51
|
Zauhar R, Biber J, Jabri Y, Kim M, Hu J, Kaplan L, Pfaller AM, Schäfer N, Enzmann V, Schlötzer-Schrehardt U, Straub T, Hauck SM, Gamlin PD, McFerrin MB, Messinger J, Strang CE, Curcio CA, Dana N, Pauly D, Grosche A, Li M, Stambolian D. As in Real Estate, Location Matters: Cellular Expression of Complement Varies Between Macular and Peripheral Regions of the Retina and Supporting Tissues. Front Immunol 2022; 13:895519. [PMID: 35784369 PMCID: PMC9240314 DOI: 10.3389/fimmu.2022.895519] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.
Collapse
Affiliation(s)
- Randy Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Mijin Kim
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna M. Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B. McFerrin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christianne E. Strang
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicholas Dana
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
52
|
El-Darzi N, Mast N, Buchner DA, Saadane A, Dailey B, Trichonas G, Pikuleva IA. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:902254. [PMID: 35721135 PMCID: PMC9198296 DOI: 10.3389/fphar.2022.902254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
A small dose of the anti-HIV drug efavirenz (EFV) was previously discovered to activate CYP46A1, a cholesterol-eliminating enzyme in the brain, and mitigate some of the manifestation of Alzheimer's disease in 5XFAD mice. Herein, we investigated the retina of these animals, which were found to have genetically determined retinal vascular lesions associated with deposits within the retinal pigment epithelium and subretinal space. We established that EFV treatment activated CYP46A1 in the retina, enhanced retinal cholesterol turnover, and diminished the lesion frequency >5-fold. In addition, the treatment mitigated fluorescein leakage from the aberrant blood vessels, deposit size, activation of retinal macrophages/microglia, and focal accumulations of amyloid β plaques, unesterified cholesterol, and Oil Red O-positive lipids. Studies of retinal transcriptomics and proteomics identified biological processes enriched with differentially expressed genes and proteins. We discuss the mechanisms of the beneficial EFV effects on the retinal phenotype of 5XFAD mice. As EFV is an FDA-approved drug, and we already tested the safety of small-dose EFV in patients with Alzheimer's disease, our data support further clinical investigation of this drug in subjects with retinal vascular lesions or neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - David A. Buchner
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Brian Dailey
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Georgios Trichonas
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Irina A. Pikuleva
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States,*Correspondence: Irina A. Pikuleva,
| |
Collapse
|
53
|
Characterization of Retinal Drusen in Subjects at High Genetic Risk of Developing Sporadic Alzheimer’s Disease: An Exploratory Analysis. J Pers Med 2022; 12:jpm12050847. [PMID: 35629270 PMCID: PMC9145327 DOI: 10.3390/jpm12050847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Having a family history (FH+) of Alzheimer’s disease (AD) and being a carrier of at least one ɛ4 allele of the ApoE gene are two of the main risk factors for the development of AD. AD and age-related macular degeneration (AMD) share one of the main risk factors, such as age, and characteristics including the presence of deposits (Aβ plaques in AD and drusen in AMD); however, the role of apolipoprotein E isoforms in both pathologies is controversial. We analyzed and characterized retinal drusen by optical coherence tomography (OCT) in subjects, classifying them by their AD FH (FH- or FH+) and their allelic characterization of ApoE ɛ4 (ApoE ɛ4- or ApoE ɛ4+) and considering cardiovascular risk factors (hypercholesterolemia, hypertension, and diabetes mellitus). In addition, we analyzed the choroidal thickness by OCT and the area of the foveal avascular zone with OCTA. We did not find a relationship between a family history of AD or any of the ApoE isoforms and the presence or absence of drusen. Subjects with drusen show choroidal thinning compared to patients without drusen, and thinning could trigger changes in choroidal perfusion that may give rise to the deposits that generate drusen.
Collapse
|
54
|
Retinal drusen in glomerulonephritis with or without immune deposits suggest systemic complement activation in disease pathogenesis. Sci Rep 2022; 12:8234. [PMID: 35581312 PMCID: PMC9114393 DOI: 10.1038/s41598-022-12111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Retinal drusen are characteristic of macular degeneration and complement activation, but also occur in C3, lupus and IgA nephropathy. This cross-sectional observational study compared drusen counts in different forms of glomerulonephritis. Consecutive individuals with glomerulonephritis attending a general renal or transplant clinic underwent retinal imaging with a non-mydriatic camera. Drusen were counted in deidentified images by trained graders, compared with matched hospital patients, and correlated with clinical features. Eighty-four individuals with glomerulonephritis had a mean drusen count of 10 ± 27 compared with 3 ± 8 in hospital controls (p = 0.007). Fourteen individuals with glomerulonephritis (17%) and 4 hospital controls (4/49, 8%) had increased drusen counts (≥ 10) (p = 0.20). Increased drusen counts ≥ 10 were present in 13 (13/63, 21%) of those with glomerulonephritis and immune deposits [membranous (n = 8), antiglomerular basement membrane nephritis (n = 6), FSGS (n = 49)], and one of the 21 (5%) with glomerulonephritis without immune deposits [ANCA-associated (n = 15), minimal change disease (n = 6)]. In antibody-mediated glomerulonephritis (n = 14), mean drusen counts were 2 ± 3 in individuals with normal kidney function, 16 ± 41 with impaired function and 5 ± 7 with kidney failure . Mean counts were 24 ± 56 in individuals with glomerular IgG deposits and 1 ± 1 in those without (p = 0.76), and 23 ± 60 with complement deposits and 4 ± 8 in those without. Drusen counts were also less in immunosuppressed individuals (p = 0.049). The demonstration of retinal drusen in some forms of glomerulonephritis is consistent with systemic complement activation, and suggests that treatment targeting the complement pathways is worthwhile.
