51
|
Anton SD, Moehl K, Donahoo WT, Marosi K, Lee S, Mainous AG, Leeuwenburgh C, Mattson MP. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring) 2018; 26:254-268. [PMID: 29086496 PMCID: PMC5783752 DOI: 10.1002/oby.22065] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intermittent fasting (IF) is a term used to describe a variety of eating patterns in which no or few calories are consumed for time periods that can range from 12 hours to several days, on a recurring basis. This review is focused on the physiological responses of major organ systems, including the musculoskeletal system, to the onset of the metabolic switch: the point of negative energy balance at which liver glycogen stores are depleted and fatty acids are mobilized (typically beyond 12 hours after cessation of food intake). RESULTS AND CONCLUSIONS Emerging findings suggest that the metabolic switch from glucose to fatty acid-derived ketones represents an evolutionarily conserved trigger point that shifts metabolism from lipid/cholesterol synthesis and fat storage to mobilization of fat through fatty acid oxidation and fatty acid-derived ketones, which serve to preserve muscle mass and function. Thus, IF regimens that induce the metabolic switch have the potential to improve body composition in overweight individuals. Moreover, IF regimens also induce the coordinated activation of signaling pathways that optimize physiological function, enhance performance, and slow aging and disease processes. Future randomized controlled IF trials should use biomarkers of the metabolic switch (e.g., plasma ketone levels) as a measure of compliance and of the magnitude of negative energy balance during the fasting period.
Collapse
Affiliation(s)
- Stephen D. Anton
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - William T. Donahoo
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Stephanie Lee
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Arch G. Mainous
- Department of Health Services Research, Management and Policy; Department of Community Health and Family Medicine, University of Florida, Gainesville, FL 32610
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
52
|
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 2018; 19:63-80. [PMID: 29321682 PMCID: PMC5913738 DOI: 10.1038/nrn.2017.156] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Nathaniel Ghena
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Maggie Schmaedick
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| |
Collapse
|
53
|
Moreno CL, Mobbs CV. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Mol Cell Endocrinol 2017; 455:33-40. [PMID: 27884781 DOI: 10.1016/j.mce.2016.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 02/08/2023]
Abstract
Aging constitutes the central risk factor for major diseases including many forms of cancer, neurodegeneration, and cardiovascular diseases. The aging process is characterized by both global and tissue-specific changes in gene expression across taxonomically diverse species. While aging has historically been thought to entail cell-autonomous, even stochastic changes, recent evidence suggests that modulation of this process can be hierarchal, wherein manipulations of nutrient-sensing neurons (e.g., in the hypothalamus) produce peripheral effects that may modulate the aging process itself. The most robust intervention extending lifespan, plausibly impinging on the aging process, involves different modalities of dietary restriction (DR). Lifespan extension by DR is associated with broad protection against diseases (natural and engineered). Here we review potential epigenetic processes that may link lifespan to age-related diseases, particularly in the context of DR and (other) ketogenic diets, focusing on brain and hypothalamic mechanisms.
Collapse
Affiliation(s)
- Cesar L Moreno
- Department of Neurology, 1470 Madison Ave., 9-119, New York, NY 10029, USA
| | - Charles V Mobbs
- Departments of Neuroscience, Endocrinology, and Geriatrics, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA.
| |
Collapse
|
54
|
Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res 2017; 27:1309-1326. [PMID: 29039412 PMCID: PMC5674160 DOI: 10.1038/cr.2017.126] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.
Collapse
|
55
|
Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev 2017; 39:46-58. [PMID: 27810402 DOI: 10.1016/j.arr.2016.10.005] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
Abstract
Humans in modern societies typically consume food at least three times daily, while laboratory animals are fed ad libitum. Overconsumption of food with such eating patterns often leads to metabolic morbidities (insulin resistance, excessive accumulation of visceral fat, etc.), particularly when associated with a sedentary lifestyle. Because animals, including humans, evolved in environments where food was relatively scarce, they developed numerous adaptations that enabled them to function at a high level, both physically and cognitively, when in a food-deprived/fasted state. Intermittent fasting (IF) encompasses eating patterns in which individuals go extended time periods (e.g., 16-48h) with little or no energy intake, with intervening periods of normal food intake, on a recurring basis. We use the term periodic fasting (PF) to refer to IF with periods of fasting or fasting mimicking diets lasting from 2 to as many as 21 or more days. In laboratory rats and mice IF and PF have profound beneficial effects on many different indices of health and, importantly, can counteract disease processes and improve functional outcome in experimental models of a wide range of age-related disorders including diabetes, cardiovascular disease, cancers and neurological disorders such as Alzheimer's disease Parkinson's disease and stroke. Studies of IF (e.g., 60% energy restriction on 2days per week or every other day), PF (e.g., a 5day diet providing 750-1100kcal) and time-restricted feeding (TRF; limiting the daily period of food intake to 8h or less) in normal and overweight human subjects have demonstrated efficacy for weight loss and improvements in multiple health indicators including insulin resistance and reductions in risk factors for cardiovascular disease. The cellular and molecular mechanisms by which IF improves health and counteracts disease processes involve activation of adaptive cellular stress response signaling pathways that enhance mitochondrial health, DNA repair and autophagy. PF also promotes stem cell-based regeneration as well as long-lasting metabolic effects. Randomized controlled clinical trials of IF versus PF and isoenergetic continuous energy restriction in human subjects will be required to establish the efficacy of IF in improving general health, and preventing and managing major diseases of aging.
Collapse
|
56
|
Shojaie M, Ghanbari F, Shojaie N. Intermittent fasting could ameliorate cognitive function against distress by regulation of inflammatory response pathway. J Adv Res 2017; 8:697-701. [PMID: 28970945 PMCID: PMC5608558 DOI: 10.1016/j.jare.2017.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
IF could significantly modify pathological effects of distress on brain and adrenal glands. In distressful condition, IF leads to reduce the plasma level of the stress hormone (CORT). IF has an inhibitory effect on neuro-inflammation caused by distress. IF could strongly improve learning and memory function in distressful condition.
Undesirable and desirable effects of stressors on the body are assigned to distress and eustress, respectively. Immune system and brain are the most susceptible parts to stressful conditions, whereas long-lasting alterations in putative immune proteins involved in tension such as corticosterone (CORT), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) can impact learning and memory. Intermittent fasting (IF) is a repeated regular cycle of dietary restriction with well-known beneficial properties on the body. The aim of this study was to identify the eustress effects of IF on cognitive function by assessing the critical inflammatory factors in chronic distress. Forty male mice were divided into four groups (n = 10/group). Distress and control normally received food and water, whereas IF and IF with distress groups were daily deprived of food and water for two hours. In the second week, the electrical foot shock was induced to distress and IF with distress groups. Finally, the cognitive functions of all mice were evaluated by Barnes maze, their blood samples were taken to determine the plasma level of CORT, IL-6 and TNF-α, and the removed brain and adrenal glands were weighed in the third week. A significant gain in plasma level of CORT, IL-6 and TNF-α with a considerable brain hypotrophy and adrenal hypertrophy was found in distress group, whereas IF caused a remarkable reduction of the plasma inflammatory factors, especially in IF with distress mice (P ≤ 0.05). In conclusion, IF could improve cognitive function and preserve the brain against distress by regulation of inflammatory response pathway.
Collapse
Affiliation(s)
- Marjan Shojaie
- Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Nasrin Shojaie
- Faculty of Biological Science, Tarbiat Modares University (TMU), Tehran, Iran
| |
Collapse
|
57
|
Loos B, Klionsky DJ, Wong E. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog Neurobiol 2017; 156:90-106. [DOI: 10.1016/j.pneurobio.2017.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
|
58
|
Intermittent fasting combined with supplementation with Ayurvedic herbs reduces anxiety in middle aged female rats by anti-inflammatory pathways. Biogerontology 2017; 18:601-614. [DOI: 10.1007/s10522-017-9706-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
|
59
|
Stillman CM, Weinstein AM, Marsland AL, Gianaros PJ, Erickson KI. Body-Brain Connections: The Effects of Obesity and Behavioral Interventions on Neurocognitive Aging. Front Aging Neurosci 2017; 9:115. [PMID: 28507516 PMCID: PMC5410624 DOI: 10.3389/fnagi.2017.00115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/10/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity is a growing public health problem in the United States, particularly in middle-aged and older adults. Although the key factors leading to a population increase in body weight are still under investigation, there is evidence that certain behavioral interventions can mitigate the negative cognitive and brain ("neurocognitive") health consequences of obesity. The two primary behaviors most often targeted for weight loss are caloric intake and physical activity. These behaviors might have independent, as well as overlapping/synergistic effects on neurocognitive health. To date obesity is often described independently from behavioral interventions in regards to neurocognitive outcomes, yet there is conceptual and mechanistic overlap between these constructs. This review summarizes evidence linking obesity and modifiable behaviors, such as physical activity and diet, with brain morphology (e.g., gray and white matter volume and integrity), brain function (e.g., functional activation and connectivity), and cognitive function across the adult lifespan. In particular, we review evidence bearing on the following question: Are associations between obesity and brain health in aging adults modifiable by behavioral interventions?
