51
|
Lotan R, Ganmore I, Livny A, Shelly S, Zacharia M, Uribarri J, Beisswenger P, Cai W, Schnaider Beeri M, Troen AM. Design and Feasibility of a Randomized Controlled Pilot Trial to Reduce Exposure and Cognitive Risk Associated With Advanced Glycation End Products in Older Adults With Type 2 Diabetes. Front Nutr 2021; 8:614149. [PMID: 33659267 PMCID: PMC7917071 DOI: 10.3389/fnut.2021.614149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: Advanced glycation end products (AGEs) in diet and serum are positively correlated with chronic conditions such as type 2 diabetes and cognitive decline. Dietary reduction of AGEs was shown to reduce their level in serum and to have a beneficial effect on metabolic biomarkers. However, in part due to limitations of feasibility, clinical trials have not tested its effect on cognition in elderly. The current pilot study examines the feasibility of AGE reduction in elderly with diabetes in terms of recruitment and retention. Methods: The design is a randomized controlled pilot trial of dietary AGEs in elderly with type 2 diabetes (clinicaltrials.gov NCT02739971). Recruitment followed two stages: we first recruited participants with mild cognitive impairment (MCI), and after expanding inclusion criteria, we later recruited cognitively normal participants with subjective memory complaints (SMCs). Participants were randomized to two arms. Participants in the control arm received standard of care (SOC) guidelines for good glycemic control; those in the experimental arm, in addition to SOC guidelines, were instructed to lower their dietary AGE intake, primarily by changing their cooking methods. Participants were closely followed for dietary adherence over 6 months and evaluated before and after the intervention for adherence to the assigned diet, blood tests, cognitive performance, and brain MRI. Results: Seventy-five participants (52 with MCI and 23 cognitively normal with SMCs) were recruited primarily through mass mailing and advertising in social media websites. Seventy participants finished the study, and dropout was similar in both groups (7.5% in control vs. 5.7% in intervention, p = 0.757). The majority (57.5%) of participants in the AGEs-lowering arm showed very high adherence with the dietary guidelines. Discussion: Targeting feasible lifestyle modifications in high-risk populations could prevent substantial cases of cognitive decline. Observational evidence supports that AGEs may contribute to cognitive decline; however, the cognitive effect of reducing AGEs exposure has yet to be evaluated in a randomized controlled trial (RCT). The results of our pilot trial delineate a methodology including effective recruitment strategies, population of choice, and ways to assure high adherence during lifestyle modifications, and significantly advance progress toward a definitive and well-powered future RCT.
Collapse
Affiliation(s)
- Roni Lotan
- The Nutrition and Brain Health Laboratory, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Institute of Biochemistry, Food and Nutrition Science, The Hebrew University of Jerusalem, Rehovot, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel.,Memory Clinic, Sheba Medical Center, Tel HaShomer, Israel.,Neurology Department, Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Shahar Shelly
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Moran Zacharia
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Jaime Uribarri
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Weijing Cai
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Aron M Troen
- The Nutrition and Brain Health Laboratory, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Institute of Biochemistry, Food and Nutrition Science, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
52
|
Thieme K, Pereira BMV, da Silva KS, Fabre NT, Catanozi S, Passarelli M, Correa-Giannella ML. Chronic advanced-glycation end products treatment induces TXNIP expression and epigenetic changes in glomerular podocytes in vivo and in vitro. Life Sci 2021; 270:118997. [PMID: 33453249 DOI: 10.1016/j.lfs.2020.118997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
Advanced glycation end products (AGEs) play an important role in oxidative stress and inflammation, processes implicated in the development and progression of kidney dysfunction. In the present study, we investigated the participation of the pro-oxidant protein thioredoxin-interacting protein (TXNIP) and of epigenetic mechanisms on kidney tissue (in vivo, in non-diabetic rats) and on terminally differentiated glomerular podocytes (in vitro) chronically exposed to AGEs. AGEs induced total kidney and glomerular TXNIP expression and decreased H3K27me3 content. Concomitant treatment with the antioxidant N-acetyl-cysteine (NAC) reversed only the increased TXNIP expression. TXNIP expression positively correlated with proteinuria and negatively correlated with H3K27me3 content. In vitro studies in podocytes showed that 72 h exposure to AGEs decreased nephrin expression and increased Txnip, Nox4, Col4a1, and epithelial-to-mesenchymal transition (EMT) markers (Acta2, Snail1, and Tgfb1). Podocytes treatment with NAC reversed Nox4, Col4a1, Acta2, and Tgfb1 increased expression but did not abrogate the reduced expression of nephrin. MiR-29a expression was downregulated by AGEs in vivo, but not in vitro. In conclusion, treatment of non-diabetic rats with AGEs induced TXNIP expression and decreased the contents of the repressive epigenetic mark H3K27me3 and of miR-29a, potentially driving injury to glomerular filtration barrier and podocytes dysfunction.
Collapse
Affiliation(s)
- Karina Thieme
- Laboratorio de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Beatriz Maria Veloso Pereira
- Laboratorio de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karolline S da Silva
- Laboratorio de Lipides (LIM-10) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nelly T Fabre
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sérgio Catanozi
- Laboratorio de Lipides (LIM-10) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marisa Passarelli
- Laboratorio de Lipides (LIM-10) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil.
| |
Collapse
|
53
|
van Dongen KCW, van der Zande M, Bruyneel B, Vervoort JJM, Rietjens IMCM, Belzer C, Beekmann K. An in vitro model for microbial fructoselysine degradation shows substantial interindividual differences in metabolic capacities of human fecal slurries. Toxicol In Vitro 2021; 72:105078. [PMID: 33429044 DOI: 10.1016/j.tiv.2021.105078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022]
Abstract
Fructoselysine is formed upon heating during processing of food products, and being a key intermediate in advanced glycation end product formation considered to be potentially hazardous to human health. Human gut microbes can degrade fructoselysine to yield the short chain fatty acid butyrate. However, quantitative information on these biochemical reactions is lacking, and interindividual differences therein are not well established. Anaerobic incubations with pooled and individual human fecal slurries were optimized and applied to derive quantitative kinetic information for these biochemical reactions. Of 16 individuals tested, 11 were fructoselysine metabolizers, with Vmax, Km and kcat-values varying up to 14.6-fold, 9.5-fold, and 4.4-fold, respectively. Following fructoselysine exposure, 10 of these 11 metabolizers produced significantly increased butyrate concentrations, varying up to 8.6-fold. Bacterial taxonomic profiling of the fecal samples revealed differential abundant taxa for these reactions (e.g. families Ruminococcaceae, Christenellaceae), and Ruminococcus_1 showed the strongest correlation with fructoselysine degradation and butyrate production (ρ ≥ 0.8). This study highlights substantial interindividual differences in gut microbial degradation of fructoselysine. The presented method allows for quantification of gut microbial degradation kinetics for foodborne xenobiotics, and interindividual differences therein, which can be used to refine prediction of internal exposure.
Collapse
Affiliation(s)
- Katja C W van Dongen
- Division of Toxicology, Wageningen University and Research, P.O. Box 8000, 6700 EA Wageningen, the Netherlands.
| | - Meike van der Zande
- Wageningen Food Safety Research (WFSR), part of Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - Ben Bruyneel
- Division of Toxicology, Wageningen University and Research, P.O. Box 8000, 6700 EA Wageningen, the Netherlands
| | - Jacques J M Vervoort
- Laboratory of Biochemistry, Wageningen University and Research, P.O. Box 8128, 6700 ET Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, P.O. Box 8000, 6700 EA Wageningen, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, P.O. Box 8033, 6700 EH Wageningen, the Netherlands
| | - Karsten Beekmann
- Division of Toxicology, Wageningen University and Research, P.O. Box 8000, 6700 EA Wageningen, the Netherlands; Wageningen Food Safety Research (WFSR), part of Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| |
Collapse
|
54
|
Nie C, Li Y, Qian H, Ying H, Wang L. Advanced glycation end products in food and their effects on intestinal tract. Crit Rev Food Sci Nutr 2020; 62:3103-3115. [DOI: 10.1080/10408398.2020.1863904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
55
|
Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev 2020; 33:298-311. [PMID: 32238213 DOI: 10.1017/s0954422420000104] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing clinical and experimental evidence accumulated during the past few decades supports an important role for dietary advanced glycation endproducts (AGE) in the pathogenesis of many chronic non-infectious diseases, such as type 2 diabetes, CVD and others, that are reaching epidemic proportions in the Western world. Although AGE are compounds widely recognised as generated in excess in the body in diabetic patients, the potential importance of exogenous AGE, mostly of dietary origin, has been largely ignored in the general nutrition audience. In the present review we aim to describe dietary AGE, their mechanisms of formation and absorption into the body as well as their main mechanisms of action. We will present in detail current evidence of their potential role in the development of several chronic non-infectious clinical conditions, some general suggestions on how to restrict them in the diet and evidence regarding the potential benefits of lowering their consumption.
Collapse
Affiliation(s)
- M E Garay-Sevilla
- Medical Science Department, University of Guanajuato, Guanajuato, Mexico
| | - M S Beeri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - M P de la Maza
- Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros, University of Chile, Santiago, Chile
| | - A Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile
| | - S Salazar-Villanea
- Department of Animal Science, Universidad de Costa Rica, San Pedro Montes de Oca, San José, Costa Rica
| | - J Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
56
|
Lotan R, Ganmore I, Shelly S, Zacharia M, Uribarri J, Beisswenger P, Cai W, Troen AM, Schnaider Beeri M. Long Term Dietary Restriction of Advanced Glycation End-Products (AGEs) in Older Adults with Type 2 Diabetes Is Feasible and Efficacious-Results from a Pilot RCT. Nutrients 2020; 12:nu12103143. [PMID: 33076217 PMCID: PMC7602440 DOI: 10.3390/nu12103143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: High serum concentrations of advanced glycation end-products (AGEs) in older adults and diabetics are associated with an increased risk of cognitive impairment. The aim of this pilot study was to assess the feasibility of long-term adherence to a dietary intervention designed to decrease intake and exposure to circulating AGEs among older adults with type 2 diabetes. Methods: Herein, 75 participants were randomized to either a standard of care (SOC) control arm or to an intervention arm receiving instruction on reducing dietary AGEs intake. The primary outcome was a change in serum AGEs at the end of the intervention. Secondary and exploratory outcomes included adherence to diet and its association with circulating AGEs. Cognitive function and brain imaging were also assessed but were out of the scope of this article (ClinicalTrials.gov Identifier: NCT02739971). Results: The intervention resulted in a significant change over time in several serum AGEs compared to the SOC guidelines. Very high adherence (above 80%) to the AGE-lowering diet was associated with a greater reduction in serum AGEs levels. There were no significant differences between the two arms in any other metabolic markers. Conclusions: A long-term dietary intervention to reduce circulating AGEs is feasible in older adults with type 2 diabetes, especially in those who are highly adherent to the AGE-lowering diet.
