51
|
Bhandari S, Kyrrestad I, Simón-Santamaría J, Li R, Szafranska KJ, Dumitriu G, Sánchez Romano J, Smedsrød B, Sørensen KK. Mouse liver sinusoidal endothelial cell responses to the glucocorticoid receptor agonist dexamethasone. Front Pharmacol 2024; 15:1377136. [PMID: 39439887 PMCID: PMC11494038 DOI: 10.3389/fphar.2024.1377136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) which make up the fenestrated wall of the hepatic sinusoids, are active scavenger cells involved in blood waste clearance and liver immune functions. Dexamethasone is a synthetic glucocorticoid commonly used in the clinic and as cell culture supplement. However, the response is dependent on tissue, cell type, and cell state. The aim of this study was to investigate the effect of dexamethasone on primary mouse LSECs (C57BL/6J); their viability (live-dead, LDH release, caspase 3/7 assays), morphology (scanning electron microscopy), release of inflammatory markers (ELISA), and scavenging functions (endocytosis assays), and associated biological processes and pathways. We have characterized and catalogued the proteome of LSECs cultured for 1, 10, or 48 h to elucidate time-dependent and dexamethasone-specific cell responses. More than 6,000 protein IDs were quantified using tandem mass tag technology and advanced mass spectrometry (synchronous precursor selection multi-notch MS3). Enrichment analysis showed a culture-induced upregulation of stress and inflammatory markers, and a significant shift in cell metabolism already at 10 h, with enhancement of glycolysis and concomitant repression of oxidative phosphorylation. At 48 h, changes in metabolic pathways were more pronounced with dexamethasone compared to time-matched controls. Dexamethasone repressed the activation of inflammatory pathways (IFN-gamma response, TNF-alpha signaling via NF-kB, Cell adhesion molecules), and culture-induced release of interleukin-6, VCAM-1, and ICAM-1, and improved cell viability partly through inhibition of apoptosis. The mouse LSECs did not proliferate in culture. Dexamethasone treated cells showed upregulation of xanthine dehydrogenase/oxidase (Xdh), and the transcription regulator Foxo1. The drug further delayed but did not block the culture-induced loss of LSEC fenestration. The LSEC capacity for endocytosis was significantly reduced at 48 h, independent of dexamethasone, which correlated with diminished expression of several scavenger receptors and C-type lectins and altered expression of proteins in the endocytic machinery. The glucocorticoid receptor (NR3C1) was suppressed by dexamethasone at 48 h, suggesting limited effect of the drug in prolonged LSEC culture. Conclusion: The study presents a detailed overview of biological processes and pathways affected by dexamethasone in mouse LSECs in vitro.
Collapse
|
52
|
Shibata Y, Mazur EE, Pan B, Paulo JA, Gygi SP, Chavan S, Valerio LSA, Zhang J, Rapoport TA. The membrane curvature-inducing REEP1-4 proteins generate an ER-derived vesicular compartment. Nat Commun 2024; 15:8655. [PMID: 39368994 PMCID: PMC11455953 DOI: 10.1038/s41467-024-52901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
The endoplasmic reticulum (ER) is shaped by abundant membrane curvature-generating proteins that include the REEP family member REEP5. The REEP1 subfamily, consisting of four proteins in mammals (REEP1-4), is less abundant and lack a N-terminal region. Mutations in REEP1 and REEP2 cause Hereditary Spastic Paraplegia, but the function of these four REEP proteins remains enigmatic. Here we show that REEP1-4 reside in a unique vesicular compartment and identify features that determine their localization. Mutations in REEP1-4 that compromise curvature generation, including those causing disease, relocalize the proteins to the bulk ER. These mutants interact with wild-type proteins to retain them in the ER, consistent with their autosomal-dominant disease inheritance. REEP1 vesicles contain the membrane fusogen atlastin-1, but not general ER proteins. We propose that REEP1-4 generate these vesicles themselves by budding from the ER, and that they cycle back to the ER by atlastin-mediated fusion. The vesicles may serve to regulate ER tubule dynamics.
Collapse
Affiliation(s)
- Yoko Shibata
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Emily E Mazur
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Buyan Pan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
| | - Suyog Chavan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
| | | | - Jiuchun Zhang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
| | - Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
53
|
van Strien J, Evers F, Cabrera-Orefice A, Delhez I, Kooij TWA, Huynen MA. Analysis of Complexome Profiles with the Gaussian Interaction Profiler (GIP) Reveals Novel Protein Complexes in Plasmodium falciparum. J Proteome Res 2024; 23:4467-4479. [PMID: 39262370 PMCID: PMC11459595 DOI: 10.1021/acs.jproteome.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Complexome profiling is an experimental approach to identify interactions by integrating native separation of protein complexes and quantitative mass spectrometry. In a typical complexome profile, thousands of proteins are detected across typically ≤100 fractions. This relatively low resolution leads to similar abundance profiles between proteins that are not necessarily interaction partners. To address this challenge, we introduce the Gaussian Interaction Profiler (GIP), a Gaussian mixture modeling-based clustering workflow that assigns protein clusters by modeling the migration profile of each cluster. Uniquely, the GIP offers a way to prioritize actual interactors over spuriously comigrating proteins. Using previously analyzed human fibroblast complexome profiles, we show good performance of the GIP compared to other state-of-the-art tools. We further demonstrate GIP utility by applying it to complexome profiles from the transmissible lifecycle stage of malaria parasites. We unveil promising novel associations for future experimental verification, including an interaction between the vaccine target Pfs47 and the hypothetical protein PF3D7_0417000. Taken together, the GIP provides methodological advances that facilitate more accurate and automated detection of protein complexes, setting the stage for more varied and nuanced analyses in the field of complexome profiling. The complexome profiling data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD050751.
Collapse
Affiliation(s)
- Joeri van Strien
- Department
of Medical BioSciences, Radboud University
Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Felix Evers
- Medical
Microbiology, Radboud Community for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Department
of Medical BioSciences, Radboud University
Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Iris Delhez
- Department
of Medical BioSciences, Radboud University
Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Taco W. A. Kooij
- Medical
Microbiology, Radboud Community for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Department
of Medical BioSciences, Radboud University
Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
54
|
Penzler JF, Naranjo B, Walz S, Marino G, Kleine T, Leister D. A pgr5 suppressor screen uncovers two distinct suppression mechanisms and links cytochrome b6f complex stability to PGR5. THE PLANT CELL 2024; 36:4245-4266. [PMID: 38781425 PMCID: PMC11449078 DOI: 10.1093/plcell/koae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
PROTON GRADIENT REGULATION5 (PGR5) is thought to promote cyclic electron flow, and its deficiency impairs photosynthetic control and increases photosensitivity of photosystem (PS) I, leading to seedling lethality under fluctuating light (FL). By screening for Arabidopsis (Arabidopsis thaliana) suppressor mutations that rescue the seedling lethality of pgr5 plants under FL, we identified a portfolio of mutations in 12 different genes. These mutations affect either PSII function, cytochrome b6f (cyt b6f) assembly, plastocyanin (PC) accumulation, the CHLOROPLAST FRUCTOSE-1,6-BISPHOSPHATASE1 (cFBP1), or its negative regulator ATYPICAL CYS HIS-RICH THIOREDOXIN2 (ACHT2). The characterization of the mutants indicates that the recovery of viability can in most cases be explained by the restoration of PSI donor side limitation, which is caused by reduced electron flow to PSI due to defects in PSII, cyt b6f, or PC. Inactivation of cFBP1 or its negative regulator ACHT2 results in increased levels of the NADH dehydrogenase-like complex. This increased activity may be responsible for suppressing the pgr5 phenotype under FL conditions. Plants that lack both PGR5 and DE-ETIOLATION-INDUCED PROTEIN1 (DEIP1)/NEW TINY ALBINO1 (NTA1), previously thought to be essential for cyt b6f assembly, are viable and accumulate cyt b6f. We suggest that PGR5 can have a negative effect on the cyt b6f complex and that DEIP1/NTA1 can ameliorate this negative effect.
Collapse
Affiliation(s)
- Jan-Ferdinand Penzler
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Belén Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Sabrina Walz
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Giada Marino
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| |
Collapse
|
55
|
Mann MD, Wang M, Ferreon JC, Suess MP, Jain A, Malovannaya A, Alvarez RV, Pascal BD, Kumar R, Edwards DP, Griffin PR. Structural proteomics defines a sequential priming mechanism for the progesterone receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611729. [PMID: 39282295 PMCID: PMC11398526 DOI: 10.1101/2024.09.06.611729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The progesterone receptor (PR) is a steroid-responsive nuclear receptor with two isoforms: PR-A and PR-B. Disruption of PR-A:PR-B signaling is associated with breast cancer through interactions with oncogenic co-regulatory proteins (CoRs). However, molecular details of isoform-specific PR-CoR interactions remain poorly understood. Using structural mass spectrometry, we investigate the sequential binding mechanism of purified full-length PR and intact CoRs, steroid receptor coactivator 3 (SRC3) and p300, as complexes on target DNA. Our findings reveal selective CoR NR-box binding by PR and unique interaction surfaces between PR and CoRs during complex assembly, providing a structural basis for CoR sequential binding on PR. Antagonist-bound PR showed persistent CoR interactions, challenging the classical model of nuclear receptor activation and repression. Collectively, we offer a peptide-level perspective on the organization of the PR transcriptional complex and infer the mechanisms behind the interactions of these proteins, both in active and inactive conformations.
Collapse
Affiliation(s)
- Matthew D. Mann
- Skaggs Graduate School of Chemical and Biological Sciences,
Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps
Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| | - Min Wang
- Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, TX 77030 USA
| | - Josephine C. Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular
Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Michael P. Suess
- Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, TX 77030 USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core Facility. Advanced Technology
Cores, Baylor College of Medicine, Houston, TX 77030
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular
Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | | | - Bruce D. Pascal
- Omics Informatics LLC. 1050 Bishop Street #517, Honolulu, HI
96813
| | - Raj Kumar
- Department of Pharmaceutical and Biomedical Sciences, Touro
College of Pharmacy, Touro University, New York, NY, USA 10036
| | - Dean P. Edwards
- Department of Molecular and Cellular Biology, Baylor College of
Medicine, Houston, TX 77030 USA
| | - Patrick R. Griffin
- Skaggs Graduate School of Chemical and Biological Sciences,
Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps
Institute for Biomedical Innovation & Technology, Jupiter, FL 33458
| |
Collapse
|
56
|
Kreft IC, van de Geer A, Smit ER, van der Zwaan C, van Alphen FPJ, Meijer AB, Nur E, Hoogendijk AJ, Kuijpers TW, van den Biggelaar M. Plasma Profiling of Acute Myeloid Leukemia With Fever- and Infection-Related Complications During Chemotherapy-Induced Neutropenia. Cancer Rep (Hoboken) 2024; 7:e70024. [PMID: 39441646 PMCID: PMC11498059 DOI: 10.1002/cnr2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogenous and complex blood cancer requiring aggressive treatment. Early identification and prediction of the complications following treatment is vital for effective disease management. AIMS We explored associations between plasma protein levels and fever- and infection-related complications in 26 AML patients during chemotherapy-induced neutropenia. MATERIAL AND METHODS Longitudinal plasma profiling was conducted using data-dependent mass spectrometry analysis. RESULTS Mass spectrometry-based plasma profiling data correlated well with laboratory parameters, including C-reactive protein, and revealed a broader inflammation protein network associated with fever- and infection-related complications. DISCUSSION AND CONCLUSION These data indicate the potential of longitudinal plasma profiling in AML patients for identifying and predicting complications that may aid in improved disease monitoring and treatment.
