well-calculated dosage of vitamin D3 in patients with Parkinson's disease can help minimize the risk and burden of COVID-19 complications.
Collapse
Affiliation(s)
- Ahmed Y Azzam
- October 6 University Faculty of Medicine, Giza, Egypt
| | - Sherief Ghozy
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mohammed A Azab
- Department of Biomolecular Sciences, Boise State University, Boise, ID, USA
| |
Collapse
|
81
|
Bakhtazad A, Garmabi B, Joghataei MT. Neurological manifestations of coronavirus infections, before and after COVID-19: a review of animal studies. J Neurovirol 2021; 27:864-884. [PMID: 34727365 PMCID: PMC8561685 DOI: 10.1007/s13365-021-01014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus, which was first identified in December 2019 in China, has resulted in a yet ongoing viral pandemic. Coronaviridae could potentially cause several disorders in a wide range of hosts such as birds and mammals. Although infections caused by this family of viruses are predominantly limited to the respiratory tract, Betacoronaviruses are potentially able to invade the central nervous system (CNS) as well as many other organs, thereby inducing neurological damage ranging from mild to lethal in both animals and humans. Over the past two decades, three novel CoVs, SARS-CoV-1, MERS-CoV, and SARS-CoV-2, emerging from animal reservoirs have exhibited neurotropic properties causing severe and even fatal neurological diseases. The pathobiology of these neuroinvasive viruses has yet to be fully known. Both clinical features of the previous CoV epidemics (SARS-CoV-1 and MERS-CoV) and lessons from animal models used in studying neurotropic CoVs, especially SARS and MERS, constitute beneficial tools in comprehending the exact mechanisms of virus implantation and in illustrating pathogenesis and virus dissemination pathways in the CNS. Here, we review the animal research which assessed CNS infections with previous more studied neurotropic CoVs to demonstrate how experimental studies with appliable animal models can provide scientists with a roadmap in the CNS impacts of SARS-CoV-2. Indeed, animal studies can finally help us discover the underlying mechanisms of damage to the nervous system in COVID-19 patients and find novel therapeutic agents in order to reduce mortality and morbidity associated with neurological complications of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Haft-Tir Sq, University Blv, 3614773947 Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, 1449614535 Tehran, Iran
| |
Collapse
|
82
|
Du Y, Zhao W, Du L, Liu J. Neuropsychiatric symptoms associated with the COVID-19 and its potential nervous system infection mechanism: the role of imaging in the study. PSYCHORADIOLOGY 2021; 1:199-211. [PMID: 38666221 PMCID: PMC10917188 DOI: 10.1093/psyrad/kkab019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 04/28/2024]
Abstract
The epidemic of coronavirus disease 2019 (COVID-19) has broken the normal spread mode of respiratory viruses, namely, mainly spread in winter, resulting in over 230 million confirmed cases of COVID-19. Many studies have shown that severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can affect the nervous system by varying degrees. In this review, we look at the acute neuropsychiatric impacts of COVID-19 patients, including acute ischemic stroke, encephalitis, acute necrotizing encephalopathy, dysosmia, and epilepsy, as well as the long-term neuropsychiatric sequelae of COVID-19 survivors: mental disorder and neurodegenerative diseases. In particular, this review discusses long-term changes in brain structure and function associated with COVID-19 infection. We believe that the traditional imaging sequences are important in the acute phase, while the nontraditional imaging sequences are more meaningful for the detection of long-term neuropsychiatric sequelae. These long-term follow-up changes in structure and function may also help us understand the causes of neuropsychiatric symptoms in COVID-19 survivors. Finally, we review previous studies and discuss some potential mechanisms of SARS-CoV-2 infection in the nervous system. Continuous focus on neuropsychiatric sequelae and a comprehensive understanding of the long-term impacts of the virus to the nervous system is significant for formulating effective sequelae prevention and management strategies, and may provide important clues for nervous system damage in future public health crises.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha 410011, Hunan, China
| | - Lei Du
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45255, OH, USA
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha 410011, Hunan, China
- Department of Radiology Quality Control Center, Hunan Province, Changsha 410011, Hunan, China
| |
Collapse
|
83
|
Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther 2021; 6:406. [PMID: 34815399 PMCID: PMC8609271 DOI: 10.1038/s41392-021-00818-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
Currently, SARS-CoV-2 has caused a global pandemic and threatened many lives. Although SARS-CoV-2 mainly causes respiratory diseases, growing data indicate that SARS-CoV-2 can also invade the central nervous system (CNS) and peripheral nervous system (PNS) causing multiple neurological diseases, such as encephalitis, encephalopathy, Guillain-Barré syndrome, meningitis, and skeletal muscular symptoms. Despite the increasing incidences of clinical neurological complications of SARS-CoV-2, the precise neuroinvasion mechanisms of SARS-CoV-2 have not been fully established. In this review, we primarily describe the clinical neurological complications associated with SARS-CoV-2 and discuss the potential mechanisms through which SARS-CoV-2 invades the brain based on the current evidence. Finally, we summarize the experimental models were used to study SARS-CoV-2 neuroinvasion. These data form the basis for studies on the significance of SARS-CoV-2 infection in the brain.