Collapse
Affiliation(s)
- Roni Lotan
- The Nutrition and Brain Health Laboratory, The Institute of Biochemistry, Food and Nutrition Science, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel;
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
- Correspondence: ; Tel.: +972-3-5304753
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
- Memory Clinic, Sheba Medical Center, 5265601 Tel Hashomer, Israel
- Sheba Medical Center, Neurology Department, 5265601 Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Shahar Shelly
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Moran Zacharia
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
| | - Jaime Uribarri
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.U.); (W.C.)
| | | | - Weijing Cai
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.U.); (W.C.)
| | - Aron M. Troen
- The Nutrition and Brain Health Laboratory, The Institute of Biochemistry, Food and Nutrition Science, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel;
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.U.); (W.C.)
| |
Collapse
|
57
|
Nagata C, Wada K, Yamakawa M, Nakashima Y, Koda S, Uji T, Oba S. Dietary Intake of Nε-carboxymethyl-lysine, a Major Advanced Glycation End Product, is Not Associated with Increased Risk of Mortality in Japanese Adults in the Takayama Study. J Nutr 2020; 150:2799-2805. [PMID: 32840609 DOI: 10.1093/jn/nxaa230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/30/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Although endogenous advanced glycation end products (AGEs) have been implicated in the development of various chronic diseases, whether AGEs in foods represent a risk to human health remains unknown. OBJECTIVES We aimed to estimate the intake of Nε-carboxymethyl-lysine (CML), a major AGE product, using a database of CML contents on LC-MS methods, and to examine CML's association with total and cause-specific mortality in Japanese adults. METHODS The analysis included 13,355 men and 15,724 women, aged 35 years and older, from the Takayama study. They responded to a self-administered questionnaire in 1992. Their diet, including the CML intake, was assessed using a food-frequency questionnaire at baseline. Mortality was ascertained during 16 years of follow-up. HRs and 95% CIs for mortality were estimated separately for men and women according to CMI quartiles. RESULTS We noted 2901 deaths in men and 2438 deaths in women during the follow-up. In men, as compared with the lowest quartile of intake, the highest quartile of CML was inversely associated with the risks of both total and non-cancer, non-cardiovascular disease mortality after controlling for covariates [HR = 0.89 (95% CI, 0.79-1.00; P-trend = 0.047) and HR = 0.74 (95% CI, 0.58-0.94; P-trend = 0.03), respectively]. However, stratified analyses showed both inverse and positive associations between CML intake and cause-specific mortality in women, depending on their characteristics. For example, years of education had a modifying effect on both the CML intake and non-cancer, non-cardiovascular disease mortality in women. In men, the associations of CML intake with mortality depended on food sources. CONCLUSIONS Overall, the present study does not support a positive association between CML intake and mortality in Japanese adults. The potential relevance of the food source of CML to the link between dietary CML and mortality warrants further attention.
Collapse
Affiliation(s)
- Chisato Nagata
- Department of Epidemiology & Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keiko Wada
- Department of Epidemiology & Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Michiyo Yamakawa
- Department of Epidemiology & Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuma Nakashima
- Department of Epidemiology & Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Sachi Koda
- Department of Epidemiology & Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiro Uji
- Department of Epidemiology & Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shno Oba
- Department of Epidemiology & Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.,Graduate School of Health Sciences, Gunma University, Gunma, Japan
| |
Collapse
|
58
|
Advanced glycation end products present in the obese uterine environment compromise preimplantation embryo development. Reprod Biomed Online 2020; 41:757-766. [PMID: 32972872 DOI: 10.1016/j.rbmo.2020.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022]
Abstract
RESEARCH QUESTION Proinflammatory advanced glycation end products (AGE), highly elevated within the uterine cavity of obese women, compromise endometrial function. Do AGE also impact preimplantation embryo development and function? DESIGN Mouse embryos were cultured in AGE equimolar to uterine fluid concentrations in lean (1-2 µmol/l) or obese (4-8 µmol/l) women. Differential nuclear staining identified cell allocation to inner cell mass (ICM) and trophectoderm (TE) (day 4 and 5 of culture). Cell apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUDP nick-end labelling assay (day 5). Day 4 embryos were placed on bovine serum albumin/fibronectin-coated plates and embryo outgrowth assessed 93 h later as a marker of implantation potential. AGE effects on cell lineage allocation were reassessed following pharmacological interventions: either 12.5 nmol/l AGE receptor (RAGE) antagonist; 0.1 nmol/l metformin; or combination of 10 µmol/l acetyl-l-carnitine, 10 µmol/l N-acetyl-l-cysteine, and 5 µmol/l alpha-lipoic acid. RESULTS 8 µmol/l AGE reduced: hatching rates (day 5, P < 0.01); total cell number (days 4, 5, P < 0.01); TE cell number (day 5, P < 0.01), and embryo outgrowth (P < 0.01). RAGE antagonism improved day 5 TE cell number. CONCLUSIONS AGE equimolar with the obese uterine environment detrimentally impact preimplantation embryo development. In natural cycles, prolonged exposure to AGE may developmentally compromise embryos, whereas following assisted reproductive technology cycles, placement of a high-quality embryo into an adverse 'high AGE' environment may impede implantation success. The modest impact of short-term RAGE antagonism on improving embryo outcomes indicates preconception AGE reduction via pharmacological or dietary intervention may improve reproductive outcomes for overweight/obese women.
Collapse
|
59
|
Abstract
Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.
Collapse
Affiliation(s)
- Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
60
|
van der Lugt T, Opperhuizen A, Bast A, Vrolijk MF. Dietary Advanced Glycation Endproducts and the Gastrointestinal Tract. Nutrients 2020; 12:nu12092814. [PMID: 32937858 PMCID: PMC7551018 DOI: 10.3390/nu12092814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of inflammatory bowel diseases (IBD) is increasing in the world. The introduction of the Western diet has been suggested as a potential explanation of increased prevalence. The Western diet includes highly processed food products, and often include thermal treatment. During thermal treatment, the Maillard reaction can occur, leading to the formation of dietary advanced glycation endproducts (dAGEs). In this review, different biological effects of dAGEs are discussed, including their digestion, absorption, formation, and degradation in the gastrointestinal tract, with an emphasis on their pro-inflammatory effects. In addition, potential mechanisms in the inflammatory effects of dAGEs are discussed. This review also specifically elaborates on the involvement of the effects of dAGEs in IBD and focuses on evidence regarding the involvement of dAGEs in the symptoms of IBD. Finally, knowledge gaps that still need to be filled are identified.
Collapse
Affiliation(s)
- Timme van der Lugt
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
- Correspondence:
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| | - Misha F. Vrolijk
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| |
Collapse
|
61
|
Chen J, Waqas K, Tan RC, Voortman T, Ikram MA, Nijsten TEC, de Groot LCPGM, Uitterlinden AG, Zillikens MC. The association between dietary and skin advanced glycation end products: the Rotterdam Study. Am J Clin Nutr 2020; 112:129-137. [PMID: 32453418 PMCID: PMC7326595 DOI: 10.1093/ajcn/nqaa117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) accumulate in tissues with age and in conditions such as diabetes mellitus and chronic kidney disease (CKD), and they may be involved in age-related diseases. Skin AGEs measured as skin autofluorescence (SAF) are a noninvasive reflection of long-term AGE accumulation in tissues. Whether AGEs present in the diet (dAGEs) contribute to tissue AGEs is unclear. OBJECTIVES Our aim was to investigate the association between dietary and skin AGEs in the Rotterdam Study, a population-based cohort of mainly European ancestry. METHODS In 2515 participants, intake of 3 dAGEs [carboxymethyl-lysine (CML), N-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MGH1), and carboxyethyl-lysine (CEL)] was estimated using FFQs and the content of AGEs measured in commonly consumed foods. SAF was measured 5 y (median value) later using an AGE Reader. The association of dAGEs with SAF was analyzed in linear regression models and stratified for diabetes and chronic kidney disease (CKD, defined as estimated glomerular filtration rate ≤60 mL/min) status. RESULTS Mean ± SD intake was 3.40 ±0.89 mg/d for CML, 28.98 ±7.87 mg/d for MGH1, and 3.11 ±0.89 mg/d for CEL. None of them was associated with SAF in the total study population. However, in stratified analyses, CML was positively associated with SAF after excluding both individuals with diabetes and individuals with CKD: 1 SD higher daily CML intake was associated with a 0.03 (95% CI: 0.009, 0.05) arbitrary units higher SAF. MGH1 and CEL intake were not significantly associated with SAF. Nevertheless, the associations were stronger when the time difference between dAGEs and SAF measurements was shorter. CONCLUSIONS Higher dietary CML intake was associated with higher SAF only among participants with neither diabetes nor CKD, which may be explained by high AGE formation in diabetes and decreased excretion in CKD or by dietary modifications in these disease groups. The dAGE-SAF associations were also modified by the time difference between measurements. Our results suggest that dAGEs can influence tissue AGE accumulation and possibly thereby age-related diseases. This trial was registered at the Netherlands National Trial Register as NTR6831 (http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6831) and at the WHO International Clinical Trials Registry Platform as NTR6831 (http://www.who.int/ictrp/network/primary/en/).