Collapse
Affiliation(s)
| | - Andrea M. Weinstein
- Department of Behavioral and Community and Health Sciences, University of PittsburghPittsburgh, PA, USA
| | - Anna L. Marsland
- Department of Psychology, University of PittsburghPittsburgh, PA, USA
| | - Peter J. Gianaros
- Department of Psychology, University of PittsburghPittsburgh, PA, USA
| | - Kirk I. Erickson
- Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
- Department of Psychology, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
60
|
Harder-Lauridsen NM, Nielsen ST, Mann SP, Lyngbæk MP, Benatti FB, Langkilde AR, Law I, Wedell-Neergaard AS, Thomsen C, Møller K, Karstoft K, Pedersen BK, Krogh-Madsen R. The effect of alternate-day caloric restriction on the metabolic consequences of 8 days of bed rest in healthy lean men: a randomized trial. J Appl Physiol (1985) 2017; 122:230-241. [DOI: 10.1152/japplphysiol.00846.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/28/2016] [Accepted: 11/22/2016] [Indexed: 12/30/2022] Open
Abstract
Physical activity and alternate-day fasting/caloric restriction may both ameliorate aspects of the metabolic syndrome, such as insulin resistance, visceral fat mass accumulation, and cognitive impairment by overlapping mechanisms. The purpose of this study was to test the hypothesis that alternate-day caloric restriction (ADCR) with overall energy balance would reduce insulin resistance and accumulation of visceral fat, in addition to improving cognitive functions, after 8 consecutive days in bed. Healthy, lean men ( n = 20) were randomized to 1) 8 days of bed rest with three daily isoenergetic meals (control group, n = 10); and 2) 8 days of bed rest with 25% of total energy requirements every other day and 175% of total energy requirements every other day (ADCR group). Oral glucose tolerance testing, dual-energy X-ray absorptiometry (DXA) scans, magnetic resonance imaging of the abdomen and brain, V̇o2max, and tests for cognitive function were performed before and after bed rest. In addition, daily fasting blood samples and 24-h glucose profiles by continuous glucose monitoring system were assessed during the 8 days of bed rest period. Bed rest induced insulin resistance, visceral fat accumulation, and worsening of mood. No positive effects emerged from ADCR on these negative health outcomes. Compared with the control group, ADCR was associated with improved and steadier glycemic control on fasting days and higher glycemic fluctuation and indexes of insulin resistance on overeating days. In contrast to our hypothesis, the metabolic impairment induced by 8 days of bed rest was not counteracted by ADCR with overall energy balance. NEW & NOTEWORTHY Alternate-day caloric restriction without overall energy reduction does not ameliorate the metabolic impairment induced in lean men by 8 days of bed rest.
Collapse
Affiliation(s)
- Nina Majlund Harder-Lauridsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Signe Tellerup Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Mark Preben Lyngbæk
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Fabiana Braga Benatti
- Applied Physiology and Nutrition Research Group, University of São Paulo, São Paulo, Brazil
| | | | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen, Denmark; and
| | - Anne-Sophie Wedell-Neergaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Thomsen
- Department of Diagnostic Sciences, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Karstoft
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
61
|
Keenan KP, Hoe CM, Mixson L, McCoy CL, Coleman JB, Mattson BA, Ballam GA, Gumprecht LA, Soper KA. Diabesity: A Polygenic Model of Dietary-Induced Obesity from Ad Libitum Overfeeding of Sprague–Dawley Rats and Its Modulation by Moderate and Marked Dietary Restriction. Toxicol Pathol 2017; 33:650-74. [PMID: 16207639 DOI: 10.1080/01926230500311222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study compared the effects of ad libitum (AL) overfeeding and moderate or marked dietary restriction (DR) on the pathogenesis of a metabolic syndrome of diabesity comprised of age-related degenerative diseases and obesity in a outbred stock of Sprague–Dawley (SD) rats [Crl:CD (SD) IGS BR]. SD rats were fed Purina Certified Rodent Diet AL (group 1), DR at 72–79% of AL (group 2), DR at 68–72% of AL (group 3) or DR at 47–48% of AL (group 4) for 106 weeks. Interim necropsies were performed at 13, 26, and 53 weeks, after a 7-day 5-bromo-2-deoxyuridine (BrdU)-filled minipump implantation. Body weights, organ weights, carcass analysis, in-life data including estrous cyclicity, and histopathology were determined. At 6–7 weeks of age SD rats had 6% body fat. AL-feeding resulted in hypertriglyceridemia, hypercholesterolemia, and dietary-induced obesity (DIO) by study week 14, with 25% body fat that progressed to 36–42% body fat by 106 weeks. As early as 14 weeks, key biomarkers developed for spontaneous nephropathy, cardiomyopathy, and degenerative changes in multiple organ systems. Early endocrine disruption was indicated by changes in metabolic and endocrine profiles and the early development and progression of lesions in the pituitary, pancreatic islets, adrenals, thyroids, parathyroids, liver, kidneys, and other tissues. Reproductive senescence was seen by 9 months with declines in estrous cyclicity and pathological changes in the reproductive organs of both sexes fed AL or moderate DR, but not marked DR. The diabesity syndrome in AL-fed, DIO SD rats was readily modulated or prevented by moderate to marked DR. Moderate DR of balanced diets resulted in a better toxicology model by significantly improving survival, controlling adult body weight and obesity, reducing the onset, severity, and morbidity of age-related renal, endocrine, metabolic, and cardiac diseases. Moderate DR feeding reduces study-to-study variability, increases treatment exposure time, and increases the ability to distinguish true treatment effects from spontaneous aging. The structural and metabolic differences between the phenotypes of DIO and DR SD rats indicated changes of polygenic expression over time in this outbred stock. AL-overfeeding of SD rats produces a needed model of DIO and diabesity that needs further study of its patterns of polygenic expression and phenotype.
Collapse
Affiliation(s)
- Kevin P Keenan
- Merck Research Laboratories, Department of Biometrics, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Two intermittent fasting variants, intermittent energy restriction (IER) and time-restricted feeding (TRF), have received considerable interest as strategies for weight-management and/or improving metabolic health. With these strategies, the pattern of energy restriction and/or timing of food intake are altered so that individuals undergo frequently repeated periods of fasting. This review provides a commentary on the rodent and human literature, specifically focusing on the effects of IER and TRF on glucose and lipid metabolism. For IER, there is a growing evidence demonstrating its benefits on glucose and lipid homeostasis in the short-to-medium term; however, more long-term safety studies are required. Whilst the metabolic benefits of TRF appear quite profound in rodents, findings from the few human studies have been mixed. There is some suggestion that the metabolic changes elicited by these approaches can occur in the absence of energy restriction, and in the context of IER, may be distinct from those observed following similar weight-loss achieved via modest continuous energy restriction. Mechanistically, the frequently repeated prolonged fasting intervals may favour preferential reduction of ectopic fat, beneficially modulate aspects of adipose tissue physiology/morphology, and may also impinge on circadian clock regulation. However, mechanistic evidence is largely limited to findings from rodent studies, thus necessitating focused human studies, which also incorporate more dynamic assessments of glucose and lipid metabolism. Ultimately, much remains to be learned about intermittent fasting (in its various forms); however, the findings to date serve to highlight promising avenues for future research.
Collapse
|
63
|
Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med 2017; 102:203-216. [PMID: 27908782 PMCID: PMC5209274 DOI: 10.1016/j.freeradbiomed.2016.11.045] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023]
Abstract
An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca2+, CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.
Collapse
Affiliation(s)
- Sophia M Raefsky
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
64
|
Marosi K, Kim SW, Moehl K, Scheibye-Knudsen M, Cheng A, Cutler R, Camandola S, Mattson MP. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 2016; 139:769-781. [PMID: 27739595 DOI: 10.1111/jnc.13868] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD+ /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets.
