51
|
Portraying Fungal Mechanisms in Stress Tolerance: Perspective for Sustainable Agriculture. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
52
|
Urbaniak M, Waśkiewicz A, Koczyk G, Błaszczyk L, Stępień Ł. Divergence of Beauvericin Synthase Gene among Fusarium and Trichoderma Species. J Fungi (Basel) 2020; 6:E288. [PMID: 33203083 PMCID: PMC7712144 DOI: 10.3390/jof6040288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Beauvericin (BEA) is a cyclodepsipeptide mycotoxin, showing insecticidal, antibiotic and antimicrobial activities, as well as inducing apoptosis of cancer cell lines. BEA can be produced by multiple fungal species, including saprotrophs, plant, insect and human pathogens, particularly belonging to Fusarium, Beauveria and Isaria genera. The ability of Trichoderma species to produce BEA was until now uncertain. Biosynthesis of BEA is governed by a non-ribosomal peptide synthase (NRPS), known as beauvericin synthase (BEAS), which appears to present considerable divergence among different fungal species. In the present study we compared the production of beauvericin among Fusarium and Trichoderma strains using UPLC methods. BEAS fragments were sequenced and analyzed to examine the level of the gene's divergence between these two genera and confirm the presence of active BEAS copy in Trichoderma. Seventeen strains of twelve species were studied and phylogenetic analysis showed distinctive grouping of Fusarium and Trichoderma strains. The highest producers of beauvericin were F. proliferatum and F. nygamai. Trichoderma strains of three species (T. atroviride, T. viride, T. koningiopsis) were minor BEA producers. The study showed beauvericin production by Fusarium and Trichoderma species and high variance of the non-ribosomal peptide synthase gene among fungal species from the Hypocreales order.
Collapse
Affiliation(s)
- Monika Urbaniak
- Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Grzegorz Koczyk
- Functional Evolution of Biological Systems Team, Department of Biometrics and Bioinformatics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Lidia Błaszczyk
- Plant Microbiome Structure and Function Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| |
Collapse
|
53
|
Illescas M, Rubio MB, Hernández-Ruiz V, Morán-Diez ME, Martínez de Alba AE, Nicolás C, Monte E, Hermosa R. Effect of Inorganic N Top Dressing and Trichoderma harzianum Seed-Inoculation on Crop Yield and the Shaping of Root Microbial Communities of Wheat Plants Cultivated Under High Basal N Fertilization. FRONTIERS IN PLANT SCIENCE 2020; 11:575861. [PMID: 33193517 PMCID: PMC7644891 DOI: 10.3389/fpls.2020.575861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Wheat crop production needs nitrogen (N) for ensuring yield and quality. High doses of inorganic N fertilizer are applied to soil before sowing (basal dressing), with additional doses supplied along the cultivation (top dressing). Here, a long-term wheat field trial (12 plots), including four conditions (control, N top dressing, Trichoderma harzianum T34 seed-inoculation, and top dressing plus T34) in triplicate, was performed to assess, under high basal N fertilization, the influence of these treatments on crop yield and root microbial community shaping. Crop yield was not affected by top dressing and T. harzianum T34, but top dressing significantly increased grain protein and gluten contents. Twenty-seven-week old wheat plants were collected at 12 days after top dressing application and sampled as bulk soil, rhizosphere and root endosphere compartments in order to analyze their bacterial and fungal assemblies by 16S rDNA and ITS2 high-throughput sequencing, respectively. Significant differences for bacterial and fungal richness and diversity were detected among the three compartments with a microbial decline from bulk soil to root endosphere. The most abundant wheat root phyla were Proteobacteria and Actinobacteria for bacteria, and Ascomycota and Basidiomycota for fungi. An enrichment of genera commonly associated with soils subjected to chemical N fertilization was observed: Kaistobacter, Mortierella, and Solicoccozyma in bulk soil, Olpidium in rhizosphere, and Janthinobacterium and Pedobacter in root endosphere. Taxa whose abundance significantly differed among conditions within each compartment were identified. Results show that: (i) single or strain T34-combined application of N top dressing affected to a greater extent the bulk soil bacterial levels than the use of T34 alone; (ii) when N top dressing and T34 were applied in combination, the N fertilizer played a more decisive role in the bacterial microbiome than T34; (iii) many genera of plant beneficial bacteria, negatively affected by N top dressing, were increased by the application of T34 alone; (iv) bulk soil and rhizosphere fungal microbiomes were affected by any of the three treatments assayed; and (v) all treatments reduced Claroideoglomus in bulk soil but the single application of T34 raised the rhizosphere levels of this mycorrhizal fungus.
Collapse
Affiliation(s)
- María Illescas
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - M. Belén Rubio
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Víctor Hernández-Ruiz
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - María E. Morán-Diez
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - A. Emilio Martínez de Alba
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Carlos Nicolás
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Botany and Plant Physiology, University of Salamanca, Salamanca, Spain
| | - Enrique Monte
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Rosa Hermosa
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| |
Collapse
|
54
|
Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla N. Global trends in pesticides: A looming threat and viable alternatives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110812. [PMID: 32512419 DOI: 10.1016/j.ecoenv.2020.110812] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Pesticides are widely used chemical compounds in agriculture to destroy insects, pests and weeds. In modern era, they form an indispensable part of agricultural and health practices. Globally, nearly 3 billion kg of pesticides are used every year with a budget of ~40 billion USD. This extensive usage has increased the crop yield as well as led to significant reduction in harvest losses and thereby, enhanced food availability. On the other hand, indiscriminate usage of these chemicals has led to several environmental implications and caused adverse effects on human health. Epidemiological evidences have revealed the harmful effects of pesticides exposure on various organs including liver, brain, lungs and colon. Recent investigations have shown that pesticides can also lead to fatal consequences such as cancer among individuals. These chemicals enter ecosystem, thus hampering the sensitive environmental equilibrium through bio-accumulation. Due to their non-biodegradable nature, they can persist in nature for years and are regarded as potent biohazard. Worldwide, very few surveillance methods have been considered, which can bring awareness among the individuals, therefore the present review is an attempt to delineate consequences induced by various types of pesticide exposure on the environment. Further, the prospective of biopesticides use could facilitate the increase of crop production without compromising human health.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; UIPS, Panjab University, Chandigarh, 160014, India
| | - Ananya Shukla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kriti Attri
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Biological Sciences, Indian Institute of Science Education and Research, Mohali, 140306, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurpal Singh
- UIPS, Panjab University, Chandigarh, 160014, India
| | | | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
55
|
Screening of Organic Substrates for Solid-State Fermentation, Viability and Bioefficacy of Trichoderma harzianum AS12-2, a Biocontrol Strain Against Rice Sheath Blight Disease. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study was undertaken to find the most suitable organic substrates for the biomass production, viability and efficacy of the biocontrol strain Trichoderma harzianum AS12-2 in the solid-state fermentation system. In total, 13 inexpensive, locally available substrates (agricultural wastes or by-products) were inoculated with the antagonist, and following one month of incubation at room temperature, all colonized substrates were air dried and ground to powder. The shelf life and viability of the Trichoderma strain were assessed as colony-forming units per gram (CFUs g−1) of each substrate on a monthly basis for up to one year at room temperature (25 ± 2 °C) and in the refrigerator (4 °C). In order to find out the effect of the substrate on the bioefficacy of T. harzianum AS12-2, the biocontrol potential of the formulations was evaluated against rice sheath blight disease caused by Rhizoctonia solani. The results showed that the fungus colonized more or less all substrates after one month, although the degree of colonization and conidiation was different among the substrates, being especially high in broom sorghum grain, rice husk, rice straw, rice bran and sugar beet pulp. Analysis of variance (ANOVA) of the population in the substrates in “Month 0” showed that the effect of treatment was significant, and the means were significantly different. The maximum population was recorded for broom sorghum grain and rice straw (6.4 × 1010 and 5.3 × 1010 CFUs g−1, respectively). The population declined in all substrates after one year of incubation at room temperature. This decline was relatively smaller in broom sorghum grain, rice straw and rice husk. On the other hand, the population in the same substrate incubated in the refrigerator was decreased in a mild slope, and the final population was high. In addition, the results of greenhouse assay showed that all bioformulations were effective in controlling the disease, and there were no significant differences among the substrates. According to the results of this study, broom sorghum grain, rice husk, rice straw, sugar beet pulp and cow dung could be recommended as suitable fermentation media for the industrial-scale production of T. harzianum strains.