Collapse
|
55
|
Mulfaul K, Mullin NK, Giacalone JC, Voigt AP, DeVore M, Stone EM, Tucker BA, Mullins RF. Local factor H production by human choroidal endothelial cells mitigates complement deposition: implications for macular degeneration. J Pathol 2022; 257:29-38. [PMID: 35038170 PMCID: PMC9007903 DOI: 10.1002/path.5867] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Abstract
Activation of the alternative complement pathway is an initiating event in the pathology of age-related macular degeneration (AMD). Unchecked complement activation leads to the formation of a pro-lytic pore, the membrane attack complex (MAC). MAC deposition is observed on the choriocapillaris of AMD patients and likely causes lysis of choroidal endothelial cells (CECs). Complement factor H (FH, encoded by the gene CFH) is an inhibitor of complement. Both loss of function of FH and reduced choroidal levels of FH have been reported in AMD. It is plausible that reduced local FH availability promotes MAC deposition on CECs. FH is produced primarily in the liver; however, cells including the retinal pigment epithelium can produce FH locally. We hypothesized that CECs produce FH locally to protect against MAC deposition. We aimed to investigate the effect of reduced FH levels in the choroid to determine whether increasing local FH could protect CECs from MAC deposition. We demonstrated that siRNA knockdown of FH (CFH) in human immortalized CECs results in increased MAC deposition. We generated AMD iPSC-derived CECs and found that overexpression of FH protects against MAC deposition. These results suggest that local CEC-produced FH protects against MAC deposition, and that increasing local FH protein may be beneficial in limiting MAC deposition in AMD. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kelly Mulfaul
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Nathaniel K. Mullin
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Joseph C. Giacalone
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Andrew P. Voigt
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Melette DeVore
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Edwin M. Stone
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
56
|
Jiang J, Chen Y, Zhang H, Yuan W, Zhao T, Wang N, Fan G, Zheng D, Wang Z. Association between metformin use and the risk of age-related macular degeneration in patients with type 2 diabetes: a retrospective study. BMJ Open 2022; 12:e054420. [PMID: 35473747 PMCID: PMC9045056 DOI: 10.1136/bmjopen-2021-054420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To investigate the effect of metformin on the decreased risk of developing age-related macular degeneration (AMD) in patients with type 2 diabetes mellitus (T2DM) for ≥10 years. DESIGN A retrospective study. PARTICIPANTS Patients aged ≥50 with a diagnosis of T2DM no less than 10 years were included. METHODS Variables predisposing to AMD were reviewed; the potential confounders related to T2DM or AMD were selected from literature records; AMD and diabetic retinopathy (DR) were diagnosed by funduscopy, optical coherence tomography and/or fluorescein angiography. The subgroup analysis was performed in early and late AMD. The protective effect of metformin was evaluated in duration-response and dose-response patterns. RESULTS A total of 324 patients (115 metformin non-users and 209 users) were included in the final analysis. AMD was observed in 15.8% of metformin users and 45.2% of metformin non-users (p<0.0001). The ORs for any AMD, early AMD and late AMD present in patients with DR were 0.06 (0.02-0.20), 0.03 (0.00-0.20) and 0.17 (0.04-0.75). The serum high-density lipoprotein level was positively associated with the late AMD risk (p=0.0054). When analysed by the tertiles of cumulative duration, a similarly reduced risk was observed for the second (5-9 years) (OR: 0.24, 95% CI: 0.08 to 0.75) and third tertiles (≥10 years) (OR: 0.22, 95% CI: 0.09 to 0.52) compared with the first tertile (≤4 years). CONCLUSION Among patients with T2DM for ≥10 years, metformin users were less likely to develop any AMD and early AMD than non-users; however, the late AMD was not significantly associated with the use of metformin. Also, AMD was less prevalent in patients with DR. The prolonged metformin treatment with a high cumulative dose enhanced the protective effect against AMD. Metformin significantly reduces the AMD risk when the cumulative duration is >5 years.
Collapse
Affiliation(s)
- Jingjing Jiang
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Yi Chen
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Hongsong Zhang
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Yuan
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Tong Zhao
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Na Wang
- Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Guohui Fan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Dongxing Zheng
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Zhijun Wang
- Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
57
|
Goyzueta-Mamani LD, Chávez-Fumagalli MA, Alvarez-Fernandez K, Aguilar-Pineda JA, Nieto-Montesinos R, Davila Del-Carpio G, Vera-Lopez KJ, Lino Cardenas CL. Alzheimer's Disease: A Silent Pandemic - A Systematic Review on the Situation and Patent Landscape of the Diagnosis. Recent Pat Biotechnol 2022; 16:355-378. [PMID: 35400333 DOI: 10.2174/1872208316666220408114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive impairment, tau protein deposits, and amyloid beta plaques. AD impacted 44 million people in 2016, and it is estimated to affect 100 million people by 2050. AD is disregarded as a pandemic compared with other diseases. To date, there is no effective treatment or diagnosis. OBJECTIVE We aimed to discuss the current tools used to diagnose COVID-19, to point out their potential to be adapted for AD diagnosis, and to review the landscape of existing patents in the AD field and future perspectives for AD diagnosis. METHOD We carried out a scientific screening following a research strategy in PubMed; Web of Science; the Derwent Innovation Index; the KCI-Korean Journal Database; SciELO; the Russian Science Citation index; and the CDerwent, EDerwent, and MDerwent index databases. RESULTS A total of 326 from 6,446 articles about AD and 376 from 4,595 articles about COVID-19 were analyzed. Of these, AD patents were focused on biomarkers and neuroimaging with no accurate, validated diagnostic methods, and only 7% of kit development patents were found. In comparison, COVID-19 patents were 60% about kit development for diagnosis; they are highly accurate and are now commercialized. CONCLUSION AD is still neglected and not recognized as a pandemic that affects the people and economies of all nations. There is a gap in the development of AD diagnostic tools that could be filled if the interest and effort that has been invested to tackle the COVID-19 emergency could also be applied for innovation.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Miguel Angel Chávez-Fumagalli
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Karla Alvarez-Fernandez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Jorge A Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Rita Nieto-Montesinos
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Gonzalo Davila Del-Carpio
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Karin J Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigacion, Universidad Catolica de Santa Maria, Arequipa, Peru
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
58
|
Wang J, Zhang H, Ji J, Wang L, Lv W, He Y, Li X, Feng G, Chen K. A histological study of atherosclerotic characteristics in age-related macular degeneration. Heliyon 2022; 8:e08973. [PMID: 35252605 PMCID: PMC8891972 DOI: 10.1016/j.heliyon.2022.e08973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
This study investigated the pathogenesis of age-related macular degeneration (AMD) using histological methods that are commonly used for atherosclerotic vascular disease (ASVD). 1 normal, 3 early dry AMD, and 1 late dry AMD eyes were obtained from the Lions Eye Bank of Oregon and systematically dissected. They were stained with hematoxylin and eosin, Oil red O, Masson, Elastica van Gieson, Alizarin red, and Prussian blue. Additionally, the normal and late dry AMD eyes were immunostained for a-smooth muscle actin, CD45, and CD68 with Nile red and DAPI. Correlations were found between severity of AMD and lipid accumulation in the deep sclera (+), numbers of drusen between the Bruch's membrane and retinal pigment epithelium (RPE) (+), amount of collagen in the deep sclera (+), and amount of elastin in the deep sclera (-) (P < 0.1). Geographic atrophy, RPE detachment, and abnormal capillary shape and distribution in the choriocapillaris were observed in the fovea of late AMD. There were no stenosis, plaque, hemorrhage, and calcification. Additionally, late AMD tended to have higher smooth muscle thicknesses of the choroidal vascular walls, lower numbers of T lymphocytes in the choroid, and higher numbers of macrophages near the RPE and in the choroid relative to normal (P < 0.1). Macrophages-derived foam cells were detected near the Bruch's membrane in late AMD. Therefore, the present study showed many histological characteristics of ASVD in AMD, which suggests an association between them; however, there were also some histological characteristics of ASVD that were not found in AMD, which indicates that there exist pathogenic differences between them. The results generally support the vascular model of AMD, but some details still need clarification.