Collapse
Affiliation(s)
- Iris C. Kreft
- Department of Molecular HematologySanquin ResearchAmsterdamThe Netherlands
| | - Annemarie van de Geer
- Department of Blood Cell Research, Division Research and Landsteiner Laboratory of Amsterdam UMCSanquin Blood SupplyAmsterdamThe Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious DiseasesEmma Children's Hospital, Amsterdam UMCAmsterdamThe Netherlands
| | - Eva R. Smit
- Department of Molecular HematologySanquin ResearchAmsterdamThe Netherlands
| | | | | | - Alexander B. Meijer
- Department of Molecular HematologySanquin ResearchAmsterdamThe Netherlands
- Department of Biomolecular Mass Spectrometry and ProteomicsUtrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht UniversityUtrechtThe Netherlands
| | - Erfan Nur
- Department of HematologyAmsterdam UMC, location AMCAmsterdamThe Netherlands
| | - Arie J. Hoogendijk
- Department of Molecular HematologySanquin ResearchAmsterdamThe Netherlands
| | - Taco W. Kuijpers
- Department of Blood Cell Research, Division Research and Landsteiner Laboratory of Amsterdam UMCSanquin Blood SupplyAmsterdamThe Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious DiseasesEmma Children's Hospital, Amsterdam UMCAmsterdamThe Netherlands
| | | |
Collapse
|
57
|
Pinzan CF, Valero C, de Castro PA, da Silva JL, Earle K, Liu H, Horta MAC, Kniemeyer O, Krüger T, Pschibul A, Cömert DN, Heinekamp T, Brakhage AA, Steenwyk JL, Mead ME, Hermsdorf N, Filler SG, da Rosa-Garzon NG, Delbaje E, Bromley MJ, Cabral H, Diehl C, Angeli CB, Palmisano G, Ibrahim AS, Rinker DC, Sauters TJC, Steffen K, Gumilang A, Rokas A, Gago S, Dos Reis TF, Goldman GH. Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation. Nat Microbiol 2024; 9:2710-2726. [PMID: 39191887 DOI: 10.1038/s41564-024-01782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection.
Collapse
Affiliation(s)
- Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Luiz da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Kayleigh Earle
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hong Liu
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Annica Pschibul
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Derya Nur Cömert
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Matthew E Mead
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Nico Hermsdorf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) and Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Antimicrobial Resistance Network, University of Manchester, Manchester, UK
| | - Hamilton Cabral
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Claudia B Angeli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David C Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Thomas J C Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| |
Collapse
|
58
|
Pelaz SG, Flores-Hernández R, Vujic T, Schvartz D, Álvarez-Vázquez A, Ding Y, García-Vicente L, Belloso A, Talaverón R, Sánchez JC, Tabernero A. A proteomic approach supports the clinical relevance of TAT-Cx43 266-283 in glioblastoma. Transl Res 2024; 272:95-110. [PMID: 38876188 DOI: 10.1016/j.trsl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer. The Src inhibitor, TAT-Cx43266-283, exerts antitumor effects in in vitro and in vivo models of GBM. Because addressing the mechanism of action is essential to translate these results to a clinical setting, in this study we carried out an unbiased proteomic approach. Data-independent acquisition mass spectrometry proteomics allowed the identification of 190 proteins whose abundance was modified by TAT-Cx43266-283. Our results were consistent with the inhibition of Src as the mechanism of action of TAT-Cx43266-283 and unveiled antitumor effectors, such as p120 catenin. Changes in the abundance of several proteins suggested that TAT-Cx43266-283 may also impact the brain microenvironment. Importantly, the proteins whose abundance was reduced by TAT-Cx43266-283 correlated with an improved GBM patient survival in clinical datasets and none of the proteins whose abundance was increased by TAT-Cx43266-283 correlated with shorter survival, supporting its use in clinical trials.
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| | - Raquel Flores-Hernández
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Tatjana Vujic
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University Center of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne Geneva, Switzerland
| | - Domitille Schvartz
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Andrea Álvarez-Vázquez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Yuxin Ding
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Laura García-Vicente
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Aitana Belloso
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | | | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| |
Collapse
|
59
|
Weerakoon H, Miles JJ, Hill MM, Lepletier A. A shotgun proteomic dataset of human mucosal-associated invariant T cells. Data Brief 2024; 56:110786. [PMID: 39224509 PMCID: PMC11367653 DOI: 10.1016/j.dib.2024.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells represent a unique unconventional T cell population important in eliciting immunomodulatory responses in a range of diseases, including infectious diseases, autoimmunity and cancer. This innate-like T cell subset predominantly express CD8 in humans. Unlike conventional CD8+ T cells, which recognize peptide antigen presented by polymorphic major histocompatibility complex (MHC) molecules, MAIT cells are restricted by MR1, a non-polymorphic antigen-presenting molecule widely expressed in multiple tissues. Thus, identification of proteomic signature of MAIT cells in relation to conventional T cells is pivotal in understanding it's specific functional characteristics. The high-resolution dataset presents here comprehensively describes and compare the whole cell proteomes of MAIT (TCRVα7.2+CD161+) and conventional/non-MAIT T cells (TCR Vα7.2-CD161-) in humans. The dataset was generated using the proteomic samples prepared from matched T cell subsets sorted from peripheral blood mononuclear cells (PBMC) of three healthy volunteers. Peptides obtained from trypsin-digested cell lysates were analysed using Data-Dependent Mass Spectrometry (DDA-MS). Label-free quantitation of DDA-MS data using MaxQuant and MaxLFQ software identified 4,442 proteins at a 1 % false discovery rate. Of them, 3680 proteins that were detected with single UniProt accession and a minimum of 2 unique or razor peptides were assessed to identify differentially abundant proteins between MAIT cells and conventional T cells, including total T cells and CD8+ T cells. The dataset comprises high-quality label-free quantitative proteomic data that can be used to compare the expression pattern of whole cell proteomes between the above-mentioned T cell populations. Further, this can be used as a reference proteome of human MAIT cells for the in-depth understanding of the MAIT cell behaviour among T cells and to discover potential therapeutic targets to modulate MAIT cell function.
Collapse
Affiliation(s)
- Harshi Weerakoon
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - John J. Miles
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Michelle M. Hill
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ailin Lepletier
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Institute for Biomedicine and Glycomics, Southport, QLD, Australia
| |
Collapse
|
60
|
Chagas ACS, Ribeiro DM, Osório H, Abreu AAP, Okino CH, Niciura SCM, Amarante AFT, Bello HJS, Melito GR, Esteves SN, Almeida AM. Molecular signatures of Haemonchus contortus infection in sheep: A comparative serum proteomic study on susceptible and resistant sheep breeds. Vet Parasitol 2024; 331:110280. [PMID: 39116550 DOI: 10.1016/j.vetpar.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Due to the negative impact of Haemonchus contortus in the tropics and subtropics, the detection of serum protein profiles that occur in infected sheep is of high relevance for targeted selective treatment strategies (TST). Herein, we integrated proteomics with phenotypic traits to elucidate physiological mechanisms associated to H. contortus infection in susceptible (Dorper - D) and resistant (Santa Inês - S) sheep breeds. Naïve female lambs were infected with H. contortus third-stage larvae on day zero (D0), and samples were collected weekly, for 28 days. Feces were used for individual fecal egg counts (FEC) blood for packed cell volume (PCV) and serum for specific antibody quantification through ELISA. Sera was collected on D0 (-) and D21 (+), and analyzed using a LC-MS/MS based proteomics approach. FEC, PCV, and anti-H. contortus antibody levels confirmed the absence of infection on D0. On D28 there was a significant difference between the two breeds for logFEC means (D = 3774 and S = 3141, p=0.033) and PCV means (D = 16.3 % and S = 24.3 %, p=0.038). From a total of 754 proteins identified, 68 differentially abundant proteins (DAPs) were noted. Phosphopyruvate hydratase (ENO3) was a DAP in all comparisons, while S+ vs D+ and S- vs D- shared the highest number of DAPs (8). Each of the four experimental groups clustered separately in a principal component analysis (PCA) of protein profile. Among the DAPs, proteins associated with the innate and adaptive immune system were detected when comparing S- vs D- and S+ vs D+. In D-, some proteins were linked to stress response to handling, sampling and heat. Focusing on the consequences of infection in each breed, in the D+ vs D- comparison, upregulated proteins were associated with inflammation control and immune response, where downregulated proteins pointed to a negative impact of infection on tissue anabolism, compromising muscle growth and fat deposition. In the S+ vs S- comparison, upregulated proteins were related to immune response, while the downregulated proteins were possibly linked to muscular development and growth, impaired by infection. Collectively, it can be concluded that ENO3 regulation emerges as a potential factor underlying the differential immune response observed between Santa Inês and Dorper sheep infected with H. contortus. In turn, detected acute phase proteins (APPs) reinforce their relation with infection, inflammation and stress conditions, whereas THEMIS-like may contribute to the immune system in Dorper. GSDMD, Guanylate-binding protein and ACAN warrant further investigation as possible biomarkers for TST strategy development.
Collapse
Affiliation(s)
- Ana Carolina S Chagas
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil.
| | - David M Ribeiro
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana A P Abreu
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cintia H Okino
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Simone C M Niciura
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | | | - Hornblenda J S Bello
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Gláucia R Melito
- Centro Universitário Central Paulista (UNICEP), São Carlos, SP, Brazil
| | - Sérgio N Esteves
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - André M Almeida
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
61
|
Hardy B, Mohoric T, Exner T, Dokler J, Brajnik M, Bachler D, Mbegbu O, Kleisli N, Farcal L, Maciejczuk K, Rašidagić H, Tagorti G, Ankli P, Burgwinkel D, Anand D, Sarkans U, Athar A. Knowledge infrastructure for integrated data management and analysis supporting new approach methods in predictive toxicology and risk assessment. Toxicol In Vitro 2024; 100:105903. [PMID: 39047988 DOI: 10.1016/j.tiv.2024.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The EU-ToxRisk project (2016-2021) was a large European project working towards shifting toxicological testing away from animal tests, towards a toxicological assessment based on comprehensive mechanistic understanding of cause-consequence relationships of chemical adverse effects. More than 40 partners from scientific institutions, industry and regulators coordinated their work towards this goal in a six-year long programme. The breadth and variety of data and knowledge generated, presented a challenging data management landscape. Here, we describe our approach to data management as developed under EU-ToxRisk. The main building blocks of the data infrastructure are: 1) An easy-to-use, extensible data and metadata format; 2) A flexible system with protocols for data capture and sharing from the entire consortium; 3) A methods database for describing and reviewing data generation and processing protocols; 4) Data archiving using a sustainable resource; 5) Data transformation from the archive to the system that provides granular access; 6) Application Programming Interface (API) for access to individual data points; 7) Data exploration and analysis modules, based on a «web notebook» approach to executable data processing documentation; and 8) Knowledge portal that ties together all of the above and provides a collaboration space for information exchange across the consortium. This knowledge infrastructure is being extended and refined for the support of follow-up projects (RISK-HUNT3R, ASPIS cluster, European Open Science Cloud (2021-2026)).