Collapse
Affiliation(s)
- Jinluan Chen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Komal Waqas
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Robby Carlo Tan
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands,Food and Nutrition Research Institute, Department of Science and Technology, The Philippines
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
62
|
Antidiabetic Activity of Aloe vera Leaves. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6371201. [PMID: 32565868 PMCID: PMC7267870 DOI: 10.1155/2020/6371201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 03/27/2020] [Indexed: 11/30/2022]
Abstract
This research evaluated the potential of using the methanol extract of Aloe vera (L.) Burm.f (AVM) to prevent the formation of AGEs by means of the BSA/glucose assay, BSA-methylglyoxal assay, arginine-methylglyoxal assay, fructosamine, Nɛ-(carboxymethyl) lysine (CML), thiol groups, and carbonyl protein in vitro. The effect of AVM was also evaluated with regard to inhibiting the enzymes α-amylase, α-glucosidase, and pancreatic lipase. For this, the plant was dried, ground, and subsequently macerated with methanol. Aloe vera methanol extract (AVM) significantly decreased the formation of AGEs, as well as the formation of fructosamine, CML, and carbonyl protein. The concentration of 5 mg/ml of AVM presented the best results. AVM significantly inhibited the α-amylase and α-glucosidase enzymes. As regards the content of thiol groups, a significant increase was observed during the four weeks of the experiment. So, we can conclude that Aloe vera methanol extract decreases the formation of AGEs and may inhibit the increase in postprandial glucose, suggesting that AVM can prevent diabetes complications associated with AGE.
Collapse
|
63
|
Beneficial Effect of Mildly Pasteurized Whey Protein on Intestinal Integrity and Innate Defense in Preterm and Near-Term Piglets. Nutrients 2020; 12:nu12041125. [PMID: 32316586 PMCID: PMC7230795 DOI: 10.3390/nu12041125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background. The human digestive tract is structurally mature at birth, yet maturation of gut functions such as digestion and mucosal barrier continues for the next 1–2 years. Human milk and infant milk formulas (IMF) seem to impact maturation of these gut functions differently, which is at least partially related to high temperature processing of IMF causing loss of bioactive proteins and formation of advanced glycation end products (AGEs). Both loss of protein bioactivity and formation of AGEs depend on heating temperature and time. The aim of this study was to investigate the impact of mildly pasteurized whey protein concentrate (MP-WPC) compared to extensively heated WPC (EH-WPC) on gut maturation in a piglet model hypersensitive to enteral nutrition. Methods. WPC was obtained by cold filtration and mildly pasteurized (73 °C, 30 s) or extensively heat treated (73 °C, 30 s + 80 °C, 6 min). Preterm (~90% gestation) and near-term piglets (~96% gestation) received enteral nutrition based on MP-WPC or EH-WPC for five days. Macroscopic and histologic lesions in the gastro-intestinal tract were evaluated and intestinal responses were further assessed by RT-qPCR, immunohistochemistry and enzyme activity analysis. Results. A diet based on MP-WPC limited epithelial intestinal damage and improved colonic integrity compared to EH-WPC. MP-WPC dampened colonic IL1-β, IL-8 and TNF-α expression and lowered T-cell influx in both preterm and near-term piglets. Anti-microbial defense as measured by neutrophil influx in the colon was only observed in near-term piglets, correlated with histological damage and was reduced by MP-WPC. Moreover, MP-WPC stimulated iALP activity in the colonic epithelium and increased differentiation into enteroendocrine cells compared to EH-WPC. Conclusions. Compared to extensively heated WPC, a formula based on mildly pasteurized WPC limits gut inflammation and stimulates gut maturation in preterm and near-term piglets and might therefore also be beneficial for preterm and (near) term infants.
Collapse
|
64
|
Protective Effects of Ginger Extract against Glycation and Oxidative Stress-Induced Health Complications: An In Vitro Study. Processes (Basel) 2020. [DOI: 10.3390/pr8040468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protein glycation and oxidative stress lead to severe health complications in various diseases including diabetes mellitus. The intake of flavonoid-rich foods has been confirmed previously to have a positive effect on human health. Ginger is an important source of flavonoids and is one of the most widely used traditional medicines in many Asian countries. The aim of this study was to verify the therapeutic potential of methanolic extract from ginger against glycation and other oxidative stress-induced complications using in vitro study. In this study, quantitative estimations of antioxidant components such as total phenolic and flavonoids were determined by UV–visible spectrophotometry. The anti-inflammatory action of the ginger extract was checked by determining its protective action against the denaturation of proteins, anti-proteinase activity and its membrane stabilization effect. The anti-inflammatory action of ginger extract was found to be comparable with reference standard drugs. The antiglycating effect of ginger extract was investigated by placing bovine serum albumin (BSA) with glucose in the presence and absence of ginger extract for two weeks at 37 °C. The incubated samples were analyzed for the number of glycation products, secondary structural changes, aggregation and advanced glycation end products (AGEs) formation by checking browning intensity, determination of aggregation index and Congo red assays. Our findings demonstrated that ginger extract (600 µg/mL) significantly reduced the browning, secondary structural changes, aggregation and AGEs formation. Thus, it can be concluded from these results that ginger extract is a wealthy source of antioxidants and can be used to prevent the glycation and oxidative stress-induced damage of biomolecules in various health complications including inflammation.
Collapse
|
65
|
Mirmiran P, Yuzbashian E, Aghayan M, Mahdavi M, Asghari G, Azizi F. A Prospective Study of Dietary Meat Intake and Risk of Incident Chronic Kidney Disease. J Ren Nutr 2020; 30:111-118. [DOI: 10.1053/j.jrn.2019.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 06/01/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022] Open
|
66
|
Leonova T, Popova V, Tsarev A, Henning C, Antonova K, Rogovskaya N, Vikhnina M, Baldensperger T, Soboleva A, Dinastia E, Dorn M, Shiroglasova O, Grishina T, Balcke GU, Ihling C, Smolikova G, Medvedev S, Zhukov VA, Babakov V, Tikhonovich IA, Glomb MA, Bilova T, Frolov A. Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea ( Pisum sativum L.) Seeds? Int J Mol Sci 2020; 21:E567. [PMID: 31952342 PMCID: PMC7013545 DOI: 10.3390/ijms21020567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.
Collapse
Affiliation(s)
- Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Veronika Popova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Henning
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Kristina Antonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Nadezhda Rogovskaya
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Maria Vikhnina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Tim Baldensperger
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Ekaterina Dinastia
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Postovsky Institute of Organic Synthesis of Ural Division of Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Mandy Dorn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Olga Shiroglasova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Gerd U Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A Zhukov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Vladimir Babakov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 Leningrad Oblast, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Marcus A Glomb
- Institute of Chemistry - Food Chemistry, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Tatiana Bilova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| |
Collapse
|
67
|
Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules 2019; 9:biom9120888. [PMID: 31861217 PMCID: PMC6995512 DOI: 10.3390/biom9120888] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Maillard reaction is a simple but ubiquitous reaction that occurs both in vivo and ex vivo during the cooking or processing of foods under high-temperature conditions, such as baking, frying, or grilling. Glycation of proteins is a post-translational modification that forms temporary adducts, which, on further crosslinking and rearrangement, form permanent residues known as advanced glycation end products (AGEs). Cooking at high temperature results in various food products having high levels of AGEs. This review underlines the basis of AGE formation and their corresponding deleterious effects on the body. Glycated Maillard products have a direct association with the pathophysiology of some metabolic diseases, such as diabetes mellitus type 2 (DM2), acute renal failure (ARF), Alzheimer’s disease, dental health, allergies, and polycystic ovary syndrome (PCOS). The most glycated and structurally abundant protein is collagen, which acts as a marker for diabetes and aging, where decreased levels indicate reduced skin elasticity. In diabetes, high levels of AGEs are associated with carotid thickening, ischemic heart disease, uremic cardiomyopathy, and kidney failure. AGEs also mimic hormones or regulate/modify their receptor mechanisms at the DNA level. In women, a high AGE diet directly correlates with high levels of androgens, anti-Müllerian hormone, insulin, and androstenedione, promoting ovarian dysfunction and/or infertility. Vitamin D3 is well-associated with the pathogenesis of PCOS and modulates steroidogenesis. It also exhibits a protective mechanism against the harmful effects of AGEs. This review elucidates and summarizes the processing of infant formula milk and the associated health hazards. Formulated according to the nutritional requirements of the newborn as a substitute for mother’s milk, formula milk is a rich source of primary adducts, such as carboxy-methyl lysine, which render an infant prone to inflammation, dementia, food allergies, and other diseases. We therefore recommend that understanding this post-translational modification is the key to unlocking the mechanisms and physiology of various metabolic syndromes.