Collapse
|
59
|
Complement activation by RPE cells preexposed to TNFα and IFNγ. Exp Eye Res 2022; 218:108982. [DOI: 10.1016/j.exer.2022.108982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023]
|
60
|
Huang S, Liu CH, Wang Z, Fu Z, Britton WR, Blomfield AK, Kamenecka TM, Dunaief JL, Solt LA, Chen J. REV-ERBα regulates age-related and oxidative stress-induced degeneration in retinal pigment epithelium via NRF2. Redox Biol 2022; 51:102261. [PMID: 35176707 PMCID: PMC8851379 DOI: 10.1016/j.redox.2022.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
Abstract
Retinal pigment epithelium (RPE) dysfunction and atrophy occur in dry age-related macular degeneration (AMD), often leading to photoreceptor degeneration and vision loss. Accumulated oxidative stress during aging contributes to RPE dysfunction and degeneration. Here we show that the nuclear receptor REV-ERBα, a redox sensitive transcription factor, protects RPE from age-related degeneration and oxidative stress-induced damage. Genetic deficiency of REV-ERBα leads to accumulated oxidative stress, dysfunction and degeneration of RPE, and AMD-like ocular pathologies in aging mice. Loss of REV-ERBα exacerbates chemical-induced RPE damage, and pharmacological activation of REV-ERBα protects RPE from oxidative damage both in vivo and in vitro. REV-ERBα directly regulates transcription of nuclear factor erythroid 2-related factor 2 (NRF2) and its downstream antioxidant enzymes superoxide dismutase 1 (SOD1) and catalase to counter oxidative damage. Moreover, aged mice with RPE specific knockout of REV-ERBα also exhibit accumulated oxidative stress and fundus and RPE pathologies. Together, our results suggest that REV-ERBα is a novel intrinsic protector of the RPE against age-dependent oxidative stress and a new molecular target for developing potential therapies to treat age-related retinal degeneration.
Collapse
|
61
|
Complement Mediators in Development to Treat Age-Related Macular Degeneration. Drugs Aging 2022; 39:107-118. [PMID: 35050489 DOI: 10.1007/s40266-021-00914-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 11/03/2022]
Abstract
Over recent years, great attention has been paid to the role of the complement system in the pathogenesis of age-related macular degeneration (AMD). In particular, several studies have highlighted a link between AMD development and complement dysregulation, which can probably be explained as a complement cascade hyperactivation resulting from the presence of a series of risk factors such as aging; smoking; obesity; alcohol consumption; exposure to pesticides, industrial chemicals, or pollution; and other causes of oxidative stress. This hypothesis has been mainly supported by the presence of complement mediators as constituents of drusen, representing one of the earliest and most characteristic signs of retinal damage in AMD. Additionally, activated complement mediators and some complement regulators, such as vitronectin, have been found not only in the drusen and adjacent retinal areas but also in the peripheral blood of patients with AMD. Therefore, we aim to provide a review of recently studied complement factors to highlight their role in the pathogenesis of AMD and to evaluate new potential therapeutic strategies.
Collapse
|
62
|
Scuderi G, Troiani E, Minnella AM. Gut Microbiome in Retina Health: The Crucial Role of the Gut-Retina Axis. Front Microbiol 2022; 12:726792. [PMID: 35095780 PMCID: PMC8795667 DOI: 10.3389/fmicb.2021.726792] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The term microbiome means not only a complex ecosystem of microbial species that colonize our body but also their genome and the surrounding environment in which they live. Recent studies support the existence of a gut-retina axis involved in the pathogenesis of several chronic progressive ocular diseases, including age-related macular disorders. This review aims to underline the importance of the gut microbiome in relation to ocular health. After briefly introducing the characteristics of the gut microbiome in terms of composition and functions, the role of gut microbiome dysbiosis, in the development or progression of retinal diseases, is highlighted, focusing on the relationship between gut microbiome composition and retinal health based on the recently investigated gut-retina axis.
Collapse
Affiliation(s)
- Gianluca Scuderi
- Ophthalmology Unit, NESMOS Department, St. Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Gianluca Scuderi,
| | - Emidio Troiani
- Cardiology Unit, State Hospital, Institute for Social Security, Cailungo, San Marino
| | - Angelo Maria Minnella
- Department of Ophthalmology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
63
|
de Almeida Torres R, de Almeida Torres R, Luchini A, Anjos Ferreira A. The oxidative and inflammatory nature of age-related macular degeneration. JOURNAL OF CLINICAL OPHTHALMOLOGY AND RESEARCH 2022. [DOI: 10.4103/jcor.jcor_268_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
64
|
Abstract
The eye presents a unique opportunity for complement component 3 (C3) therapeutics. Drugs can be delivered directly to specific parts of the eye, and growing evidence has established a pivotal role for C3 in age-related macular degeneration (AMD). Emerging data show that C3 may be important to the pathophysiology of other eye diseases as well. This article will discuss the location of C3 expression in the eye as well as the preclinical and clinical data regarding C3's functions in AMD. We will provide a comprehensive review of developing C3 inhibitors for the eye, including the Phase 2 and 3 data for the C3 inhibitor pegcetacoplan as a treatment for the geographic atrophy of AMD. Developing evidence also points toward C3 as a therapeutic target for stages of AMD preceding geographic atrophy. We will also discuss data illuminating C3's relationship to other eye diseases, such as Stargardt disease, diabetic retinopathy, and glaucoma. In addition to being a converging point and centerpiece of the complement cascade, C3 has broad effects as a multifaceted controller of opsonophagocytosis, microglia/macrophage recruitment, and downstream terminal pathway activity. C3 is a crucial player in the pathophysiology of AMD but also seems to have importance in other diseases that are major causes of blindness. Directions for further investigation will be highlighted, as culminating evidence suggests that we may be approaching an era of C3 therapeutics for the eye.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tianyu Liu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
65
|
Liisborg C, Skov V, Kjær L, Hasselbalch HC, Sørensen TL. Patients with MPNs and retinal drusen show signs of complement system dysregulation and a high degree of chronic low-grade inflammation. EClinicalMedicine 2022; 43:101248. [PMID: 35128362 PMCID: PMC8808164 DOI: 10.1016/j.eclinm.2021.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The hematopoietic stem cell disorders, myeloproliferative neoplasms (MPNs), are characterised by chronic low-grade inflammation (CLI). Recently, we showed that patients with MPNs have an increased prevalence of drusen and age-related macular degeneration (AMD), and drusen prevalence seemed associated with higher CLI. Studying MPNs may reveal more about drusen pathophysiology. This study investigated CLI further by measuring cytokine levels and complement system markers, comparing these between patients with MPNs and AMD. METHODS This cross-sectional study, between July 2018 and November 2020 conducted at Zealand University Hospital (ZUH) - Roskilde, Denmark, included 29 patients with neovascular AMD (nAMD), 28 with intermediate-stage AMD (iAMD), 62 with MPNs (35 with drusen - MPNd and 27 with healthy retinas - MPNn). With flow cytometry, we measured complement-regulatory-proteins (Cregs). With immunoassays, we investigated cytokine levels combined into a summary-inflammation-score (SIS). FINDINGS The MPNd and nAMD groups had similar SIS, significantly higher than the MPNn and iAMD groups. Additionally, we found SIS to increase over the MPN biological continuum from early cancer stage, essential thrombocytaemia (ET), over polycythaemia vera (PV) to the late-stage primary myelofibrosis (PMF). MPNs showed signs of complement dysregulation, with Cregs expression lower in PV than ET and PMF and even lower in PV patients with drusen. INTERPRETATION This study suggests that MPNd have a higher CLI than MPNn and may indicate systemic CLI to play a greater part in, and even initiate drusen formation. We suggest using MPNs as a "Human Inflammation Model" of drusen development. The CLI in MPNs elicits drusen formation, triggering more CLI creating a vicious cycle, increasing the risk of developing AMD. FUNDING Fight for Sight, Denmark, and Region Zealand's research promotion fund.