Collapse
|
62
|
Cavarischia-Rega C, Sharma K, Fitzgerald JC, Macek B. Proteome Dynamics in iPSC-Derived Human Dopaminergic Neurons. Mol Cell Proteomics 2024; 23:100838. [PMID: 39251023 PMCID: PMC11474371 DOI: 10.1016/j.mcpro.2024.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024] Open
Abstract
Dopaminergic neurons participate in fundamental physiological processes and are the cell type primarily affected in Parkinson's disease. Their analysis is challenging due to the intricate nature of their function, involvement in diverse neurological processes, and heterogeneity and localization in deep brain regions. Consequently, most of the research on the protein dynamics of dopaminergic neurons has been performed in animal cells ex vivo. Here we use iPSC-derived human mid-brain-specific dopaminergic neurons to study general features of their proteome biology and provide datasets for protein turnover and dynamics, including a human axonal translatome. We cover the proteome to a depth of 9409 proteins and use dynamic SILAC to measure the half-life of more than 4300 proteins. We report uniform turnover rates of conserved cytosolic protein complexes such as the proteasome and map the variable rates of turnover of the respiratory chain complexes in these cells. We use differential dynamic SILAC labeling in combination with microfluidic devices to analyze local protein synthesis and transport between axons and soma. We report 105 potentially novel axonal markers and detect translocation of 269 proteins between axons and the soma in the time frame of our analysis (120 h). Importantly, we provide evidence for local synthesis of 154 proteins in the axon and their retrograde transport to the soma, among them several proteins involved in RNA editing such as ADAR1 and the RNA helicase DHX30, involved in the assembly of mitochondrial ribosomes. Our study provides a workflow and resource for the future applications of quantitative proteomics in iPSC-derived human neurons.
Collapse
Affiliation(s)
- Claudia Cavarischia-Rega
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Karan Sharma
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
63
|
Siems SB, Gargareta VI, Schadt LC, Daguano Gastaldi V, Jung RB, Piepkorn L, Casaccia P, Sun T, Jahn O, Werner HB. Developmental maturation and regional heterogeneity but no sexual dimorphism of the murine CNS myelin proteome. Glia 2024. [PMID: 39344832 DOI: 10.1002/glia.24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
The molecules that constitute myelin are critical for the integrity of axon/myelin-units and thus speed and precision of impulse propagation. In the CNS, the protein composition of oligodendrocyte-derived myelin has evolutionarily diverged and differs from that in the PNS. Here, we hypothesized that the CNS myelin proteome also displays variations within the same species. We thus used quantitative mass spectrometry to compare myelin purified from mouse brains at three developmental timepoints, from brains of male and female mice, and from four CNS regions. We find that most structural myelin proteins are of approximately similar abundance across all tested conditions. However, the abundance of multiple other proteins differs markedly over time, implying that the myelin proteome matures between P18 and P75 and then remains relatively constant until at least 6 months of age. Myelin maturation involves a decrease of cytoskeleton-associated proteins involved in sheath growth and wrapping, along with an increase of all subunits of the septin filament that stabilizes mature myelin, and of multiple other proteins which potentially exert protective functions. Among the latter, quinoid dihydropteridine reductase (QDPR) emerges as a highly specific marker for mature oligodendrocytes and myelin. Conversely, female and male mice display essentially similar myelin proteomes. Across the four CNS regions analyzed, we note that spinal cord myelin exhibits a comparatively high abundance of HCN2-channels, required for particularly long sheaths. These findings show that CNS myelination involves developmental maturation of myelin protein composition, and regional differences, but absence of evidence for sexual dimorphism.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leonie C Schadt
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York, New York, New York, USA
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
64
|
Azotla-Vilchis C, Merino-Jiménez C, Ríos-Castro E, Aragón J, Ceja V, Montanez C. Identification of dystrophin Dp71d Δ71-associated proteins in PC12 cells by quantitative proteomics. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1873:141049. [PMID: 39349271 DOI: 10.1016/j.bbapap.2024.141049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Dystrophin Dp71 is essential for the development of the nervous system. Its alteration is associated with intellectual disability. Different Dp71 isoforms are generated by alternative splicing; however, their functions have not been fully described. Here, we identified Dp71dΔ71-associated proteins to understand the complex functions. PC12 cells, stably transfected with pTRE2pur-Myc/Dp71dΔ71 or pTRE2pur-Myc empty vector (EV), were analyzed by immunoprecipitation followed with quantitative proteomics with data-independent acquisition and ion mobility separation. We used the Top3 method to quantify absolutely every protein detected. A total of 106 proteins were quantified with Progenesis QI software and the database UP000002494. Seven new proteins associated with Dp71dΔ71 were selected with at least 2-fold quantity between immunoprecipitated proteins of PC12-Myc/Dp71dΔ71 versus PC12-EV cells. These results revealed new proteins that interact with Dp71dΔ71, including β-Tubulin, S-adenosylmethionine synthase isoform type-2, adapter molecule crk, helicase with zinc finger 2, WD repeat domain 93, cyclin-L2 and myosin-10, which are related to cell migration and/or cell growth. The results lay the foundation for future research on the relationship between these proteins and Dp71 isoforms.
Collapse
Affiliation(s)
- Coztli Azotla-Vilchis
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Candelaria Merino-Jiménez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica, LaNSE, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Jorge Aragón
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Víctor Ceja
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Cecilia Montanez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
65
|
Wang S, Zeng W, Yang Y, Cheng J, Liu D, Yang H. DEWNA: dynamic entropy weight network analysis and its application to the DNA-binding proteome in A549 cells with cisplatin-induced damage. Brief Bioinform 2024; 25:bbae564. [PMID: 39487085 PMCID: PMC11530294 DOI: 10.1093/bib/bbae564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
Cisplatin is one of the most commonly used chemotherapy drugs for treating solid tumors. As a genotoxic agent, cisplatin binds to DNA and forms platinum-DNA adducts that cause DNA damage and activate a series of signaling pathways mediated by various DNA-binding proteins (DBPs), ultimately leading to cell death. Therefore, DBPs play crucial roles in the cellular response to cisplatin and in determining cell fate. However, systematic studies of DBPs responding to cisplatin damage and their temporal dynamics are still lacking. To address this, we developed a novel and user-friendly stand-alone software, DEWNA, designed for dynamic entropy weight network analysis to reveal the dynamic changes of DBPs and their functions. DEWNA utilizes the entropy weight method, multiscale embedded gene co-expression network analysis and generalized reporter score-based analysis to process time-course proteome expression data, helping scientists identify protein hubs and pathway entropy profiles during disease progression. We applied DEWNA to a dataset of DBPs from A549 cells responding to cisplatin-induced damage across 8 time points, with data generated by data-independent acquisition mass spectrometry (DIA-MS). The results demonstrate that DEWNA can effectively identify protein hubs and associated pathways that are significantly altered in response to cisplatin-induced DNA damage, and offer a comprehensive view of how different pathways interact and respond dynamically over time to cisplatin treatment. Notably, we observed the dynamic activation of distinct DNA repair pathways and cell death mechanisms during the drug treatment time course, providing new insights into the molecular mechanisms underlying the cellular response to DNA damage.
Collapse
Affiliation(s)
- Shisheng Wang
- Department of General Surgery and Liver Transplant Center, Proteomics-Metabolomics Analysis Platform, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Zeng
- Department of General Surgery and Liver Transplant Center, Proteomics-Metabolomics Analysis Platform, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Yang
- Department of General Surgery and Liver Transplant Center, Proteomics-Metabolomics Analysis Platform, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Department of General Surgery and Liver Transplant Center, Proteomics-Metabolomics Analysis Platform, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Yang
- Department of General Surgery and Liver Transplant Center, Proteomics-Metabolomics Analysis Platform, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
66
|
Díaz-Zorita Bonilla M, Jiménez Aranda G, Sánchez Romero M, Fregel R, Rebay-Salisbury K, Kanz F, Vílchez Suárez M, Robles Carrasco S, Becerra Fuello P, Ordónez AC, Wolf M, González Serrano J, Milesi García L. Female sex bias in Iberian megalithic societies through bioarchaeology, aDNA and proteomics. Sci Rep 2024; 14:21818. [PMID: 39313501 PMCID: PMC11420231 DOI: 10.1038/s41598-024-72148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Uncertainties regarding traditional osteological methods in biological sex estimation can often be overcome with genomic and proteomic analyses. The combination of the three methodologies has been used for a better understanding of the gender-related funerary rituals at the Iberian megalithic cemetery of Panoría. As a result, 44 individuals have been sexed including, for the first time, non-adults. Contrary to the male bias found in many Iberian and European megalithic monuments, the Panoría population shows a clear sex ratio imbalance in favour of females, with twice as many females as males. Furthermore, this imbalance is found regardless of the criterion considered: sex ratio by tomb, chronological period, method of sex estimation, or age group. Biological relatedness was considered as possible sociocultural explanations for this female-related bias. However, the current results obtained for Panoría are indicative of a female-centred social structure potentially influencing rites and cultural traditions.
Collapse
Affiliation(s)
- Marta Díaz-Zorita Bonilla
- Institute for Pre- and Protohistory and Medieval Archaeology, University of Tübingen, Tübingen, Germany.
| | | | | | - Rosa Fregel
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Katharina Rebay-Salisbury
- Department of Prehistoric and Historical Archaeology, University of Vienna, Vienna, Austria
- Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Kanz
- Center for Forensic Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Alejandra C Ordónez
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Department of Historical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Michael Wolf
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Javier González Serrano
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | |
Collapse
|
67
|
Mandalasi MN, Gas-Pascual E, Baptista CG, Deng B, van der Wel H, Kruijtzer JAW, Boons GJ, Blader IJ, West CM. Oxygen-dependent regulation of F-box proteins in Toxoplasma gondii is mediated by Skp1 glycosylation. J Biol Chem 2024; 300:107801. [PMID: 39307307 DOI: 10.1016/j.jbc.2024.107801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 11/07/2024] Open
Abstract
A dynamic proteome is required for cellular adaption to changing environments including levels of O2, and the SKP1/CULLIN-1/F-box protein/RBX1 (SCF) family of E3 ubiquitin ligases contributes importantly to proteasome-mediated degradation. We examine, in the apicomplexan parasite Toxoplasma gondii, the influence on the interactome of SKP1 by its novel glycan attached to hydroxyproline generated by PHYa, the likely ortholog of the HIFα PHD2 oxygen-sensor of human host cells. Strikingly, the representation of several putative F-box proteins (FBPs) is substantially reduced in PHYaΔ parasites grown in fibroblasts. One, FBXO13, is a predicted lysyl hydroxylase related to the human JmjD6 oncogene except for its F-box domain. The abundance of FBXO13, epitope-tagged at its genetic locus, was reduced in PHYaΔ parasites thus explaining its diminished presence in the SKP1 interactome. A similar effect was observed for FBXO14, a cytoplasmic protein of unknown function that may have co-evolved with PHYa in apicomplexans. Similar findings in glycosylation-mutant cells, rescue by proteasomal inhibitors, and unchanged transcript levels suggested the involvement of the SCF in their degradation. The effect was selective because FBXO1 was not affected by loss of PHYa. These findings are physiologically significant because the effects were phenocopied in parasites reared at 0.5% O2. Modest impact on steady-state SKP1 modification levels suggests that effects are mediated during a lag phase in hydroxylation of nascent SKP1. The dependence of FBP abundance on O2-dependent SKP1 modification likely contributes to the reduced virulence of PHYaΔ parasites owing to impaired ability to sense O2 as an environmental signal.