Collapse
|
56
|
Macías-Rodríguez L, Contreras-Cornejo HA, Adame-Garnica SG, Del-Val E, Larsen J. The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiol Res 2020; 240:126552. [PMID: 32659716 DOI: 10.1016/j.micres.2020.126552] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Trichoderma spp. are universal saprotrophic fungi in terrestrial ecosystems, and as rhizosphere inhabitants, they mediate interactions with other soil microorganisms, plants, and arthropods at multiple trophic levels. In the rhizosphere, Trichoderma can reduce the abundance of phytopathogenic microorganisms, which involves the action of potent inhibitory molecules, such as gliovirin and siderophores, whereas endophytic associations between Trichoderma and the seeds and roots of host plants can result in enhanced plant growth and crop productivity, as well as the alleviation of abiotic stress. Such beneficial effects are mediated via the activation of endogenous mechanisms controlled by phytohormones such as auxins and abscisic acid, as well as by alterations in host plant metabolism. During either root colonization or in the absence of physical contact, Trichoderma can trigger early defense responses mediated by Ca2+ and reactive oxygen species, and subsequently stimulate plant immunity by enhancing resistance mechanisms regulated by the phytohormones salicylic acid, jasmonic acid, and ethylene. In addition, Trichoderma release volatile organic compounds and nitrogen or oxygen heterocyclic compounds that serve as signaling molecules, which have effects on plant growth, phytopathogen levels, herbivorous insects, and at the third trophic level, play roles in attracting the natural enemies (predators and parasitoids) of herbivores. In this paper, we review some of the most recent advances in our understanding of the environmental influences of Trichoderma spp., with particular emphasis on their multiple interactions at different trophic levels.
Collapse
Affiliation(s)
- Lourdes Macías-Rodríguez
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico.
| | - Hexon Angel Contreras-Cornejo
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico; Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico.
| | - Sandra Goretti Adame-Garnica
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Ek Del-Val
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| | - John Larsen
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| |
Collapse
|
57
|
Dacosta-Aguayo R, Wylie G, DeLuca J, Genova H. Changes in plant function and root mycobiome caused by flood and drought in a riparian tree. Behav Neurol 2020; 40:886-903. [PMID: 32175581 PMCID: PMC7775148 DOI: 10.1093/treephys/tpaa031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023] Open
Abstract
Under increasingly harsh climatic conditions, conservation of threatened species requires integrative studies to understand stress tolerance. Riparian Ulmus minor Mill. populations have been massively reduced by Dutch Elm disease (DED). However, resistant genotypes were selected to restore lost populations. To understand the acclimation mechanisms to the succession of abiotic stresses, ramets of five DED-tolerant U. minor genotypes were subjected to flood and subsequently to drought. Physiological and biochemical responses were evaluated together with shifts in root-fungal assemblages. During both stresses, plants exhibited a decline in leaf net photosynthesis and an increase in percentage loss of stem hydraulic conductivity and in leaf and root proline content. Stomatal closure was produced by chemical signals during flood and hydraulic signals during drought. Despite broad similarities in plant response to both stresses, root-mycobiome shifts were markedly different. The five genotypes were similarly tolerant to moderate drought, however, flood tolerance varied between genotypes. In general, flood did not enhance drought susceptibility due to fast flood recovery, nevertheless, different responses to drought after flood were observed between genotypes. Associations were found between some fungal taxonomic groups and plant functional traits varying with flood and drought (e.g. proline, chlorophyll and starch content) indicating that the thriving of certain taxa depends on host responses to abiotic stress.
Collapse
Affiliation(s)
- Rosalia Dacosta-Aguayo
- Neuropsychology and Neuroscience, Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey 07936, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
| | - Glenn Wylie
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, USA
| | - John DeLuca
- Neuropsychology and Neuroscience, Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey 07936, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, USA
| | - Helen Genova
- Neuropsychology and Neuroscience, Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey 07936, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
| |
Collapse
|
58
|
Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. Trichoderma: The "Secrets" of a Multitalented Biocontrol Agent. PLANTS 2020; 9:plants9060762. [PMID: 32570799 PMCID: PMC7355703 DOI: 10.3390/plants9060762] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
Abstract
The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens. This symbiotic association in plants leads to the acquisition of plant resistance to pathogens, improves developmental processes and yields and promotes absorption of nutrient and fertilizer use efficiency. Among other biocontrol mechanisms, antibiosis, competition and mycoparasitism are among the main features through which microorganisms, including Thrichoderma, react to the presence of other competitive pathogenic organisms, thereby preventing or obstructing their development. Stimulation of every process involves the biosynthesis of targeted metabolites like plant growth regulators, enzymes, siderophores, antibiotics, etc. This review summarizes the biological control activity exerted by Trichoderma spp. and sheds light on the recent progress in pinpointing the ecological significance of Trichoderma at the biochemical and molecular level in the rhizosphere as well as the benefits of symbiosis to the plant host in terms of physiological and biochemical mechanisms. From an applicative point of view, the evidence provided herein strongly supports the possibility to use Trichoderma as a safe, ecofriendly and effective biocontrol agent for different crop species.
Collapse
Affiliation(s)
- Monika Sood
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; (M.S.); (D.K.)
| | - Dhriti Kapoor
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; (M.S.); (D.K.)
| | - Vipul Kumar
- School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India;
| | - Mohamed S. Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Marco Landi
- Department of Agriculture, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Correspondence: (M.L.); (A.S.)
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy;
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
- Correspondence: (M.L.); (A.S.)
| |
Collapse
|
59
|
Halo BA, Al-Yahyai RA, Al-Sadi AM. An endophytic Talaromyces omanensis enhances reproductive, physiological and anatomical characteristics of drought-stressed tomato. JOURNAL OF PLANT PHYSIOLOGY 2020; 249:153163. [PMID: 32330754 DOI: 10.1016/j.jplph.2020.153163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The effects of a newly discovered endophytic fungus, Talaromyces omanensis, on the drought tolerance of tomato is presented in this study. The fungus was obtained from a desert plant Rhazya stricta in Oman. Drought stress was induced by a 15% solution of Polyethylene glycol-6000 (PEG-6000). Several parameters were measured including pollen sterility, pollen tube length, growth, flowering, and yield characteristics, the biochemical analysis of the leaves and fruits, as well as other physiological and anatomical parameters. The results showed that T. omanensis provided multiple advantages to tomato grown under drought stress, including improved reproductive characteristics, chlorophyll fluorescence, and some anatomical characteristics such as increased phloem and cortex width and a reduction of pith autolysis that leads to hollow stem. In addition, T. omanensis significantly increased drought-stress related characteristics such as shoot dry weight, root length, the number of flowers, and fruit weight. A significantly higher concentration of gibberellic acid (GA3) was found in tomato plants treated by T. omanensis, which may enhance their drought tolerance. These results suggest that T. omanensis is a potential biological anti-stress stimulator for important horticultural crops such as tomatoes. This study is the first to report the beneficial effects of T. omanensis in alleviating drought stress in tomatoes.
Collapse
Affiliation(s)
- Boshra A Halo
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, B.O box 34, Al-Khoud, Muscat, 123, Oman.
| | - Rashid A Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, B.O box 34, Al-Khoud, Muscat, 123, Oman.
| | - Abdullah M Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, B.O box 34, Al-Khoud, Muscat, 123, Oman.
| |
Collapse
|
60
|
Estrada-Rivera M, Hernández-Oñate MÁ, Dautt-Castro M, Gallardo-Negrete JDJ, Rebolledo-Prudencio OG, Uresti-Rivera EE, Arenas-Huertero C, Herrera-Estrella A, Casas-Flores S. IPA-1 a Putative Chromatin Remodeler/Helicase-Related Protein of Trichoderma virens Plays Important Roles in Antibiosis Against Rhizoctonia solani and Induction of Arabidopsis Systemic Disease Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:808-824. [PMID: 32101077 DOI: 10.1094/mpmi-04-19-0092-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichoderma spp. are filamentous fungi that colonize plant roots conferring beneficial effects to plants, either indirectly through the induction of their defense systems or directly through the suppression of phytopathogens in the rhizosphere. Transcriptomic analyses of Trichoderma spp. emerged as a powerful method for identifying the molecular events underlying the establishment of this beneficial relationship. Here, we focus on the transcriptomic response of Trichoderma virens during its interaction with Arabidopsis seedlings. The main response of T. virens to cocultivation with Arabidopsis was the repression of gene expression. The biological processes of transport and metabolism of carbohydrates were downregulated, including a set of cell wall-degrading enzymes putatively relevant for root colonization. Repression of such genes reached their basal levels at later times in the interaction, when genes belonging to the biological process of copper ion transport were induced, a necessary process providing copper as a cofactor for cell wall-degrading enzymes with the auxiliary activities class. RNA-Seq analyses showed the induction of a member of the SNF2 family of chromatin remodelers/helicase-related proteins, which was named IPA-1 (increased protection of Arabidopsis-1). Sequence analyses of IPA-1 showed its closest relatives to be members of the Rad5/Rad16 and SNF2 subfamilies; however, it grouped into a different clade. Although deletion of IPA-1 in T. virens did not affect its growth, the antibiotic activity of Δipa-1 culture filtrates against Rhizoctonia solani diminished but it remained unaltered against Botrytis cinerea. Triggering of the plant defense genes in plants treated with Δipa-1 was higher, showing enhanced resistance against Pseudomonas syringae but not against B. cinerea as compared with the wild type.