Collapse
Affiliation(s)
- Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Department of Molecular, Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
84
|
Jiang Y, Chen Y, Sun H, Zhang X, He L, Li J, Zhao G, Sun S. MERS-CoV infection causes brain damage in human DPP4-transgenic mice through complement-mediated inflammation. J Gen Virol 2021; 102. [PMID: 34704923 PMCID: PMC8604193 DOI: 10.1099/jgv.0.001667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The highly pathogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a severe respiratory virus. Recent reports indicate additional central nervous system (CNS) involvement. In this study, human DPP4 transgenic mice were infected with MERS-CoV, and viral antigens were first detected in the midbrain-hindbrain 4 days post-infection, suggesting the virus may enter the brainstem via peripheral nerves. Neurons and astrocytes throughout the brain were infected, followed by damage of the blood brain barrier (BBB), as well as microglial activation and inflammatory cell infiltration, which may be caused by complement activation based on the observation of deposition of complement activation product C3 and high expression of C3a receptor (C3aR) and C5a receptor (C5aR1) in neurons and glial cells. It may be concluded that these effects were mediated by complement activation in the brain, because of their reduction resulted from the treatment with mouse C5aR1-specific mAb. Such mAb significantly reduced nucleoprotein expression, suppressed microglial activation and decreased activation of caspase-3 in neurons and p38 phosphorylation in the brain. Collectively, these results suggest that MERS-CoV infection of CNS triggers complement activation, leading to inflammation-mediated damage of brain tissue, and regulating of complement activation could be a promising intervention and adjunctive treatment for CNS injury by MERS-CoV and other coronaviruses.
Collapse
Affiliation(s)
- Yuting Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, PR China
| | - Xiaolu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Jiangfan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| |
Collapse
|
85
|
Zalyalova ZA, Khasanova DM. [Risk and course of COVID-19 in patients with Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:152-156. [PMID: 34693704 DOI: 10.17116/jnevro2021121091152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article provides an overview of the data on the impact of Parkinson's disease on the risk of infection and the course of COVID-19, and also assesses the possible pathogenetic relationship between the SARS-CoV-2 virus, COVID-19 and PD. By penetrating the central nervous system, SARS-CoV-2 can cause not only neurological symptoms, but also exacerbate the course of an existing neurological disease. The impact of Parkinson's disease on the risk of infection and the course of COVID-19 is controversial. However, a number of authors support the opinion that PD is an anti-risk factor for the development of COVID-19, which is associated both with the pathogenesis of the disease and with the used antiparkinsonian drugs, in particular amantadines. There are no clear data indicating higher risk of infection and higher severity of COVID-19 in patients with PD. On the contrary, experimental and clinical data suggest a possible modifying role of α-synuclein and antiparkinsonian drugs.