Collapse
Affiliation(s)
- Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Sang Woo Kim
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Roy Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
65
|
Gotthardt JD, Verpeut JL, Yeomans BL, Yang JA, Yasrebi A, Roepke TA, Bello NT. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice. Endocrinology 2016; 157:679-91. [PMID: 26653760 PMCID: PMC4733124 DOI: 10.1210/en.2015-1622] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022]
Abstract
Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy.
Collapse
Affiliation(s)
- Juliet D Gotthardt
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Jessica L Verpeut
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Bryn L Yeomans
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Jennifer A Yang
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Ali Yasrebi
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Troy A Roepke
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Nicholas T Bello
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| |
Collapse
|
66
|
Dietary Restriction and Nutrient Balance in Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4010357. [PMID: 26682004 PMCID: PMC4670908 DOI: 10.1155/2016/4010357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022]
Abstract
Dietary regimens that favour reduced calorie intake delay aging and age-associated diseases. New evidences revealed that nutritional balance of dietary components without food restriction increases lifespan. Particular nutrients as several nitrogen sources, proteins, amino acid, and ammonium are implicated in life and healthspan regulation in different model organisms from yeast to mammals. Aging and dietary restriction interact through partially overlapping mechanisms in the activation of the conserved nutrient-signalling pathways, mainly the insulin/insulin-like growth factor (IIS) and the Target Of Rapamycin (TOR). The specific nutrients of dietary regimens, their balance, and how they interact with different genes and pathways are currently being uncovered. Taking into account that dietary regimes can largely influence overall human health and changes in risk factors such as cholesterol level and blood pressure, these new findings are of great importance to fully comprehend the interplay between diet and humans health.
Collapse
|
67
|
What is the effect of fasting on the lifespan of neurons? Ageing Res Rev 2015; 24:160-5. [PMID: 26264849 DOI: 10.1016/j.arr.2015.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022]
Abstract
Medical advancements have increased life expectancy but have consequently increased the incidence of age-related disease. Fasting or dietary restriction (DR) can help prevent these via anti-ageing effects; however, these effects in neurons are less well characterized. Here, a series of animal and human studies of the effects of DR on the structural and functional integrity of neurons and the underlying mechanisms are analyzed. DR improves the integrity of animal neurons via a wide range of possible mechanisms including changes in metabolism, oxidative damage, stress responses, growth factors, and gene expression. These mechanisms are extensively interlinked and point to an optimum range of calorie intake, above calorie deprivation and below burdensome calorie excess. Human studies also suggest that DR improves neuron integrity; however, due to ethical and methodological limitations, the most conclusive data on DR hinge upon on-going life-long monkey experiments. Rather than developing pharmacological mimetics of DR, our focus should be on educating the public about DR in order to minimize age-related disease.
Collapse
|
68
|
Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr 2015; 102:464-70. [PMID: 26135345 DOI: 10.3945/ajcn.115.109553] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/27/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Intermittent fasting, alternate-day fasting, and other forms of periodic caloric desistance are gaining popularity in the lay press and among animal research scientists. Whether clinical evidence exists for or is strong enough to support the use of such dietary regimens as health interventions is unclear. OBJECTIVE This review sought to identify rigorous, clinically relevant research studies that provide high-quality evidence that therapeutic fasting regimens are clinically beneficial to humans. DESIGN A systematic review of the published literature through January 2015 was performed by using sensitive search strategies to identify randomized controlled clinical trials that evaluated the effects of fasting on either clinically relevant surrogate outcomes (e.g., weight, cholesterol) or actual clinical event endpoints [e.g., diabetes, coronary artery disease (CAD)] and any other studies that evaluated the effects of fasting on clinical event outcomes. RESULTS Three randomized controlled clinical trials of fasting in humans were identified, and the results were published in 5 articles, all of which evaluated the effects of fasting on surrogate outcomes. Improvements in weight and other risk-related outcomes were found in the 3 trials. Two observational clinical outcomes studies in humans were found in which fasting was associated with a lower prevalence of CAD or diabetes diagnosis. No randomized controlled trials of fasting for clinical outcomes were identified. CONCLUSIONS Clinical research studies of fasting with robust designs and high levels of clinical evidence are sparse in the literature. Whereas the few randomized controlled trials and observational clinical outcomes studies support the existence of a health benefit from fasting, substantial further research in humans is needed before the use of fasting as a health intervention can be recommended.
Collapse
Affiliation(s)
- Benjamin D Horne
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT; and Genetic Epidemiology Division and
| | - Joseph B Muhlestein
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT; and Cardiology Division, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Jeffrey L Anderson
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT; and Cardiology Division, Department of Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
69
|
Lara-Padilla E, Godínez-Victoria M, Drago-Serrano ME, Reyna-Garfias H, Arciniega-Martínez IM, Abarca-Rojano E, Cruz-Hernández TR, Campos-Rodríguez R. Intermittent fasting modulates IgA levels in the small intestine under intense stress: A mouse model. J Neuroimmunol 2015. [DOI: 10.1016/j.jneuroim.2015.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
70
|
Tesic V, Perovic M, Lazic D, Kojic S, Smiljanic K, Ruzdijic S, Rakic L, Kanazir S. Long-term intermittent feeding restores impaired GR signaling in the hippocampus of aged rat. J Steroid Biochem Mol Biol 2015; 149:43-52. [PMID: 25616002 DOI: 10.1016/j.jsbmb.2015.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/22/2022]
Abstract
Diminished glucocorticoid signaling is associated with an age-related decline in hippocampal functioning. In this study we demonstrate the effect of intermittent, every other day (EOD) feeding on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the hippocampus of middle-aged (18-month-old) and aged (24-month-old) Wistar rats. In aged ad libitum-fed rats, a decrease in the level of total GR and GR phosphorylated at Ser(232) (pGR) was detected. Conversely, aged rats subjected to EOD feeding, starting from 6 months of age, showed an increase in GR and pGR levels and a higher content of hippocampal corticosterone. Furthermore, prominent nuclear staining of pGR was observed in CA1 pyramidal and DG granule neurons of aged EOD-fed rats. These changes were accompanied by increased Sgk-1 and decreased GFAP transcription, pointing to upregulated transcriptional activity of GR. EOD feeding also induced an increase in the expression of the mineralocorticoid receptor. Our results reveal that intermittent feeding restores impaired GR signaling in the hippocampus of aged animals by inducing rather than by stabilizing GR signaling during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Milka Perovic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Divna Lazic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Snezana Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Kosara Smiljanic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Sabera Ruzdijic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | - Selma Kanazir
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
71
|
Mattson MP. Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence. Ageing Res Rev 2015; 20:37-45. [PMID: 25576651 DOI: 10.1016/j.arr.2014.12.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/17/2022]
Abstract
Although the human brain is exceptional in size and information processing capabilities, it is similar to other mammals with regard to the factors that promote its optimal performance. Three such factors are the challenges of physical exercise, food deprivation/fasting, and social/intellectual engagement. Because it evolved, in part, for success in seeking and acquiring food, the brain functions best when the individual is hungry and physically active, as typified by the hungry lion stalking and chasing its prey. Indeed, studies of animal models and human subjects demonstrate robust beneficial effects of regular exercise and intermittent energy restriction/fasting on cognitive function and mood, particularly in the contexts of aging and associated neurodegenerative disorders. Unfortunately, the agricultural revolution and the invention of effort-sparing technologies have resulted in a dramatic reduction or elimination of vigorous exercise and fasting, leaving only intellectual challenges to bolster brain function. In addition to disengaging beneficial adaptive responses in the brain, sedentary overindulgent lifestyles promote obesity, diabetes and cardiovascular disease, all of which may increase the risk of cognitive impairment and Alzheimer's disease. It is therefore important to embrace the reality of the requirements for exercise, intermittent fasting and critical thinking for optimal brain health throughout life, and to recognize the dire consequences for our aging population of failing to implement such brain-healthy lifestyles.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, United States.