Collapse
Affiliation(s)
- Magnolia Estrada-Rivera
- IPICYT, División de Biología Molecular, Camino a la presa San José No. 2055, Colonia Lomas 4a sección, C.P. 78216, San Luis Potosí, Mexico
| | - Miguel Ángel Hernández-Oñate
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, C.P. 83304. Hermosillo, Sonora, Mexico
| | - Mitzuko Dautt-Castro
- IPICYT, División de Biología Molecular, Camino a la presa San José No. 2055, Colonia Lomas 4a sección, C.P. 78216, San Luis Potosí, Mexico
| | - José de Jesús Gallardo-Negrete
- IPICYT, División de Biología Molecular, Camino a la presa San José No. 2055, Colonia Lomas 4a sección, C.P. 78216, San Luis Potosí, Mexico
| | | | - Edith Elena Uresti-Rivera
- Facultad de Ciencias Químicas, Departamento de Inmunología y Biología Celular y Molecular, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava s/n, Zona Universitaria, 78290, San Luis Potosí, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec No. 1570. Priv. del Pedregal 78295, San Luis Potosí, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, C.P. 36824, Irapuato, Gto., México
| | - Sergio Casas-Flores
- IPICYT, División de Biología Molecular, Camino a la presa San José No. 2055, Colonia Lomas 4a sección, C.P. 78216, San Luis Potosí, Mexico
| |
Collapse
|
61
|
Fan Y, Gao L, Chang P, Li Z. Endophytic fungal community in grape is correlated to foliar age and domestication. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01574-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Purpose
The composition of endophytic communities has been shown to depend on grape genotypes and viticultural managements in leaves, stems, and berries of grape, but there have been relatively few reports exploring fungal endophytes associated with wild grape and foliar age.
Methods
The regions of internally transcribed spacer (ITS) were sequenced using the Illumina HiSeq to determine the diversity of fungal endophytes associated with European grape (Vitis vinifera cv. Red Globe) and Chinese wild grape (Vitis amurensis cv. Shuangyou) in young and mature leaves.
Results
A total of 3 phyla, 23 classes, 51 orders, 97 families, and 150 fungal genera were identified. Young leaves have significantly higher diversity and richness than that in mature leaves in both cultivars. Endophytic fungal diversity was greater in wild grapevines (119 genera) than in cultivated grapevines (81 genera) in both young and mature leaves. Endophytic fungal community structure was also significantly different between young leaves and mature leaves as well as in both cultivars based on statistical tests of ANOSIM and MRPP.
Conclusions
Our results suggest that endophytic fungal communities were strongly affected by foliar age and domestication, which are crucial factors in establishing symbiotic associations with a selective enrichment for specific endophytes.
Collapse
|
62
|
López AC, Alvarenga AE, Vereschuk ML, Barua RC, Zapata PD, Luna MF, Villaba LL. Trichoderma strains isolated from Ilex paraguariensis ST. HIL: promising biocontrol agents with chitinolytic activity and plant growth promoter on Lycopersicum esculentum. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1080/25765299.2020.1732033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Ana Clara López
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Adriana Elizabet Alvarenga
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Manuela Lizz Vereschuk
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Ramona Celeste Barua
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Pedro Darío Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - María Flavia Luna
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CCT-La Plata CONICET, CIC-PBA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Laura Lidia Villaba
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, CONICET, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| |
Collapse
|
63
|
Christian N, Sedio BE, Florez-Buitrago X, Ramírez-Camejo LA, Rojas EI, Mejía LC, Palmedo S, Rose A, Schroeder JW, Herre EA. Host affinity of endophytic fungi and the potential for reciprocal interactions involving host secondary chemistry. AMERICAN JOURNAL OF BOTANY 2020; 107:219-228. [PMID: 32072625 DOI: 10.1002/ajb2.1436] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/23/2019] [Indexed: 05/20/2023]
Abstract
PREMISE Interactions between fungal endophytes and their host plants present useful systems for identifying important factors affecting assembly of host-associated microbiomes. Here we investigated the role of secondary chemistry in mediating host affinity of asymptomatic foliar endophytic fungi using Psychotria spp. and Theobroma cacao (cacao) as hosts. METHODS First, we surveyed endophytic communities in Psychotria species in a natural common garden using culture-based methods. Then we compared differences in endophytic community composition with differences in foliar secondary chemistry in the same host species, determined by liquid chromatography-tandem mass spectrometry. Finally, we tested how inoculation with live and heat-killed endophytes affected the cacao chemical profile. RESULTS Despite sharing a common environment and source pool for endophyte spores, different Psychotria host species harbored strikingly different endophytic communities that reflected intrinsic differences in their leaf chemical profiles. In T. cacao, inoculation with live and heat-killed endophytes produced distinct cacao chemical profiles not found in uninoculated plants or pure fungal cultures, suggesting that endophytes, like pathogens, induce changes in secondary chemical profiles of their host plant. CONCLUSIONS Collectively our results suggest at least two potential processes: (1) Plant secondary chemistry influences assembly and composition of fungal endophytic communities, and (2) host colonization by endophytes subsequently induces changes in the host chemical landscape. We propose a series of testable predictions based on the possibility that reciprocal chemical interactions are a general property of plant-endophyte interactions.
Collapse
Affiliation(s)
- Natalie Christian
- Department of Plant Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
- Department of Biology, University of Louisville, 139 Life Sciences Bldg., Louisville, KY, 40208, USA
| | - Brian E Sedio
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Apartado 0843-01103, Ciudad del Saber, Ancón, Republic of Panama
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway #C0930, Austin, TX, 78712, USA
| | | | - Luis A Ramírez-Camejo
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Apartado 0843-01103, Ciudad del Saber, Ancón, Republic of Panama
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
| | - Enith I Rojas
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
| | - Luis C Mejía
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Apartado 0843-01103, Ciudad del Saber, Ancón, Republic of Panama
| | - Sage Palmedo
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Ln., Princeton, NJ, 08544, USA
| | - Autumn Rose
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Ln., Princeton, NJ, 08544, USA
| | - John W Schroeder
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
- Ecology, Evolution, and Marine Biology, University of California Santa-Barbara, Noble Hall 2116, Santa Barbara, CA, 93106, USA
| | - Edward Allen Herre
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
| |
Collapse
|
64
|
Selvasekaran P, Chidambaram R. Agriculturally Important Fungi for Crop Protection. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
65
|
|
66
|
Mondal S, Halder SK, Yadav AN, Mondal KC. Microbial Consortium with Multifunctional Plant Growth-Promoting Attributes: Future Perspective in Agriculture. ADVANCES IN PLANT MICROBIOME AND SUSTAINABLE AGRICULTURE 2020. [DOI: 10.1007/978-981-15-3204-7_10] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Duan X, Xu F, Qin D, Gao T, Shen W, Zuo S, Yu B, Xu J, Peng Y, Dong J. Diversity and bioactivities of fungal endophytes from Distylium chinense, a rare waterlogging tolerant plant endemic to the Three Gorges Reservoir. BMC Microbiol 2019; 19:278. [PMID: 31822262 PMCID: PMC6902458 DOI: 10.1186/s12866-019-1634-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study involves diversity and biological activities of the endophytic fungal community from Distylium chinense, a rare waterlogging tolerant plant endemic to the Three Gorges Reservoir. This study has been conducted hypothesizing that the microbial communities in the TGR area would contribute to the host plant tolerating a range of abiotic stress such as summer flooding, infertility, drought, salinity and soil erosion etc., and they may produce new metabolites, which may possess plentiful bioactive property, especially antioxidant activity. Therefore in the current study, the antioxidant, antimicrobial and anticancer activities of 154 endophytes recovered from D. chinense have been investigated. Furthermore, the active metabolites of the most broad-spectrum bioactive strain have also been studied. RESULTS A total of 154 fungal endophytes were isolated from roots and stems. They were categorized into 30 morphotypes based on cultural characteristics and were affiliated with 27 different taxa. Among these, the most abundant fungal orders included Diaporthales (34.4%) and Botryosphaeriales (30.5%), which were predominantly represented by the species Phomopsis sp. (24.7%) and Neofusicoccum parvum (23.4%). Fermentation extracts were evaluated, screening for antioxidant, antimicrobial and anticancer activities. Among the 154 isolates tested, 99 (64.3%) displayed significant antioxidant activity, 153 (99.4%) exhibited inclusive antimicrobial activity against at least one tested microorganism and 27 (17.5%) showed exclusive anticancer activity against one or more cancer cell lines. Specifically, the crude extract of Irpex lacteus DR10-1 exhibited note-worthy bioactivities. Further chemical investigation on DR10-1 strain resulted in the isolation and identification of two known bioactive metabolites, indole-3-carboxylic acid (1) and indole-3-carboxaldehyde (2), indicating their potential roles in plant growth promotion and human medicinal value. CONCLUSION These results indicated that diverse endophytic fungal population inhabits D. chinense. One of the fungal isolate DR10-1 (Irpex lacteus) exhibited significant antioxidant, antimicrobial and anticancer potential. Further, its active secondary metabolites 1 and 2 also showed antioxidant, antimicrobial and anticancer potential.