Collapse
Affiliation(s)
- Charlotte Liisborg
- Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, Roskilde DK-4000, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Corresponding author.
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Lasse Kjær
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Hans Carl Hasselbalch
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, Roskilde DK-4000, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
66
|
Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int J Mol Sci 2021; 23:ijms23010183. [PMID: 35008609 PMCID: PMC8745076 DOI: 10.3390/ijms23010183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Ageing, in a natural way, leads to the gradual worsening of the functional capacity of all systems and, eventually, to death. This process is strongly associated with higher metabolic and oxidative stress, low-grade inflammation, accumulation of DNA mutations and increased levels of related damage. Detrimental changes that accumulate in body cells and tissues with time raise the vulnerability to environmental challenges and enhance the risk of major chronic diseases and mortality. There are several theses concerning the mechanisms of ageing: genetic, free radical telomerase, mitochondrial decline, metabolic damage, cellular senescence, neuroendocrine theory, Hay-flick limit and membrane theories, cellular death as well as the accumulation of toxic and non-toxic garbage. Moreover, ageing is associated with structural changes within the myocardium, cardiac conduction system, the endocardium as well as the vasculature. With time, the cardiac structures lose elasticity, and fibrotic changes occur in the heart valves. Ageing is also associated with a higher risk of atherosclerosis. The results of studies suggest that some natural compounds may slow down this process and protect against age-related diseases. Animal studies imply that some of them may prolong the lifespan; however, this trend is not so obvious in humans.
Collapse
|
67
|
Mack HG, Colville DJ, Harraka P, Savige JA, Invernizzi A, Fraser-Bell S. Retinal findings in glomerulonephritis. Clin Exp Optom 2021; 105:474-486. [PMID: 34877922 DOI: 10.1080/08164622.2021.2003691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The complement system is part of the innate immune system activated by three distinct pathways: classical, lectin and alternative. It is also involved in retinal development and homoeostasis. Dense deposit disease is a rare renal disease associated with mutations in Complement factor H and overactivity of the alternative complement pathway. As well as glomerulonephritis, many affected individuals have retinal drusen and may be at risk of vision loss due to macular atrophy or choroidal neovascularisation. We discuss the reclassification of dense deposit disease as a type of C3 glomerulonephropathy, and hypothesise on the mechanisms of retinal abnormalities. Drusen have also been described in individuals with other types of glomerulonephritis involving abnormalities of the classical (membranoproliferative glomerulonephritis type 1) or lectin (IgA nephropathy, lupus nephritis) complement pathways. Although drusen are found in abnormalities of all three complement pathways, the age at onset, aetiology, and the threat to vision differs. This review describes drusen and other retinal abnormalities associated with the glomerulonephritides due to abnormal activation in each of the three complement activation pathways, and provides the first report of drusen occurring in a patient with the recently reclassified C3 glomerulonephritis with homozygous variant V62I in complement factor H. Optometric management of young patients presenting with retinal drusen is discussed, and complement-based therapies for visual loss are reviewed.
Collapse
Affiliation(s)
- Heather G Mack
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia.,Centre for Eye Research, University of Melbourne, Melbourne, Australia
| | - Deborah J Colville
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia
| | - Phillip Harraka
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Judith Anne Savige
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Alessandro Invernizzi
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | | |
Collapse
|
68
|
Acar IE, Willems E, Kersten E, Keizer-Garritsen J, Kragt E, Bakker B, Galesloot TE, Hoyng CB, Fauser S, van Gool AJ, Lechanteur YTE, Koertvely E, Nogoceke E, Gloerich J, de Jonge MI, Lorés-Motta L, den Hollander AI. Semi-Quantitative Multiplex Profiling of the Complement System Identifies Associations of Complement Proteins with Genetic Variants and Metabolites in Age-Related Macular Degeneration. J Pers Med 2021; 11:jpm11121256. [PMID: 34945728 PMCID: PMC8705464 DOI: 10.3390/jpm11121256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. The complement system has been identified as one of the main AMD disease pathways. We performed a comprehensive expression analysis of 32 complement proteins in plasma samples of 255 AMD patients and 221 control individuals using mass spectrometry-based semi-quantitative multiplex profiling. We detected significant associations of complement protein levels with age, sex and body-mass index (BMI), and potential associations of C-reactive protein, factor H related-2 (FHR-2) and collectin-11 with AMD. In addition, we confirmed previously described associations and identified new associations of AMD variants with complement levels. New associations include increased C4 levels for rs181705462 at the C2/CFB locus, decreased vitronectin (VTN) levels for rs11080055 at the TMEM97/VTN locus and decreased factor I levels for rs10033900 at the CFI locus. Finally, we detected significant associations between AMD-associated metabolites and complement proteins in plasma. The most significant complement-metabolite associations included increased high density lipoprotein (HDL) subparticle levels with decreased C3, factor H (FH) and VTN levels. The results of our study indicate that demographic factors, genetic variants and circulating metabolites are associated with complement protein components. We suggest that these factors should be considered to design personalized treatment approaches and to increase the success of clinical trials targeting the complement system.
Collapse
Affiliation(s)
- I. Erkin Acar
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.E.A.); (E.K.); (B.B.); (C.B.H.); (Y.T.E.L.); (L.L.-M.)
| | - Esther Willems
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.W.); (M.I.d.J.)