| |
Collapse
|
72
|
Abstract
Humans and their predecessors evolved in environments where they were challenged intermittently with: 1) food scarcity; 2) the need for aerobic fitness to catch/kill prey and avoid or repel attackers; and 3) exposure to biological toxins present in foodstuffs. Accordingly, cells and organ systems acquired and retained molecular signaling and metabolic pathways through which the environmental challenges enhanced the functionality and resilience of the cells and organisms. Within the past 60 years there has been a precipitous diminution of such challenges in modern societies because of the development of technologies that provide a continuous supply of energy-dense processed foods and that largely eliminate the need for physical exertion. As a consequence of the modern 'couch potato' lifestyle, signaling pathways that mediate beneficial effects of environmental challenges on health and disease resistance are disengaged, thereby rendering people vulnerable to obesity, diabetes, cardiovascular disease, cancers and neurodegenerative disorders. Reversal of the epidemic of diseases caused by unchallenging lifestyles will require a society-wide effort to re-introduce intermittent fasting, exercise and consumption of plants containing hormetic phytochemicals into daily and weekly routines.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD. 21224
| |
Collapse
|
73
|
Stewart AM, Lewis GF, Yee JR, Kenkel WM, Davila MI, Sue Carter C, Porges SW. Acoustic features of prairie vole (Microtus ochrogaster) ultrasonic vocalizations covary with heart rate. Physiol Behav 2014; 138:94-100. [PMID: 25447483 DOI: 10.1016/j.physbeh.2014.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Vocalizations serve as a conspecific social communication system among mammals. Modulation of acoustic features embedded within vocalizations is used by several mammalian species to signal whether it is safe or dangerous to approach conspecific and heterospecific mammals. As described by the Polyvagal Theory, the phylogenetic shift in the evolution of mammals involved an adaptive neuroanatomical link between the neural circuits regulating heart rate and the muscles involved in modulating the acoustic features of vocalizations. However, few studies have investigated the covariation between heart rate and the acoustic features of vocalizations. In the current study, we document that specific features of vocalizations covary with heart rate in a highly social and vocal mammal, the prairie vole (Microtus ochrogaster). Findings with the prairie vole illustrate that higher pitch (i.e., fundamental frequency) and less variability in acoustic features of vocalizations (i.e., less vocal prosody) are associated with elevated heart rate. The study provides the first documentation that the acoustic features of prairie vole vocalizations may function as a surrogate index of heart rate.
Collapse
Affiliation(s)
- Adam Michael Stewart
- Brain-Body Center, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Ave., Chicago, IL 60612, USA
| | - Gregory F Lewis
- Brain-Body Center, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Ave., Chicago, IL 60612, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jason R Yee
- Brain-Body Center, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Ave., Chicago, IL 60612, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - William M Kenkel
- Brain-Body Center, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Ave., Chicago, IL 60612, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Maria I Davila
- Brain-Body Center, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Ave., Chicago, IL 60612, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - C Sue Carter
- Brain-Body Center, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Ave., Chicago, IL 60612, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Stephen W Porges
- Brain-Body Center, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Ave., Chicago, IL 60612, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
74
|
The health pros and cons of continuous versus intermittent calorie restriction: more questions than answers. Maturitas 2014; 79:275-8. [PMID: 25216760 DOI: 10.1016/j.maturitas.2014.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 12/23/2022]
Abstract
Beneficial effects on health of limiting food intake for certain periods of time have been recognized for a long time. While many diets can produce short-term weight loss, most fail to result in a long-lasting impact. Current data suggest that intermittent fasting may be beneficial for overall health and wellbeing. However, the lack of properly designed clinical studies makes it challenging to formulate evidence-based practice recommendations. Potential health risks of drastic changes in food intake are often ignored and might only be revealed after extensive follow-up. This review summarizes the popular intermittent dieting methods and their potential impact on fertility and reproduction.
Collapse
|
75
|
Chausse B, Solon C, Caldeira da Silva CC, Masselli Dos Reis IG, Manchado-Gobatto FB, Gobatto CA, Velloso LA, Kowaltowski AJ. Intermittent fasting induces hypothalamic modifications resulting in low feeding efficiency, low body mass and overeating. Endocrinology 2014; 155:2456-66. [PMID: 24797627 DOI: 10.1210/en.2013-2057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake.
Collapse
Affiliation(s)
- Bruno Chausse
- Departamento de Bioquímica (B.C., C.C.C., A.J.K.), Instituto de Química, Universidade de São Paulo, 05508-000 Brazil; Faculdade de Ciências Médicas (C.S., L.A.V.), Universidade Estadual de Campinas, 13083-970 Brazil; Faculdade de Ciências Aplicadas (I.G.M., F.B.M-G., C.A.G.), Universidade Estadual de Campinas, 13084-350 Brazil
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Wan R, Weigand LA, Bateman R, Griffioen K, Mendelowitz D, Mattson MP. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability. J Neurochem 2014; 129:573-80. [PMID: 24475741 DOI: 10.1111/jnc.12656] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/04/2023]
Abstract
Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Mice with a BDNF haploinsufficiency exhibit elevated resting heart rate, and infusion of BDNF intracerebroventricularly reduces heart rate in both wild-type and BDNF+/- mice. The atropine-induced elevation of heart rate is diminished in BDNF+/- mice and is restored by BDNF infusion, whereas the atenolol-induced decrease in heart rate is unaffected by BDNF levels, suggesting that BDNF signaling enhances parasympathetic tone which is diminished with BDNF haploinsufficiency. Whole-cell recordings from pre-motor cholinergic cardioinhibitory vagal neurons in the nucleus ambiguus indicate that BDNF haploinsufficiency reduces cardioinhibitory vagal neuron activity by increased inhibitory GABAergic and diminished excitatory glutamatergic neurotransmission to these neurons. Our findings reveal a previously unknown role for BDNF in the control of heart rate by a mechanism involving increased activation of brainstem cholinergic parasympathetic neurons.
Collapse
Affiliation(s)
- Ruiqian Wan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
77
|
Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 2014; 25:89-98. [PMID: 24361004 PMCID: PMC3915771 DOI: 10.1016/j.tem.2013.10.006] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/14/2013] [Accepted: 10/24/2013] [Indexed: 01/05/2023]
Abstract
Emerging findings suggest that brain-derived neurotrophic factor (BDNF) serves widespread roles in regulating energy homeostasis by controlling patterns of feeding and physical activity, and by modulating glucose metabolism in peripheral tissues. BDNF mediates the beneficial effects of energetic challenges such as vigorous exercise and fasting on cognition, mood, cardiovascular function, and on peripheral metabolism. By stimulating glucose transport and mitochondrial biogenesis BDNF bolsters cellular bioenergetics and protects neurons against injury and disease. By acting in the brain and periphery, BDNF increases insulin sensitivity and parasympathetic tone. Genetic factors, a 'couch potato' lifestyle, and chronic stress impair BDNF signaling, and this may contribute to the pathogenesis of metabolic syndrome. Novel BDNF-focused interventions are being developed for obesity, diabetes, and neurological disorders.
Collapse
Affiliation(s)
- Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
78
|
Azevedo FRD, Ikeoka D, Caramelli B. Effects of intermittent fasting on metabolism in men. Rev Assoc Med Bras (1992) 2013; 59:167-73. [PMID: 23582559 DOI: 10.1016/j.ramb.2012.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/18/2012] [Accepted: 09/27/2012] [Indexed: 01/13/2023] Open
Abstract
This review analyzes the available literature on the impact of intermittent fasting (IF), a nutritional intervention, on different aspects of metabolism. The epidemic of metabolic disturbances, such as obesity, metabolic syndrome (MS), and diabetes mellitus type 2 has led to an increase in the prevalence of cardiovascular diseases, and affected patients might significantly benefit from modifications in nutritional habits. Recent experimental studies have elucidated some of the metabolic mechanisms involved with IF. Animal models have shown positive changes in glucose (lower plasma glucose and insulin levels) and in lipid metabolism (reduced visceral fat tissue and increased plasma adiponectin level), and an increased resistance to stress. Despite the limited number of samples studied, positive results have been reported on the impact of IF for human health. IF is reported to improve the lipid profile; to decrease inflammatory responses, reflected by changes in serum adipokine levels; and to change the expression of genes related to inflammatory response and other factors. Studies on obese individuals have shown that patient compliance was greater for IF than other traditional nutritional approaches (calorie restriction), and IF was found to be associated with low oxidative stress. Recent reports suggest that IF exerts a positive impact on the metabolic derangements commonly associated with cardiovascular diseases, and that it may be a viable and accessible intervention for most individuals. Therefore, further clinical studies are essential to test the effectiveness of IF in preventing and controlling metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Fernanda Reis de Azevedo
- Interdisciplinary Medicine in Cardiology Unit, Heart Institute InCor, Medical School, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
79
|
Rothman SM, Mattson MP. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience 2013; 239:228-40. [PMID: 23079624 PMCID: PMC3629379 DOI: 10.1016/j.neuroscience.2012.10.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022]
Abstract
During development of the nervous system, the formation of connections (synapses) between neurons is dependent upon electrical activity in those neurons, and neurotrophic factors produced by target cells play a pivotal role in such activity-dependent sculpting of the neural networks. A similar interplay between neurotransmitter and neurotrophic factor signaling pathways mediates adaptive responses of neural networks to environmental demands in adult mammals, with the excitatory neurotransmitter glutamate and brain-derived neurotrophic factor (BDNF) being particularly prominent regulators of synaptic plasticity throughout the central nervous system. Optimal brain health throughout the lifespan is promoted by intermittent challenges such as exercise, cognitive stimulation and dietary energy restriction, that subject neurons to activity-related metabolic stress. At the molecular level, such challenges to neurons result in the production of proteins involved in neurogenesis, learning and memory and neuronal survival; examples include proteins that regulate mitochondrial biogenesis, protein quality control, and resistance of cells to oxidative, metabolic and proteotoxic stress. BDNF signaling mediates up-regulation of several such proteins including the protein chaperone GRP-78, antioxidant enzymes, the cell survival protein Bcl-2, and the DNA repair enzyme APE1. Insufficient exposure to such challenges, genetic factors may conspire to impair BDNF production and/or signaling resulting in the vulnerability of the brain to injury and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Further, BDNF signaling is negatively regulated by glucocorticoids. Glucocorticoids impair synaptic plasticity in the brain by negatively regulating spine density, neurogenesis and long-term potentiation, effects that are potentially linked to glucocorticoid regulation of BDNF. Findings suggest that BDNF signaling in specific brain regions mediates some of the beneficial effects of exercise and energy restriction on peripheral energy metabolism and the cardiovascular system. Collectively, the findings described in this article suggest the possibility of developing prescriptions for optimal brain health based on activity-dependent BDNF signaling.