Collapse
Affiliation(s)
- Xiaoxiang Duan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
- Laboratory Animal Research Institute of Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Fangfang Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Dan Qin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Tiancong Gao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Weiyun Shen
- First Affiliated Hospital, Huzhou Teachers College, The First People’s Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, 313000 People’s Republic of China
| | - Shihao Zuo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Baohong Yu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Jieru Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Yajun Peng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Jinyan Dong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
68
|
Meng X, Miao Y, Liu Q, Ma L, Guo K, Liu D, Ran W, Shen Q. TgSWO from Trichoderma guizhouense NJAU4742 promotes growth in cucumber plants by modifying the root morphology and the cell wall architecture. Microb Cell Fact 2019; 18:148. [PMID: 31481065 PMCID: PMC6721366 DOI: 10.1186/s12934-019-1196-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colonization of Trichoderma spp. is essential for exerting their beneficial functions on the plant. However, the interactions between Trichoderma spp. and plant roots are still not completely understood. The aim of this study was to investigate how TgSWO affect Trichoderma guizhouense to establish themselves in the plant rhizosphere and promote plant growth. In this study, we deeply analyzed the molecular mechanism by which the functional characterization of the TgSWO by expressing different functional region deletion proteins (FRDP) of TgSWO. RESULTS Root scanning analysis results showed that TgSWO could dramatically increase root density and promote growth. In addition, we also found that TgSWO could expand root cell walls, subsequently increase root colonization. Moreover, knockout of TgSWO mutants (KO) or overexpression of TgSWO mutants (OE) produced greatly reduced or increased the number of cucumber root, respectively. To clarify the molecular mechanism of TgSWO in plant-growth-promotion, we analyzed the ability of different FRDP to expand the root cell wall. The root cell wall architecture were considerably altered when treated by ΔCBD protein (the TgSWO gene of lacking in the CBD domain was cloned and heterologously expressed), in correlation with the present YoaJ domain of TgSWO. In contrast, neither the expansion of cell walls nor the increase of roots was detectable in ΔYoaJ protein. CONCLUSIONS Our results emphasize the YoaJ domain is the most critical functional area of TgSWO during the alteration of cell wall architecture. Simultaneously, the results obtained in this study also indicate that TgSWO might play a plant-growth-promotion role in the Trichoderma-plant interactions by targeting the root cell wall.
Collapse
Affiliation(s)
- Xiaohui Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qiumei Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lei Ma
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| | - Wei Ran
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
69
|
Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P. Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. CHEMOSPHERE 2019; 230:628-639. [PMID: 31128509 DOI: 10.1016/j.chemosphere.2019.05.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 05/18/2023]
Abstract
The current study evaluated the synergistic role of Plant growth promoting rhizobacteria (PGPR), Pseudomonas aeruginosa and Burkholderia gladioli on different physiological, biochemical and molecular activities of 10-days old Solanum lycopersicum seedlings under Cd stress. Cd toxicity altered the levels of phenolic compounds (total phenols (30.2%), flavonoids (92.7%), anthocyanin (59.5%), polyphenols (368.7%)), osmolytes (total osmolytes (10.3%), total carbohydrates (94%), reducing sugars (64.5%), trehalose (112.5%), glycine betaine (59%), proline (54.8%), and free amino acids (63%)), and organic acids in S. lycopersicum seedlings. Inoculation of P. aeruginosa and B. gladioli alleviated Cd-induced toxicity, which was manifested through enhanced phenolic compound levels and osmolytes. Additionally, the levels of low molecular weight organic acids (fumaric acid, malic acid, succinic acid, and citric acid) were also elevated. The expression of genes encoding enzymes for phenols and organic acid metabolism were also studied to be modulated that included CHS (chalcone synthase; 138.4%), PAL (phenylalanine ammonia lyase; 206.7%), CS (citrate synthase; 61.3%), SUCLG1 (succinyl Co-A ligase; 33.6%), SDH (succinate dehydrogenase; 23.2%), FH (fumarate hydratase; 12.4%), and MS (malate synthase; 41.2%) and found to be upregulated in seedlings inoculated independently with P. aeruginosa and B. gladioli. The results provide insights into the role of micro-organisms in alleviating Cd-induced physiological damage by altering levels of different metabolites.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Vijay Lakshmi Jamwal
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180 001, India
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180 001, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Asma A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
70
|
Singh UB, Malviya D, Singh S, Kumar M, Sahu PK, Singh HV, Kumar S, Roy M, Imran M, Rai JP, Sharma AK, Saxena AK. Trichoderma harzianum- and Methyl Jasmonate-Induced Resistance to Bipolaris sorokiniana Through Enhanced Phenylpropanoid Activities in Bread Wheat ( Triticum aestivum L.). Front Microbiol 2019; 10:1697. [PMID: 31417511 PMCID: PMC6685482 DOI: 10.3389/fmicb.2019.01697] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to evaluate the impact of Trichoderma harzianum UBSTH-501- and methyl jasmonate-induced systemic resistance and their integration on the spot blotch pathogen, Bipolaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.). It was found that the application of MeJA (>100 mg L-1) inhibits the germination of B. sorokiniana spores under controlled laboratory conditions. To assess the effect of MeJA (150 mg L-1) in combination with the biocontrol agent T. harzianum UBSTH-501 in vivo, a green house experiment was conducted. For this, biocontrol agent T. harzianum UBSTH-501 was applied as seed treatment, whereas MeJA (150 mg L-1) was applied 5 days prior to pathogen inoculation. Results indicated that application of MeJA (150 mg L-1) did not affect the root colonization of wheat by T. harzianum UBSTH-501 in the rhizosphere. The combined application of T. harzianum UBSTH-501 and MeJA also enhanced indole acetic acid production in the rhizosphere (4.92 μg g-1 of soil) which in turn helps in plant growth and development. Further, the combined application found to enhance the activities of defense related enzymes viz. catalase (5.92 EU min-1 g-1 fresh wt.), ascorbate peroxidase [μmol ascorbate oxidized (mg prot)-1 min-1], phenylalanine ammonia lyase (102.25 μmol cinnamic acid h-1 mg-1 fresh wt.) and peroxidase (6.95 Unit mg-1 min-1 fresh wt.) significantly in the plants under treatment which was further confirmed by assessing the transcript level of PAL and peroxidase genes using semi-quantitative PCR approach. The results showed manifold increase in salicylic acid (SA) along with enhanced accumulation of total free phenolics, ferulic acid, caffeic acid, coumaric acid, and chlorogenic acid in the leaves of the plants treated with the biocontrol agent alone or in combination with MeJA. A significant decrease in the disease severity (17.46%) and area under disease progress curve (630.32) were also observed in the treatments with biocontrol agent and MeJA in combination as compared to B. sorokiniana alone treated plant (56.95% and 945.50, respectively). Up-regulation of phenylpropanoid cascades in response to exogenous application of MeJA and the biocontrol agent was observed. It was depicted from the results that PAL is the primary route for lignin production in wheat which reduces cell wall disruption and tissue disintegration and increases suberization and lignification of the plant cell as seen by Scanning Electron microphotographs. These results clearly indicated that exogenous application of MeJA with T. harzianum inducing JA- and/or SA-dependent defense signaling after pathogen challenge may increase the resistance to spot blotch by stimulating enzymatic activities and the accumulation of phenolic compounds in a cooperative manner. This study apparently provides the evidence of biochemical cross-talk and physiological responses in wheat following MeJA and biocontrol agent treatment during the bio-trophic infection.