Collapse
Affiliation(s)
- Z A Zalyalova
- Kazan State Medical University, Kazan, Russia.,Rebublican Center for Movement Disorders, Kazan, Russia.,Hospital for War Veterans, Kazan, Russia
| | - D M Khasanova
- Rebublican Center for Movement Disorders, Kazan, Russia.,Hospital for War Veterans, Kazan, Russia
| |
Collapse
|
86
|
Gutiérrez-Álvarez J, Honrubia JM, Sanz-Bravo A, González-Miranda E, Fernández-Delgado R, Rejas MT, Zúñiga S, Sola I, Enjuanes L. Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proc Natl Acad Sci U S A 2021; 118:e2111075118. [PMID: 34686605 PMCID: PMC8639359 DOI: 10.1073/pnas.2111075118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Defective Viruses/genetics
- Defective Viruses/immunology
- Female
- Gene Deletion
- Genes, env
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- RNA, Viral/administration & dosage
- RNA, Viral/genetics
- RNA, Viral/immunology
- Replicon
- Vaccines, DNA
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- J Gutiérrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - J M Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - A Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - E González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - R Fernández-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - M T Rejas
- Electron Microscopy Service, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - S Zúñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - I Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain;
| |
Collapse
|
87
|
Behl T, Kumar S, Sehgal A, Singh S, Sharma N, Chirgurupati S, Aldubayan M, Alhowail A, Bhatia S, Bungau S. Linking COVID-19 and Parkinson's disease: Targeting the role of Vitamin-D. Biochem Biophys Res Commun 2021; 583:14-21. [PMID: 34715496 PMCID: PMC8524705 DOI: 10.1016/j.bbrc.2021.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 pandemic has a major effect on world health, particularly on individuals suffering from severe diseases or old aged persons. Various case studies revealed that COVID-19 might increase the progression of Parkinson's disease (PD). Coxsackievirus, dengue virus Epstein-Barr virus, hepatitis C virus, Japanese encephalitis, Western equine encephalomyelitis virus, West Nile virus, and human immunodeficiency virus have all been linked to the development of transient or permanent parkinsonism, owing to the induction of neuroinflammation/hypoxic brain injury with structural/functional damage within the basal ganglia. Coronavirus mainly infects the alveolar cells and may lead to acute respiratory distress syndrome. SARS-CoV-2 invades cells via the ACE2 receptor, which is widely expressed in the central nervous system, where the virus may precipitate or accelerate dementia. SARS-CoV-2 could enter the central nervous system directly by the olfactory/vagus nerves or through the bloodstream. Here, we talked about the importance of this viral infection in terms of the CNS as well as its implications for people with Parkinson's disease; anosmia & olfaction-related impairments in COVID-19 & PD patients. And, also discussed the role of vitamin D to sustain the progression of Parkinson's disease and the COVID-19; regular vitamin D3 consumption of 2000-5000 IU/day may reduce the risk and severity of COVID-19 in parkinsonian patients.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sridevi Chirgurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
88
|
Jandial A, Gupta A, Malviya A, Agastam S, Kumar D. Coagulation abnormalities & thromboprophylaxis in COVID-19. Indian J Med Res 2021; 153:606-618. [PMID: 34643567 PMCID: PMC8555598 DOI: 10.4103/ijmr.ijmr_3841_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of novel coronavirus 2019 is rapidly evolving, and newer organ- and system-specific manifestations are being observed. Thrombotic complications and coagulopathy are frequent manifestations of the disease, especially in sick patients, which appear to be unique and distinct from sepsis-induced coagulopathy, disseminated intravascular coagulation and other viral infection-induced coagulation abnormalities. Elevated D-dimers and fibrinogen in the early stage of the disease with minimally deranged prothrombin time and platelet counts are prominent and distinguishing features. Venous and arterial thromboses, as opposed to bleeding events, are the major clinical correlates. There is much to be known about the pathogenesis of COVID-associated coagulopathy; however, the mechanisms overlap with thrombotic microangiopathy, haemophagocytic syndrome and antiphospholipid syndrome compounded by the diffuse endothelial damage. The recommendations regarding the treatment are still evolving, but antithrombotic therapy has a definite role in positive outcomes of sick patients.
Collapse
Affiliation(s)
- Aditya Jandial
- Department of Hematology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Anunay Gupta
- Department of Cardiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Amit Malviya
- Department of Cardiology, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences, Shillong, Meghalaya, India
| | - Sourabh Agastam
- Department of Cardiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Dilip Kumar
- Department of Cardiology, Cardiac Catheterization Laboratory, Medical Institute of Cardiovascular Sciences, Kolkata, West Bengal, India
| |
Collapse
|
89
|
Saadi F, Pal D, Sarma JD. Spike Glycoprotein Is Central to Coronavirus Pathogenesis-Parallel Between m-CoV and SARS-CoV-2. Ann Neurosci 2021; 28:201-218. [PMID: 35341224 PMCID: PMC8948335 DOI: 10.1177/09727531211023755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Coronaviruses (CoVs) are single-stranded, polyadenylated, enveloped RNA of positive polarity with a unique potential to alter host tropism. This has been exceptionally demonstrated by the emergence of deadly virus outbreaks of the past: Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and Middle East Respiratory Syndrome (MERS-CoV) in 2012. The 2019 outbreak by the new cross-species transmission of SARS-CoV-2 has put the world on alert. CoV infection is triggered by receptor recognition, membrane fusion, and successive viral entry mediated by the surface Spike (S) glycoprotein. S protein is one of the major antigenic determinants and the target for neutralizing antibodies. It is a valuable target in antiviral therapies because of its central role in cell-cell fusion, viral antigen spread, and host immune responses leading to immunopathogenesis. The receptor-binding domain of S protein has received greater attention as it initiates host attachment and contains major antigenic determinants. However, investigating the therapeutic potential of fusion peptide as a part of the fusion core complex assembled by the heptad repeats 1 and 2 (HR1 and HR2) is also warranted. Along with receptor attachment and entry, fusion mechanisms should also be explored for designing inhibitors as a therapeutic intervention. In this article, we review the S protein function and its role in mediating membrane fusion, spread, tropism, and its associated pathogenesis with notable therapeutic strategies focusing on results obtained from studies on a murine β-Coronavirus (m-CoV) and its associated disease process.