Collapse
Affiliation(s)
- Vidhu Gill
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Ashok Kumar
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| |
Collapse
|
68
|
Dietary and Plasma Carboxymethyl Lysine and Tumor Necrosis Factor-α as Mediators of Body Mass Index and Waist Circumference among Women in Indonesia. Nutrients 2019; 11:nu11123057. [PMID: 31847322 PMCID: PMC6950749 DOI: 10.3390/nu11123057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 02/02/2023] Open
Abstract
Dietary and plasma carboxymethyl lysine (dCML, pCML) and plasma tumor necrosis factor-α (pTNF-α) may be associated with obesity in affluent society. However, evidence in women from low-middle income countries with predominantly traditional diets is lacking. We investigated the mediator effects of dCML, pCML and pTNF-α on body mass index (BMI) and waist circumference (WC) among Indonesian women. A cross-sectional study was conducted among 235 non-diabetic, non-anemic and non-smoking women aged 19–50 years from selected mountainous and coastal areas of West Sumatra and West Java. Dietary CML, pCML, pTNF-α were obtained from 2 × 24-h recalls, ultra-performance liquid chromatography-tandem mass spectrometry and enzyme-linked immunosorbent assay, respectively. Between-group differences were analyzed by the Chi-square or Mann-Whitney test and mediator effects by Structural Equation Modeling. The medians and interquartile-ranges of dCML, pCML and pTNF-α were 2.2 (1.7–3.0) mg/day, 22.2 (17.2–28.2) ng/mL and 0.68 (0.52–1.00) IU/mL, respectively, and significantly higher in the WC ≥ 80 cm than in the WC < 80 cm group, but not in BMI ≥ 25 kg/m2 compared to BMI < 25 kg/m2 group. Plasma CML and pTNF-α were positively and directly related to WC (β = 0.21 [95% CI: 0.09, 0.33] and β = 0.23 [95% CI: 0.11, 0.35], respectively). Dietary CML that correlated with dry-heat processing and cereals as the highest contributions was positively related to WC (β = 0.33 [95% CI: 0.12, 0.83]). Ethnicity, level of education, intake of fat, and intake of energy contributed to dCML, pCML and pTNF-α, and subsequently affected WC, while only ethnicity contributed to BMI through dCML, pCML and pTNF-α (β = 0.07 [95% CI: 0.01, 0.14]). A positive direct effect of dCML on pCML and of pCML and pTNF-α on WC was seen among Indonesian women. Dietary CML seems to have several paths that indirectly influence the increases in WC if compared to BMI. Thus, intake of CML-rich foods should be reduced, or the foods consumed in moderate amounts to avoid the risk of central obesity in this population.
Collapse
|
69
|
Xu D, Li L, Zhang X, Yao H, Yang M, Gai Z, Li B, Zhao D. Degradation of Peptide-Bound Maillard Reaction Products in Gastrointestinal Digests of Glyoxal-Glycated Casein by Human Colonic Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12094-12104. [PMID: 31566978 DOI: 10.1021/acs.jafc.9b03520] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A large portion of Maillard reaction products (MRPs) cannot be absorbed in the upper gut and therefore may be further decomposed and utilized by colonic microbiota (CM). This work reported the stability of UV-absorbent MRPs, fluorescent MRPs and peptide-bound N(ε)-(carboxymethyl)-lysine (CML) in high molecular weight (HMW, >10 kDa), medium molecular weight (MMW, 1-10 kDa), and low molecular weight (LMW, <1 kDa) gastrointestinal digests of glyoxal-glycated casein in the presence of CM. Fluorescent MRPs showed high stability, whereas UV-absorbent MRPs may be partially decomposed. A higher depletion rate of CML was found in the LMW fraction (38.7%) than in the MMW (21.7%) and HMW (9.6%) fractions. The 16S rRNA sequencing results revealed both beneficial and detrimental changes in CM composition induced by the glycated fractions. Generation of short-chain and branched-chain fatty acids in fermentation solutions with glycated fractions was significantly suppressed compared with that in fermentation solution with unglycated digests. This work revealed the possible interplay between peptide-bound MRPs and CM.
Collapse
Affiliation(s)
- Dan Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education , South China University of Technology , Guangzhou 510640 , China
| | - Lin Li
- School of Chemical Engineering and Energy Technology , Dongguan University of Technology , College Road 1 , Dongguan 523808 , China
- College of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Xia Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education , South China University of Technology , Guangzhou 510640 , China
- College of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Hong Yao
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Mingquan Yang
- Guangdong Meiweixian Flavoring Foods Company, Ltd. , Zhongshan 528437 , China
| | - Zuoqi Gai
- College of Life Science and Engineering , Foshan University , Foshan 528231 , China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education , South China University of Technology , Guangzhou 510640 , China
- College of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Zhongqing Font Biochemical Science and Technology Company, Ltd. , Maoming , Guangdong 525427 , China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
70
|
Fernando DH, Forbes JM, Angus PW, Herath CB. Development and Progression of Non-Alcoholic Fatty Liver Disease: The Role of Advanced Glycation End Products. Int J Mol Sci 2019; 20:E5037. [PMID: 31614491 PMCID: PMC6834322 DOI: 10.3390/ijms20205037] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects up to 30% of the adult population and is now a major cause of liver disease-related premature illness and deaths in the world. Treatment is largely based on lifestyle modification, which is difficult to achieve in most patients. Progression of simple fatty liver or steatosis to its severe form non-alcoholic steatohepatitis (NASH) and liver fibrosis has been explained by a 'two-hit hypothesis'. Whilst simple steatosis is considered the first hit, its transformation to NASH may be driven by a second hit. Of several factors that constitute the second hit, advanced glycation end products (AGEs), which are formed when reducing-sugars react with proteins or lipids, have been implicated as major candidates that drive steatosis to NASH via the receptor for AGEs (RAGE). Both endogenous and processed food-derived (exogenous) AGEs can activate RAGE, mainly present on Kupffer cells and hepatic stellate cells, thus propagating NAFLD progression. This review focuses on the pathophysiology of NAFLD with special emphasis on the role of food-derived AGEs in NAFLD progression to NASH and liver fibrosis. Moreover, the effect of dietary manipulation to reduce AGE content in food or the therapies targeting AGE/RAGE pathway on disease progression is also discussed.
Collapse
Affiliation(s)
- Dinali H Fernando
- Department of Medicine, The University of Melbourne, Melbourne 3084, Australia.
| | | | - Peter W Angus
- Liver transplant unit, Austin Health, Heidelberg 3084, Australia.
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Melbourne 3084, Australia.
| |
Collapse
|
71
|
Wolf AR, Wesener DA, Cheng J, Houston-Ludlam AN, Beller ZW, Hibberd MC, Giannone RJ, Peters SL, Hettich RL, Leyn SA, Rodionov DA, Osterman AL, Gordon JI. Bioremediation of a Common Product of Food Processing by a Human Gut Bacterium. Cell Host Microbe 2019; 26:463-477.e8. [PMID: 31585844 DOI: 10.1016/j.chom.2019.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Dramatic increases in processed food consumption represent a global health threat. Maillard reaction products (MRPs), which are common in processed foods, form upon heat-induced reaction of amino acids with reducing sugars and include advanced glycation end products with deleterious health effects. To examine how processed foods affect the microbiota, we fed gnotobiotic mice, colonized with 54 phylogenetically diverse human gut bacterial strains, defined sugar-rich diets containing whey as the protein source or a matched amino acid mixture. Whey or ϵ-fructoselysine, an MRP in whey and many processed foods, selectively increases Collinsella intestinalis absolute abundance and induces Collinsella expression of genomic loci directing import and metabolism of ϵ-fructoselysine to innocuous products. This locus is repressed by glucose in C. aerofaciens, whose abundance decreases with whey, but is not repressed in C. intestinalis. Identifying gut organisms responding to and degrading potentially harmful processed food components has implications for food science, microbiome science, and public health.
Collapse
Affiliation(s)
- Ashley R Wolf
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Darryl A Wesener
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Alexandra N Houston-Ludlam
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Zachary W Beller
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Samantha L Peters
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Semen A Leyn
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
72
|
Rebollo-Hernanz M, Fernández-Gómez B, Herrero M, Aguilera Y, Martín-Cabrejas MA, Uribarri J, del Castillo MD. Inhibition of the Maillard Reaction by Phytochemicals Composing an Aqueous Coffee Silverskin Extract via a Mixed Mechanism of Action. Foods 2019; 8:E438. [PMID: 31557849 PMCID: PMC6835918 DOI: 10.3390/foods8100438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
This work aimed to evaluate the contribution of isoflavones and melatonin to the aqueous extract obtained from the coffee silverskin (CSE) antiglycative properties, which has not been previously studied. To achieve this goal, two model systems constituted by bovine serum albumin (BSA) and reactive carbonyls (glucose or methylglyoxal) in the presence or absence of pure phytochemicals (chlorogenic acid (CGA), genistein, and melatonin) and CSE were employed. Glucose was used to evaluate the effect on the formation of glycation products formed mainly in the early stage of the reaction, while methylglyoxal was employed for looking at the formation of advanced products of the reaction, also called methylglyoxal-derivative advanced glycation end products (AGE) or glycoxidation products. CGA inhibited the formation of fructosamine, while genistein and melatonin inhibited the formation of advanced glycation end products and protein glycoxidation. It was also observed that phenolic compounds from CSE inhibited protein glycation and glycoxidation by forming BSA-phytochemical complexes. CSE showed a significant antiglycative effect (p < 0.05). Variations in the UV-Vis spectrum and the antioxidant capacity of protein fractions suggested the formation of protein-phytochemical complexes. Fluorescence quenching and in silico analysis supported the formation of antioxidant-protein complexes. For the first time, we illustrate that isoflavones and melatonin may contribute to the antiglycative/antiglycoxidative properties associated with CSE. CGA, isoflavones, and melatonin composing CSE seem to act simultaneously by different mechanisms of action.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Beatriz Fernández-Gómez
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
| | - Miguel Herrero
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
| | - Yolanda Aguilera
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A. Martín-Cabrejas
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaime Uribarri
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY 10029, USA;
| | - María Dolores del Castillo
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
| |
Collapse
|
73
|
Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging. Cells 2019; 8:cells8070749. [PMID: 31331077 PMCID: PMC6678343 DOI: 10.3390/cells8070749] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress occurs when dicarbonyl metabolites (i.e., methylglyoxal, glyoxal and 3-deoxyglucosone) accumulate as a consequence of their increased production and/or decreased detoxification. This toxic condition has been associated with metabolic and age-related diseases, both of which are characterized by a pro-inflammatory and pro-oxidant state. Methylglyoxal (MGO) is the most reactive dicarbonyl and the one with the highest endogenous flux. It is the precursor of the major quantitative advanced glycated products (AGEs) in physiological systems, arginine-derived hydroimidazolones, which accumulate in aging and dysfunctional tissues. The aging process is characterized by a decline in the functional properties of cells, tissues and whole organs, starting from the perturbation of crucial cellular processes, including mitochondrial function, proteostasis and stress-scavenging systems. Increasing studies are corroborating the causal relationship between MGO-derived AGEs and age-related tissue dysfunction, unveiling a previously underestimated role of dicarbonyl stress in determining healthy or unhealthy aging. This review summarizes the latest evidence supporting a causal role of dicarbonyl stress in age-related diseases, including diabetes mellitus, cardiovascular disease and neurodegeneration.