Collapse
Affiliation(s)
- Msano N Mandalasi
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology & Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Bowen Deng
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hanke van der Wel
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - John A W Kruijtzer
- Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, CG Utrecht, The Netherlands; Department of Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ira J Blader
- Department of Microbiology & Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
68
|
Delaveris CS, Kong S, Glasgow J, Loudermilk RP, Kirkemo LL, Zhao F, Salangsang F, Phojanakong P, Camara Serrano JA, Steri V, Wells JA. Chemoproteomics reveals immunogenic and tumor-associated cell surface substrates of ectokinase CK2α. Cell Chem Biol 2024; 31:1729-1739.e9. [PMID: 39178841 PMCID: PMC11482644 DOI: 10.1016/j.chembiol.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Foreign epitopes for immune recognition provide the basis of anticancer immunity. Due to the high concentration of extracellular adenosine triphosphate in the tumor microenvironment, we hypothesized that extracellular kinases (ectokinases) could have dysregulated activity and introduce aberrant phosphorylation sites on cell surface proteins. We engineered a cell-tethered version of the extracellular kinase CK2α, demonstrated it was active on cells under tumor-relevant conditions, and profiled its substrate scope using a chemoproteomic workflow. We then demonstrated that mice developed polyreactive antisera in response to syngeneic tumor cells that had been subjected to surface hyperphosphorylation with CK2α. Interestingly, these mice developed B cell and CD4+ T cell responses in response to these antigens but failed to develop a CD8+ T cell response. This work provides a workflow for probing the extracellular phosphoproteome and demonstrates that extracellular phosphoproteins are immunogenic even in a syngeneic system.
Collapse
Affiliation(s)
- Corleone S Delaveris
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sophie Kong
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeff Glasgow
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rita P Loudermilk
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Fangzhu Zhao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Fernando Salangsang
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul Phojanakong
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Juan Antonio Camara Serrano
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Veronica Steri
- Preclinical Therapeutics Core, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
69
|
Mittal N, Ataman M, Tintignac L, Ham DJ, Jörin L, Schmidt A, Sinnreich M, Ruegg MA, Zavolan M. Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice. NPJ Regen Med 2024; 9:23. [PMID: 39300171 DOI: 10.1038/s41536-024-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Loss of protein homeostasis is one of the hallmarks of aging. As such, interventions that restore proteostasis should slow down the aging process and improve healthspan. Two of the most broadly used anti-aging interventions that are effective in organisms from yeast to mammals are calorie restriction (CR) and rapamycin (RM) treatment. To identify the regulatory mechanisms by which these interventions improve the protein homeostasis, we carried out ribosome footprinting in the muscle of mice aged under standard conditions, or under long-term treatment with CR or RM. We found that the treatments distinctly impact the non-canonical translation, RM primarily remodeling the translation of upstream open reading frames (uORFs), while CR restores stop codon readthrough and the translation of downstream ORFs. Proteomics analysis revealed the expression of numerous non-canonical ORFs at the protein level. The corresponding peptides may provide entry points for therapies aiming to maintain muscle function and extend health span.
Collapse
Affiliation(s)
- Nitish Mittal
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Meric Ataman
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lionel Tintignac
- Biozentrum, University of Basel, Basel, Switzerland
- Departments of Neurology and Biomedicine, University of Basel, Basel, Switzerland
- University Hospital Basel, Basel, Switzerland
| | - Daniel J Ham
- Biozentrum, University of Basel, Basel, Switzerland
| | - Lena Jörin
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Michael Sinnreich
- Departments of Neurology and Biomedicine, University of Basel, Basel, Switzerland
- University Hospital Basel, Basel, Switzerland
| | | | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
70
|
Koch F, Albrecht D, Albrecht E, Hansen C, Kuhla B. Novel Perspective on Molecular and Cellular Adaptations of the Mammary Gland-Regulating Milk Constituents and Immunity of Heat-Stressed Dairy Cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20286-20298. [PMID: 39226405 PMCID: PMC11421017 DOI: 10.1021/acs.jafc.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate change with increasing ambient temperatures negatively influences the biology of dairy cows and their milk production in the mammary gland (MG). This study aimed to elucidate the MG proteome, differences in milk composition, and ruminal short-chain fatty acid concentrations of dairy cows experiencing 7 days of heat stress [HS, 28 °C, temperature humidity index (THI) = 76], pair-feeding (PF), or ad libitum feeding (CON) at thermoneutrality (16 °C, THI = 60). Ruminal acetate, acetate/propionate ratio, and milk urea concentrations were greater, whereas milk protein and lactose were lower in HS than in control cows. Proteome analysis revealed an induced bacterial invasion of epithelial cells, leukocyte transendothelial migration, reduction of the pyruvate and carbon metabolism, and platelet activation in the MG of HS compared to CON or PF cows. These results highlight adaptive metabolic and immune responses to mitigate the negative effects of ambient heat in the MG.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, Dummerstorf 18196, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
71
|
Nguyen TT, Kane MA, Swaan PW. Determination of Site-Specific Phosphorylation Occupancy Using Targeted Mass Spectrometry Reveals the Regulation of Human Apical Bile Acid Transporter, ASBT. ACS OMEGA 2024; 9:38477-38489. [PMID: 39310206 PMCID: PMC11411523 DOI: 10.1021/acsomega.4c02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024]
Abstract
The human apical bile acid transporter (hASBT, SLC10A2) reabsorbs bile acids in the distal ileum, facilitating their recycling to the liver and resecretion. Its activity has been implicated in various disease states, including Crohn's disease, hypercholesterolemia, cholestasis, and type-2 diabetes. Post-translational modifications such as N-glycosylation, ubiquitination, and S-acylation regulate ASBT function by controlling its translocation and stability. However, the precise role of phosphorylation and its relationship with activity remains unknown. Here, we employed parallel reaction monitoring targeted mass spectrometry to investigate ASBT phosphorylation in the presence of various kinase inhibitors and activators. Our study ascertains phosphorylation at multiple sites (Thr330, Ser334, and Ser335), with Ser335 being the predominant phosphosite. We further demonstrate the critical involvement of PKC in regulating ASBT activity by phosphorylation at Ser335. Importantly, we establish a proportional relationship between the phosphorylation level of Ser335 and ASBT bile acid uptake activity. Collectively, our findings shed light on the molecular mechanisms underlying phosphorylation-mediated regulation of ASBT.
Collapse
Affiliation(s)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
72
|
Sadeghi S, Ashkarran AA, Wang Q, Zhu G, Mahmoudi M, Sun L. Mass Spectrometry-Based Top-Down Proteomics in Nanomedicine: Proteoform-Specific Measurement of Protein Corona. ACS NANO 2024; 18. [PMID: 39276099 PMCID: PMC11440641 DOI: 10.1021/acsnano.4c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Conventional mass spectrometry (MS)-based bottom-up proteomics (BUP) analysis of the protein corona [i.e., an evolving layer of biomolecules, mostly proteins, formed on the surface of nanoparticles (NPs) during their interactions with biomolecular fluids] enabled the nanomedicine community to partly identify the biological identity of NPs. Such an approach, however, fails to pinpoint the specific proteoforms─distinct molecular variants of proteins in the protein corona. The proteoform-level information could potentially advance the prediction of the biological fate and pharmacokinetics of nanomedicines. Recognizing this limitation, this study pioneers a robust and reproducible MS-based top-down proteomics (TDP) technique for characterizing proteoforms in the protein corona. Our TDP approach has successfully identified about 900 proteoforms in the protein corona of polystyrene NPs, ranging from 2 to 70 kDa, revealing proteoforms of 48 protein biomarkers with combinations of post-translational modifications, signal peptide cleavages, and/or truncations─details that BUP could not fully discern. This advancement in MS-based TDP offers a more advanced approach to characterize NP protein coronas, deepening our understanding of NPs' biological identities. We, therefore, propose using both TDP and BUP strategies to obtain more comprehensive information about the protein corona, which, in turn, can further enhance the diagnostic and therapeutic efficacy of nanomedicine technologies.
Collapse
Affiliation(s)
- Seyed
Amirhossein Sadeghi
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Ali Akbar Ashkarran
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Qianyi Wang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Guijie Zhu
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
73
|
Walter J, Colleoni S, Lazzari G, Fortes C, Grossmann J, Roschitzki B, Laczko E, Naegeli H, Bleul U, Galli C. Maturational competence of equine oocytes is associated with alterations in their 'cumulome'. Mol Hum Reprod 2024; 30:gaae033. [PMID: 39288330 PMCID: PMC11444741 DOI: 10.1093/molehr/gaae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 08/03/2024] [Indexed: 09/19/2024] Open
Abstract
Assisted reproductive technologies are an emerging field in equine reproduction, with species-dependent peculiarities, such as the low success rate of conventional IVF. Here, the 'cumulome' was related to the developmental capacity of its corresponding oocyte. Cumulus-oocyte complexes collected from slaughterhouse ovaries were individually matured, fertilized by ICSI, and cultured. After maturation, the cumulus was collected for proteomics analysis using label-free mass spectrometry (MS)-based protein profiling by nano-HPLC MS/MS and metabolomics analysis by UPLC-nanoESI MS. Overall, a total of 1671 proteins and 612 metabolites were included in the quantifiable 'cumulome'. According to the development of the corresponding oocytes, three groups were compared with each other: not matured (NM; n = 18), cleaved (CV; n = 15), and blastocyst (BL; n = 19). CV and BL were also analyzed together as the matured group (M; n = 34). The dataset revealed a closer connection within the two M groups and a more distinct separation from the NM group. Overrepresentation analysis detected enrichments related to energy metabolism as well as vesicular transport in the M group. Functional enrichment analysis found only the KEGG pathway 'oxidative phosphorylation' as significantly enriched in the NM group. A compound attributed to ATP was observed with significantly higher concentrations in the BL group compared with the NM group. Finally, in the NM group, proteins related to degradation of glycosaminoglycans were lower and components of cumulus extracellular matrix were higher compared to the other groups. In summary, the study revealed novel pathways associated with the maturational and developmental competence of oocytes.
Collapse
Affiliation(s)
- Jasmin Walter
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Silvia Colleoni
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Giovanna Lazzari
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| | - Claudia Fortes
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Endre Laczko
- Functional Genomics Centre Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cesare Galli
- Avantea srl, Laboratory of Reproductive Technologies, Cremona, Italy
| |
Collapse
|
74
|
Lobo V, Nowak I, Fernandez C, Correa Muler AI, Westholm J, Huang HC, Fabrik I, Huynh HT, Shcherbinina E, Poyraz M, Härtlova A, Benhalevy D, Angeletti D, Sarshad AA. Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference. Nucleic Acids Res 2024; 52:9917-9935. [PMID: 38994560 PMCID: PMC11381323 DOI: 10.1093/nar/gkae589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
In mammals, RNA interference (RNAi) was historically studied as a cytoplasmic event; however, in the last decade, a growing number of reports convincingly show the nuclear localization of the Argonaute (AGO) proteins. Nevertheless, the extent of nuclear RNAi and its implication in biological mechanisms remain to be elucidated. We found that reduced Lamin A levels significantly induce nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. Lamin A KO manifested a more pronounced effect in SHSY5Y cells compared to A375 cells, evident by changes in cell morphology, increased cell proliferation, and oncogenic miRNA expression. Moreover, AGO fPAR-CLIP in Lamin A KO SHSY5Y cells revealed significantly reduced RNAi activity. Further exploration of the nuclear AGO interactome by mass spectrometry identified FAM120A, an RNA-binding protein and known interactor of AGO2. Subsequent FAM120A fPAR-CLIP, revealed that FAM120A co-binds AGO targets and that this competition reduces the RNAi activity. Therefore, loss of Lamin A triggers nuclear AGO2 translocation, FAM120A mediated RNAi impairment, and upregulation of oncogenic miRNAs, facilitating cancer cell proliferation.