Collapse
Affiliation(s)
- Fareeha Saadi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
90
|
COVID-19 Infection and Neuropathological Features. MEDICINES 2021; 8:medicines8100059. [PMID: 34677488 PMCID: PMC8537119 DOI: 10.3390/medicines8100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022]
Abstract
The pathology associated with COVID-19 infection is progressively being revealed. Recent postmortem assessments have revealed acute airway inflammation as well as diffuse alveolar damage, which bears resemblance to severe acute respiratory syndromes induced by both SARS-CoV and MERS-CoV infections. Although recent papers have highlighted some neuropathologies associated with COVID-19 infection, little is known about this topic of great importance in the area of public health. Here, we discuss how neuroinflammation related to COVID-19 could be triggered by direct viral neuroinvasion and/or cytokine release over the course of the infection.
Collapse
|
91
|
Dąbrowska E, Galińska-Skok B, Waszkiewicz N. Depressive and Neurocognitive Disorders in the Context of the Inflammatory Background of COVID-19. Life (Basel) 2021; 11:1056. [PMID: 34685427 PMCID: PMC8541562 DOI: 10.3390/life11101056] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
The dysfunctional effects of the coronavirus disease 2019 (COVID-19) infection on the nervous system are established. The manifestation of neuropsychiatric symptoms during and after infection is influenced by the neuroinvasive and neurotrophic properties of SARS-CoV-2 as well as strong inflammation characterised by a specific "cytokine storm". Research suggests that a strong immune response to a SARS-CoV-2 infection and psychological stressors related to the pandemic may cause chronic inflammatory processes in the body with elevated levels of inflammatory markers contributing to the intensification of neurodegenerative processes. It is suggested that neuroinflammation and associated central nervous system changes may significantly contribute to the etiopathogenesis of depressive disorders. In addition, symptoms after a COVID-19 infection may persist for up to several weeks after an acute infection as a post-COVID-19 syndrome. Moreover, previous knowledge indicates that among SSRI (selective serotonin reuptake inhibitor) group antidepressants, fluoxetine is a promising drug against COVID-19. In conclusion, further research, observation and broadening of the knowledge of the pathomechanism of a SARS-CoV-2 infection and the impact on potential complications are necessary. It is essential to continue research in order to assess the long-term neuropsychiatric effects in COVID-19 patients and to find new therapeutic strategies.
Collapse
Affiliation(s)
- Eliza Dąbrowska
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (B.G.-S.); (N.W.)
| | | | | |
Collapse
|
92
|
Tabassum T, Rahman A, Araf Y, Ullah MA, Hosen MJ. Prospective selected biomarkers in COVID-19 diagnosis and treatment. Biomark Med 2021; 15:1435-1449. [PMID: 34538093 PMCID: PMC8454595 DOI: 10.2217/bmm-2021-0038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has become a global health concern, due to the high transmissible nature of its causal agent and lack of proper treatment. Early diagnosis and nonspecific medical supports of the patients appeared to be effective strategy so far to combat the pandemic caused by COVID-19 outbreak. Biomarkers can play pivotal roles in timely and proper diagnosis of COVID-19 patients, as well as for distinguishing them from other pulmonary infections. Besides, biomarkers can help in reducing the rate of mortality and evaluating viral pathogenesis with disease prognosis. This article intends to provide a broader overview of the roles and uses of different biomarkers in the early diagnosis of COVID-19, as well as in the classification of COVID-19 patients into multiple risk groups.