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.K.-G.); (E.K.); (A.J.v.G.); (J.G.)
| | - Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.E.A.); (E.K.); (B.B.); (C.B.H.); (Y.T.E.L.); (L.L.-M.)
| | - Jenneke Keizer-Garritsen
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.K.-G.); (E.K.); (A.J.v.G.); (J.G.)
| | - Else Kragt
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.K.-G.); (E.K.); (A.J.v.G.); (J.G.)
| | - Bjorn Bakker
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.E.A.); (E.K.); (B.B.); (C.B.H.); (Y.T.E.L.); (L.L.-M.)
| | - Tessel E. Galesloot
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Carel B. Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.E.A.); (E.K.); (B.B.); (C.B.H.); (Y.T.E.L.); (L.L.-M.)
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070 Basel, Switzerland; (S.F.); (E.K.); (E.N.)
| | - Alain J. van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.K.-G.); (E.K.); (A.J.v.G.); (J.G.)
| | - Yara T. E. Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.E.A.); (E.K.); (B.B.); (C.B.H.); (Y.T.E.L.); (L.L.-M.)
| | - Elod Koertvely
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070 Basel, Switzerland; (S.F.); (E.K.); (E.N.)
| | - Everson Nogoceke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070 Basel, Switzerland; (S.F.); (E.K.); (E.N.)
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (J.K.-G.); (E.K.); (A.J.v.G.); (J.G.)
| | - Marien I. de Jonge
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.W.); (M.I.d.J.)
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Laura Lorés-Motta
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.E.A.); (E.K.); (B.B.); (C.B.H.); (Y.T.E.L.); (L.L.-M.)
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070 Basel, Switzerland; (S.F.); (E.K.); (E.N.)
| | - Anneke I. den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (I.E.A.); (E.K.); (B.B.); (C.B.H.); (Y.T.E.L.); (L.L.-M.)
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
69
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
70
|
Feng L, Nie K, Huang Q, Fan W. Complement factor H deficiency combined with smoking promotes retinal degeneration in a novel mouse model. Exp Biol Med (Maywood) 2021; 247:77-86. [PMID: 34775843 DOI: 10.1177/15353702211052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Age-related macular degeneration is the leading cause of blindness in the elderly. The Y402H polymorphism in complement factor H promotes disease-like pathogenesis, and a Cfh+/- murine model can replicate this phenotype, but only after two years. We reasoned that by combining CFH deficiency with cigarette smoke exposure, we might be able to accelerate disease progression to facilitate preclinical research in this disease. Wild-type and Cfh+/- mice were exposed to nose-only cigarette smoke for three months. Retinal tissue morphology and visual function were evaluated by optical coherence tomography, fundus photography and autofluorescence, and electroretinogram. Retinal pigment epithelial cell phenotype and ultrastructure were evaluated by immunofluorescence staining and transmission electron microscopy. Cfh+/- smoking mice showed a dome-like protruding lesion at the ellipsoid zone (drusen-like deposition), many retinal hyper-autofluorescence spots, and a marked decrease in A- and B-wave amplitudes. Compared with non-smoking mice, wild-type and Cfh+/- smoking mice showed sub-retinal pigment epithelium complement protein 3 deposition, activation of microglia, metabolic waste accumulation, and impairment of tight junctions. Microglia cells migrated into the photoreceptor outer segment layer in Cfh+/- smoking mice showed increased activation. Our results suggest that exposing Cfh+/- mice to smoking leads to earlier onset of age-related macular degeneration than in other animal models, which may facilitate preclinical research into the pathophysiology and treatment of this disease.
Collapse
Affiliation(s)
- Liwen Feng
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kailai Nie
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Huang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Fan
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
71
|
Flores‐Bellver M, Mighty J, Aparicio‐Domingo S, Li KV, Shi C, Zhou J, Cobb H, McGrath P, Michelis G, Lenhart P, Bilousova G, Heissel S, Rudy MJ, Coughlan C, Goodspeed AE, Becerra SP, Redenti S, Canto‐Soler MV. Extracellular vesicles released by human retinal pigment epithelium mediate increased polarised secretion of drusen proteins in response to AMD stressors. J Extracell Vesicles 2021; 10:e12165. [PMID: 34750957 PMCID: PMC8575963 DOI: 10.1002/jev2.12165] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. Drusen are key contributors to the etiology of AMD and the ability to modulate drusen biogenesis could lead to therapeutic strategies to slow or halt AMD progression. The mechanisms underlying drusen biogenesis, however, remain mostly unknown. Here we demonstrate that under homeostatic conditions extracellular vesicles (EVs) secreted by retinal pigment epithelium (RPE) cells are enriched in proteins associated with mechanisms involved in AMD pathophysiology, including oxidative stress, immune response, inflammation, complement system and drusen composition. Furthermore, we provide first evidence that drusen-associated proteins are released as cargo of extracellular vesicles secreted by RPE cells in a polarised apical:basal mode. Notably, drusen-associated proteins exhibited distinctive directional secretion modes in homeostatic conditions and, differential modulation of this directional secretion in response to AMD stressors. These observations underpin the existence of a finely-tuned mechanism regulating directional apical:basal sorting and secretion of drusen-associated proteins via EVs, and its modulation in response to mechanisms involved in AMD pathophysiology. Collectively, our results strongly support an active role of RPE-derived EVs as a key source of drusen proteins and important contributors to drusen development and growth.