Collapse
Affiliation(s)
- Vivian Lobo
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Iwona Nowak
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Carola Fernandez
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ana Iris Correa Muler
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Jakub O Westholm
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121 Solna, Sweden
| | - Hsiang-Chi Huang
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ivo Fabrik
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Hang T Huynh
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Evgeniia Shcherbinina
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Melis Poyraz
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Daniel Benhalevy
- Lab of Cellular RNA Biology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- SciLifeLab, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
75
|
Vitorino R. Transforming Clinical Research: The Power of High-Throughput Omics Integration. Proteomes 2024; 12:25. [PMID: 39311198 PMCID: PMC11417901 DOI: 10.3390/proteomes12030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
High-throughput omics technologies have dramatically changed biological research, providing unprecedented insights into the complexity of living systems. This review presents a comprehensive examination of the current landscape of high-throughput omics pipelines, covering key technologies, data integration techniques and their diverse applications. It looks at advances in next-generation sequencing, mass spectrometry and microarray platforms and highlights their contribution to data volume and precision. In addition, this review looks at the critical role of bioinformatics tools and statistical methods in managing the large datasets generated by these technologies. By integrating multi-omics data, researchers can gain a holistic understanding of biological systems, leading to the identification of new biomarkers and therapeutic targets, particularly in complex diseases such as cancer. The review also looks at the integration of omics data into electronic health records (EHRs) and the potential for cloud computing and big data analytics to improve data storage, analysis and sharing. Despite significant advances, there are still challenges such as data complexity, technical limitations and ethical issues. Future directions include the development of more sophisticated computational tools and the application of advanced machine learning techniques, which are critical for addressing the complexity and heterogeneity of omics datasets. This review aims to serve as a valuable resource for researchers and practitioners, highlighting the transformative potential of high-throughput omics technologies in advancing personalized medicine and improving clinical outcomes.
Collapse
Affiliation(s)
- Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
76
|
Bartolome A, Heiby JC, Di Fraia D, Heinze I, Knaudt H, Spaeth E, Omrani O, Minetti A, Hofmann M, Kirkpatrick JM, Dau T, Ori A. Quantitative mapping of proteasome interactomes and substrates using ProteasomeID. eLife 2024; 13:RP93256. [PMID: 39230574 PMCID: PMC11374303 DOI: 10.7554/elife.93256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Proteasomes are essential molecular machines responsible for the degradation of proteins in eukaryotic cells. Altered proteasome activity has been linked to neurodegeneration, auto-immune disorders and cancer. Despite the relevance for human disease and drug development, no method currently exists to monitor proteasome composition and interactions in vivo in animal models. To fill this gap, we developed a strategy based on tagging of proteasomes with promiscuous biotin ligases and generated a new mouse model enabling the quantification of proteasome interactions by mass spectrometry. We show that biotin ligases can be incorporated in fully assembled proteasomes without negative impact on their activity. We demonstrate the utility of our method by identifying novel proteasome-interacting proteins, charting interactomes across mouse organs, and showing that proximity-labeling enables the identification of both endogenous and small-molecule-induced proteasome substrates.
Collapse
Affiliation(s)
| | - Julia C Heiby
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | | - Ivonne Heinze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Hannah Knaudt
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Ellen Spaeth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Omid Omrani
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alberto Minetti
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Maleen Hofmann
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | | - Therese Dau
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
77
|
Köbler C, Schmelling NM, Wiegard A, Pawlowski A, Pattanayak GK, Spät P, Scheurer NM, Sebastian KN, Stirba FP, Berwanger LC, Kolkhof P, Maček B, Rust MJ, Axmann IM, Wilde A. Two KaiABC systems control circadian oscillations in one cyanobacterium. Nat Commun 2024; 15:7674. [PMID: 39227593 PMCID: PMC11372060 DOI: 10.1038/s41467-024-51914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
The circadian clock of cyanobacteria, which predicts daily environmental changes, typically includes a standard oscillator consisting of proteins KaiA, KaiB, and KaiC. However, several cyanobacteria have diverse Kai protein homologs of unclear function. In particular, Synechocystis sp. PCC 6803 harbours, in addition to a canonical kaiABC gene cluster (named kaiAB1C1), two further kaiB and kaiC homologs (kaiB2, kaiB3, kaiC2, kaiC3). Here, we identify a chimeric KaiA homolog, named KaiA3, encoded by a gene located upstream of kaiB3. At the N-terminus, KaiA3 is similar to response-regulator receiver domains, whereas its C-terminal domain resembles that of KaiA. Homology analysis shows that a KaiA3-KaiB3-KaiC3 system exists in several cyanobacteria and other bacteria. Using the Synechocystis sp. PCC 6803 homologs, we observe circadian oscillations in KaiC3 phosphorylation in vitro in the presence of KaiA3 and KaiB3. Mutations of kaiA3 affect KaiC3 phosphorylation, leading to growth defects under both mixotrophic and chemoheterotrophic conditions. KaiC1 and KaiC3 exhibit phase-locked free-running phosphorylation rhythms. Deletion of either system (∆kaiAB1C1 or ∆kaiA3B3C3) alters the period of the cellular backscattering rhythm. Furthermore, both oscillators are required to maintain high-amplitude, self-sustained backscatter oscillations with a period of approximately 24 h, indicating their interconnected nature.
Collapse
Affiliation(s)
- Christin Köbler
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nicolas M Schmelling
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anika Wiegard
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alice Pawlowski
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gopal K Pattanayak
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Nina M Scheurer
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Kim N Sebastian
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Florian P Stirba
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lutz C Berwanger
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Petra Kolkhof
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Ilka M Axmann
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Annegret Wilde
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
78
|
Sanz-Martinez P, Berkane R, Stolz A. Function of CSNK2/CK2 selectively affects the endoplasmic reticulum and the Golgi apparatus in mtor-mediated autophagy induction. Autophagy 2024:1-7. [PMID: 39178915 DOI: 10.1080/15548627.2024.2395725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Selective macroautophagy/autophagy of the endoplasmic reticulum, known as reticulophagy/ER-phagy, is essential to maintain ER homeostasis. We recently showed that members of the autophagy receptor family RETREG/FAM134 are regulated by phosphorylation-dependent ubiquitination. In an unbiased screen we had identified several kinases downstream of MTOR with profound impact on reticulophagy flux, including ATR and CSNK2/CK2. Inhibition of CSNK2 by SGC-CK2-1 prevented regulatory ubiquitination of RETREG1/FAM134B and RETREG3/FAM134C upon autophagy activation as well as the formation of high-density RETREG1- and RETREG3-clusters. Here we report on additional resource data of global proteomics upon CSNK2 and ATR inhibition, respectively. Our data suggests that the function of CSNK2 is mainly limited to the ER/reticulophagy and Golgi/Golgiphagy, while ATR inhibition by VE-822 affects the vast majority of organelles/selective autophagy pathways.Abbreviation: ATRi: ATR inhibitor VE-822; CSNK2i: CSNK2 inhibitor SGC-CK2-1; ER: endoplasmic reticulum.
Collapse
Affiliation(s)
- Pablo Sanz-Martinez
- Institute of Biochemistry 2 (IBC2), Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Rayene Berkane
- Institute of Biochemistry 2 (IBC2), Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Alexandra Stolz
- Institute of Biochemistry 2 (IBC2), Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
79
|
Gygi JS, Liu X, Levi BP, Paulo JA. Proteome-wide abundance profiling of yeast deletion strains for GET pathway members using sample multiplexing. Proteomics 2024; 24:e2300303. [PMID: 37882342 PMCID: PMC11045664 DOI: 10.1002/pmic.202300303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
The GET pathway is associated with post-translational delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER) in yeast, as well as other eukaryotes. Moreover, dysfunction of the GET pathway has been associated with various pathological conditions (i.e., neurodegenerative disorders, cardiovascular ailments, and protein misfolding diseases). In this study, we used yeast deletion strains of Get complex members (specifically, Get1, Get2, Get3, Get4, and Get5) coupled with sample multiplexing-based quantitative mass spectrometry to profile protein abundance on a proteome-wide scale across the five individual deletion strains. Our dataset consists of over 4500 proteins, which corresponds to >75% of the yeast proteome. The data reveal several dozen proteins that are differentially abundant in one or more deletion strains, some of which are membrane-associated, yet the abundance of many TA proteins remained unchanged. This study provides valuable insights into the roles of these Get genes, and the potential for alternative pathways which help maintain cellular function despite the disruption of the GET pathway.
Collapse
Affiliation(s)
- Joel S Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin P Levi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
80
|
Perron T, Boissan M, Bièche I, Courtois L, Dingli F, Loew D, Chouchène M, Colasse S, Levy L, Prunier C. CYYR1 promotes the degradation of the E3 ubiquitin ligase WWP1 and is associated with favorable prognosis in breast cancer. J Biol Chem 2024; 300:107601. [PMID: 39059493 PMCID: PMC11399591 DOI: 10.1016/j.jbc.2024.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Ubiquitination plays a crucial role in cellular homeostasis by regulating the degradation, localization, and activity of proteins, ensuring proper cell function and balance. Among E3 ubiquitin ligases, WW domain-containing protein 1 (WWP1) is implicated in cell proliferation, survival, and apoptosis. Notably WWP1 is frequently amplified in breast cancer and associated with poor prognosis. Here, we identify the protein cysteine and tyrosine-rich protein 1 (CYYR1) that had previously no assigned function, as a regulator of WWP1 activity and stability. We show that CYYR1 binds to the WW domains of the E3 ubiquitin ligase WWP1 through its PPxY motifs. This interaction triggers K63-linked autoubiquitination and subsequent degradation of WWP1. We furthermore demonstrate that CYYR1 localizes to late endosomal vesicles and directs polyubiquitinated WWP1 toward lysosomal degradation through binding to ANKyrin repeat domain-containing protein 13 A (ANKRD13A). Moreover, we found that CYYR1 expression attenuates breast cancer cell growth in anchorage-dependent and independent colony formation assays in a PPxY-dependent manner. Finally, we highlight that CYYR1 expression is significantly decreased in breast cancer and is associated with beneficial clinical outcome. Taken together our study suggests tumor suppressor properties for CYYR1 through regulation of WWP1 autoubiquitination and lysosomal degradation.
Collapse
Affiliation(s)
- Tiphaine Perron
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France; APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Biochimie Endocrinienne et Oncologique, Oncobiologie Cellulaire et Moléculaire, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Université Paris Cité, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, Université Paris Cité, Paris, France
| | - Florent Dingli
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Mouna Chouchène
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Sabrina Colasse
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Laurence Levy
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
| | - Céline Prunier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
| |
Collapse
|
81
|
Fang F, Gao G, Wang Q, Wang Q, Sun L. Combining SDS-PAGE to capillary zone electrophoresis-tandem mass spectrometry for high-resolution top-down proteomics analysis of intact histone proteoforms. Proteomics 2024; 24:e2300650. [PMID: 39018239 DOI: 10.1002/pmic.202300650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Mass spectrometry (MS)-based top-down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post-translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high-resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS-PAGE-based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI-MS) with capillary zone electrophoresis (CZE)-MS/MS for high-resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS-PAGE gel and follow-up cleanup as well as CZE-MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high-resolution separation and characterization of histone proteoforms. SDS-PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high-resolution separations of SDS-PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.