Collapse
Affiliation(s)
- Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Manoj Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Pramod K Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - H V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Sunil Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Manish Roy
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Mohd Imran
- Department of Bioscience, Faculty of Applied Science, Integral University, Lucknow, India
| | - Jai P Rai
- Department of Mycology and Plant Pathology (Krishi Vigyan Kendra), Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - A K Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - A K Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| |
Collapse
|
71
|
|
72
|
Christian N, Herre EA, Clay K. Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. THE NEW PHYTOLOGIST 2019; 222:1573-1583. [PMID: 30664252 DOI: 10.1111/nph.15693] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/14/2019] [Indexed: 05/20/2023]
Abstract
Colonization by foliar endophytic fungi can affect the expression of host plant defenses and other ecologically important traits. However, whether endophyte colonization affects the uptake or redistribution of resources within and among host plant tissues remains unstudied. We inoculated leaves of Theobroma cacao with four common colonizers that range in their effect from protective to pathogenic (Colletotrichum tropicale, Pestalotiopsis sp., Colletotrichum theobromicola, or Phytophthora palmivora). We pulsed the soil with nitrogen-15 (15 N) and then traced 15 N uptake and its subsequent distribution to whole plants and individual leaves. At a whole-plant level, C. tropicale-inoculated plants showed significantly greater 15 N uptake than endophyte-free plants did in the same pot. Among leaves within plants, younger leaves were particularly enriched in 15 N, but endophyte inoculation at the individual leaf level did not alter 15 N distribution within plants. However, leaves co-inoculated with pathogenic Phytophthora and protective C. tropicale experienced significantly elevated 15 N content as pathogen damage increased, compared with leaves inoculated only with the pathogen. Further, endophyte-pathogen co-infection also increased total plant biomass. Our results indicate that colonization by foliar endophytes significantly affects N uptake and distribution among and within host plants in ways that appear to be context dependent on other microbiome components.
Collapse
Affiliation(s)
- Natalie Christian
- Department of Plant Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
- Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| | - Edward Allen Herre
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, Miami, FL, 34002-9998, USA
| | - Keith Clay
- Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St Charles Ave., New Orleans, LA, 70118, USA
| |
Collapse
|
73
|
López AC, Alvarenga AE, Zapata PD, Luna MF, Villalba LL. Trichoderma spp. from Misiones, Argentina: effective fungi to promote plant growth of the regional crop Ilex paraguariensis St. Hil. Mycology 2019; 10:210-221. [PMID: 31632830 PMCID: PMC6781461 DOI: 10.1080/21501203.2019.1606860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/08/2019] [Indexed: 11/25/2022] Open
Abstract
Ilex paraguariensis St. Hil (yerba mate) is an important crop in the north of Argentina, mainly in Misiones province. The application of Trichoderma as a biocontroller and biofertilizer can replace or reduce the use of agrochemicals, decreasing the negative ecological impact. In this research, we evaluated in vitro and in vivo antagonistic and plant growth promoting (PGP) properties of Trichoderma species isolated from different regions of Misiones province. Dual culture assays of Trichoderma against phytopathogenic fungi associated with yerba mate showed that T. stilbohypoxyli LBM 120 was the most effective antagonist, inhibiting in more than 75% all phytopathogen growth. Trichoderma atroviride LBM 112 and T. stilbohypoxyli LBM 120 were positive on endoglucanase, protease, chitinase, siderophore production, and phosphate solubilisation showed the best biological control agents and PGP properties. The PGP properties of Trichoderma spp. evaluated in vivo on yerba mate seedlings showed that T. atroviride LBM 112, T. stilbohypoxyli LBM 120, and T. koningiopsis LBM 219 enhanced plant dry weight over 47% in total and 24% in the aerial part. Moreover, T. koningiopsis LBM 219 increased root dry weight 25% in contrast with in vitro controls. In conclusion, native Trichoderma strains could be a sustainable solution to improve yerba mate yield.
Collapse
Affiliation(s)
- Ana Clara López
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, CONICET, Posadas, Argentina
| | - Adriana Elizabet Alvarenga
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, CONICET, Posadas, Argentina
| | - Pedro Darío Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, CONICET, Posadas, Argentina
| | - María Flavia Luna
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CCT-La Plata CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Laura Lidia Villalba
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. Maria Ebe Reca”, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, CONICET, Posadas, Argentina
| |
Collapse
|
74
|
Ruiz Gómez FJ, Navarro-Cerrillo RM, Pérez-de-Luque A, Oβwald W, Vannini A, Morales-Rodríguez C. Assessment of functional and structural changes of soil fungal and oomycete communities in holm oak declined dehesas through metabarcoding analysis. Sci Rep 2019; 9:5315. [PMID: 30926869 PMCID: PMC6441054 DOI: 10.1038/s41598-019-41804-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Forest decline is nowadays a major challenge for ecosystem sustainability. Dehesas, which consists of savannah-like mediterranean ecosystems, are threatened by the holm oak decline in the south-west of Iberian Peninsula. Phytophthora cinnamomi is considered the main agent of holm oak root rot, but little is known about the relationship between diversity of soilborne microbial community and the decline syndrome of holm oak. It would be hypothesized that the changes in the structure and functionality of the soil microbiome might influence tree health status through changes in richness and diversity of beneficial organisms such as mycorrhizal species, or fungal plant pathogens such as Fusarium spp. or Alternaria spp. Total DNA of soil samples from declined oak dehesas was extracted and analyzed through metabarcoding techniques, to evaluate the specific composition and diversity of the fungal and oomycete communities and their relationship with the disease symptoms. The fungal community included a wide range of pathogens and abundance of ectomycorrhizal key taxa related with low defoliation degree. Phytophthora cinnamomi and Pythium spiculum did not appear among the most abundant oomycetes, nor were they related directly to defoliation levels. Moreover, a particular taxon belonging to the genus Trichoderma was strongly correlated with the scarcity of pathogenic Phytophthora spp. The diversity and composition of fungal and oomycete communities were related to the severity of the decline symptoms. The metabarcoding study of microbiome represents a powerful tool to develop biocontrol strategies for the management of the holm oak root rot.
Collapse
Affiliation(s)
- Francisco J Ruiz Gómez
- Departamento de Ingeniería Forestal, Laboratorio de Ecofisiología de Sistemas Forestales ECSIFOR- ERSAF. Universidad de Córdoba. Campus de Rabanales, Crta. IV, km. 396, E-14071, Córdoba, Spain.
| | - Rafael M Navarro-Cerrillo
- Departamento de Ingeniería Forestal, Laboratorio de Ecofisiología de Sistemas Forestales ECSIFOR- ERSAF. Universidad de Córdoba. Campus de Rabanales, Crta. IV, km. 396, E-14071, Córdoba, Spain
| | - Alejandro Pérez-de-Luque
- Área de Genómica y Biotecnología, IFAPA, Centro Alameda del Obispo, Avda. Menéndez Pidal s/n, Apdo, 3092, 14080, Córdoba, Spain
| | - Wolfgang Oβwald
- Fachgebiet Pathologie der Waldbäume, Technische Universität München. Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Andrea Vannini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF) -University of Tuscia, Via San Camillo de Lellis snc, Viterbo, 01100, Italy
| | - Carmen Morales-Rodríguez
- Fachgebiet Pathologie der Waldbäume, Technische Universität München. Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF) -University of Tuscia, Via San Camillo de Lellis snc, Viterbo, 01100, Italy
| |
Collapse
|
75
|
Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB. A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones. 3 Biotech 2019; 9:109. [PMID: 30863693 DOI: 10.1007/s13205-019-1638-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/16/2019] [Indexed: 10/27/2022] Open
Abstract
Trichoderma spp. is considered as a plant growth promoter and biocontrol fungal agents. They colonize on the surface of root in most of the agriculture crops. They secrete different secondary metabolites and enzymes which promote different physiological processes as well as protect plants from various environmental stresses. This is part of their vital functions. They are widely exploited as a biocontrol agent and plant growth promoter in agricultural fields. Colonization of Trichoderma with roots can enhance nutrient acquisition from surrounding soil to root and can substantially increase nitrogen use efficiency (NUE) in crops and linked with activation of plant signaling cascade. Among Trichoderma species, only some Trichoderma species were well characterized which help in the uptake of nitrogen-containing compound (especially nitrate form) and induced nitric oxide (NO) in plants. Both nitrate and NO are known as a signaling agent, involved in plant growth and development and disease resistance. Activation of these signaling molecules may crosstalk with other signaling molecule (Ca2+) and phytohormone (auxin, gibberellins, cytokinin and ethylene). This ability of Trichoderma is important to agriculture not only for increased plant growth but also to control plant diseases. Recently, Trichoderma strains have been shown to encompass the ability to regulate transcripts level of high-affinity nitrate transporters and probably it was positively regulated by NO. This review aims to focus the usage of Trichoderma strains on crops by their abilities to regulate transcript levels, probably through activation of plant N signaling transduction that improve plant health.