Collapse
|
74
|
Zhang W, Poojary MM, Olsen K, Ray CA, Lund MN. Formation of α-Dicarbonyls from Dairy Related Carbohydrates with and without Nα-Acetyl-l-Lysine during Incubation at 40 and 50 °C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6350-6358. [PMID: 31083944 DOI: 10.1021/acs.jafc.9b01532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
α-Dicarbonyls are reactive intermediates formed during Maillard reactions and carbohydrate degradation. The formation of seven α-dicarbonyls was characterized in solutions containing dairy related carbohydrates (galactose, glucose, lactose, and galacto-oligosaccharides (GOS)) during incubations at 40 and 50 °C with and without Nα-acetyl-l-lysine at pH 6.8 for up to 2 months. The concentrations of α-dicarbonyls in samples of monosaccharides with Nα-acetyl-l-lysine were found to be 3-deoxyglucosone (3-DG) > 3-deoxygalactosone (3-DGal) > glyoxal > glucosone, galactosone > methylglyoxal > diacetyl. The presence of Nα-acetyl-l-lysine resulted in up to 100-fold higher concentrations of C6 α-dicarbonyls but lesser formation of glyoxal in the monosaccharide-containing models compared to what was observed in the absence of Nα-acetyl-l-lysine. Galactose incubated with Nα-acetyl-l-lysine generated the highest concentrations of 3-DGal (up to 130 μM), glyoxal (up to 100 μM), and methylglyoxal (up to 9 μM) compared to the other carbohydrates during incubation. Surprisingly, 3-DG (1500 μM) and 3-DGal (80 μM) were formed at levels of 2 orders of magnitude higher in solutions of GOS in the absence of Nα-acetyl-l-lysine as compared to the other carbohydrates at 40 °C, while GOS generated the lowest levels of glyoxal. GOS are widely used as an ingredient in various types of foods products, and it is therefore of importance to consider the risk of generating high levels of the reactive C6 α-dicarbonyl, 3-DG, in these types of products. This study contributes to the understanding of major α-dicarbonyl formation as affected by the presence of primary amines in GOS-, lactose-, and galactose-containing solutions under moderate heating in liquid foods.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Mahesha M Poojary
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Karsten Olsen
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Colin A Ray
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science , University of Copenhagen , Rolighedsvej 26 , 1958 Frederiksberg C , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Blegdamsvej 3 , 2200 Copenhagen N , Denmark
| |
Collapse
|
75
|
Role of bioactive lipofishins in prevention of inflammation and colon cancer. Semin Cancer Biol 2019; 56:175-184. [DOI: 10.1016/j.semcancer.2017.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
|
76
|
Bryniarski MA, Hamarneh F, Yacoub R. The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. Exp Biol Med (Maywood) 2019; 244:514-525. [PMID: 30682892 PMCID: PMC6547008 DOI: 10.1177/1535370219826526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT Negative alterations, or dysbiosis, in the intestinal microbial community balance in response to chronic kidney disease is emerging as a substantial and important factor in inducing and exacerbating multiple comorbid conditions. Patients with renal insufficiency experience a substantial increase in cardiovascular risk, and recent evidence is shedding light on the close interaction between microbiome dysbiosis and increased cardiovascular events in this population. Previous association and recent causality studies utilizing experimental animal models have enriched our understanding and confirmed the impact of microbial community imbalance on cardiac health in both the general population and in patients with renal impairment.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Fares Hamarneh
- University College Dublin School of Medicine and Medical Science, Dublin, Ireland
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
77
|
Mohammed NA, El-Malkey NF, Ibrahim AAS, Abdullah DM. Vitamin D3 supplementation ameliorates ovariectomy-induced cardiac apoptotic and structural changes in adult albino rats. Can J Physiol Pharmacol 2019; 97:647-654. [PMID: 30856341 DOI: 10.1139/cjpp-2018-0674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of vitamin D on cardiac dysfunction after menopause is still under investigation. Therefore, we investigated the effect of vitamin D3 on cardiac apoptotic and structural changes in ovariectomized rats. Forty adult female albino rats were divided into 4 equal groups: sham rats, sham rats treated with vitamin D3, ovariectomized rats, and ovariectomized rats treated with vitamin D3 (500 IU/kg per day for 6 weeks, orally). Body mass, blood pressure, heart rate, and whole heart mass (WHM) were measured. Serum soluble receptors of advanced glycation end products (sRAGE), C-reactive protein, malondialdehyde, and total antioxidant capacity were estimated. Cardiac sections were stained with haematoxylin-eosin and Masson's trichrome stain. Fas and FasL apoptosis-related proteins were detected by immunohistochemistry. Vitamin D3 treatment significantly decreased ovariectomy-induced cardiac Fas and FasL apoptosis-related proteins, whole heart mass, body mass, C-reactive protein, and malondialdehyde accompanied by decreased inflammation and reduced collagen deposition between cardiac muscle fibres. However, vitamin D3 significantly increased total antioxidant capacity and sRAGE in ovariectomized and sham treated groups. Our findings suggest that vitamin D3 treatment can prevent ovariectomy-induced cardiac structural and apoptotic changes in rats via increasing sRAGE and antioxidant activity. Our results suggest that vitamin D3 has therapeutic effect against postmenopausal cardiovascular disease.
Collapse
Affiliation(s)
| | - Nanees F El-Malkey
- a Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Doaa M Abdullah
- c Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
78
|
Hellwig M, Auerbach C, Müller N, Samuel P, Kammann S, Beer F, Gunzer F, Henle T. Metabolization of the Advanced Glycation End Product N-ε-Carboxymethyllysine (CML) by Different Probiotic E. coli Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1963-1972. [PMID: 30701968 DOI: 10.1021/acs.jafc.8b06748] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
N-ε-Carboxymethyllysine (CML) is formed during glycation reactions (synonym, Maillard reaction). CML is degraded by the human colonic microbiota, but nothing is known about the formation of particular metabolites. In the present study, six probiotic E. coli strains were incubated with CML in the presence or absence of oxygen in either minimal or nutrient-rich medium. CML was degraded by all strains only in the presence of oxygen. HPLC-MS/MS was applied for identification of metabolites of CML. For the first time, three bacterial metabolites of CML have been identified, namely N-carboxymethylcadaverine (CM-CAD), N-carboxymethylaminopentanoic acid (CM-APA), and the N-carboxymethyl-Δ1-piperideinium ion. During 48 h of incubation of CML with five different E. coli strains in minimal medium in the presence of oxygen, 37-66% of CML was degraded, while CM-CAD (1.5-8.4% of the initial CML dose) and CM-APA (0.04-0.11% of the initial CML dose) were formed linearly. Formation of the metabolites is enhanced when dipeptide-bound CML is applied, indicating that transport phenomena may play an important role in the "handling" of the compound by microorganisms.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
| | - Christian Auerbach
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus , Technische Universität Dresden , Fetscherstraße 74 , 01307 Dresden , Germany
| | - Nicole Müller
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus , Technische Universität Dresden , Fetscherstraße 74 , 01307 Dresden , Germany
| | - Pauline Samuel
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus , Technische Universität Dresden , Fetscherstraße 74 , 01307 Dresden , Germany
| | - Sophie Kammann
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus , Technische Universität Dresden , Fetscherstraße 74 , 01307 Dresden , Germany
| | - Falco Beer
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
| | - Florian Gunzer
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus , Technische Universität Dresden , Fetscherstraße 74 , 01307 Dresden , Germany
| | - Thomas Henle
- Chair of Food Chemistry , Technische Universität Dresden , D-01062 Dresden , Germany
| |
Collapse
|
79
|
Snelson M, Coughlan MT. Dietary Advanced Glycation End Products: Digestion, Metabolism and Modulation of Gut Microbial Ecology. Nutrients 2019; 11:nu11020215. [PMID: 30678161 PMCID: PMC6413015 DOI: 10.3390/nu11020215] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
The formation of advanced glycation end products (AGEs) in foods is accelerated with heat treatment, particularly within foods that are cooked at high temperatures for long periods of time using dry heat. The modern processed diet is replete with AGEs, and excessive AGE consumption is thought to be associated with a number of negative health effects. Many dietary AGEs have high molecular weight and are not absorbed in the intestine, and instead pass through to the colon, where they are available for metabolism by the colonic bacteria. Recent studies have been conducted to explore the effects of AGEs on the composition of the gut microbiota as well as the production of beneficial microbial metabolites, in particular, short-chain fatty acids. However, there is conflicting evidence regarding the impact of dietary AGEs on gut microbiota reshaping, which may be due, in part, to the formation of alternate compounds during the thermal treatment of foods. This review summarises the current evidence regarding dietary sources of AGEs, their gastrointestinal absorption and role in gut microbiota reshaping, provides a brief overview of the health implications of dietary AGEs and highlights knowledge gaps and avenues for future study.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, 3004 Melbourne, Australia.