Collapse
Affiliation(s)
- Fei Fang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Guangyao Gao
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
82
|
Zheng XF, Sarkar A, Lotana H, Syed A, Nguyen H, Ivey RG, Kennedy JJ, Whiteaker JR, Tomasik B, Huang K, Li F, D'Andrea AD, Paulovich AG, Shah K, Spektor A, Chowdhury D. CDK5-cyclin B1 regulates mitotic fidelity. Nature 2024; 633:932-940. [PMID: 39232161 DOI: 10.1038/s41586-024-07888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
CDK1 has been known to be the sole cyclin-dependent kinase (CDK) partner of cyclin B1 to drive mitotic progression1. Here we demonstrate that CDK5 is active during mitosis and is necessary for maintaining mitotic fidelity. CDK5 is an atypical CDK owing to its high expression in post-mitotic neurons and activation by non-cyclin proteins p35 and p392. Here, using independent chemical genetic approaches, we specifically abrogated CDK5 activity during mitosis, and observed mitotic defects, nuclear atypia and substantial alterations in the mitotic phosphoproteome. Notably, cyclin B1 is a mitotic co-factor of CDK5. Computational modelling, comparison with experimentally derived structures of CDK-cyclin complexes and validation with mutational analysis indicate that CDK5-cyclin B1 can form a functional complex. Disruption of the CDK5-cyclin B1 complex phenocopies CDK5 abrogation in mitosis. Together, our results demonstrate that cyclin B1 partners with both CDK5 and CDK1, and CDK5-cyclin B1 functions as a canonical CDK-cyclin complex to ensure mitotic fidelity.
Collapse
Affiliation(s)
- Xiao-Feng Zheng
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aniruddha Sarkar
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Humphrey Lotana
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Aleem Syed
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Huy Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Richard G Ivey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jacob J Kennedy
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeffrey R Whiteaker
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bartłomiej Tomasik
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Feng Li
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan D D'Andrea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amanda G Paulovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Alexander Spektor
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
83
|
Qin S, Tian Z. Deep structure-level N-glycan identification using feature-induced structure diagnosis integrated with a deep learning model. Anal Bioanal Chem 2024:10.1007/s00216-024-05505-4. [PMID: 39212697 DOI: 10.1007/s00216-024-05505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Being a widely occurring protein post-translational modification, N-glycosylation features unique multi-dimensional structures including sequence and linkage isomers. There have been successful bioinformatics efforts in N-glycan structure identification using N-glycoproteomics data; however, symmetric "mirror" branch isomers and linkage isomers are largely unresolved. Here, we report deep structure-level N-glycan identification using feature-induced structure diagnosis (FISD) integrated with a deep learning model. A neural network model is integrated to conduct the identification of featured N-glycan motifs and boosts the process of structure diagnosis and distinction for linkage isomers. By adopting publicly available N-glycoproteomics datasets of five mouse tissues (17,136 intact N-glycopeptide spectrum matches) and a consideration of 23 motif features, a deep learning model integrated with a convolutional autoencoder and a multilayer perceptron was trained to be capable of predicting N-glycan featured motifs in the MS/MS spectra with previously identified compositions. In the test of the trained model, a prediction accuracy of 0.8 and AUC value of 0.95 were achieved; 5701 previously unresolved N-glycan structures were assigned by matched structure-diagnostic ions; and by using an explainable learning algorithm, two new fragmentation features of m/z = 674.25 and m/z = 835.28 were found to be significant to three N-glycan structure motifs with fucose, NeuAc, and NeuGc, proving the capability of FISD to discover new features in the MS/MS spectra.
Collapse
Affiliation(s)
- Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
84
|
Hemez C, Mohler K, Radford F, Moen J, Rinehart J, Isaacs FJ. Genomically recoded Escherichia coli with optimized functional phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610322. [PMID: 39257802 PMCID: PMC11383693 DOI: 10.1101/2024.08.29.610322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Genomically recoded organisms hold promise for many biotechnological applications, but they may exhibit substantial fitness defects relative to their non-recoded counterparts. We used targeted metabolic screens, genetic analysis, and proteomics to identify the origins of fitness impairment in a model recoded organism, Escherichia coli C321.∆A. We found that defects in isoleucine biosynthesis and release factor activity, caused by mutations extant in all K-12 lineage strains, elicited profound fitness impairments in C321.∆A, suggesting that genome recoding exacerbates suboptimal traits present in precursor strains. By correcting these and other C321.∆A-specific mutations, we engineered C321.∆A strains with doubling time reductions of 17% and 42% in rich and minimal medium, respectively, compared to ancestral C321. Strains with improved growth kinetics also demonstrated enhanced ribosomal non-standard amino acid incorporation capabilities. Proteomic analysis indicated that C321.∆A lacks the ability to regulate essential amino acid and nucleotide biosynthesis pathways, and that targeted mutation reversion restored regulatory capabilities. Our work outlines a strategy for the rapid and precise phenotypic optimization of genomically recoded organisms and other engineered microbes.
Collapse
Affiliation(s)
- Colin Hemez
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Biomedical Engineering, Yale University, New Haven CT 06520
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Felix Radford
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Jack Moen
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Farren J Isaacs
- Systems Biology Institute, Yale University, West Haven, CT 06516
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Biomedical Engineering, Yale University, New Haven CT 06520
| |
Collapse
|
85
|
Odenwald J, Gabiatti B, Braune S, Shen S, Zoltner M, Kramer S. Detection of TurboID fusion proteins by fluorescent streptavidin outcompetes antibody signals and visualises targets not accessible to antibodies. eLife 2024; 13:RP95028. [PMID: 39206942 PMCID: PMC11361705 DOI: 10.7554/elife.95028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an 'all in one' solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.
Collapse
Affiliation(s)
| | | | - Silke Braune
- Biocenter, University of WürzburgWürzburgGermany
| | - Siqi Shen
- Department of Parasitology, Faculty of Science, Charles University in PraguePragueCzech Republic
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in PraguePragueCzech Republic
| | | |
Collapse
|
86
|
Dang VB, Alsherbiny MA, Lin R, Gao Y, Li C, Bhuyan DJ. Impact of a Functional Dairy Powder and Its Primary Component on the Growth of Pathogenic and Probiotic Gut Bacteria and Human Coronavirus 229E. Int J Mol Sci 2024; 25:9353. [PMID: 39273301 PMCID: PMC11394815 DOI: 10.3390/ijms25179353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Milk boasts an array of potent bioactive compounds, such as lactoferrin (Lf), immunoglobulins, and functional proteins, all delivering substantial therapeutic benefits. In this study, Immune Powder (a functional dairy formulation) and its primary component called Fractionated Milk Protein (FMP) containing Lf, zinc, and immunoglobulins and formulated by Ausnutria Pty Ltd. were evaluated for their potential broad-spectrum pharmacological activity. In particular, this study investigated the antibacterial (against pathogenic Escherichia coli), prebiotic (promoting Lactobacillus delbrueckii growth), anti-inflammatory (inhibition of NO production in RAW264.7 macrophages), and antiviral (against human coronavirus 229E) effects of the samples. In addition, the impact of simulated gastric digestion on the efficacy of the samples was explored. LCMS-based proteomics was implemented to unveil cellular and molecular mechanisms underlying antiviral activity. The Immune Powder demonstrated antibacterial activity against E. coli (up to 99.74 ± 11.47% inhibition), coupled with prebiotic action (10.84 ± 2.2 viability fold-change), albeit these activities diminished post-digestion (p < 0.01). The Immune Powder effectively mitigated NO production in lipopolysaccharide-stimulated RAW264.7 macrophages, with declining efficacy post-digestion (p < 0.0001). The Immune Powder showed similar antiviral activity before and after digestion (p > 0.05) with up to 3-fold improvement. Likewise, FMP exhibited antibacterial potency pre-digestion at high concentrations (95.56 ± 1.23% inhibition at 125 mg/mL) and post-digestion at lower doses (61.82 ± 5.58% inhibition at 3906.25 µg/mL). FMP also showed enhanced prebiotic activity post-digestion (p < 0.0001), NO inhibition pre-digestion, and significant antiviral activity. The proteomics study suggested that the formulation and its primary component shared similar antiviral mechanisms by inhibiting scavenger receptor binding and extracellular matrix interaction.
Collapse
Affiliation(s)
- Vu Bao Dang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | | | - Ruohui Lin
- Australian Dairy Park Pty Ltd., 120 Frankston Gardens Drive, Carrum Downs, VIC 3201, Australia
- Ausnutria Pty Ltd., 25-27 Keysborough Avenue, Keysborough, VIC 3173, Australia
| | - Yumei Gao
- Ausnutria Pty Ltd., 25-27 Keysborough Avenue, Keysborough, VIC 3173, Australia
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
87
|
Moulder R, Bhosale SD, Viiri K, Lahesmaa R. Comparative proteomics analysis of the mouse mini-gut organoid: insights into markers of gluten challenge from celiac disease intestinal biopsies. Front Mol Biosci 2024; 11:1446822. [PMID: 39263374 PMCID: PMC11387180 DOI: 10.3389/fmolb.2024.1446822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction Organoid models enable three-dimensional representation of cellular systems, providing flexible and accessible research tools, and can highlight key biomolecules. Such models of the intestinal epithelium can provide significant knowledge for the study of celiac disease and provide an additional context for the nature of markers observed from patient biopsy data. Methods Using LC-MS/MS, the proteomes of the crypt and enterocyte-like states of a mouse mini-gut organoid model were measured. The data were further compared with published biopsy data by comparing the changes induced by gluten challenge after a gluten-free diet. Results and discussion These analyses identified 4,850 protein groups and revealed how 400 putative biomarkers of dietary challenge were differentially expressed in the organoid model. In addition to the extensive changes within the differentiated cells, the data reiterated the disruption of the crypt-villus axis after gluten challenge. The mass spectrometry data are available via ProteomeXchange with the identifier PXD025690.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Santosh D Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
88
|
Adriaenssens E, Schaar S, Cook ASI, Stuke JFM, Sawa-Makarska J, Nguyen TN, Ren X, Schuschnig M, Romanov J, Khuu G, Lazarou M, Hummer G, Hurley JH, Martens S. Reconstitution of BNIP3/NIX-mediated autophagy reveals two pathways and hierarchical flexibility of the initiation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609967. [PMID: 39253418 PMCID: PMC11383309 DOI: 10.1101/2024.08.28.609967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Selective autophagy is a lysosomal degradation pathway that is critical for maintaining cellular homeostasis by disposing of harmful cellular material. While the mechanisms by which soluble cargo receptors recruit the autophagy machinery are becoming increasingly clear, the principles governing how organelle-localized transmembrane cargo receptors initiate selective autophagy remain poorly understood. Here, we demonstrate that transmembrane cargo receptors can initiate autophagosome biogenesis not only by recruiting the upstream FIP200/ULK1 complex but also via a WIPI-ATG13 complex. This latter pathway is employed by the BNIP3/NIX receptors to trigger mitophagy. Additionally, other transmembrane mitophagy receptors, including FUNDC1 and BCL2L13, exclusively use the FIP200/ULK1 complex, while FKBP8 and the ER-phagy receptor TEX264 are capable of utilizing both pathways to initiate autophagy. Our study defines the molecular rules for initiation by transmembrane cargo receptors, revealing remarkable flexibility in the assembly and activation of the autophagy machinery, with significant implications for therapeutic interventions.
Collapse
|
89
|
Yang L, Zhu A, Aman JM, Denberg D, Kilwein MD, Marmion RA, Johnson ANT, Veraksa A, Singh M, Wühr M, Shvartsman SY. ERK synchronizes embryonic cleavages in Drosophila. Dev Cell 2024:S1534-5807(24)00487-8. [PMID: 39208802 DOI: 10.1016/j.devcel.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.