Collapse
|
76
|
Khadka RB, Uphoff N. Effects of Trichoderma seedling treatment with System of Rice Intensification management and with conventional management of transplanted rice. PeerJ 2019; 7:e5877. [PMID: 30693151 PMCID: PMC6343584 DOI: 10.7717/peerj.5877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/05/2018] [Indexed: 01/22/2023] Open
Abstract
Many benefits of Trichoderma inoculation for improving crop production have been documented, including growth and yield enhancement and the alleviation of biotic and abiotic stresses. However, because rice is usually cultivated under continuous flooding that creates anaerobic soil conditions, this limits the benefits of these beneficial fungi. Cultivating rice with the methods of the System of Rice Intensification (SRI) provides rice plants with a more favorable environment for their colonization by beneficial microbes in the soil because the soil is more aerobic under SRI management and contains more organic matter. This study evaluated the effects of Trichoderma inoculation of rice plants under SRI management compared with transplanted and flooded rice plants, considering also the effects of different means of fertilization and different varieties in rice. Experiments were conducted in 2015 and 2016 under the tropical climate of Nepal's western terai (plains) during both the rainy season (July to November) and the dry season (March to July). The results indicated significantly better performance (P = 0.01) associated with Trichoderma inoculation for both seasons and for both systems of crop management in terms of grain yield and other growth-contributing factors, compared to non-inoculated rice cropping. Relatively higher effects on grain yield were recorded also with organic compared to inorganic fertilization; for unimproved (heirloom) varieties compared with improved varieties; and from SRI vs. conventional flooded crop management. The yield increase with Trichoderma treatments across all trials was 31% higher than in untreated plots (4.9 vs 4.5 mt ha-1). With Trichoderma treatment, yields compared with non-treated plots were 24% higher with organic SRI (6.38 vs 5.13 mt ha-1) and 52% higher with non-organic SRI (6.38 vs 3.53 mt ha-1). With regard to varietal differences, under SRI management Trichoderma inoculation of the improved variety Sukhadhan-3 led to 26% higher yield (6.35 vs 5.04 mt ha-1), and with the heirloom variety Tilkidhan, yield was 41% higher (6.29 vs 4.45 mt ha-1). Economic analysis indicated that expanding the organic cultivation of local landraces under SRI management should be profitable for farmers where such rice has a good market price due to its premium quality and high demand and when SRI enhances yield. These varieties' present low yields can be significantly increased by integrating Trichoderma bio-inoculation with SRI cultural methods. Other recent research has shown that such inoculation can be managed profitably by farmers themselves.
Collapse
Affiliation(s)
- Ram B. Khadka
- Regional Agricultural Research Station, Nepal Agricultural Research Council, Khajura, Banke, Nepal
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States of America
| | - Norman Uphoff
- SRI-Rice, International Programs (IP/CALS), Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
77
|
Saha P, Talukdar AD, Choudhury MD, Nath D. Bioprospecting for Fungal-Endophyte-Derived Natural Products for Drug Discovery. ADVANCES IN ENDOPHYTIC FUNGAL RESEARCH 2019. [DOI: 10.1007/978-3-030-03589-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
|
79
|
Dastogeer KMG. Influence of fungal endophytes on plant physiology is more pronounced under stress than well-watered conditions: a meta-analysis. PLANTA 2018; 248:1403-1416. [PMID: 30121874 DOI: 10.1007/s00425-018-2982-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/09/2018] [Indexed: 05/24/2023]
Abstract
A meta-analysis of published articles shows that the influence of fungal endophytes on plant performance is dependent on plant water status. The magnitude of endophytic effects is higher in plants grown in water-limiting environments than those in adequate watering environments. The outcome of plant-endophyte interactions depends on the identity of the plant host and fungal symbionts. Water limitation often hinders plant productivity in both natural and agricultural settings. Endophytic fungal symbionts can mediate plant water stress responses by enhancing drought tolerance and avoidance, but these effects have not been quantified across plant-endophyte studies. A meta-analysis of published studies was performed to determine how endophytic fungal symbionts influence plant response under non-stressed versus water-stressed conditions. A significantly positive or neutral overall effect of fungal endophyte was noted under water-stressed conditions. In contrast, under non-stressed conditions, the overall effect of fungi on plants was mostly neutral. In general, the presence of fungal endophytes increased plant's total biomass, chlorophyll content, and stomatal conductance irrespective of water availability. In addition, plant shoot biomass, tiller density, plant height, maximum quantum yield (Fv/Fm), net photosynthesis, relative water content (RWC), amounts of ascorbate peroxidase (APX), glutathione (GSH), polyphenol oxidase (PPO), superoxide dismutase (SOD), and phenolics were significantly increased by endophyte colonisation under stressed conditions. Malondialdehyde (MDA) and hydrogen peroxide (H2O2) were reduced in endophytic plants under stress as compared with non-endophytic counterparts. Categorical analysis revealed that accumulation in plant biomass is influenced by factors such as host and fungi identity, the magnitude of which is greater under stressed than non-stressed conditions.
Collapse
Affiliation(s)
- Khondoker M G Dastogeer
- Plant Biotechnology Group-Plant Virology and Plant-Microbe Interaction, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia.
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
80
|
Materatski P, Varanda C, Carvalho T, Dias AB, Campos MD, Rei F, Félix MDR. Spatial and temporal variation of fungal endophytic richness and diversity associated to the phyllosphere of olive cultivars. Fungal Biol 2018; 123:66-76. [PMID: 30654959 DOI: 10.1016/j.funbio.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 11/15/2022]
Abstract
Fungal endophytes are micro-organisms that colonize healthy plant tissues without causing disease symptoms. They are described as plant growth and disease resistance promoters and have shown antimicrobial activity. The spatial-temporal distribution of endophytic communities in olive cultivars has been poorly explored. This study aims to investigate the richness and diversity of endophytic fungi in different seasons and sites, within the Alentejo region, Portugal. Additionally, and because the impact of some pathogenic fungi (e.g. Colletotrichum spp.) varies according to olive cultivars; three cultivars, Galega vulgar, Cobrançosa and Azeiteira, were sampled. 1868 fungal isolates were identified as belonging to 26 OTUs; 13 OTUs were identified to the genera level and 13 to species level. Cultivar Galega vulgar and season autumn showed significant higher values in terms of endophytic richness and diversity. At site level, Elvas showed the lowest fungal richness and diversity of fungal endophytes. This study reinforces the importance of exploring the combined spatio-temporal distribution of the endophytic biodiversity in different olive cultivars. Knowledge about endophytic communities may help to better understand their functions in plants hosts, such as their ecological dynamics with pathogenic fungi, which can be explored for their use as biocontrol agents.