Collapse
Affiliation(s)
- Tahani Tabassum
- Department of Mathematics & Natural Sciences, Biotechnology Program, School of Data & Sciences, Brac University, Dhaka, Bangladesh
| | - Ahsab Rahman
- Department of Mathematics & Natural Sciences, Biotechnology Program, School of Data & Sciences, Brac University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering & Biotechnology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Md A Ullah
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad J Hosen
- Department of Genetic Engineering & Biotechnology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| |
Collapse
|
93
|
Xing F, Marsili L, Truong DD. Parkinsonism in viral, paraneoplastic, and autoimmune diseases. J Neurol Sci 2021; 433:120014. [PMID: 34629181 DOI: 10.1016/j.jns.2021.120014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Secondary parkinsonism, namely parkinsonism due to causes other than idiopathic neurodegeneration, may have multiple etiologies. Common secondary etiologies of parkinsonism such as drug-induced or vascular etiologies are well documented. Other secondary causes of parkinsonism such as infectious (mainly viral and prion-like diseases), autoimmune (systemic/drug-induced) and paraneoplastic etiologies are rare but are a topic of increasing interest. Older examples from the existing literature demonstrate the intricacies of viral infection from the last pandemic of the 20th century on the development of hypokinetic symptoms experienced in post-encephalitic patients. Viral and prion-like infections are only part of a complex interplay between the body's immune response and aberrant cell cycle perturbations leading to malignancy. In addition to the classic systemic autoimmune diseases (mainly systemic lupus erythematosus - SLE, and Sjögren syndrome), there have been new developments in the context of the current COVID-19 pandemic as well as more prominent use of immunotherapies such as immune checkpoint inhibitors in the treatment of solid tumors. Both of these developments have deepened our understanding of the underlying pathophysiologic process. Increased awareness and understanding of these rarer etiologies of parkinsonism is crucial to the modern diagnostic evaluation of a patient with parkinsonian symptoms as the potential treatment options may differ from the conventional levodopa-based therapeutic regimen of idiopathic Parkinson's disease. This review article aims to give an up-to-date review of the current literature on parkinsonian symptoms, their pathogenesis, diagnostic methods, and available treatment options. Many potential future directions in the field of parkinsonian conditions remain to be explored. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Frank Xing
- Truong Neuroscience Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel D Truong
- Truong Neuroscience Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA; Department of Neurosciences, UC Riverside, Riverside, CA, USA.
| |
Collapse
|
94
|
Wang X, Lei J, Li Z, Yan L. Potential Effects of Coronaviruses on the Liver: An Update. Front Med (Lausanne) 2021; 8:651658. [PMID: 34646834 PMCID: PMC8502894 DOI: 10.3389/fmed.2021.651658] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The coronaviruses that cause notable diseases, namely, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19), exhibit remarkable similarities in genomic components and pathogenetic mechanisms. Although coronaviruses have widely been studied as respiratory tract pathogens, their effects on the hepatobiliary system have seldom been reported. Overall, the manifestations of liver injury caused by coronaviruses typically involve decreased albumin and elevated aminotransferase and bilirubin levels. Several pathophysiological hypotheses have been proposed, including direct damage, immune-mediated injury, ischemia and hypoxia, thrombosis and drug hepatotoxicity. The interaction between pre-existing liver disease and coronavirus infection has been illustrated, whereby coronaviruses influence the occurrence, severity, prognosis and treatment of liver diseases. Drugs and vaccines used for treating and preventing coronavirus infection also have hepatotoxicity. Currently, the establishment of optimized therapy for coronavirus infection and liver disease comorbidity is of significance, warranting further safety tests, animal trials and clinical trials.
Collapse
Affiliation(s)
- Xinyi Wang
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jianyong Lei
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lunan Yan
- Liver Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
95
|
Piras IS, Huentelman MJ, Walker JE, Arce R, Glass MJ, Vargas D, Sue LI, Intorcia AJ, Nelson CM, Suszczewicz KE, Borja CL, Desforges M, Deture M, Dickson DW, Beach TG, Serrano GE. Olfactory Bulb and Amygdala Gene Expression Changes in Subjects Dying with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.12.21263291. [PMID: 34545375 PMCID: PMC8452114 DOI: 10.1101/2021.09.12.21263291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study we conducted RNA sequencing on two brain regions (olfactory bulb and amygdala) from subjects who died from COVID-19 or who died of other causes. We found several-fold more transcriptional changes in the olfactory bulb than in the amygdala, consistent with our own work and that of others indicating that the olfactory bulb may be the initial and most common brain region infected. To some extent our results converge with pseudotime analysis towards common processes shared between the brain regions, possibly induced by the systemic immune reaction following SARS-CoV-2 infection. Changes in amygdala emphasized upregulation of interferon-related neuroinflammation genes, as well as downregulation of synaptic and other neuronal genes, and may represent the substrate of reported acute and subacute COVID-19 neurological effects. Additionally, and only in olfactory bulb, we observed an increase in angiogenesis and platelet activation genes, possibly associated with microvascular damages induced by neuroinflammation. Through coexpression analysis we identified two key genes (CAMK2B for the synaptic neuronal network and COL1A2 for the angiogenesis/platelet network) that might be interesting potential targets to reverse the effects induced by SARS-CoV-2 infection. Finally, in olfactory bulb we detected an upregulation of olfactory and taste genes, possibly as a compensatory response to functional deafferentation caused by viral entry into primary olfactory sensory neurons. In conclusion, we were able to identify transcriptional profiles and key genes involved in neuroinflammation, neuronal reaction and olfaction induced by direct CNS infection and/or the systemic immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ignazio S. Piras