Collapse
Affiliation(s)
- Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Zhu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Javed M Aman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - David Denberg
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marcus D Kilwein
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert A Marmion
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alex N T Johnson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mona Singh
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Flatiron Institute, New York, NY 10010, USA.
| |
Collapse
|
90
|
N. Costa M, Goto-Silva L, M. Nascimento J, Domith I, Karmirian K, Feilding A, Trindade P, Martins-de-Souza D, K. Rehen S. LSD Modulates Proteins Involved in Cell Proteostasis, Energy Metabolism and Neuroplasticity in Human Cerebral Organoids. ACS OMEGA 2024; 9:36553-36568. [PMID: 39220485 PMCID: PMC11360045 DOI: 10.1021/acsomega.4c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Proteomic analysis of human cerebral organoids may reveal how psychedelics regulate biological processes, shedding light on drug-induced changes in the brain. This study elucidates the proteomic alterations induced by lysergic acid diethylamide (LSD) in human cerebral organoids. By employing high-resolution mass spectrometry-based proteomics, we quantitatively analyzed the differential abundance of proteins in cerebral organoids exposed to LSD. Our findings indicate changes in proteostasis, energy metabolism, and neuroplasticity-related pathways. Specifically, LSD exposure led to alterations in protein synthesis, folding, autophagy, and proteasomal degradation, suggesting a complex interplay in the regulation of neural cell function. Additionally, we observed modulation in glycolysis and oxidative phosphorylation, crucial for cellular energy management and synaptic function. In support of the proteomic data, complementary experiments demonstrated LSD's potential to enhance neurite outgrowth in vitro, confirming its impact on neuroplasticity. Collectively, our results provide a comprehensive insight into the molecular mechanisms through which LSD may affect neuroplasticity and potentially contribute to therapeutic effects for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marcelo N. Costa
- D’Or
Institute for Research and Education, Rua Diniz Cordeiro, 30−Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
- Department
of Genetics, Institute of Biology, Federal
University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373 - Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | - Livia Goto-Silva
- D’Or
Institute for Research and Education, Rua Diniz Cordeiro, 30−Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| | - Juliana M. Nascimento
- D’Or
Institute for Research and Education, Rua Diniz Cordeiro, 30−Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
- Department
of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255 - Cidade
Universitária Zeferino Vaz, Campinas 13083-862, SP, Brazil
| | - Ivan Domith
- D’Or
Institute for Research and Education, Rua Diniz Cordeiro, 30−Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
- Pioneer
Science Initiative, D’Or Institute
for Research and Education, Rua Diniz Cordeiro, 30−Botafogo, Rio
de Janeiro22281-100, RJ, Brazil
| | - Karina Karmirian
- D’Or
Institute for Research and Education, Rua Diniz Cordeiro, 30−Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| | - Amanda Feilding
- Beckley
Foundation, Beckley Park, Oxford OX3
9SY, United Kingdom
| | - Pablo Trindade
- Department
of Clinical and Toxicological Analysis (DACT), College of Pharmacy, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373
- Cidade Universitária, Rio de Janeiro 21941-853, RJ, Brazil
| | - Daniel Martins-de-Souza
- D’Or
Institute for Research and Education, Rua Diniz Cordeiro, 30−Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
- Laboratory
of Neuroproteomics, Department of Biochemistry and Tissue Biology,
Institute of Biology, State University of
Campinas, Rua Monteiro
Lobato, 255 - Cidade Universitária Zeferino Vaz, Campinas 13083-862, SP, Brazil
- Experimental
Medicine Research Cluster (EMRC), State
University of Campinas, Rua Monteiro Lobato, 255 - Cidade Universitária Zeferino Vaz, Campinas 13083-862, SP, Brazil
| | - Stevens K. Rehen
- D’Or
Institute for Research and Education, Rua Diniz Cordeiro, 30−Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
- Department
of Genetics, Institute of Biology, Federal
University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373 - Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
91
|
Schwab K, Riege K, Coronel L, Stanko C, Förste S, Hoffmann S, Fischer M. p53 target ANKRA2 cooperates with RFX7 to regulate tumor suppressor genes. Cell Death Discov 2024; 10:376. [PMID: 39181888 PMCID: PMC11344851 DOI: 10.1038/s41420-024-02149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
The transcription factor regulatory factor X 7 (RFX7) has been identified as a tumor suppressor that is recurrently mutated in lymphoid cancers and appears to be dysregulated in many other cancers. RFX7 is activated by the well-known tumor suppressor p53 and regulates several other known tumor suppressor genes. However, what other factors regulate RFX7 and its target genes remains unclear. Here, reporter gene assays were used to identify that RFX7 regulates the tumor suppressor gene PDCD4 through direct interaction with its X-box promoter motif. We utilized mass spectrometry to identify factors that bind to DNA together with RFX7. In addition to RFX7, we also identified RFX5, RFXAP, RFXANK, and ANKRA2 that bind to the X-box motif in the PDCD4 promoter. We demonstrate that ANKRA2 is a bona fide direct p53 target gene. We used transcriptome analyses in two cell systems to identify genes regulated by ANKRA2, its sibling RFXANK, and RFX7. These results revealed that ANKRA2 functions as a critical cofactor of RFX7, whereas RFXANK regulates largely distinct gene sets.
Collapse
Affiliation(s)
- Katjana Schwab
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Luis Coronel
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Clara Stanko
- Klinik für Innere Medizin II, Jena University Hospital, Comprehensive Cancer Center Central Germany, Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, Jena, Germany
| | - Silke Förste
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
92
|
Vélez-López O, Carrasquillo-Carrión K, Cantres-Rosario YM, Machín-Martínez E, Álvarez-Ríos ME, Roche-Lima A, Tosado-Rodríguez EL, Meléndez LM. Analysis of Sigma-1 Receptor Antagonist BD1047 Effect on Upregulating Proteins in HIV-1-Infected Macrophages Exposed to Cocaine Using Quantitative Proteomics. Biomedicines 2024; 12:1934. [PMID: 39335448 PMCID: PMC11428496 DOI: 10.3390/biomedicines12091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 infects monocyte-derived macrophages (MDM) that migrate into the brain and secrete virus and neurotoxic molecules, including cathepsin B (CATB), causing cognitive dysfunction. Cocaine potentiates CATB secretion and neurotoxicity in HIV-infected MDM. Pretreatment with BD1047, a sigma-1 receptor antagonist, before cocaine exposure reduces HIV-1, CATB secretion, and neuronal apoptosis. We aimed to elucidate the intracellular pathways modulated by BD1047 in HIV-infected MDM exposed to cocaine. We hypothesized that the Sig1R antagonist BD1047, prior to cocaine, significantly deregulates proteins and pathways involved in HIV-1 replication and CATB secretion that lead to neurotoxicity. MDM culture lysates from HIV-1-infected women treated with BD1047 before cocaine were compared with untreated controls using TMT quantitative proteomics, bioinformatics, Lima statistics, and pathway analyses. Results demonstrate that pretreatment with BD1047 before cocaine dysregulated eighty (80) proteins when compared with the infected cocaine group. We found fifteen (15) proteins related to HIV-1 infection, CATB, and mitochondrial function. Upregulated proteins were related to oxidative phosphorylation (SLC25A-31), mitochondria (ATP5PD), ion transport (VDAC2-3), endoplasmic reticulum transport (PHB, TMED10, CANX), and cytoskeleton remodeling (TUB1A-C, ANXA1). BD1047 treatment protects HIV-1-infected MDM exposed to cocaine by upregulating proteins that reduce mitochondrial damage, ER transport, and exocytosis associated with CATB-induced neurotoxicity.
Collapse
Affiliation(s)
- Omar Vélez-López
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Yadira M. Cantres-Rosario
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| | - Eraysy Machín-Martínez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Manuel E. Álvarez-Ríos
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00921, USA; (E.M.-M.); (M.E.Á.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00934, USA; (K.C.-C.); (A.R.-L.); (E.L.T.-R.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
- Translational Proteomics, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA;
| |
Collapse
|
93
|
Conduit SE, Pearce W, Bhamra A, Bilanges B, Bozal-Basterra L, Foukas LC, Cobbaut M, Castillo SD, Danesh MA, Adil M, Carracedo A, Graupera M, McDonald NQ, Parker PJ, Cutillas PR, Surinova S, Vanhaesebroeck B. A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease. Nat Commun 2024; 15:7181. [PMID: 39168978 PMCID: PMC11339396 DOI: 10.1038/s41467-024-51354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Primary cilia are antenna-like organelles which sense extracellular cues and act as signalling hubs. Cilia dysfunction causes a heterogeneous group of disorders known as ciliopathy syndromes affecting most organs. Cilia disassembly, the process by which cells lose their cilium, is poorly understood but frequently observed in disease and upon cell transformation. Here, we uncover a role for the PI3Kα signalling enzyme in cilia disassembly. Genetic PI3Kα-hyperactivation, as observed in PIK3CA-related overgrowth spectrum (PROS) and cancer, induced a ciliopathy-like phenotype during mouse development. Mechanistically, PI3Kα and PI3Kβ produce the PIP3 lipid at the cilia transition zone upon disassembly stimulation. PI3Kα activation initiates cilia disassembly through a kinase signalling axis via the PDK1/PKCι kinases, the CEP170 centrosomal protein and the KIF2A microtubule-depolymerising kinesin. Our data suggest diseases caused by PI3Kα-activation may be considered 'Disorders with Ciliary Contributions', a recently-defined subset of ciliopathies in which some, but not all, of the clinical manifestations result from cilia dysfunction.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wayne Pearce
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Benoit Bilanges
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Lazaros C Foukas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mohammad Amin Danesh
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Mahreen Adil
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080, Bilbao, Spain
| | - Mariona Graupera
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Neil Q McDonald
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Peter J Parker
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King's College London, Guy's Campus, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
94
|
Karlsson A, Alarcón LA, Piñeiro-Iglesias B, Jacobsson G, Skovbjerg S, Moore ERB, Kopparapu PK, Jin T, Karlsson R. Surface-Shaving of Staphylococcus aureus Strains and Quantitative Proteomic Analysis Reveal Differences in Protein Abundance of the Surfaceome. Microorganisms 2024; 12:1725. [PMID: 39203567 PMCID: PMC11357550 DOI: 10.3390/microorganisms12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Staphylococcus aureus is a pathogen known to cause a wide range of infections. To find new targets for identification and to understand host-pathogen interactions, many studies have focused on surface proteins. We performed bacterial-cell surface-shaving, followed by tandem mass tag for quantitative mass spectrometry proteomics, to examine the surfaceome of S. aureus. Two steps were performed, the first step including surface protein-deficient mutants of S. aureus Newman strain lacking important virulence genes (clfA and spa, important for adhesion and immune evasion and srtAsrtB, linking surface-associated virulence factors to the surface) and the second step including isolates of different clinical origin. All strains were compared to the Newman strain. In Step 1, altogether, 7880 peptides were identified, corresponding to 1290 proteins. In Step 2, 4949 peptides were identified, corresponding to 919 proteins and for each strain, approximately 20 proteins showed differential expression compared to the Newman strain. The identified surface proteins were related to host-cell-adherence and immune-system-evasion, biofilm formation, and survival under harsh conditions. The results indicate that surface-shaving of intact S. aureus bacterial strains in combination with quantitative proteomics is a useful tool to distinguish differences in protein abundance of the surfaceome, including the expression of virulence factors.