Collapse
Affiliation(s)
- Miguel Flores‐Bellver
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Jason Mighty
- Lehman CollegeBronxNew YorkUSA
- Biology Doctoral ProgramThe Graduate School and University CenterCity University of New YorkNew YorkNew YorkUSA
| | - Silvia Aparicio‐Domingo
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Kang V. Li
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Cui Shi
- Lehman CollegeBronxNew YorkUSA
- Biology Doctoral ProgramThe Graduate School and University CenterCity University of New YorkNew YorkNew YorkUSA
| | | | - Hannah Cobb
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Patrick McGrath
- Department of DermatologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - German Michelis
- Section of Protein Structure and FunctionNEINIHBethesdaMarylandUSA
| | - Patricia Lenhart
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
| | - Ganna Bilousova
- Department of DermatologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- Charles C. Gates Center for Regenerative MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
- Linda Crnic Institute for Down SyndromeUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Søren Heissel
- Proteomics Resource CenterThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Michael J. Rudy
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Christina Coughlan
- University of Colorado Alzheimer's and Cognition CenterDepartment of NeurologyLinda Crnic Institute for Down SyndromeUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Andrew E. Goodspeed
- Department of PharmacologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- University of Colorado Cancer CenterUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Stephen Redenti
- Lehman CollegeBronxNew YorkUSA
- Biology Doctoral ProgramThe Graduate School and University CenterCity University of New YorkNew YorkNew YorkUSA
- Biochemistry Doctoral ProgramThe Graduate SchoolCity University of New YorkNew YorkNew YorkUSA
| | - M. Valeria Canto‐Soler
- CellSight Ocular Stem Cell and Regeneration ProgramDepartment of OphthalmologySue Anschutz‐Rodgers Eye CenterUniversity of Colorado, School of MedicineAuroraColoradoUSA
- Charles C. Gates Center for Regenerative MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
72
|
Villar M, Urra JM, Rodríguez-Del-Río FJ, Artigas-Jerónimo S, Jiménez-Collados N, Ferreras-Colino E, Contreras M, de Mera IGF, Estrada-Peña A, Gortázar C, de la Fuente J. Characterization by Quantitative Serum Proteomics of Immune-Related Prognostic Biomarkers for COVID-19 Symptomatology. Front Immunol 2021; 12:730710. [PMID: 34566994 PMCID: PMC8457011 DOI: 10.3389/fimmu.2021.730710] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 challenges the understanding of factors affecting disease progression and severity. The identification of prognostic biomarkers and physiological processes associated with disease symptoms is relevant for the development of new diagnostic and therapeutic interventions to contribute to the control of this pandemic. To address this challenge, in this study, we used a quantitative proteomics together with multiple data analysis algorithms to characterize serum protein profiles in five cohorts from healthy to SARS-CoV-2-infected recovered (hospital discharge), nonsevere (hospitalized), and severe [at the intensive care unit (ICU)] cases with increasing systemic inflammation in comparison with healthy individuals sampled prior to the COVID-19 pandemic. The results showed significantly dysregulated proteins and associated biological processes and disorders associated to COVID-19. These results corroborated previous findings in COVID-19 studies and highlighted how the representation of dysregulated serum proteins and associated BPs increases with COVID-19 disease symptomatology from asymptomatic to severe cases. The analysis was then focused on novel disease processes and biomarkers that were correlated with disease symptomatology. To contribute to translational medicine, results corroborated the predictive value of selected immune-related biomarkers for disease recovery [Selenoprotein P (SELENOP) and Serum paraoxonase/arylesterase 1 (PON1)], severity [Carboxypeptidase B2 (CBP2)], and symptomatology [Pregnancy zone protein (PZP)] using protein-specific ELISA tests. Our results contributed to the characterization of SARS-CoV-2–host molecular interactions with potential contributions to the monitoring and control of this pandemic by using immune-related biomarkers associated with disease symptomatology.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - José Miguel Urra
- Immunology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.,Medicine School, Universidad de Castilla la Mancha, Ciudad Real, Spain
| | | | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, University of Murcia, Murcia, Spain
| | | | - Agustín Estrada-Peña
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
73
|
Baraas RC, Horjen Å, Gilson SJ, Pedersen HR. The Relationship Between Perifoveal L-Cone Isolating Visual Acuity and Cone Photoreceptor Spacing-Understanding the Transition Between Healthy Aging and Early AMD. Front Aging Neurosci 2021; 13:732287. [PMID: 34566629 PMCID: PMC8458634 DOI: 10.3389/fnagi.2021.732287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Age-related macular degeneration (AMD) is a multifactorial degenerative disorder that can lead to irreversible loss of visual function, with aging being the prime risk factor. However, knowledge about the transition between healthy aging and early AMD is limited. We aimed to examine the relationship between psychophysical measures of perifoveal L-cone acuity and cone photoreceptor structure in healthy aging and early AMD. Methods and Results: Thirty-nine healthy participants, 10 with early AMD and 29 healthy controls were included in the study. Multimodal high-resolution retinal images were obtained with adaptive-optics scanning-light ophthalmoscopy (AOSLO), optical-coherence tomography (OCT), and color fundus photographs. At 5 degrees retinal eccentricity, perifoveal L-cone isolating letter acuity was measured with psychophysics, cone inner segment and outer segment lengths were measured using OCT, while cone density, spacing, and mosaic regularity were measured using AOSLO. The Nyquist sampling limit of cone mosaic (Nc) was calculated for each participant. Both L-cone acuity and photoreceptor inner segment length declined with age, but there was no association between cone density nor outer segment length and age. A multiple regression showed that 56% of the variation in log L-cone acuity was accounted for by Nc when age was taken into account. Six AMD participants with low risk of progression were well within confidence limits, while two with medium-to-severe risk of progression were outliers. The observable difference in cone structure between healthy aging and early AMD was a significant shortening of cone outer segments. Conclusion: The results underscore the resilience of cone structure with age, with perifoveal functional changes preceding detectable changes in the cone photoreceptor mosaic. L-cone acuity is a sensitive measure for assessing age-related decline in this region. The transition between healthy aging of cone structures and changes in cone structures secondary to early AMD relates to outer segment shortening.
Collapse
Affiliation(s)
- Rigmor C Baraas
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Åshild Horjen
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
74
|
Singh CSB, Choi KB, Munro L, Wang HY, Pfeifer CG, Jefferies WA. Reversing pathology in a preclinical model of Alzheimer's disease by hacking cerebrovascular neoangiogenesis with advanced cancer therapeutics. EBioMedicine 2021; 71:103503. [PMID: 34534764 PMCID: PMC8449085 DOI: 10.1016/j.ebiom.2021.103503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cognitive decline leading to dementia, accompanied by the accumulation of amyloid-beta (Aβ) in neuritic plaques together with the appearance of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein (tau), are previously noted hallmarks of Alzheimer's disease (AD). We previously discovered hypervascularity in brain specimens from AD patients and consistent with this observation, we demonstrated that overexpression of Aβ drives cerebrovascular neoangiogenesis leading to hypervascularity and coincident tight-junction disruption and blood-brain barrier (BBB) leakiness in animal models of AD. We subsequently demonstrated that amyloid plaque burden and cerebrovascular pathogenesis subside when pro-angiogenic Aβ levels are reduced. Based on these data, we propose a paradigm of AD etiology where, as a compensatory response to impaired cerebral blood flow (CBF), Aβ triggers pathogenic cerebrovascular neoangiogenesis that underlies the conventional hallmarks of AD. Consequently, here we present evidence that repurposing anti-cancer drugs to modulate cerebrovascular neoangiogenesis, rather than directly targeting the amyloid cascade, may provide an effective treatment for AD and related vascular diseases of the brain. METHODS We explored whether the anti-cancer drug, Axitinib, a small molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors (VEGFR) can inhibit aberrant cerebrovascular neoangiogenic changes, reduce Aβ deposits and reverse cognitive decline in an animal model of AD. One month post-treatment with Axitinib, we employed a battery of tests to assess cognition and memory in aged Tg2576 AD mice and used molecular analysis to demonstrate reduction of amyloid plaques, BBB leakage, hypervascularity and associated disease pathology. FINDINGS Targeting the pro-angiogenic pathway in AD using the cancer drug, Axitinib, dramatically reduced cerebrovascular neoangiogenesis, restored BBB integrity, resolved tight-junction pathogenesis, diminishes Aβ depositions in plaques and effectively restores memory and cognitive performance in a preclinical mouse model of AD. INTERPRETATION Modulation of neoangiogenesis, in an analogous approach to those used to treat aberrant vascularization in cancer and also in the wet form of age-related macular degeneration (AMD), provides an alternative therapeutic strategy for intervention in AD that warrants clinical investigation. FUNDING None.