- Translational Genomics Research Institute, Neurogenomics Division
| | | | | | - Richard Arce
- Banner Sun Health Research Institute, Sun City, AZ
| | | | - Daisy Vargas
- Banner Sun Health Research Institute, Sun City, AZ
| | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | | | - Marc Desforges
- Centre Hospitalier Universitaire Sainte-Justine, Laboratory of Virology, Montreal, Canada
| | - Michael Deture
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, FL
| | - Dennis W. Dickson
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, FL
| | | | | |
Collapse
|
96
|
Mutlu A, Kalcioglu MT, Gunduz AY, Bakici B, Yilmaz U, Cag Y. Does the SARS-CoV-2 pandemic really increase the frequency of peripheral facial palsy? Am J Otolaryngol 2021; 42:103032. [PMID: 33857779 PMCID: PMC8025538 DOI: 10.1016/j.amjoto.2021.103032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/04/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE Publications about increased number of peripheral facial paralysis in the COVID-19 pandemic emerged in the literature. However, these studies comprised of an estimate rather than a broad analysis of exact numbers. In this study, we planned to investigate whether the pandemic really resulted in an increase in facial paralysis cases admitted to the hospital by evaluating the cases who applied to our hospital due to facial paralysis in the COVID-19 pandemic year and in the previous 4 years. MATERIALS AND METHODS Patients who applied to our hospital due to facial paralysis between March 2016-February 2017 (Group 1), between March 2017-February 2018 (Group 2), between March 2018-February 2019 (Group 3), between March 2019-February 2020 (Group 4), and between March 2020-February 2021 (Group 5) were investigated and detailed data were noted. RESULTS 156, 164, 149, 172 and 157 patients were admitted to the hospital due to peripheral facial paralysis in Group 1, 2, 3, 4, and 5, respectively. Of these patients, 155, 164, 145, 169, and 153 were Bell's palsy, respectively. SARS-CoV-2 RT-PCR test was positive in only 2 of the 153 patients who were diagnosed in the year of the pandemic. CONCLUSIONS This study showed that the number of peripheral facial paralysis detected during the COVID-19 pandemic was similar to previous years. Very few number of positive SARS-CoV-2 RT-PCR test results may have been found incidentally in Bell's palsy patients. Theses stating that SARS-CoV-2 causes peripheral facial paralysis should be supported by laboratory studies and postmortem research.
Collapse
Affiliation(s)
- Ahmet Mutlu
- Istanbul Medeniyet University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey; Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Mahmut Tayyar Kalcioglu
- Istanbul Medeniyet University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey; Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey.
| | - Ayse Yasemin Gunduz
- Istanbul Medeniyet University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey; Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Burcu Bakici
- Istanbul Medeniyet University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey; Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Utku Yilmaz
- Istanbul Medeniyet University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey; Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Yasemin Cag
- Istanbul Medeniyet University, Faculty of Medicine, Department of Infectious Disseases and Clinical Microbiology, Istanbul, Turkey; Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| |
Collapse
|
97
|
Huth SF, Cho SM, Robba C, Highton D, Battaglini D, Bellapart J, Suen JY, Li Bassi G, Taccone FS, Arora RC, Whitman G, Fraser JF, Fanning JP. Neurological Manifestations of Coronavirus Disease 2019: A Comprehensive Review and Meta-Analysis of the First 6 Months of Pandemic Reporting. Front Neurol 2021; 12:664599. [PMID: 34456840 PMCID: PMC8387564 DOI: 10.3389/fneur.2021.664599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: There is growing evidence that SARS-Cov-2 infection is associated with severe neurological complications. Understanding the nature and prevalence of these neurologic manifestations is essential for identifying higher-risk patients and projecting demand for ongoing resource utilisation. This review and meta-analysis report the neurologic manifestations identified in hospitalised COVID-19 patients and provide a preliminary estimate of disease prevalence. Methods: MEDLINE, Embase and Scopus were searched for studies reporting the occurrence of neurological complications in hospitalised COVID-19 patients. Results: A total of 2,207 unique entries were identified and screened, among which 14 cohort studies and 53 case reports were included, reporting on a total of 8,577 patients. Central nervous system manifestations included ischemic stroke (n = 226), delirium (n = 79), intracranial haemorrhage (ICH, n = 57), meningoencephalitis (n = 13), seizures (n = 3), and acute demyelinating encephalitis (n = 2). Peripheral nervous system manifestations included Guillain-Barrè Syndrome (n = 21) and other peripheral neuropathies (n = 3). The pooled period prevalence of ischemic stroke from identified studies was 1.3% [95%CI: 0.9–1.8%, 102/7,715] in all hospitalised COVID-19 patients, and 2.8% [95%CI: 1.0–4.6%, 9/318] among COVID-19 patients admitted to ICU. The pooled prevalence of ICH was estimated at 0.4% [95%CI: 0–0.8%, 6/1,006]. Conclusions: The COVID-19 pandemic exerts a substantial neurologic burden which may have residual effects on patients and healthcare systems for years. Low quality evidence impedes the ability to accurately predict the magnitude of this burden. Robust studies with standardised screening and case definitions are required to improve understanding of this disease and optimise treatment of individuals at higher risk for neurologic sequelae.