Collapse
Affiliation(s)
| | - Leonarda Achá Alarcón
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
| | - Beatriz Piñeiro-Iglesias
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
| | - Gunnar Jacobsson
- Department of Infectious Diseases, Skaraborg Hospital, 54185 Skövde, Sweden;
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
- Culture Collection of the University of Gothenburg (CCUG), Sahlgrenska Academy, 41390 Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Roger Karlsson
- Nanoxis Consulting AB, 40016 Gothenburg, Sweden;
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
95
|
Sunsunwal S, Khairnar A, Subramanian S, Ramya TNC. Harnessing the acceptor substrate promiscuity of Clostridium botulinum Maf glycosyltransferase to glyco-engineer mini-flagellin protein chimeras. Commun Biol 2024; 7:1029. [PMID: 39169227 PMCID: PMC11339370 DOI: 10.1038/s42003-024-06736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Several bacterial flagellins are O-glycosylated with nonulosonic acids on surface-exposed Serine/Threonine residues by Maf glycosyltransferases. The Clostridium botulinum Maf glycosyltransferase (CbMaf) displays considerable donor substrate promiscuity, enabling flagellin O-glycosylation with N-acetyl neuraminic acid (Neu5Ac) and 3-deoxy-D-manno-octulosonic acid in the absence of the native nonulosonic acid, a legionaminic acid derivative. Here, we have explored the sequence/structure attributes of the acceptor substrate, flagellin, required by CbMaf glycosyltransferase for glycosylation with Neu5Ac and KDO, by co-expressing C. botulinum flagellin constructs with CbMaf glycosyltransferase in an E. coli strain producing cytidine-5'-monophosphate (CMP)-activated Neu5Ac, and employing intact mass spectrometry analysis and sialic acid-specific flagellin biotinylation as readouts. We found that CbMaf was able to glycosylate mini-flagellin constructs containing shortened alpha-helical secondary structural scaffolds and reduced surface-accessible loop regions, but not non-cognate flagellin. Our experiments indicated that CbMaf glycosyltransferase recognizes individual Ser/Thr residues in their local surface-accessible conformations, in turn, supported in place by the secondary structural scaffold. Further, CbMaf glycosyltransferase also robustly glycosylated chimeric proteins constructed by grafting cognate mini-flagellin sequences onto an unrelated beta-sandwich protein. Our recombinant engineering experiments highlight the potential of CbMaf glycosyltransferase in future glycoengineering applications, especially for the neo-O-sialylation of proteins, employing E. coli strains expressing CMP-Neu5Ac (and not CMP-KDO).
Collapse
Affiliation(s)
- Sonali Sunsunwal
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Aasawari Khairnar
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | | | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
96
|
Mukherjee A, Spanos C, Marston AL. Distinct roles of spindle checkpoint proteins in meiosis. Curr Biol 2024; 34:3820-3829.e5. [PMID: 39079532 DOI: 10.1016/j.cub.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Gametes are produced via meiosis, a specialized cell division associated with frequent errors that cause birth defects and infertility. Uniquely in meiosis I, homologous chromosomes segregate to opposite poles, usually requiring their linkage by chiasmata, the products of crossover recombination.1 The spindle checkpoint delays cell-cycle progression until all chromosomes are properly attached to microtubules,2 but the steps leading to the capture and alignment of chromosomes on the meiosis I spindle remain poorly understood. In budding yeast meiosis I, Mad2 and Mad3BUBR1 are equally important for spindle checkpoint delay, but biorientation of homologs on the meiosis I spindle requires Mad2, but not Mad3BUBR1.3,4 Here we reveal the distinct functions of Mad2 and Mad3BUBR1 in meiosis I chromosome segregation. Mad2 promotes the prophase to metaphase I transition, while Mad3BUBR1 associates with the TOGL1 domain of Stu1CLASP, a conserved plus-end microtubule protein that is important for chromosome capture onto the spindle. Homologous chromosome pairs that are proficient in crossover formation but fail to biorient rely on Mad3BUBR1-Stu1CLASP to ensure their efficient attachment to microtubules and segregation during meiosis I. Furthermore, we show that Mad3BUBR1-Stu1CLASP are essential to rescue the segregation of mini-chromosomes lacking crossovers. Our findings define a new pathway ensuring microtubule-dependent chromosome capture and demonstrate that spindle checkpoint proteins safeguard the fidelity of chromosome segregation both by actively promoting chromosome alignment and by delaying cell-cycle progression until this has occurred.
Collapse
Affiliation(s)
- Anuradha Mukherjee
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
97
|
Gelová Z, Ingles-Prieto A, Bohstedt T, Frommelt F, Chi G, Chang YN, Garcia J, Wolf G, Azzollini L, Tremolada S, Scacioc A, Hansen JS, Serrano I, Droce A, Bernal JC, Burgess-Brown NA, Carpenter EP, Dürr KL, Kristensen P, Geertsma ER, Štefanić S, Scarabottolo L, Wiedmer T, Puetter V, Sauer DB, Superti-Furga G. Protein Binder Toolbox for Studies of Solute Carrier Transporters. J Mol Biol 2024; 436:168665. [PMID: 38878854 DOI: 10.1016/j.jmb.2024.168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.
Collapse
Affiliation(s)
- Zuzana Gelová
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tina Bohstedt
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julio Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Andreea Scacioc
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jesper S Hansen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Iciar Serrano
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Aida Droce
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elisabeth P Carpenter
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katharina L Dürr
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Saša Štefanić
- Nanobody Service Facility, University of Zurich, AgroVet-Strickhof, Eschikon, Switzerland
| | | | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
98
|
Zuniga NR, Earls NE, Denos AEA, Elison JM, Jones BS, Smith EG, Moran NG, Brown KL, Romero GM, Hyer CD, Wagstaff KB, Almughamsi HM, Transtrum MK, Price JC. Quantitative and Kinetic Proteomics Reveal ApoE Isoform-dependent Proteostasis Adaptations in Mouse Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607719. [PMID: 39185235 PMCID: PMC11343127 DOI: 10.1101/2024.08.13.607719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Apolipoprotein E (ApoE) polymorphisms modify the risk of neurodegenerative disease with the ApoE4 isoform increasing and ApoE2 isoform decreasing risk relative to the 'wild-type control' ApoE3 isoform. To elucidate how ApoE isoforms alter the proteome, we measured relative protein abundance and turnover in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). This data provides insight into how ApoE isoforms affect the in vivo synthesis and degradation of a wide variety of proteins. We identified 4849 proteins and tested for ApoE isoform-dependent changes in the homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and ApoE2 both lead to modified regulation of mitochondrial membrane proteins relative to the wild-type control ApoE3. In ApoE4 mice, this regulation is not cohesive suggesting that aerobic respiration is impacted by proteasomal and autophagic dysregulation. ApoE2 mice exhibited a matching change in mitochondrial matrix proteins and the membrane which suggests coordinated maintenance of the entire organelle. In the liver, we did not observe these changes suggesting that the ApoE-effect on proteostasis is amplified in the brain relative to other tissues. Our findings underscore the utility of combining protein abundance and turnover rates to decipher proteome regulatory mechanisms and their potential role in biology.
Collapse
Affiliation(s)
- Nathan R. Zuniga
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Noah E. Earls
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Ariel E. A. Denos
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Jared M. Elison
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Benjamin S. Jones
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Ethan G. Smith
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Noah G. Moran
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Katie L. Brown
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Gerome M. Romero
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Chad D. Hyer
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Kimberly B. Wagstaff
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Haifa M. Almughamsi
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Mark K. Transtrum
- Department of Physics and Astronomy, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - John C. Price
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
99
|
Sailer AL, Jevtic Z, Stoll B, Wörtz J, Sharma K, Urlaub H, Dyall-Smith M, Pfeiffer F, Marchfelder A, Lenz C. Iron starvation results in up-regulation of a probable Haloferax volcanii siderophore transporter. Front Microbiol 2024; 15:1422844. [PMID: 39206359 PMCID: PMC11349517 DOI: 10.3389/fmicb.2024.1422844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The response of the haloarchaeal model organism Haloferax volcanii to iron starvation was analyzed at the proteome level by data-independent acquisition mass spectrometry. Cells grown in minimal medium with normal iron levels were compared to those grown under low iron conditions, with samples being separated into membrane and cytoplasmic fractions in order to focus on import/export processes which are frequently associated with metal homeostasis. Iron starvation not only caused a severe retardation of growth but also altered the levels of many proteins. Using a comprehensive annotated spectral library and data-independent acquisition mass spectrometry (DIA-MS), we found that iron starvation resulted in significant changes to both the membrane and the soluble proteomes of Hfx. volcanii. The most affected protein is the RND family permease HVO_A0467, which is 44-fold enriched in cells grown under iron starvation. The gene HVO_A0467 can be deleted suggesting that it is not essential under standard conditions. Compared to wild type cells the deletion strain shows only slight changes in growth and cell morphologies show no differences. Molecular docking predictions indicated that HVO_A0467 may be an exporter of the siderophore schizokinen for which a potential biosynthesis cluster is encoded in the Hfx. volcanii genome. Together, these findings confirm the importance of iron for archaeal cells and suggest HVO_0467 as a siderophore exporter.
Collapse
Affiliation(s)
| | - Zivojin Jevtic
- Department of Biomedicine, University Children’s Hospital, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | - Kundan Sharma
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Mike Dyall-Smith
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, Germany
- Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, University of Melbourne, Parkville, VIC, Australia
| | - Friedhelm Pfeiffer
- Biology II, Ulm University, Ulm, Germany
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
100
|
Zhao T, He X, Liang X, Kellum AH, Tang F, Yin J, Guo S, Wang Y, Gao Z, Wang Y. HMGB3 and SUB1 Bind to and Facilitate the Repair of N2-Alkylguanine Lesions in DNA. J Am Chem Soc 2024; 146:22553-22562. [PMID: 39101269 PMCID: PMC11412153 DOI: 10.1021/jacs.4c06680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
N2-Alkyl-2'-deoxyguanosine (N2-alkyl-dG) is a major type of minor-groove DNA lesions arising from endogenous metabolic processes and exogenous exposure to environmental contaminants. The N2-alkyl-dG lesions, if left unrepaired, can block DNA replication and transcription and induce mutations in these processes. Nevertheless, the repair pathways for N2-alkyl-dG lesions remain incompletely elucidated. By utilizing a photo-cross-linking coupled with mass spectrometry-based quantitative proteomic analysis, we identified a series of candidate N2-alkyl-dG-binding proteins. We found that two of these proteins, i.e., high-mobility group protein B3 (HMGB3) and SUB1, could bind directly to N2-nBu-dG-containing duplex DNA in vitro and promote the repair of this lesion in cultured human cells. In addition, HMGB3 and SUB1 protected cells against benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). SUB1 exhibits preferential binding to both the cis and trans diastereomers of N2-BPDE-dG over unmodified dG. On the other hand, HMGB3 binds favorably to trans-N2-BPDE-dG; the protein, however, does not distinguish cis-N2-BPDE-dG from unmodified dG. Consistently, genetic ablation of HMGB3 conferred diminished repair of trans-N2-BPDE-dG, but not its cis counterpart, whereas loss of SUB1 conferred attenuated repair of both diastereomers. Together, we identified proteins involved in the cellular sensing and repair of minor-groove N2-alkyl-dG lesions and documented a unique role of HMGB3 in the stereospecific recognition and repair of N2-BPDE-dG.
Collapse
Affiliation(s)
- Ting Zhao
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Xiaomei He
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Xiaochen Liang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Andrew H Kellum
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Feng Tang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Su Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Yinan Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Zi Gao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|