Collapse
Affiliation(s)
- Patrick Materatski
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
| | - Carla Varanda
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Teresa Carvalho
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, I. P. Estrada de Gil Vaz, Apartado 6, 7351-901 Elvas, Portugal
| | - António Bento Dias
- Departamento de Engenharia Rural, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - M Doroteia Campos
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Fernando Rei
- Departamento de Fitotecnia, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria do Rosário Félix
- Departamento de Fitotecnia, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
81
|
Zhou D, Huang X, Guo J, dos‐Santos ML, Vivanco JM. Trichoderma gamsii affected herbivore feeding behaviour on Arabidopsis thaliana by modifying the leaf metabolome and phytohormones. Microb Biotechnol 2018; 11:1195-1206. [PMID: 30221488 PMCID: PMC6196387 DOI: 10.1111/1751-7915.13310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022] Open
Abstract
Plants can re-programme their transcriptome, proteome and metabolome to deal with environmental and biotic stress. It has been shown that the rhizosphere microbiome has influence on the plant metabolome and on herbivore behaviour. In the present study, Trichoderma gamsii was isolated from Arabidopsis thaliana rhizosphere soil. The inoculation of roots of Arabidopsis thaliana with T. gamsii significantly inhibited the feeding behaviour of Trichoplusia ni and affected the metabolome as well as the content of phytohormones in Arabidopsis leaves. T. gamsii-treated plant leaves had higher levels of amino acids and lower concentrations of sugars. In addition, T. gamsii-treated plant leaves had more abscisic acid (ABA) and lower levels of salicylic acid (SA) and indole-3-acetic acid (IAA) in comparison with the untreated plants. Furthermore, the inoculation with T. gamsii on different signalling mutants showed that the induction of defences were SA-dependent. These findings indicate that T. gamsii has potential as a new type of biocontrol agent to promote plant repellence to insect attacks.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
- Department of Horticulture and Landscape ArchitectureCenter for Rhizosphere BiologyColorado State UniversityFort CollinsCO80523USA
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xing‐Feng Huang
- Department of Horticulture and Landscape ArchitectureCenter for Rhizosphere BiologyColorado State UniversityFort CollinsCO80523USA
- Department of Chemical and Biological EngineeringColorado State UniversityFort CollinsCO80523USA
| | - Jianhua Guo
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Marcia L. dos‐Santos
- Department of Horticulture and Landscape ArchitectureCenter for Rhizosphere BiologyColorado State UniversityFort CollinsCO80523USA
- Plant Molecular Biology LaboratoryDepartment of Genetics – “Luiz de Queiroz” College of Agriculture – ESALQUniversity of Sao PauloPiracicabaSP13418‐900Brazil
| | - Jorge M. Vivanco
- Department of Horticulture and Landscape ArchitectureCenter for Rhizosphere BiologyColorado State UniversityFort CollinsCO80523USA
| |
Collapse
|
82
|
Numponsak T, Kumla J, Suwannarach N, Matsui K, Lumyong S. Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLoS One 2018; 13:e0205070. [PMID: 30335811 PMCID: PMC6193638 DOI: 10.1371/journal.pone.0205070] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/18/2018] [Indexed: 12/03/2022] Open
Abstract
Endophytic fungi are known to produce indole-3-acetic acid (IAA), which can stimulate plant growth. Twenty-seven isolates of endophytic fungi were isolated from Coffea arabica in northern Thailand. Only one isolate (CMU-A109) produced IAA in vitro. This isolate was identified as Colletotrichum fructicola based on morphological characteristics and molecular phylogenetic analysis of a combined five loci (internal transcribed spacer of ribosomal DNA, actin, β-tubulin 2, chitin synthase and glyceraldehyde-3-phosphate dehydrogenase genes). Identification of a fungal IAA production obtained from indole 3-acetamide (IAM) and tryptophan 2-monooxygenase activity is suggestive of IAM routed IAA biosynthesis. The highest IAA yield (1205.58±151.89 μg/mL) was obtained after 26 days of cultivation in liquid medium supplemented with 8 mg/mL L-tryptophan at 30°C. Moreover, the crude fungal IAA could stimulate coleoptile elongation of maize, rice and rye. This is the first report of IAA production by C. fructicola and its ability to produce IAA was highest when compared with previous reports on IAA produced by fungi.
Collapse
Affiliation(s)
- Tosapon Numponsak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- The Center of Excellence for Renewable Energy, Chiang Mai University, Chiang Mia, Thailand
- * E-mail:
| |
Collapse
|
83
|
Martínez-Padrón HY, Torres-Castillo JA, Rodríguez-Herrera R, López-Santillán JA, Estrada-Drouaillet B, Osorio-Hernández E. Identification and evaluation of secondary metabolites by gas chromatography-mass spectrometry (GC-MS) in native strains of Trichoderma species. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajb2018.16546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
84
|
Sachdev S, Singh A, Singh RP. Optimization of culture conditions for mass production and bio-formulation of Trichoderma using response surface methodology. 3 Biotech 2018; 8:360. [PMID: 30105185 DOI: 10.1007/s13205-018-1360-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
Use of agro-waste for production of value added products is a good alternative for developing low-cost carriers for formulation of Trichoderma-based bio-products. It provides avenues for safe utilization of wastes, while reducing cost and environment pollution load of waste disposal. The present study was undertaken to find suitable agro-waste for economical and higher mass production of Trichoderma lixii TvR1 under solid-state fermentation, optimizing culture conditions using mathematical model and assessing effect of formulated bio-product on growth of Spinach (Spinacia oleracea). Among various agro-wastes screened, sugarcane bagasse was observed to support maximum growth (20.08 × 107 spores/g) of T. lixii TvR1 which was significantly (p ≤ 0.05) higher than the others. The Response Surface Methodology (RSM) was used to optimize culture conditions using optimal point prediction analysis which predicted that maximum spore production of T. lixii TvR1 (19.1245 × 107 spores/g) will be obtained at 30 °C and 68.87% of moisture content after 31 days of incubation. Amendment of formulated bio-product of T. lixii TvR1 in soil at concentration 15% w/w promoted biomass, photosynthetic pigments, and protein content of spinach (significant at p ≤ 0.05). After 6 weeks of sowing the shoot length, root length, and photosynthetic pigments of plants irrigated daily and on alternate days were reported to be increased by 66.97, 185.03, and 82.80%; and 56.56, 71.36, and 74.64%, respectively; over the no amendment.
Collapse
Affiliation(s)
- Swati Sachdev
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya vihar, Raebareli road, Lucknow, UP 226025 India
| | - Anupriya Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya vihar, Raebareli road, Lucknow, UP 226025 India
| | - Rana Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya vihar, Raebareli road, Lucknow, UP 226025 India
| |
Collapse
|
85
|
Zhang F, Huo Y, Cobb AB, Luo G, Zhou J, Yang G, Wilson GWT, Zhang Y. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass. Front Microbiol 2018; 9:848. [PMID: 29760689 PMCID: PMC5937142 DOI: 10.3389/fmicb.2018.00848] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/12/2018] [Indexed: 12/30/2022] Open
Abstract
In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019) increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma biofertilizer could be an important tool for management of soils and ultimately grassland plant biomass.
Collapse
Affiliation(s)
- Fengge Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yunqian Huo
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Adam B Cobb
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, United States
| | - Gongwen Luo
- Jiangsu Provincial Key lab for Organization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation, Nanjing Agricultural University, Nanjing, China
| | - Jiqiong Zhou
- Department of Grassland Science, China Agricultural University, Beijing, China
| | - Gaowen Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Gail W T Wilson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, United States
| | - Yingjun Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China.,Department of Grassland Science, China Agricultural University, Beijing, China
| |
Collapse
|
86
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
87
|
Hernandez-Escribano L, Iturritxa E, Elvira-Recuenco M, Berbegal M, Campos J, Renobales G, García I, Raposo R. Herbaceous plants in the understory of a pitch canker-affected Pinus radiata plantation are endophytically infected with Fusarium circinatum. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
88
|
Rho H, Van Epps V, Wegley N, Doty SL, Kim SH. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:188. [PMID: 29552021 PMCID: PMC5840156 DOI: 10.3389/fpls.2018.00188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions.
Collapse
Affiliation(s)
- Hyungmin Rho
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Victor Van Epps
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Nicholas Wegley
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Sharon L. Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| |
Collapse
|
89
|
Lata R, Chowdhury S, Gond SK, White JF. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 2018; 66:268-276. [PMID: 29359344 DOI: 10.1111/lam.12855] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/01/2022]
Abstract
Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. SIGNIFICANCE AND IMPACT OF THE STUDY Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants.
Collapse
Affiliation(s)
- R Lata
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - S Chowdhury
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - S K Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - J F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
90
|
|
91
|
Volatile organic compounds of some Trichoderma spp. increase growth and induce salt tolerance in Arabidopsis thaliana. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
92
|
Christian N, Herre EA, Mejia LC, Clay K. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc Biol Sci 2017; 284:20170641. [PMID: 28679727 PMCID: PMC5524495 DOI: 10.1098/rspb.2017.0641] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/30/2017] [Indexed: 11/12/2022] Open
Abstract
It is increasingly recognized that microbiota affect host health and physiology. However, it is unclear what factors shape microbiome community assembly in nature, and how microbiome assembly can be manipulated to improve host health. All plant leaves host foliar endophytic fungi, which make up a diverse, environmentally acquired fungal microbiota. Here, we experimentally manipulated assembly of the cacao tree (Theobroma cacao) fungal microbiome in nature and tested the effect of assembly outcome on host health. Using next-generation sequencing, as well as culture-based methods coupled with Sanger sequencing, we found that manipulating leaf litter exposure and location within the forest canopy significantly altered microbiome composition in cacao. Exposing cacao seedlings to leaf litter from healthy conspecific adults enriched the seedling microbiome with Colletotrichum tropicale, a fungal endophyte known to enhance pathogen resistance of cacao seedlings by upregulating host defensive pathways. As a result, seedlings exposed to healthy conspecific litter experienced reduced pathogen damage. Our results link processes that affect the assembly and composition of microbiome communities to their functional consequences for host success, and have broad implications for understanding plant-microbe interactions. Deliberate manipulation of the plant-fungal microbiome also has potentially important applications for cacao production and other agricultural systems in general.