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, 3004 Melbourne, Australia.
| |
Collapse
|
80
|
Antoniotti GS, Coughlan M, Salamonsen LA, Evans J. Obesity associated advanced glycation end products within the human uterine cavity adversely impact endometrial function and embryo implantation competence. Hum Reprod 2019; 33:654-665. [PMID: 29471449 DOI: 10.1093/humrep/dey029] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
STUDY QUESTION Do obese levels of advanced glycation end products (AGEs) within the uterine cavity detrimentally alter tissue function in embryo implantation and placental development? SUMMARY ANSWER Obese levels of AGEs activate inflammatory signaling (p65 NFκB) within endometrial epithelial cells and alter their function, cause endoplasmic reticulum (ER) stress in endometrial stromal cells and impair decidualization, compromise implantation of blastocyst mimics and inhibit trophoblast invasion. WHAT IS KNOWN ALREADY Obese women experience a higher incidence of infertility, recurrent miscarriage and pregnancy complications compared with lean women. Oocyte donation cycles suggest a detrimental uterine environment plays a role in these outcomes. STUDY DESIGN, SIZE, DURATION Uterine lavage and tissues from lean (BMI 19.5-24.9, n = 17) and obese (BMI > 30, n = 16) women examined. Cell culture experiments utilizing human endometrial epithelial, trophectoderm and trophoblast cell lines and primary human stromal cells used to examine the functional impact of obese levels of AGEs. PARTICIPANTS/MATERIALS, SETTING, METHODS Levels of AGEs examined within uterine lavage assessed by ELISA to determine differences between lean and obese women. Expression and localization of AGEs, receptor for AGEs (RAGE) and NFκB within endometrial tissues obtained from lean and obese women determined by immunohistochemistry. Endometrial epithelial cells (ECC-1), primary human stromal cells and trophoblast cells (HTR8-SVneo) treated with lean (2000 nmol/mol lysine) or obese (8000 nmol/mol lysine) uterine levels of AGEs and p65 NFκB (western immunoblot), real-time adhesion, proliferation migration and invasion (xCelligence real-time cell function analysis), decidualization (cell morphology and prolactin release), ER stress (western immunoblot for p-PERK) determined. Co-cultures of endometrial epithelial cells and blastocyst mimics (trophectoderm spheroids) similarly treated with lean or obese uterine levels of AGEs to determine their impact on embryo implantation. MAIN RESULTS AND THE ROLE OF CHANCE AGEs were significantly elevated (P = 0.004) within the obese (6503.59 μmol/mol lysine) versus lean (2165.88 μmol/mol lysine) uterine cavity (uterine lavage) with increased immunostaining for AGEs, RAGE and NFkB within obese endometrial tissues during the proliferative phase of the menstrual cycle. Obese uterine levels of AGEs inhibited adhesion and proliferation of endometrial epithelial (ECC-1) cells compared to treatment with lean uterine levels of AGEs. Obese uterine AGE levels impacted primary human endometrial stromal cell decidualization and activated ER stress within these cells. Obese uterine levels of AGEs also inhibited trophectodermal spheroid adhesion to hormonally primed endometrial epithelial cells and trophoblast cell line HTR8/SV-neo invasion. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Mechanistic studies are performed in vitro and may not completely recapitulate cell function in vivo. WIDER IMPLICATIONS OF THE FINDINGS These data corroborate clinical data suggesting the presence of an altered uterine environment in obese women and demonstrate that elevated uterine levels of AGEs within these women may detrimentally impact endometrial function, embryo implantation and placental development. Uterine AGE assessment in infertility work up may prove useful in determining underlying causes of infertility. AGEs can be targeted pharmacologically and such treatments may prove effective in improving reproductive complications experience by obese women. STUDY FUNDING/COMPETING INTEREST(S) Supported by NHMRC Fellowship (#1002028 to L.A.S.), and the Victorian Government's Operational Infrastructure Support Program. MTC is supported by a JDRF Australia Clinical Research Network Career Development Award. The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Gabriella S Antoniotti
- The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Department of Physiology, Scenic Boulevard, Monash University, Clayton, Victoria 3800, Australia
| | - Melinda Coughlan
- Department of Diabetes, Central Clinical School, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Lois A Salamonsen
- The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, School of Clinical Sciences at Monash Health, Monash University, Faculty of Medicine, Nursing and Health Sciences, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Jemma Evans
- The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| |
Collapse
|
81
|
Mao Z, Ren Y, Zhang Q, Dong S, Han K, Feng G, Wu H, Zhao Y. Glycated fish protein supplementation modulated gut microbiota composition and reduced inflammation but increased accumulation of advanced glycation end products in high-fat diet fed rats. Food Funct 2019; 10:3439-3451. [DOI: 10.1039/c9fo00599d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glycated fish protein showed positively biological effects but increased AGEs accumulation in high-fat-diet-fed rats.
Collapse
Affiliation(s)
- Zhenjie Mao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yanmei Ren
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Qi Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Shiyuan Dong
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Kaining Han
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Guangxin Feng
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Haohao Wu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuanhui Zhao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| |
Collapse
|
82
|
Wang Y, Hu H, McClements DJ, Nie S, Shen M, Li C, Huang Y, Chen J, Zeng M, Xie M. Effect of fatty acids and triglycerides on the formation of lysine-derived advanced glycation end-products in model systems exposed to frying temperature. RSC Adv 2019; 9:15162-15170. [PMID: 35514805 PMCID: PMC9064232 DOI: 10.1039/c9ra01410a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/06/2019] [Indexed: 11/25/2022] Open
Abstract
Lysine-derived advanced glycation end-products (AGEs), including Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL) and pyrraline, are prevalent in processed foods. The impact of lipids on AGE formation is still contentious and most of our current knowledge is based only on CML. Little is known about how lipids impact the formation of CEL and pyrraline, or their involvement in formation pathways. This study investigated the effect of lipids (fatty acids and triglycerides) on the formation of CML, CEL and pyrraline simultaneously in model systems subjected to frying temperature. The results showed the presence of the lipids promoted the formation of CML, CEL and pyrraline. The promotion effects on CML and CEL were not dependent on the unsaturation degree and addition level (50, 100 or 150 μmol) of lipid, while pyrraline formation depended on lipid type (fatty acids vs. triglycerides) and level. The concentration of CML and CEL was statistically correlated with the concentration of glyoxal (GO) and methylglyoxal (MGO), respectively. The pyrraline concentration was statistically correlated with fructoselysine concentration. These results suggested that lipids promote the formation of lysine-derived AGEs by impacting the generation of Amadori products and α-dicarbonyl compounds. This information may be useful for optimizing the formulation and processing conditions to create tastier and healthier foods. Fatty acids and triglycerides impact lysine-derived AGE formation through modulating the formation of α-dicarbonyl compounds and Amadori products.![]()
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Lab of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang 330047
- China
| | - Huiyu Hu
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Lab of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang 330047
- China
| | | | - Shaoping Nie
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Lab of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang 330047
- China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Lab of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang 330047
- China
| | - Chang Li
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Lab of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang 330047
- China
| | - Yousheng Huang
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Lab of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang 330047
- China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology
- China-Canada Joint Lab of Food Science and Technology (Nanchang)
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
83
|
Onal EM, Afsar B, Covic A, Vaziri ND, Kanbay M. Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease. Hypertens Res 2018; 42:123-140. [PMID: 30504819 DOI: 10.1038/s41440-018-0144-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
The health and proper functioning of the cardiovascular and renal systems largely depend on crosstalk in the gut-kidney-heart/vessel triangle. Recent evidence suggests that the gut microbiota has an integral function in this crosstalk. Mounting evidence indicates that the development of chronic kidney and cardiovascular diseases follows chronic inflammatory processes that are affected by the gut microbiota via various immune, metabolic, endocrine, and neurologic pathways. Additionally, deterioration of the function of the cardiovascular and renal systems has been reported to disrupt the original gut microbiota composition, further contributing to the advancement of chronic cardiovascular and renal diseases. Considering the interaction between the gut microbiota and the renal and cardiovascular systems, we can infer that interventions for the gut microbiota through diet and possibly some medications can prevent/stop the vicious cycle between the gut microbiota and the cardiovascular/renal systems, leading to a decrease in chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Emine M Onal
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Department of Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, and 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, Schools of Medicine and Biological Science, University of California, California, CA, USA
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
84
|
Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: Friend or foe? Exp Gerontol 2018; 117:76-90. [PMID: 30458224 DOI: 10.1016/j.exger.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Advanced glycation end products (AGEs) are formed in in vivo, and accumulate in tissues and body fluids during ageing. Endogenous AGE-modified proteins show altered structure and function, and may interact with receptor for AGEs (RAGE) resulting in production of reactive oxygen species, inflammatory, atherogenic and diabetogenic responses. AGEs are also formed in thermally processed foods. Studies in rodents document that dietary AGEs are partially absorbed into circulation, and accumulate in different tissues. Knowledge on the health effects of high dietary intake of AGEs is incomplete and contradictory. In this overview we discuss the data from experimental and clinical studies, either those supporting the assumption that restriction of dietary AGEs associated with health benefits, or data suggesting that dietary intake of AGEs associates with positive health outcomes. We polemicize whether the effects of exaggerated intake or restriction of highly thermally processed foods might be straightforward interpreted as the effects of AGEs-rich vs. AGEs-restricted diets. We also underline the lack of studies, and thus a poor knowledge, on the effects of different single chemically defined AGEs administration, concurrent intake of different dietary AGEs, of load with dietary AGEs corresponding to the habitual diet in humans, and on those of dietary AGEs in vulnerable populations, such as infants and particularly elderly.
Collapse
Affiliation(s)
- Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, Bratislava, Slovakia.
| | - Katarína Brouder Šebeková
- Intensive Care Unit, John Radcliffe Hospital, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
85
|
Nguyen DV, Linderholm A, Haczku A, Kenyon N. Obesity-related, metabolic asthma: a new role for glucagon-like peptide 1 agonists. THE LANCET RESPIRATORY MEDICINE 2018; 5:162-164. [PMID: 28266322 DOI: 10.1016/s2213-2600(17)30051-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Dan-Vinh Nguyen
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, CA 95817, USA.
| | - Angela Linderholm
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Angela Haczku
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Nicholas Kenyon
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
86
|
Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ. Immunomodulation by Processed Animal Feed: The Role of Maillard Reaction Products and Advanced Glycation End-Products (AGEs). Front Immunol 2018; 9:2088. [PMID: 30271411 PMCID: PMC6146089 DOI: 10.3389/fimmu.2018.02088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
The immune system provides host protection to infection with pathogenic organisms, while at the same time providing tolerance upon exposure to harmless antigens. Thus, an impaired immune function is associated with increased susceptibility to infections with increased disease severity and thereby necessitating the therapeutic use of antibiotics. Livestock performance and feed efficiency, in addition to their health status, are dependent on the microbial load of their gut, the barrier function of the intestinal epithelium and the activity of the mucosal immune system, all of which can be modulated by dietary components. The majority of feeds that are consumed in pets and livestock have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars called Maillard reaction (MR). Maillard reaction products (MRPs) and advanced Maillard reaction products (AGEs) determine taste, smell, and color of many food products therefore the MR is highly relevant for the feed industry. MRPs interact with different types of immune receptors, including the receptor for advanced glycation end products (RAGE) and immunomodulatory potential of feed proteins can be modified by Maillard reaction. This MR has become an important concern since MRPs/AGEs have been shown to contribute to increasing prevalence of diet-related chronic inflammatory states in the gut with negative health consequences and performance. The immunomodulatory effects of dietary MRPs and AGEs in livestock and pet animals are far less well-described, but widely considered to be similar to the relevant concepts and mechanisms obtained in the human field. This review will highlight immunological mechanisms underlying initiation of the innate and adaptive immune responses by MRPs/AGEs present in animal feeds, which are currently not completely understood. Bridging this knowledge gap, and taking advantage of progress in the human field, will significantly improve nutritional quality of feed and increase the prevention of diet-mediated inflammation in animals.