Collapse
Affiliation(s)
- S M Rothman
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | |
Collapse
|
80
|
Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab 2012; 16:706-22. [PMID: 23168220 PMCID: PMC3518570 DOI: 10.1016/j.cmet.2012.08.012] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/01/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
Evolution favored individuals with superior cognitive and physical abilities under conditions of limited food sources, and brain function can therefore be optimized by intermittent dietary energy restriction (ER) and exercise. Such energetic challenges engage adaptive cellular stress-response signaling pathways in neurons involving neurotrophic factors, protein chaperones, DNA-repair proteins, autophagy, and mitochondrial biogenesis. By suppressing adaptive cellular stress responses, overeating and a sedentary lifestyle may increase the risk of Alzheimer's and Parkinson's diseases, stroke, and depression. Intense concerted efforts of governments, families, schools, and physicians will be required to successfully implement brain-healthy lifestyles that incorporate ER and exercise.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
81
|
Snorek M, Hodyc D, Sedivý V, Durišová J, Skoumalová A, Wilhelm J, Neckář J, Kolář F, Herget J. Short-term fasting reduces the extent of myocardial infarction and incidence of reperfusion arrhythmias in rats. Physiol Res 2012; 61:567-74. [PMID: 23098657 DOI: 10.33549/physiolres.932338] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The effect of three-day fasting on cardiac ischemic tolerance was investigated in adult male Wistar rats. Anesthetized open-chest animals (pentobarbitone 60 mg/kg, i.p.) were subjected to 20-min left anterior descending coronary artery occlusion and 3-h reperfusion for infarct size determination. Ventricular arrhythmias were monitored during ischemia and at the beginning (3 min) of reperfusion. Myocardial concentrations of beta-hydroxybutyrate and acetoacetate were measured to assess mitochondrial redox state. Short-term fasting limited the infarct size (48.5+/-3.3 % of the area at risk) compared to controls (74.3+/-2.2 %) and reduced the total number of premature ventricular complexes (12.5+/-5.8) compared to controls (194.9+/-21.9) as well as the duration of ventricular tachycardia (0.6+/-0.4 s vs. 18.8+/-2.5 s) occurring at early reperfusion. Additionally, fasting increased the concentration of beta-hydroxybutyrate and beta-hydroxybutyrate/acetoacetate ratio (87.8+/-27.0) compared to controls (7.9+/-1.7), reflecting altered mitochondrial redox state. It is concluded that three-day fasting effectively protected rat hearts against major endpoints of acute I/R injury. Further studies are needed to find out whether these beneficial effects can be linked to altered mitochondrial redox state resulting from increased ketogenesis.
Collapse
Affiliation(s)
- M Snorek
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Faris MAIE, Kacimi S, Al-Kurd RA, Fararjeh MA, Bustanji YK, Mohammad MK, Salem ML. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr Res 2012; 32:947-55. [PMID: 23244540 DOI: 10.1016/j.nutres.2012.06.021] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 06/15/2012] [Accepted: 06/29/2012] [Indexed: 01/01/2023]
Abstract
Intermittent fasting and caloric restriction have been shown to extend life expectancy and reduce inflammation and cancer promotion in animal models. It was hypothesized that intermittent prolonged fasting practiced during the month of Ramadan (RIF) could positively affect the inflammatory state. To investigate this hypothesis, a cross-sectional study was designed to investigate the impact of RIF on selected inflammatory cytokines and immune biomarkers in healthy subjects. Fifty (21 men and 29 women) healthy volunteers who practiced Ramadan fasting were recruited for the investigation of circulating proinflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor α), immune cells (total leukocytes, monocytes, granulocytes, and lymphocytes), and anthropometric and dietary assessments. The investigations were conducted 1 week before Ramadan fasting, at the end of the third week of Ramadan, and 1 month after the cessation of Ramadan month. The proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor α; systolic and diastolic blood pressures; body weight; and body fat percentage were significantly lower (P < .05) during Ramadan as compared with before Ramadan or after the cessation of Ramadan fasting. Immune cells significantly decreased during Ramadan but still remained within the reference ranges. These results indicate that RIF attenuates inflammatory status of the body by suppressing proinflammatory cytokine expression and decreasing body fat and circulating levels of leukocytes.
Collapse
Affiliation(s)
- Mo'ez Al-Islam E Faris
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
83
|
Qui G, Spangler E, Wan R, Miller M, Mattson M, So KF, de Cabo R, Zou S, Ingram D. Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids. Neurobiol Aging 2012; 33:2398-410. [PMID: 22226488 PMCID: PMC3374050 DOI: 10.1016/j.neurobiolaging.2011.11.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/21/2011] [Accepted: 11/20/2011] [Indexed: 12/24/2022]
Abstract
Glucocorticoids (GC)--corticosterone (CORT) in rodents and cortisol in primates--are stress-induced hormones secreted by adrenal glands that interact with the hypothalamic pituitary axis. High levels of cortisol in humans are observed in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), as well as in diabetes, post-traumatic stress syndrome, and major depression. Experimental models of diabetes in rats and mice have demonstrated that reduction of CORT reduces learning and memory deficits and attenuates loss of neuronal viability and plasticity. In contrast to the negative associations of elevated GC levels, CORT is moderately elevated in dietary restriction (DR) paradigms which are associated with many healthy anti-aging effects including neuroprotection. We demonstrate here in rats that ablating CORT by adrenalectomy (ADX) with replenishment to relatively low levels (30% below that of controls) prior to the onset of a DR regimen (ADX-DR) followed by central administration of the neurotoxin, kainic acid (KA), significantly attenuates learning deficits in a 14-unit T-maze task. The performance of the ADX-DR KA group did not differ from a control group (CON) that did not receive KA and was fed ad libitum (AL). By contrast, the sham-operated DR (SHAM-DR KA) group, SHAM-AL KA group, and ADX-AL KA group demonstrated poorer learning behavior in this task compared to the CON group. Stereological analysis revealed equivalent DR-induced neuroprotection in the SH-DR KA and ADX-DR KA groups, as measured by cell loss in the CA2/CA3 region of the hippocampus, while substantial cell loss was observed in SH-AL and ADX-AL rats. A separate set of experiments was conducted with similar dietary and surgical treatment conditions but without KA administration to examine markers of neurotrophic activity, brain-derived neurotrophic factor (BDNF), transcriptions factors (pCREB), and chaperone proteins (HSP-70). Under these conditions, we noted elevations in both BDNF and pCREB in ADX DR rats compared to the other groups; whereas, HSP-70, was equivalently elevated in ADX-DR and SH-DR groups and was higher than observed in both SH-AL and ADX-AL groups. These results support findings that DR protects hippocampal neurons against KA-induced cellular insult. However, this neuroprotective effect was further enhanced in rats with a lower-than control level of CORT resulting from ADX and maintained by exogenous CORT supplementation. Our results then suggest that DR-induced physiological elevation of GC may have negative functional consequences to DR-induced beneficial effects. These negative effects, however, can be compensated by other DR-produced cellular and molecular protective mechanisms.