Collapse
Affiliation(s)
- Chaahat S B Singh
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Kyung Bok Choi
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Lonna Munro
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Hong Yue Wang
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl G Pfeifer
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Wilfred A Jefferies
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
75
|
Amadoro G, Latina V, Balzamino BO, Squitti R, Varano M, Calissano P, Micera A. Nerve Growth Factor-Based Therapy in Alzheimer's Disease and Age-Related Macular Degeneration. Front Neurosci 2021; 15:735928. [PMID: 34566573 PMCID: PMC8459906 DOI: 10.3389/fnins.2021.735928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease which is the most common cause of dementia among the elderly. Imbalance in nerve growth factor (NGF) signaling, metabolism, and/or defect in NGF transport to the basal forebrain cholinergic neurons occurs in patients affected with AD. According to the cholinergic hypothesis, an early and progressive synaptic and neuronal loss in a vulnerable population of basal forebrain involved in memory and learning processes leads to degeneration of cortical and hippocampal projections followed by cognitive impairment with accumulation of misfolded/aggregated Aβ and tau protein. The neuroprotective and regenerative effects of NGF on cholinergic neurons have been largely demonstrated, both in animal models of AD and in living patients. However, the development of this neurotrophin as a disease-modifying therapy in humans is challenged by both delivery limitations (inability to cross the blood-brain barrier (BBB), poor pharmacokinetic profile) and unwanted side effects (pain and weight loss). Age-related macular degeneration (AMD) is a retinal disease which represents the major cause of blindness in developed countries and shares several clinical and pathological features with AD, including alterations in NGF transduction pathways. Interestingly, nerve fiber layer thinning, degeneration of retinal ganglion cells and changes of vascular parameters, aggregation of Aβ and tau protein, and apoptosis also occur in the retina of both AD and AMD. A protective effect of ocular administration of NGF on both photoreceptor and retinal ganglion cell degeneration has been recently described. Besides, the current knowledge about the detection of essential trace metals associated with AD and AMD and their changes depending on the severity of diseases, either systemic or locally detected, further pave the way for a promising diagnostic approach. This review is aimed at describing the employment of NGF as a common therapeutic approach to AMD and AD and the diagnostic power of detection of essential trace metals associated with both diseases. The multiple approaches employed to allow a sustained release/targeting of NGF to the brain and its neurosensorial ocular extensions will be also discussed, highlighting innovative technologies and future translational prospects.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Rome, Italy
- European Brain Research Institute, Rome, Italy
| | | | | | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monica Varano
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| | | | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| |
Collapse
|
76
|
Droho S, Perlman H, Lavine JA. Dendritic cells play no significant role in the laser-induced choroidal neovascularization model. Sci Rep 2021; 11:17254. [PMID: 34446787 PMCID: PMC8390527 DOI: 10.1038/s41598-021-96704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
Age-related macular degeneration (AMD) is genetically associated with complement. Dendritic cells (DCs) play key roles during innate and adaptive immunity, and express complement components and their receptors. We investigated ocular DC heterogeneity and the role of DCs in the laser-induced choroidal neovascularization (CNV) model. In order to determine the function of DCs, we used two models of DC deficiency: the Flt3-/- and Flt3l-/- mouse. We identified three types of ocular DCs: plasmacytoid DC, classical DC-1, and classical DC-2. At steady-state, classical DCs were found in the iris and choroid but were not detectable in the retina. Plasmacytoid DCs existed at very low levels in iris, choroid, and retina. After laser injury, the number of each DC subset was up-regulated in the choroid and retina. In Flt3-/- mice, we found reduced numbers of classical DCs at steady-state, but each DC subset equally increased after laser injury between wildtype and Flt3-/- mice. In Flt3l-/- mice, each DC subsets was severely reduced after laser injury. Neither Flt3-/- or Flt3l-/- mice demonstrated reduced CNV area compared to wildtype mice. DCs do not play any significant role during the laser-induced CNV model of neovascular AMD.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
77
|
Du Y, Kong N, Zhang J. Genetic Mechanism Revealed of Age-Related Macular Degeneration Based on Fusion of Statistics and Machine Learning Method. Front Genet 2021; 12:726599. [PMID: 34422023 PMCID: PMC8375266 DOI: 10.3389/fgene.2021.726599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in the developed world which affects the quality of life for millions of elderly individuals worldwide. Genome-wide association studies (GWAS) have identified genetic variants at 34 loci contributing to AMD. To better understand the disease pathogenesis and identify causal genes for AMD, we applied random walk (RW) and support vector machine (SVM) to identify AMD-related genes based on gene interaction relationship and significance of genes. Our model achieved 0.927 of area under the curve (AUC), and 65 novel genes have been identified as AMD-related genes. To verify our results, a statistics method called summary data-based Mendelian randomization (SMR) has been implemented to integrate GWAS data and transcriptome data to verify AMD susceptibility-related genes. We found 45 genes are related to AMD by SMR. Among these genes, 37 genes overlap with those found by SVM-RW. Finally, we revealed the biological process of genetic mutations leading to changes in gene expression leading to AMD. Our results reveal the genetic pathogenic factors and related mechanisms of AMD.
Collapse
Affiliation(s)
- Yongyi Du
- Department of Ophthalmology, Panyu Central Hospital, Guangzhou, China
| | - Ning Kong
- Department of Ophthalmology, Panyu Central Hospital, Guangzhou, China
| | - Jibin Zhang
- Department of Stomatology, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
78
|
Armento A, Schmidt TL, Sonntag I, Merle DA, Jarboui MA, Kilger E, Clark SJ, Ueffing M. CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway. Int J Mol Sci 2021; 22:ijms22168727. [PMID: 34445430 PMCID: PMC8396051 DOI: 10.3390/ijms22168727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism of CFH dysregulation confers such a great risk for AMD and its role in RPE cell homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources, or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g., IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g., C3, CFB upregulation, and C5 downregulation) that are known to play a role in AMD. Moreover, our results identify the NF-κB pathway as the major pathway involved in regulating these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-κB pathway work in synergy to maintain inflammatory and complement balance, and in case either one of them is dysregulated, the RPE microenvironment changes towards a proinflammatory AMD-like phenotype.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Correspondence: (A.A.); (M.U.); Tel.: +49-7071-29-84953 (A.A.)