Collapse
Affiliation(s)
- Malgorzata Teodorowicz
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Wouter H. Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Department of Nutrition, Faculty of Veterinary Sciences, Utrecht University, Utrecht, Netherlands
| | - Harry J. Wichers
- Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
87
|
Qu W, Nie C, Zhao J, Ou X, Zhang Y, Yang S, Bai X, Wang Y, Wang J, Li J. Microbiome-Metabolomics Analysis of the Impacts of Long-Term Dietary Advanced-Glycation-End-Product Consumption on C57BL/6 Mouse Fecal Microbiota and Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8864-8875. [PMID: 30037223 DOI: 10.1021/acs.jafc.8b01466] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thermally processed diets are widely consumed, although advanced-glycation end products (AGEs) are unavoidably formed. AGEs, clusters of protein-cross-linking products, become less digestible because they impair intestinal peptidase proteolysis. We characterized the impacts of dietary AGEs on gut microbiota through a microbiome-to-metabolome association study. C57BL/6 mice were fed a heat-treated diet (high-AGE diet, H-AGE) or a standard AIN-93G diet (low-AGE diet, L-AGE) for 8 months. Fecal-microbiota composition was examined by 16S rDNA sequencing, and fecal-metabolome profile was evaluated by gas chromatography-tandem time-of-flight mass spectrometry (GC-TOF-MS). Reduced α-diversity and altered microbiota composition with elevated Helicobacter levels were found in the H-AGE group, and among the 57 perturbed metabolites, protein-fermentation products (i.e., p-cresol and putrescine) were increased. Major dysfunctional metabolic pathways were associated with carbohydrate and amino acid metabolism in two groups. Moreover, high correlations were found between fluctuant gut microbiota and metabolites. These findings might reveal the underlying mechanisms of the detrimental impacts of dietary AGEs on host health.
Collapse
Affiliation(s)
- Wanting Qu
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , PR China
| | - Chenxi Nie
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , PR China
| | - Jinsong Zhao
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , PR China
| | - Xiyang Ou
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , PR China
| | - Yingxiao Zhang
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , PR China
| | - Shanchun Yang
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , PR China
| | - Xue Bai
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , PR China
| | - Yong Wang
- Shaanxi Research Institute of Agricultural Products Processing Technology , Xi'an , Shaanxi Province 710016, PR China
- Shaanxi University of Science and Technology , Xi'an , Shaanxi Province 710016 , PR China
| | - Jiawei Wang
- Shaanxi University of Science and Technology , Xi'an , Shaanxi Province 710016 , PR China
| | - Juxiu Li
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling , Shaanxi Province 712100 , PR China
| |
Collapse
|
88
|
Yuan X, Zhao J, Qu W, Zhang Y, Jia B, Fan Z, He Q, Li J. Accumulation and effects of dietary advanced glycation end products on the gastrointestinal tract in rats. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13817] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Jinsong Zhao
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Wanting Qu
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Yingxiao Zhang
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Benpan Jia
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Zhiyi Fan
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Qihan He
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Juxiu Li
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| |
Collapse
|
89
|
Yu W, Hu X, Wang M. Pterostilbene inhibited advanced glycation end products (AGEs)-induced oxidative stress and inflammation by regulation of RAGE/MAPK/NF-κB in RAW264.7 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
90
|
Su G, Li L, Zhao D, Li B, Zhang X. The digestibility of hydrothermally-treated bovine serum albumin glycated by glyoxal. RSC Adv 2018; 8:35870-35877. [PMID: 35558465 PMCID: PMC9088704 DOI: 10.1039/c8ra02585a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/10/2018] [Indexed: 01/10/2023] Open
Abstract
The digestion of dietary advanced glycation end products (AGEs) largely determines their absorption in humans. To help elucidate the health effects of dietary AGEs, changes in the digestive behavior of bovine serum albumin (BSA, dietary protein) caused by glycation derived from glyoxal (GO, an important precursor of AGEs) in a simulated food heating system have been investigated. The hydrothermal aggregation of BSA was suppressed by GO derived glycation, generating glycated aggregates of loose and branched structures, according to dynamic light scattering (DLS), circular dichroism (CD) spectroscopy, free sulfhydryl group, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) results. Analysis of protein digests showed that glycation reduced the gastric and gastrointestinal digestibility of BSA and the bioavailability of all seven detected amino acids. A comparative analysis of the distribution of CML and lysine in glycated BSA digests with different molecular weights showed that carboxymethylation directly blocked the action of proteases on Lys residues. The overall gastrointestinal digestibility of hydrothermally-treated bovine serum albumin drops dramatically following GO-derived glycation.![]()
Collapse
Affiliation(s)
- Guoying Su
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Lin Li
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
- School of Chemical Engineering and Energy Technology
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control
- MOE
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control
- Key Laboratory of Meat Products Processing
- MOA
| | - Bing Li
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Xia Zhang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| |
Collapse
|
91
|
Chen Y, Filipov NM, Guo TL. Dietary Glycation Products Regulate Immune Homeostasis: Early Glycation Products Promote Prostate Cancer Cell Proliferation through Modulating Macrophages. Mol Nutr Food Res 2017; 62. [PMID: 29082675 DOI: 10.1002/mnfr.201700641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Indexed: 12/26/2022]
Abstract
SCOPE Well-controlled glycation (generally limited to the early stages) has been proposed as a strategy to improve the physiochemical properties of dietary proteins, but the functional studies of glycation products are mostly on advanced glycation end-products (AGEs) rather than early glycation products (EGPs). Since cytokines are important modulators of various biological processes, this study aims to determine whether EGPs and AGEs affected immune homeostasis differentially and do so through modulating macrophage-derived factors. METHODS AND RESULTS Two systems (glycine-glucose and whey protein isolate (WPI)-glucose) are established to generate glycation products. They are applied to human macrophages (PMA-differentiated U937 cells), and cell viability and cytokine production are measured. Furthermore, EGPs, AGEs, and their conditioned medium (CM) from macrophages are applied to human prostate cancer (PCa) cells with different etiology (LNCaP and PC-3) and murine PCa cells (TRAMP-C2) to determine their direct and indirect effects on PCa cell proliferation. EGPs enhance the production of immunosuppressive cytokines, and this enhancement is associated with increased PCa cell proliferation. In contrast, AGEs inhibit macrophages to secret cytokines, but increase PCa cell proliferation directly. CONCLUSIONS Our data suggest that EGPs promote the prostate tumor proliferation indirectly through modulating macrophages, while AGEs have a direct effect.
Collapse
Affiliation(s)
- Yingjia Chen
- Departments of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Nikolay M Filipov
- Departments of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L Guo
- Departments of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
92
|
Treibmann S, Hellwig A, Hellwig M, Henle T. Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10562-10570. [PMID: 29111707 DOI: 10.1021/acs.jafc.7b04172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fructose and dicarbonyl compounds resulting from fructose in heated foods have been linked to pathophysiological pathways of several metabolic disorders. Up to now, very little has been known about the Maillard reaction of fructose in food. Heyns rearrangement compounds (HRCs), the first stable intermediates of the Maillard reaction between amino components and fructose, have not yet been quantitated as protein-bound products in food. Therefore, the HRCs glucosyllysine and mannosyllysine were synthesized and characterized by NMR. Protein-bound HRCs in cookies containing various sugars and in commercial bakery products were quantitated after enzymatic hydrolysis by RP-HPLC-ESI-MS/MS in the multiple reaction monitoring mode through application of the standard addition method. Protein-bound HRCs were quantitated for the first time in model cookies and in commercial bakery products containing honey, banana, and invert sugar syrup. Concentrations of HRCs from 19 to 287 mg/kg were found, which were similar to or exceeded the content of other frequently analyzed Maillard reaction products, such as N-ε-carboxymethyllysine (10-76 mg/kg), N-ε-carboxyethyllysine (2.5-53 mg/kg), and methylglyoxal-derived hydroimidazolone 1 (10-218 mg/kg) in the analyzed cookies. These results show that substantial amounts of HRCs form during food processing. Analysis of protein-bound HRCs in cookies is therefore useful to evaluate the Maillard reaction of fructose.
Collapse
Affiliation(s)
- Stephanie Treibmann
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Anne Hellwig
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Michael Hellwig
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Thomas Henle
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| |
Collapse
|
93
|
Nguyen DV, Linderholm A, Haczku A, Kenyon N. Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma. Pharmacol Ther 2017; 180:139-143. [PMID: 28648831 PMCID: PMC5677567 DOI: 10.1016/j.pharmthera.2017.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alterations in arginine metabolism and accelerated formation of advanced glycation end-products (AGEs), crucial mechanisms in obesity-related asthma, can be modulated by glucagon-like peptide 1 (GLP-1). l-arginine dysregulation in obesity promotes inflammation and bronchoconstriction. Prolonged hyperglycemia, dyslipidemia, and oxidative stress leads to production of AGEs, that bind to their receptor (RAGE) further potentiating inflammation. By binding to its widely distributed receptor, GLP-1 blunts the effects of RAGE activation and arginine dysregulation. The GLP-1 pathway, while comprehensively studied in the endocrine and cardiovascular literature, is under-recognized in pulmonary research. Insights into GLP-1 and the lung may lead to novel treatments for obesity-related asthma.