Collapse
Affiliation(s)
| | - Edward Spangler
- Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21043
| | - Ruiqian Wan
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, Baltimore, MD 210434
| | | | - Mark Mattson
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, Baltimore, MD 210434
| | - Kwi-fok So
- Department of Anatomy, Li Ka Shing Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, PR China
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21043
| | - Sige Zou
- Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21043
| | - Donald Ingram
- Correspondence should be sent to Donald K. Ingram at the Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808.
| |
Collapse
|
84
|
Griffioen KJ, Rothman SM, Ladenheim B, Wan R, Vranis N, Hutchison E, Okun E, Cadet JL, Mattson MP. Dietary energy intake modifies brainstem autonomic dysfunction caused by mutant α-synuclein. Neurobiol Aging 2012; 34:928-35. [PMID: 22883907 DOI: 10.1016/j.neurobiolaging.2012.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/02/2012] [Accepted: 07/11/2012] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) patients often exhibit impaired regulation of heart rate by the autonomic nervous system (ANS) that may precede motor symptoms in many cases. Results of autopsy studies suggest that brainstem pathology, including the accumulation of α-synuclein, precedes damage to dopaminergic neurons in the substantia nigra in PD. However, the molecular and cellular mechanisms responsible for the early dysfunction of brainstem autonomic neurons are unknown. Here we report that mice expressing a mutant form of α-synuclein that causes familial PD exhibit aberrant autonomic control of the heart characterized by elevated resting heart rate and an impaired cardiovascular stress response, associated with reduced parasympathetic activity and accumulation of α-synuclein in the brainstem. These ANS abnormalities occur early in the disease process. Adverse effects of α-synuclein on the control of heart rate are exacerbated by a high energy diet and ameliorated by intermittent energy restriction. Our findings establish a mouse model of early dysregulation of brainstem control of the cardiovascular system in PD, and further suggest the potential for energy restriction to attenuate ANS dysfunction, particularly in overweight individuals.
Collapse
Affiliation(s)
- Kathleen J Griffioen
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Mattson MP. Evolutionary aspects of human exercise--born to run purposefully. Ageing Res Rev 2012; 11:347-52. [PMID: 22394472 DOI: 10.1016/j.arr.2012.01.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022]
Abstract
This article is intended to raise awareness of the adaptive value of endurance exercise (particularly running) in the evolutionary history of humans, and the implications of the genetic disposition to exercise for the aging populations of modern technology-driven societies. The genome of Homo sapiens has evolved to support the svelte phenotype of an endurance runner, setting him/her apart from all other primates. The cellular and molecular mechanisms underlying the competitive advantages conferred by exercise capacity in youth can also provide a survival benefit beyond the reproductive period. These mechanisms include up-regulation of genes encoding proteins involved in protecting cells against oxidative stress, disposing of damaged proteins and organelles, and enhancing bioenergetics. Particularly fascinating are the signaling mechanisms by which endurance running changes the structure and functional capabilities of the brain and, conversely, the mechanisms by which the brain integrates metabolic, cardiovascular and behavioral responses to exercise. As an emerging example, I highlight the roles of brain-derived neurotrophic factor (BDNF) as a mediator of the effects of exercise on the brain, and BDNF's critical role in regulating metabolic and cardiovascular responses to endurance running. A better understanding of such 'healthspan-extending' actions of endurance exercise may lead to new approaches for improving quality of life as we advance in the coming decades and centuries.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
86
|
Griffioen KJ, Wan R, Brown TR, Okun E, Camandola S, Mughal MR, Phillips TM, Mattson MP. Aberrant heart rate and brainstem brain-derived neurotrophic factor (BDNF) signaling in a mouse model of Huntington's disease. Neurobiol Aging 2012; 33:1481.e1-5. [PMID: 22209255 PMCID: PMC3329581 DOI: 10.1016/j.neurobiolaging.2011.11.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is associated with profound autonomic dysfunction including dysregulation of cardiovascular control often preceding cognitive or motor symptoms. Brain-derived neurotrophic factor (BDNF) levels are decreased in the brains of HD patients and HD mouse models, and restoring BDNF levels prevents neuronal loss and extends survival in HD mice. We reasoned that heart rate changes in HD may be associated with altered BDNF signaling in cardiovascular control nuclei in the brainstem. Here we show that heart rate is elevated in HD (N171-82Q) mice at presymptomatic and early disease stages, and heart rate responses to restraint stress are attenuated. BDNF levels were significantly reduced in brainstem regions containing cardiovascular nuclei in HD mice and human HD patients. Central administration of BDNF restored the heart rate to control levels. Our findings establish a link between diminished BDNF expression in brainstem cardiovascular nuclei and abnormal heart rates in HD mice, and suggest a novel therapeutic target for correcting cardiovascular dysfunction in HD.
Collapse
Affiliation(s)
- Kathleen J. Griffioen
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ruiqian Wan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tashalee R. Brown
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohamed R. Mughal
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Terry M. Phillips
- Laboratory of Bioengineering & Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
87
|
Rothman SM, Griffioen KJ, Wan R, Mattson MP. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann N Y Acad Sci 2012; 1264:49-63. [PMID: 22548651 PMCID: PMC3411899 DOI: 10.1111/j.1749-6632.2012.06525.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders.
Collapse
Affiliation(s)
- Sarah M Rothman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
88
|
Caloric restriction modifies both innate and adaptive immunity in the mouse small intestine. J Physiol Biochem 2011; 68:163-73. [PMID: 22086353 DOI: 10.1007/s13105-011-0128-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/28/2011] [Indexed: 01/13/2023]
Abstract
Although caloric restriction (CR) apparently has beneficial effects on the immune system, its effects on the immunological function of the intestinal mucosa are little known. The present study explored the effect of CR on the innate and adaptive intestinal immunity of mice. Balb/c mice were either fed ad libitum (control) or on alternate days fed ad libitum and fasted (caloric restriction). After 4 months, an evaluation was made of IgA levels in the ileum, the gene expression for IgA and its receptor (pIgR), as well as the expression of two antimicrobial enzymes (lysozyme and phospholipase A2) and several cytokines of the intestinal mucosa. CR increased the gene expression of lysozyme and phospholipase A2. The levels of IgA were diminished in the ileum, which apparently was a consequence of the reduced transport of IgA by pIgR. In ileum, CR increased the gene expression for most cytokines, both pro- and anti-inflammatory. Hence, CR differentially modified the expression of innate and adaptive immunity mediators in the intestine.
Collapse
|
89
|
Manzanero S, Gelderblom M, Magnus T, Arumugam TV. Calorie restriction and stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2011; 3:8. [PMID: 21910904 PMCID: PMC3179731 DOI: 10.1186/2040-7378-3-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/12/2011] [Indexed: 12/15/2022]
Abstract
Stroke, a major cause of disability and mortality in the elderly, occurs when a cerebral blood vessel is occluded or ruptured, resulting in ischemic damage and death of brain cells. The injury mechanism involves metabolic and oxidative stress, excitotoxicity, apoptosis and inflammatory processes, including activation of glial cells and infiltration of leukocytes. In animal models, dietary energy restriction, by daily calorie reduction (CR) or intermittent fasting (IF), extends lifespan and decreases the development of age-related diseases. Dietary energy restriction may also benefit neurons, as suggested by experimental evidence showing that CR and IF protect neurons against degeneration in animal models. Recent findings by our group and others suggest the possibility that dietary energy restriction may protect against stroke induced brain injury, in part by inducing the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF); protein chaperones, including heat shock protein 70 (Hsp70) and glucose regulated protein 78 (GRP78); antioxidant enzymes, such as superoxide dismutases (SOD) and heme oxygenase-1 (HO-1), silent information regulator T1 (SIRT1), uncoupling proteins and anti-inflammatory cytokines. This article discusses the protective mechanisms activated by dietary energy restriction in ischemic stroke.