Collapse
Affiliation(s)
- Samuel F Huth
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Sung-Min Cho
- Neuroscience Critical Care Division, Departments of Neurology, Neurosurgery, and Anaesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chiara Robba
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, University of Genoa, Genoa, Italy
| | - David Highton
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Princess Alexandra Hospital Southside Clinical Unit, Division of Surgery, Department of Anesthesia, University of Queensland, Brisbane, QLD, Australia
| | - Denise Battaglini
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, University of Genoa, Genoa, Italy.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Judith Bellapart
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Intensive Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Department of Pulmonary and Critical Care, Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | | | - Rakesh C Arora
- Cardiac Sciences Program, St. Boniface General Hospital Research Center, Winnipeg, MB, Canada.,Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Glenn Whitman
- Neuroscience Critical Care Division, Departments of Neurology, Neurosurgery, and Anaesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Intensive Care Services, St. Andrew's War Memorial Hospital, UnitingCare, Brisbane, QLD, Australia
| | - Jonathon P Fanning
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Intensive Care Services, St. Andrew's War Memorial Hospital, UnitingCare, Brisbane, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Gold Coast, QLD, Australia
| |
Collapse
|
98
|
Gogu AE, Motoc AG, Stroe AZ, Docu Axelerad A, Docu Axelerad D, Pârv F, Munteanu G, Dan F, Jianu DC. Clinical Spectrum and Neuroimagistic Features in Hospitalized Patients with Neurological Disorders and Concomitant Coronavirus-19 Infection. Brain Sci 2021; 11:1138. [PMID: 34573160 PMCID: PMC8466125 DOI: 10.3390/brainsci11091138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
In the first months of the COVID-19 pandemic, several research studies focused on understanding the damage to the respiratory and circulatory systems. However, the evidence of neurological manifestations as part of the clinical spectrum of the disease has increased. The aim of this retrospective study was to determine the potential association of neurological disorders with concomitant COVID-19 infection. We reviewed 101 patients (mean age, 70.05 years; 62.37% men) diagnosed with different neurological disorders and COVID-19 who were referred to the Department of Neurology between March 2020 and May 2021. The protocol included demographic, clinical, and neuroimagistic features, biochemical evaluation data, and prognosis. In the first group of patients with non-severe COVID-19 infection (<50% lung damage), we enrolled 75 cases (mean age, 69.13 years; 65.33% men), and the second group, with 26 patients (mean age, 72.69 years; 53.84% men), developed severe COVID-19 infection (>50% lung damage). Severe COVID-19 infection was significantly correlated with an increased highly sensitive C-reactive protein level (hsCRP) (p < 0.05), lactate dehydrogenase level (LDH) (p < 0.05), erythrocyte sedimentation rate (ESR) (p < 0.05), D-dimer (p < 0.05), fibrinogen level (p < 0.05), and blood glucose (p < 0.05) when compared to the first group. These biochemical parameters were increased in both groups, but the levels were much higher in the second group. Headaches (72.27%) and dizziness (14.85%) were present in the early stage of infection. Cerebrovascular events were also reported: ischemic stroke (48% vs. 57.69%; p < 0.05), cerebral hemorrhage (4.95%), and cerebral venous sinus thrombosis (1.98%). Encephalitis (1.98%) and Guillain-Barré Syndrome (1.98%) were found but less frequently. Cranial nerve abnormalities were statistically more common in the non-severe group: anosmia (32% vs. 26.92%; p < 0.05), dysgeusia/ageusia (48% vs. 42.30%; p < 0.05), impaired eye movement (1.33% vs. 0%), and facial nerve palsy (2.66% vs. 0%). Seizures (13.33% vs. 11.53%; p < 0.05) and a depressed level of consciousness (31.68%) occurred commonly. We detected the neuropsychiatric symptoms of anxiety (23.76%) and depression (14.85%). Mortality was increased in both groups but was much higher in the second group (46.15% vs. 21.33%). Neurological complications during COVID-19 infection are common in hospitalized patients, but the mechanism of these complications is not fully understood, representing a continuous challenge for neurologists.