Collapse
Affiliation(s)
- Dan-Vinh Nguyen
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States.
| | - Angela Linderholm
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States
| | - Angela Haczku
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States
| | - Nicholas Kenyon
- University of California Davis, the Veterans Affairs Northern California Healthcare System, United States
| |
Collapse
|
94
|
Probing Protein Glycation by Chromatography and Mass Spectrometry: Analysis of Glycation Adducts. Int J Mol Sci 2017; 18:ijms18122557. [PMID: 29182540 PMCID: PMC5751160 DOI: 10.3390/ijms18122557] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Glycation is a non-enzymatic post-translational modification of proteins, formed by the reaction of reducing sugars and α-dicarbonyl products of their degradation with amino and guanidino groups of proteins. Resulted early glycation products are readily involved in further transformation, yielding a heterogeneous group of advanced glycation end products (AGEs). Their formation is associated with ageing, metabolic diseases, and thermal processing of foods. Therefore, individual glycation adducts are often considered as the markers of related pathologies and food quality. In this context, their quantification in biological and food matrices is required for diagnostics and establishment of food preparation technologies. For this, exhaustive protein hydrolysis with subsequent amino acid analysis is the strategy of choice. Thereby, multi-step enzymatic digestion procedures ensure good recoveries for the most of AGEs, whereas tandem mass spectrometry (MS/MS) in the multiple reaction monitoring (MRM) mode with stable isotope dilution or standard addition represents “a gold standard” for their quantification. Although the spectrum of quantitatively assessed AGE structures is continuously increases, application of untargeted profiling techniques for identification of new products is desired, especially for in vivo characterization of anti-glycative systems. Thereby, due to a high glycative potential of plant metabolites, more attention needs to be paid on plant-derived AGEs.
Collapse
|
95
|
Aroor AR, Jia G, Sowers JR. Cellular mechanisms underlying obesity-induced arterial stiffness. Am J Physiol Regul Integr Comp Physiol 2017; 314:R387-R398. [PMID: 29167167 DOI: 10.1152/ajpregu.00235.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is an emerging pandemic driven by consumption of a diet rich in fat and highly refined carbohydrates (a Western diet) and a sedentary lifestyle in both children and adults. There is mounting evidence that arterial stiffness in obesity is an independent and strong predictor of cardiovascular disease (CVD), cognitive functional decline, and chronic kidney disease. Cardiovascular stiffness is a precursor to atherosclerosis, systolic hypertension, cardiac diastolic dysfunction, and impairment of coronary and cerebral flow. Moreover, premenopausal women lose the CVD protection normally afforded to them in the setting of obesity, insulin resistance, and diabetes, and this loss of CVD protection is inextricably linked to an increased propensity for arterial stiffness. Stiffness of endothelial and vascular smooth muscle cells, extracellular matrix remodeling, perivascular adipose tissue inflammation, and immune cell dysfunction contribute to the development of arterial stiffness in obesity. Enhanced endothelial cortical stiffness decreases endothelial generation of nitric oxide, and increased oxidative stress promotes destruction of nitric oxide. Our research over the past 5 years has underscored an important role of increased aldosterone and vascular mineralocorticoid receptor activation in driving development of cardiovascular stiffness, especially in females consuming a Western diet. In this review the cellular mechanisms of obesity-associated arterial stiffness are highlighted.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri
| | - Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Departments of Medical Pharmacology and Physiology, University of Missouri Columbia School of Medicine , Columbia, Missouri.,Harry S Truman Memorial Veterans Hospital , Columbia, Missouri.,Dalton Cardiovascular Center Columbia , Columbia, Missouri
| |
Collapse
|
96
|
Fang J, Sun X, Xue B, Fang N, Zhou M. Dahuang Zexie Decoction Protects against High-Fat Diet-Induced NAFLD by Modulating Gut Microbiota-Mediated Toll-Like Receptor 4 Signaling Activation and Loss of Intestinal Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:2945803. [PMID: 29259643 PMCID: PMC5702401 DOI: 10.1155/2017/2945803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that intestinal dysbiosis, intestinal barrier dysfunction, and activated Toll-like receptor 4 (TLR4) signaling play key roles in the pathogenesis of NAFLD. Dahuang Zexie Decoction (DZD) has been verified to be effective for treating NAFLD, but the mechanisms remain unclear. In this study, we investigated the effects of DZD on NAFLD rats and determined whether such effects were associated with change of the gut microbiota, downregulated activity of the TLR4 signaling pathway, and increased expressions of tight junction (TJ) proteins in the gut. Male Sprague Dawley rats were fed high-fat diet (HFD) for 16 weeks to induce NAFLD and then given DZD intervention for 4 weeks. We found that DZD reduced body and liver weights of NAFLD rats, improved serum lipid levels and liver function parameters, and relieved NAFLD. We further found that DZD changed intestinal bacterial communities, inhibited the intestinal TLR4 signaling pathway, and restored the expressions of TJ proteins in the gut. Meanwhile ten potential components of DZD had been identified. These findings suggest that DZD may protects against NAFLD by modulating gut microbiota-mediated TLR4 signaling activation and loss of intestinal barrier. However, further studies are needed to clarify the mechanism by which DZD treats NAFLD.
Collapse
Affiliation(s)
- Jing Fang
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoqi Sun
- Department of Police Tactics, Nanjing Forest Police College, Nanjing 210023, China
| | - Boyu Xue
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nanyuan Fang
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Min Zhou
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
97
|
Downregulation of Profilin-1 Expression Attenuates Cardiomyocytes Hypertrophy and Apoptosis Induced by Advanced Glycation End Products in H9c2 Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9716087. [PMID: 29238726 PMCID: PMC5697376 DOI: 10.1155/2017/9716087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Cardiomyocytes hypertrophy and apoptosis induced by advanced glycation end products (AGEs) is the crucial pathological foundation contributing to the onset and development of diabetic cardiomyopathy (DCM). However, the mechanism remains poorly understood. Here, we report that profilin-1 (PFN-1), a well-known actin-binding protein, serves as a potent regulator in AGEs-induced cardiomyocytes hypertrophy and apoptosis. PFN-1 was upregulated in AGEs-treated H9c2 cells, which was associated with increased cardiomyocytes hypertrophy and apoptosis. Silencing PFN-1 expression remarkably attenuated AGEs-induced H9c2 cell hypertrophy and apoptosis. Mechanistically, AGEs increased PFN-1 expression through elevating ROS production and RhoA and ROCK2 expression. Consequently, elevated PFN-1 promoted actin cytoskeleton disorganization. When either ROS production/ROCK activation was blocked or cells were treated with Cytochalasin D (actin depolymerizer), H9c2 cells were protected against AGEs-induced cardiac myocyte abnormalities, concomitantly with downregulated expression of PFN-1 and improved actin cytoskeleton alteration. Collectively, these data suggest that PFN-1 may play an important role in AGEs-induced hypertrophy and apoptosis in H9c2 cells.
Collapse
|
98
|
DeChristopher LR. Perspective: The Paradox in Dietary Advanced Glycation End Products Research-The Source of the Serum and Urinary Advanced Glycation End Products Is the Intestines, Not the Food. Adv Nutr 2017; 8:679-683. [PMID: 28916568 PMCID: PMC5593110 DOI: 10.3945/an.117.016154] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inconsistent research results have impeded our understanding of the degree to which dietary advanced glycation end products (dAGEs) contribute to chronic disease. Early research suggested that Western-style fast foods, including grilled and broiled meats and French fries, contain high levels of proinflammatory advanced glycation end products (AGEs). However, recent studies with state-of-the-art ultraperformance LC-tandem mass spectrometry (UPLC-MS) found that there is no evidence that these foods have elevated levels of dAGEs relative to other foods. Paradoxically, observational research found that the intake of fruits (mainly apples), fruit juices (apple juice), vegetables, nuts, seeds, soy, and nonfat milk, which are foods synonymous with healthy eating, as well as the intake of cold breakfast cereals, whole grains (breads), and sweets, which are sources of high-fructose corn syrup (HFCS), were associated with elevated serum and urinary N-ε-carboxymethyl-lysine (CML). Ironically, these are the same foods found to have lower CML levels, as measured by UPLC-MS. One possible explanation for this paradox is that the source of the elevated CML is the intestines, not the food. When considered collectively, dAGE research results are consistent with the "fructositis" hypothesis, which states that intake of foods and beverages with high fructose-to-glucose ratios (HFCS-sweetened foods and beverages, agave syrup, crystalline fructose, apple juice, and apple juice blends) promotes the intestinal in situ formation of readily absorbed, proinflammatory extracellular, newly identified, fructose-associated AGE, an overlooked source of immunogenic AGEs.
Collapse
|
99
|
Muronetz VI, Melnikova AK, Seferbekova ZN, Barinova KV, Schmalhausen EV. Glycation, glycolysis, and neurodegenerative diseases: Is there any connection? BIOCHEMISTRY (MOSCOW) 2017; 82:874-886. [DOI: 10.1134/s0006297917080028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
100
|
Qu W, Yuan X, Zhao J, Zhang Y, Hu J, Wang J, Li J. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol Nutr Food Res 2017. [DOI: 10.1002/mnfr.201700118] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wanting Qu
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Xiaojin Yuan
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Jinsong Zhao
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Yingxiao Zhang
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Jing Hu
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| | - Jiawei Wang
- Shaanxi Research Institute of Agricultural Products Processing Technology; Xi'an P. R. China
| | - Juxiu Li
- College of Food Science and Engineering; Northwest A&F University; Yangling P. R. China
| |
Collapse
|