Collapse
Affiliation(s)
- Silvia Manzanero
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | |
Collapse
|
90
|
Castello L, Maina M, Testa G, Cavallini G, Biasi F, Donati A, Leonarduzzi G, Bergamini E, Poli G, Chiarpotto E. Alternate-day fasting reverses the age-associated hypertrophy phenotype in rat heart by influencing the ERK and PI3K signaling pathways. Mech Ageing Dev 2011; 132:305-14. [PMID: 21741396 DOI: 10.1016/j.mad.2011.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 06/09/2011] [Accepted: 06/15/2011] [Indexed: 11/18/2022]
Abstract
The age-related increased impedance in large arteries overloads the senescent heart, and the myocardial phenotype is hypertrophic. Together with qualitative changes observed in the senile heart, this can be responsible for impaired diastolic function. A restricted diet providing adequate nutrient intake, e.g. alternate-day fasting (ADF), has been shown to extend life-span and decrease incidence and progression of age-associated diseases in laboratory rodents, and to ameliorate some metabolic markers of aging in rhesus monkeys and humans. This study reports an age-related increase of some biological and morphological hypertrophy markers in the rat heart, together with increased plasma BNP, a well known marker of heart failure. The tissue modifications might likely be related to hyper-activation of two of the signaling pathways associated with myocardial pathological hypertrophy: ERK1/2 and PI3Kγ. Increased ERK1/2 activation might be in part related to the disturbance of STAT3, with a consequent decrease of SOCS3. In this context, the down-modulation of ERK1/2 and PI3Kγ signaling, together with the restoration of STAT3 activity and SOCS3 content, both observed with ADF, might help to reduce pathological hypertrophy stimuli and to rescue an important cardioprotective pathway, possibly opening new preventive and therapeutic perspectives in age-related heart failure.
Collapse
Affiliation(s)
- Laura Castello
- Pediatric Hospital Regina Margherita-S. Anna, Pediatric Oncohematology, Stem Cell Transplant and Cellular Therapy Centre, P.zza Polonia 94, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Flak JN, Jankord R, Solomon MB, Krause EG, Herman JP. Opposing effects of chronic stress and weight restriction on cardiovascular, neuroendocrine and metabolic function. Physiol Behav 2011; 104:228-34. [PMID: 21396386 DOI: 10.1016/j.physbeh.2011.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/04/2011] [Accepted: 03/02/2011] [Indexed: 01/03/2023]
Abstract
Chronic stress is associated with dysregulation of energy homeostasis, but the link between the two is largely unknown. For most rodents, periods of chronic stress reduce weight gain. We hypothesized that these reductions in weight are an additional homeostatic challenge, contributing to the chronic stress syndrome. Experiment #1 examined cardiovascular responsivity following exposure to prolonged intermittent stress. We used radio-telemetry to monitor mean arterial pressure and heart rate in freely moving, conscious rats. Three groups of animals were tested: chronic variable stress (CVS), weight-matched (WM), and controls. Using this design, we can distinguish between effects due to stress and effects due to the changing body weight. WM, but not CVS, markedly reduced basal heart rate. Although an acute stress challenge elicited similar peak heart rate, WM expedited the recovery to baseline heart rate. The data suggest that CVS prevents the weight-induced attenuation of cardiovascular stress reactivity. Experiment #2 investigated hypothalamic-pituitary-adrenal axis and metabolic hormone reactivity to novel psychogenic stress. WM increased corticosterone area under the curve. CVS blunted plasma glucose, leptin, and insulin levels in response to restraint. Experiment #3 tested the effects of WM and CVS on PVN oxytocin and corticotrophin-releasing hormone mRNA expression. CVS increased, while WM reduced PVN CRH mRNA expression, whereas both CVS and WM reduced dorsal parvocellular PVN oxytocin mRNA. Overall, the data suggest that weight loss is unlikely to account for the deleterious effects of chronic stress on the organism, but in fact produces beneficial effects that are effectively absent or indeed, reversed in the face of chronic stress exposure.
Collapse
Affiliation(s)
- Jonathan N Flak
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | | | | | | | |
Collapse
|
92
|
Stranahan AM, Mattson MP. Bidirectional metabolic regulation of neurocognitive function. Neurobiol Learn Mem 2011; 96:507-16. [PMID: 21236352 DOI: 10.1016/j.nlm.2011.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/04/2011] [Indexed: 12/16/2022]
Abstract
The efficiency of somatic energy metabolism is correlated with cognitive change over the lifespan. This relationship is bidirectional, with improved overall fitness associated with enhanced synaptic function and neuroprotection, and synaptic endangerment occurring in the context of impaired energy metabolism. In this review, we discuss recent advancements in the fields of exercise, dietary energy intake and diabetes, as they relate to neuronal function in the hippocampus. Because hippocampal neurons have energy requirements that are relatively higher than those of other brain regions, they are uniquely poised to benefit from exercise, and to be harmed by diabetes. We view exercise and dietary energy restriction as being associated with enhanced hippocampal plasticity at one end of a continuum, with obesity and diabetes accompanied by cognitive impairment at the other end of the continuum. Understanding the mechanisms for this continuum may yield novel therapeutic targets for the prevention and treatment of cognitive decline following aging, disease, or injury.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
93
|
Griffioen KJ, Wan R, Okun E, Wang X, Lovett-Barr MR, Li Y, Mughal MR, Mendelowitz D, Mattson MP. GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons. Cardiovasc Res 2010; 89:72-8. [PMID: 20736238 DOI: 10.1093/cvr/cvq271] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIMS glucagon-like peptide 1 (GLP-1) is an incretin hormone released from the gut in response to food intake. Whereas GLP-1 acts in the periphery to inhibit glucagon secretion and stimulate insulin release, it also acts in the central nervous system to mediate autonomic control of feeding, body temperature, and cardiovascular function. Because of its role as an incretin hormone, GLP-1 receptor analogs are used as a treatment for type 2 diabetes. Central or peripheral administration of GLP-1 increases blood pressure and heart rate, possibly by activating brainstem autonomic nuclei and increasing vagus nerve activity. However, the mechanism(s) by which GLP-1 receptor stimulation affects cardiovascular function are unknown. We used the long-lasting GLP-1 receptor agonist Exendin-4 (Ex-4) to test the hypothesis that GLP-1 signalling modulates central parasympathetic control of heart rate. METHODS AND RESULTS using a telemetry system, we assessed heart rate in mice during central Ex-4 administration. Heart rate was increased by both acute and chronic central Ex-4 administration. Spectral analysis indicated that the high frequency and low frequency powers of heart rate variability were diminished by Ex-4 treatment. Finally, Ex-4 decreased both excitatory glutamatergic and inhibitory glycinergic neurotransmission to preganglionic parasympathetic cardiac vagal neurons. CONCLUSION these data suggest that central GLP-1 receptor stimulation diminishes parasympathetic modulation of the heart thereby increasing heart rate.
Collapse
Affiliation(s)
- Kathleen J Griffioen
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Xu X, Mughal MR, Scott Hall F, Perona MTG, Pistell PJ, Lathia JD, Chigurupati S, Becker KG, Ladenheim B, Niklason LE, Uhl GR, Cadet JL, Mattson MP. Dietary restriction mitigates cocaine-induced alterations of olfactory bulb cellular plasticity and gene expression, and behavior. J Neurochem 2010; 114:323-34. [PMID: 20456017 DOI: 10.1111/j.1471-4159.2010.06782.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Because the olfactory system plays a major role in food consumption, and because 'food addiction' and associated morbidities have reached epidemic proportions, we tested the hypothesis that dietary energy restriction can modify adverse effects of cocaine on behavior and olfactory cellular and molecular plasticity. Mice maintained on an alternate day fasting (ADF) diet exhibited increased baseline locomotion and increased cocaine-sensitized locomotion during cocaine conditioning, despite no change in cocaine conditioned place preference, compared with mice fed ad libitum. Levels of dopamine and its metabolites in the olfactory bulb (OB) were suppressed in mice on the ADF diet compared with mice on the control diet, independent of acute or chronic cocaine treatment. The expression of several enzymes involved in dopamine metabolism including tyrosine hydroxylase, monoamine oxidases A and B, and catechol-O-methyltransferase were significantly reduced in OBs of mice on the ADF diet. Both acute and chronic administration of cocaine suppressed the production of new OB cells, and this effect of cocaine was attenuated in mice on the ADF diet. Cocaine administration to mice on the control diet resulted in up-regulation of OB genes involved in mitochondrial energy metabolism, synaptic plasticity, cellular stress responses, and calcium- and cAMP-mediated signaling, whereas multiple olfactory receptor genes were down-regulated by cocaine treatment. ADF abolished many of the effects of cocaine on OB gene expression. Our findings reveal that dietary energy intake modifies the neural substrates underlying some of the behavioral and physiological responses to repeated cocaine treatment, and also suggest novel roles for the olfactory system in addiction. The data further suggest that modification of dietary energy intake could provide a novel potential approach to addiction treatments.