Collapse
Affiliation(s)
- Anca Elena Gogu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (A.E.G.); (G.M.); (F.D.); (D.C.J.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Andrei Gheorghe Motoc
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
- Department of Anatomy and Embryology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Alina Zorina Stroe
- Department of Neurology, General Medicine Faculty, “Ovidius” University, 900470 Constanta, Romania;
| | - Any Docu Axelerad
- Department of Neurology, General Medicine Faculty, “Ovidius” University, 900470 Constanta, Romania;
| | | | - Florina Pârv
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Georgiana Munteanu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (A.E.G.); (G.M.); (F.D.); (D.C.J.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Flavius Dan
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (A.E.G.); (G.M.); (F.D.); (D.C.J.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Dragos Catalin Jianu
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (A.E.G.); (G.M.); (F.D.); (D.C.J.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| |
Collapse
|
99
|
Francistiová L, Klepe A, Curley G, Gulya K, Dinnyés A, Filkor K. Cellular and Molecular Effects of SARS-CoV-2 Linking Lung Infection to the Brain. Front Immunol 2021; 12:730088. [PMID: 34484241 PMCID: PMC8414801 DOI: 10.3389/fimmu.2021.730088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
In December 2019, a new viral disease emerged and quickly spread all around the world. In March 2020, the COVID-19 outbreak was classified as a global pandemic and by June 2021, the number of infected people grew to over 170 million. Along with the patients' mild-to-severe respiratory symptoms, reports on probable central nervous system (CNS) effects appeared shortly, raising concerns about the possible long-term detrimental effects on human cognition. It remains unresolved whether the neurological symptoms are caused directly by the SARS-CoV-2 infiltration in the brain, indirectly by secondary immune effects of a cytokine storm and antibody overproduction, or as a consequence of systemic hypoxia-mediated microglia activation. In severe COVID-19 cases with impaired lung capacity, hypoxia is an anticipated subsidiary event that can cause progressive and irreversible damage to neurons. To resolve this problem, intensive research is currently ongoing, which seeks to evaluate the SARS-CoV-2 virus' neuroinvasive potential and the examination of the antibody and autoantibody generation upon infection, as well as the effects of prolonged systemic hypoxia on the CNS. In this review, we summarize the current research on the possible interplay of the SARS-CoV-2 effects on the lung, especially on alveolar macrophages and direct and indirect effects on the brain, with special emphasis on microglia, as a possible culprit of neurological manifestation during COVID-19.
Collapse
Affiliation(s)
- Linda Francistiová
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Adrián Klepe
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) StemCell Research Group, University of Szeged, Szeged, Hungary
| | - Géza Curley
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) StemCell Research Group, University of Szeged, Szeged, Hungary
| | - Károly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - András Dinnyés
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) StemCell Research Group, University of Szeged, Szeged, Hungary
| | - Kata Filkor
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) StemCell Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
100
|
Maiese A, Manetti AC, Bosetti C, Del Duca F, La Russa R, Frati P, Di Paolo M, Turillazzi E, Fineschi V. SARS-CoV-2 and the brain: A review of the current knowledge on neuropathology in COVID-19. Brain Pathol 2021; 31:e13013. [PMID: 34390282 PMCID: PMC8420197 DOI: 10.1111/bpa.13013] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
SARS‐CoV‐2 (severe acute respiratory syndrome coronavirus 2), the new coronavirus responsible for the pandemic disease in the last year, is able to affect the central nervous system (CNS). Compared with its well‐known pulmonary tropism and respiratory complications, little has been studied about SARS‐CoV‐2 neurotropism and pathogenesis of its neurological manifestations, but also about postmortem histopathological findings in the CNS of patients who died from COVID‐19 (coronavirus disease 2019). We present a systematic review, carried out according to the Preferred Reporting Items for Systematic Review standards, of the neuropathological features of COVID‐19. We found 21 scientific papers, the majority of which refer to postmortem examinations; the total amount of cases is 197. Hypoxic changes are the most frequently reported alteration of brain tissue, followed by ischemic and hemorrhagic lesions and reactive astrogliosis and microgliosis. These findings do not seem to be specific to SARS‐CoV‐2 infection, they are more likely because of systemic inflammation and coagulopathy caused by COVID‐19. More studies are needed to confirm this hypothesis and to detect other possible alterations of neural tissue. Brain examination of patients dead from COVID‐19 should be included in a protocol of standardized criteria to perform autopsies on these subjects.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, Italy
| | - Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, Italy
| | - Chiara Bosetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, Italy
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, Italy
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|