Collapse
Affiliation(s)
- Natalie Christian
- Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Edward Allen Herre
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
| | - Luis C Mejia
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
- Institute for Scientific Research and High Technology Services (INDICASAT), Building 219, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Keith Clay
- Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| |
Collapse
|
93
|
Kashyap PL, Rai P, Srivastava AK, Kumar S. Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 2017; 33:155. [PMID: 28695465 DOI: 10.1007/s11274-017-2319-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 07/05/2017] [Indexed: 01/16/2023]
Abstract
Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.
Collapse
Affiliation(s)
- Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, India. .,ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India.
| | - Pallavi Rai
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Sudheer Kumar
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, India
| |
Collapse
|
94
|
Lakshmanan V, Ray P, Craven KD. Toward a Resilient, Functional Microbiome: Drought Tolerance-Alleviating Microbes for Sustainable Agriculture. Methods Mol Biol 2017; 1631:69-84. [PMID: 28735391 DOI: 10.1007/978-1-4939-7136-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the utilization of novel sequencing techniques opened a new field of research into plant microbiota and was used to explore a wide diversity of microorganisms both inside and outside of plant host tissues, i.e., the endosphere and rhizosphere, respectively. An early realization from such research was that species richness and diversity of the plant microbiome are both greater than believed even a few years ago, and soil is likely home to the most abundant and diverse microbial habitats known. In most ecosystems sampled thus far, overall microbial complexity is determined by the combined influences of plant genotype, soil structure and chemistry, and prevailing environmental conditions, as well as the native "bulk soil" microbial populations from which membership is drawn. Beneficial microorganisms, traditionally referring primarily to nitrogen-fixing bacteria, plant growth-promoting rhizobacteria, and mycorrhizal fungi, play a key role in major functions such as plant nutrition acquisition and plant resistance to biotic and abiotic stresses . Utilization of plant-associated microbes in food production is likely to be critical for twenty-first century agriculture, where arable cropland is limited and food, fiber, and feed productivity must be sustained or even improved with fewer chemical inputs and less irrigation.
Collapse
Affiliation(s)
- Venkatachalam Lakshmanan
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Prasun Ray
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kelly D Craven
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
| |
Collapse
|
95
|
Shaw S, Le Cocq K, Paszkiewicz K, Moore K, Winsbury R, de Torres Zabala M, Studholme DJ, Salmon D, Thornton CR, Grant MR. Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil. MOLECULAR PLANT PATHOLOGY 2016; 17:1425-1441. [PMID: 27187266 PMCID: PMC6638342 DOI: 10.1111/mpp.12429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The free-living soil fungus Trichoderma hamatum strain GD12 is notable amongst Trichoderma strains in both controlling plant diseases and stimulating plant growth, a property enhanced during its antagonistic interactions with pathogens in soil. These attributes, alongside its markedly expanded genome and proteome compared with other biocontrol and plant growth-promoting Trichoderma strains, imply a rich potential for sustainable alternatives to synthetic pesticides and fertilizers for the control of plant disease and for increasing yields. The purpose of this study was to investigate the transcriptional responses of GD12 underpinning its biocontrol and plant growth promotion capabilities during antagonistic interactions with the pathogen Sclerotinia sclerotiorum in soil. Using an extensive mRNA-seq study capturing different time points during the pathogen-antagonist interaction in soil, we show that dynamic and biphasic signatures in the GD12 transcriptome underpin its biocontrol and plant (lettuce) growth-promoting activities. Functional predictions of differentially expressed genes demonstrate the enrichment of transcripts encoding proteins involved in transportation and oxidation-reduction reactions during both processes and an over-representation of siderophores. We identify a biphasic response during biocontrol characterized by a significant induction of transcripts encoding small-secreted cysteine-rich proteins, secondary metabolite-producing gene clusters and genes unique to GD12. These data support the hypothesis that Sclerotinia biocontrol is mediated by the synthesis and secretion of antifungal compounds and that GD12's unique reservoir of uncharacterized genes is actively recruited during the effective biological control of a plurivorous plant pathogen.
Collapse
Affiliation(s)
- Sophie Shaw
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
- Centre for Genome Enabled Biology and MedicineUniversity of Aberdeen23 St. Machar DriveOld AberdeenAB24 3RYUK
| | - Kate Le Cocq
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
- Sustainable Soils and Grassland Systems DepartmentRothamsted ResearchNorth WykeOkehamptonEX20 2SBUK
| | - Konrad Paszkiewicz
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Karen Moore
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Rebecca Winsbury
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Marta de Torres Zabala
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - David J. Studholme
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Deborah Salmon
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Christopher R. Thornton
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Murray R. Grant
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
- School of Life Sciences, Gibbet Hill CampusUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
96
|
Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biol 2016; 120:1525-1536. [DOI: 10.1016/j.funbio.2016.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
|
97
|
Christian N, Sullivan C, Visser ND, Clay K. Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation. MICROBIAL ECOLOGY 2016; 72:621-632. [PMID: 27341838 DOI: 10.1007/s00248-016-0804-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances.
Collapse
Affiliation(s)
- Natalie Christian
- Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA.
| | - Courtney Sullivan
- Medical Sciences Program, Indiana University School of Medicine, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| | - Noelle D Visser
- Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| | - Keith Clay
- Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| |
Collapse
|
98
|
Zhang S, Gan Y, Xu B. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression. FRONTIERS IN PLANT SCIENCE 2016; 7:1405. [PMID: 27695475 PMCID: PMC5023664 DOI: 10.3389/fpls.2016.01405] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/02/2016] [Indexed: 05/17/2023]
Abstract
Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here, we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings' growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29, 39, and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD, and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants.
Collapse
Affiliation(s)
- Shuwu Zhang
- College of Grassland Science, Gansu Agricultural UniversityLanzhou, China
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of ChinaLanzhou, China
- Sino-U.S. Centers for Grazingland Ecosystems SustainabilityLanzhou, China
| | - Yantai Gan
- Gansu Provincial Key Laboratory of Aridland Crop Sciences, Gansu Agricultural UniversityLanzhou, China
| | - Bingliang Xu
- College of Grassland Science, Gansu Agricultural UniversityLanzhou, China
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of ChinaLanzhou, China
- Sino-U.S. Centers for Grazingland Ecosystems SustainabilityLanzhou, China
| |
Collapse
|
99
|
Domínguez S, Rubio MB, Cardoza RE, Gutiérrez S, Nicolás C, Bettiol W, Hermosa R, Monte E. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene. Front Microbiol 2016; 7:1182. [PMID: 27536277 PMCID: PMC4971021 DOI: 10.3389/fmicb.2016.01182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a higher sensitivity to B. cinerea infections in plants treated with amdS transformants as detected in greenhouse assays. These observations suggest that the increased plant development promoted by the amdS transformants was at expense of defenses.
Collapse
Affiliation(s)
- Sara Domínguez
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| | - M. Belén Rubio
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| | - Rosa E. Cardoza
- Area of Microbiology, University School of Agricultural Engineering, University of LeonPonferrada, Spain
| | - Santiago Gutiérrez
- Area of Microbiology, University School of Agricultural Engineering, University of LeonPonferrada, Spain
| | - Carlos Nicolás
- Department of Botany and Plant Physiology, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| | - Wagner Bettiol
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
- Embrapa EnvironmentJaguariúna, Brazil
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| |
Collapse
|
100
|
Daryaei A, Jones E, Ghazalibiglar H, Glare T, Falloon R. Culturing conditions affect biological control activity of Trichoderma atroviride
against Rhizoctonia solani
in ryegrass. J Appl Microbiol 2016; 121:461-72. [DOI: 10.1111/jam.13163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022]
Affiliation(s)
- A. Daryaei
- Bio-Protection Research Centre; Lincoln University; Lincoln New Zealand
- Dryland Agricultural Research Institute; Kermanshah Iran
| | - E.E. Jones
- Faculty of Agriculture and Life Sciences; Lincoln University; Lincoln New Zealand
| | - H. Ghazalibiglar
- Bio-Protection Research Centre; Lincoln University; Lincoln New Zealand
| | - T.R. Glare
- Bio-Protection Research Centre; Lincoln University; Lincoln New Zealand
| | - R.E. Falloon
- Bio-Protection Research Centre; Lincoln University; Lincoln New Zealand
- New Zealand Institute for Plant and Food Research Ltd; Lincoln New Zealand
| |
Collapse
|