Collapse
Affiliation(s)
- Xiangru Xu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Martin B, Ji S, Maudsley S, Mattson MP. "Control" laboratory rodents are metabolically morbid: why it matters. Proc Natl Acad Sci U S A 2010; 107:6127-33. [PMID: 20194732 PMCID: PMC2852022 DOI: 10.1073/pnas.0912955107] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Failure to recognize that many standard control rats and mice used in biomedical research are sedentary, obese, glucose intolerant, and on a trajectory to premature death may confound data interpretation and outcomes of human studies. Fundamental aspects of cellular physiology, vulnerability to oxidative stress, inflammation, and associated diseases are among the many biological processes affected by dietary energy intake and exercise. Although overfed sedentary rodents may be reasonable models for the study of obesity in humans, treatments shown to be efficacious in these animal models may prove ineffective or exhibit novel side effects in active, normal-weight subjects.
Collapse
Affiliation(s)
| | - Sunggoan Ji
- Metabolism Unit, Laboratory of Clinical Investigation
| | - Stuart Maudsley
- Receptor Pharmacology Unit, Laboratory of Neurosciences, and
| | - Mark P. Mattson
- Cellular and Molecular Neurosciences Section, Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| |
Collapse
|
96
|
Wan R, Ahmet I, Brown M, Cheng A, Kamimura N, Talan M, Mattson MP. Cardioprotective effect of intermittent fasting is associated with an elevation of adiponectin levels in rats. J Nutr Biochem 2009; 21:413-7. [PMID: 19423320 DOI: 10.1016/j.jnutbio.2009.01.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/24/2008] [Accepted: 01/26/2009] [Indexed: 01/27/2023]
Abstract
It has been reported that dietary energy restriction, including intermittent fasting (IF), can protect heart and brain cells against injury and improve functional outcome in animal models of myocardial infarction (MI) and stroke. Here we report that IF improves glycemic control and protects the myocardium against ischemia-induced cell damage and inflammation in rats. Echocardiographic analysis of heart structural and functional variables revealed that IF attenuates the growth-related increase in posterior ventricular wall thickness, end systolic and diastolic volumes, and reduces the ejection fraction. The size of the ischemic infarct 24 h following permanent ligation of a coronary artery was significantly smaller, and markers of inflammation (infiltration of leukocytes in the area at risk and plasma IL-6 levels) were less, in IF rats compared to rats on the control diet. IF resulted in increased levels of circulating adiponectin prior to and after MI. Because recent studies have shown that adiponectin can protect the heart against ischemic injury, our findings suggest a potential role for adiponectin as a mediator of the cardioprotective effect of IF.
Collapse
Affiliation(s)
- Ruiqian Wan
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Rocha GDS, Fonseca AS, Rodrigues MP, Dantas FJS, Caldeira-de-Araujo A, Santos R. Comet assay to determine DNA damage induced by food deprivation in rats. ACTA BIOLOGICA HUNGARICA 2008; 59:315-25. [PMID: 18839698 DOI: 10.1556/abiol.59.2008.3.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this work was to evaluate, by comet assay, the possible inducing of DNA lesions in peripheral blood mononuclear cells of rats subjected to acute or chronic food deprivation. Wistar male rats were subjected to 72 h of partial (50%), or total acute food deprivation, and then allowed to recover for different time periods (24, 48 and 72 h). In other experiments, comet scores were determined in peripheral blood mononuclear cells of rats subjected to chronic food deprivation (25% and 50%) for 50 days. Blood aliquots were obtained before, during and after food deprivation. Comet assay was carried out, the comet units photographed and scored (class 0 up to 3). Acute and chronic food-deprived rats presented peripheral blood mononuclear cells with DNA lesions (comet classes 1, 2 and 3) and a significant increase (p<0.05) in the number of comet units compared with its basal level. The increase was proportional to acute food deprivation time, but after being taken off, it progressively returned to basal level after 48 h (partial group) or 72 h (total group). Chronic food-deprived rats presented a progressive increase of comet score up to 5 days, and a decrease thereafter to reach a basal level. Possible mechanisms of DNA lesions are discussed.
Collapse
Affiliation(s)
- Gabrielle de Souza Rocha
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, Fundos, Rio de Janeiro, Brasil
| | | | | | | | | | | |
Collapse
|
98
|
Mattson MP. Hormesis and disease resistance: activation of cellular stress response pathways. Hum Exp Toxicol 2008; 27:155-62. [PMID: 18480142 DOI: 10.1177/0960327107083417] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The survival of all organisms depends upon their ability to overcome stressful conditions, an ability that involves adaptive changes in cells and molecules. Findings from studies of animal models and human populations suggest that hormesis (beneficial effects of low levels of stress) is an effective means of protecting against many different diseases including diabetes, cardiovascular disease, cancers and neurodegenerative disorders. Such stress resistance mechanisms can be bolstered by diverse environmental factors including exercise, dietary restriction, cognitive stimulation and exposure to low levels of toxins. Some commonly used vitamins and dietary supplements may also induce beneficial stress responses. Several interrelated cellular signaling molecules are involved in the process of hormesis. Examples include the gases oxygen, carbon monoxide and nitric oxide, the neurotransmitter glutamate, the calcium ion and tumor necrosis factor. In each case low levels of these signaling molecules are beneficial and protect against disease, whereas high levels can cause the dysfunction and/or death of cells. The cellular and molecular mechanisms of hormesis are being revealed and include activation of growth factor signaling pathways, protein chaperones, cell survival genes and enzymes called sirtuins. Knowledge of hormesis mechanisms is leading to novel approaches for preventing and treating a range of human diseases.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
99
|
Effects of Every-Other-Day Feeding on Prolactin Regulatory Mechanism in Transgenic Human Growth Hormone Mice. Exp Biol Med (Maywood) 2008; 233:434-8. [DOI: 10.3181/0708-rm-217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transgenic mice overexpressing human growth hormone (hGH) exhibit accelerated aging with functional hyperprolactinemia and greatly depressed endogenous prolactin. Calorie restriction (CR) is widely recognized as the most effective experimental intervention to delay aging. The aim of the present work was to analyze the effects of lifelong overexpression of hGH on prolactin-gene expression as well as the dopamine production at the pituitary level and discern whether this mechanism changes as a function of feeding patterns. Ten-month-old mice fed every other day (EOD) were killed after one day of fasting. The results confirmed typical phenotypic features of these transgenic mice: an increase in body weight, very high hGH plasma concentrations, and hyperinsulinemia. There was a marked inhibition of the expression of the prolactin gene, together with an increased tyrosine hydroxylase (TH) and the long isoform of dopamine receptor type 2 (D2LR) gene expression at the pituitary level. These parameters were not affected by the EOD feeding pattern. These data may suggest an autocrine or paracrine effect of dopamine at the hypophyseal level on prolactin secretion that is independent of the feeding pattern.
Collapse
|
100
|
Abstract
The heart is challenged by a plethora of extracellular stimuli over the course of a normal day, each of which distinctly influences myocardial contractile function. It is therefore not surprising that myocardial metabolism also oscillates in a time-of-day dependent manner. What is becoming increasingly apparent is that the heart exhibits diurnal variations in its intrinsic properties, including responsiveness to extracellular stimuli. This article summarizes our current knowledge regarding the mechanism(s) mediating diurnal variations in myocardial metabolism. Particular attention is focused towards the intramyocardial circadian clock, a cell autonomous molecular mechanism that appears to regulate myocardial metabolism both directly (e.g. triglyceride and glycogen metabolism) and indirectly (through modulation of the responsiveness of the myocardium to workload, insulin, and fatty acids). In doing so, the circadian clock within the cardiomyocyte allows the heart to anticipate environmental stimuli (such as changes in workload, feeding status) prior to their onset. This synchronization between the myocardium and its environment is enhanced by regular feeding schedules. Conversely, loss of synchronization may occur through disruption of the circadian clock and/or diurnal variations in neurohumoral factors (as observed during diabetes mellitus). Here, we discuss the possibility that loss of synchronization between the heart and its environment predisposes the heart to metabolic maladaptation and subsequent myocardial contractile dysfunction.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | | |
Collapse
|