| | - Tiziana L. Schmidt
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Inga Sonntag
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - David A. Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department of Ophthalmology, Medical University of Graz, 8036 Graz, Austria
| | - Mohamed Ali Jarboui
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Simon J. Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (A.A.); (M.U.); Tel.: +49-7071-29-84953 (A.A.)
| |
Collapse
|
79
|
Hollingsworth T, Hubbard MG, Levi HJ, White W, Wang X, Simpson R, Jablonski MM, Gross AK. Proinflammatory Pathways Are Activated in the Human Q344X Rhodopsin Knock-In Mouse Model of Retinitis Pigmentosa. Biomolecules 2021; 11:1163. [PMID: 34439829 PMCID: PMC8393353 DOI: 10.3390/biom11081163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary disease of the retina that results in complete blindness. Currently, there are very few treatments for the disease and those that exist work only for the recessively inherited forms. To better understand the pathogenesis of RP, multiple mouse models have been generated bearing mutations found in human patients including the human Q344X rhodopsin knock-in mouse. In recent years, the immune system was shown to play an increasingly important role in RP degeneration. By way of electroretinography, optical coherence tomography, funduscopy, fluorescein angiography, and fluorescent immunohistochemistry, we show degenerative and vascular phenotypes, microglial activation, photoreceptor phagocytosis, and upregulation of proinflammatory pathway proteins in the retinas of the human Q344X rhodopsin knock-in mouse. We also show that an FDA-approved pharmacological agent indicated for the treatment of rheumatoid arthritis is able to halt activation of pro-inflammatory signaling in cultured retinal cells, setting the stage for pre-clinical trials using these mice to inhibit proinflammatory signaling in an attempt to preserve vision. We conclude from this work that pro- and autoinflammatory upregulation likely act to enhance the progression of the degenerative phenotype of rhodopsin Q344X-mediated RP and that inhibition of these pathways may lead to longer-lasting vision in not only the Q344X rhodopsin knock-in mice, but humans as well.
Collapse
Affiliation(s)
- T.J. Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Meredith G. Hubbard
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.G.H.); (H.J.L.)
| | - Hailey J. Levi
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.G.H.); (H.J.L.)
| | - William White
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Xiangdi Wang
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Raven Simpson
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (T.J.H.); (W.W.); (X.W.); (R.S.); (M.M.J.)
| | - Alecia K. Gross
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.G.H.); (H.J.L.)
| |
Collapse
|
80
|
Complement Inhibitors in Age-Related Macular Degeneration: A Potential Therapeutic Option. J Immunol Res 2021; 2021:9945725. [PMID: 34368372 PMCID: PMC8346298 DOI: 10.1155/2021/9945725] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease, which can culminate in irreversible vision loss and blindness in elderly. Nowadays, there is a big gap between dry AMD and wet AMD on treatment. Accounting for nearly 90% of AMD, dry AMD still lacks effective treatment. Numerous genetic and molecular researches have confirmed the significant role of the complement system in the pathogenesis of AMD, leading to a deeper exploration of complement inhibitors in the treatment of AMD. To date, at least 14 different complement inhibitors have been or are being explored in AMD in almost 40 clinical trials. While most complement inhibitors fail to treat AMD successfully, two of them are effective in inhibiting the rate of GA progression in phase II clinical trials, and both of them successfully entered phase III trials. Furthermore, recently emerging complement gene therapy and combination therapy also offer new opportunities to treat AMD in the future. In this review, we aim to introduce genetic and molecular associations between the complement system and AMD, provide the updated progress in complement inhibitors in AMD on clinical trials, and discuss the challenges and prospects of complement therapeutic strategies in AMD.
Collapse
|
81
|
Carlsson E, Beresford MW, Ramanan AV, Dick AD, Hedrich CM. Juvenile Idiopathic Arthritis Associated Uveitis. CHILDREN-BASEL 2021; 8:children8080646. [PMID: 34438537 PMCID: PMC8393258 DOI: 10.3390/children8080646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/31/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease. The development of associated uveitis represents a significant risk for serious complications, including permanent loss of vision. Initiation of early treatment is important for controlling JIA-uveitis, but the disease can appear asymptomatically, making frequent screening procedures necessary for patients at risk. As our understanding of pathogenic drivers is currently incomplete, it is difficult to assess which JIA patients are at risk of developing uveitis. Identification of specific risk factors for JIA-associated uveitis is an important field of research, and in this review, we highlight the genomic, transcriptomic, and proteomic factors identified as potential uveitis risk factors in JIA, and discuss therapeutic strategies.
Collapse
Affiliation(s)
- Emil Carlsson
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, UK;
- Correspondence: (E.C.); (C.M.H.); Tel.: +44-151-228-4811 (ext. 2690) (E.C.); +44-151-252-5849 (C.M.H.)
| | - Michael W. Beresford
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, UK;
- Department of Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
- National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
| | - Athimalaipet V. Ramanan
- Bristol Royal Hospital for Children & Translational Health Sciences, University of Bristol, Bristol BS2 8DZ, UK;
| | - Andrew D. Dick
- Translational Health Sciences, University of Bristol, Bristol BS2 8DZ, UK;
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Christian M. Hedrich
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L14 5AB, UK;
- Department of Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
- National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool L14 5AB, UK
- Correspondence: (E.C.); (C.M.H.); Tel.: +44-151-228-4811 (ext. 2690) (E.C.); +44-151-252-5849 (C.M.H.)
| |
Collapse
|
82
|
Kim BJ, Mastellos DC, Li Y, Dunaief JL, Lambris JD. Targeting complement components C3 and C5 for the retina: Key concepts and lingering questions. Prog Retin Eye Res 2021; 83:100936. [PMID: 33321207 PMCID: PMC8197769 DOI: 10.1016/j.preteyeres.2020.100936] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) remains a major cause of legal blindness, and treatment for the geographic atrophy form of AMD is a significant unmet need. Dysregulation of the complement cascade is thought to be instrumental for AMD pathophysiology. In particular, C3 and C5 are pivotal components of the complement cascade and have become leading therapeutic targets for AMD. In this article, we discuss C3 and C5 in detail, including their roles in AMD, biochemical and structural aspects, locations of expression, and the functions of C3 and C5 fragments. Further, the article critically reviews developing therapeutics aimed at C3 and C5, underscoring the potential effects of broad inhibition of complement at the level of C3 versus more specific inhibition at C5. The relationships of complement biology to the inflammasome and microglia/macrophage activity are highlighted. Concepts of C3 and C5 biology will be emphasized, while we point out questions that need to be settled and directions for future investigations.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Yafeng Li
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
83
|
Interlink between Inflammation and Oxidative Stress in Age-Related Macular Degeneration: Role of Complement Factor H. Biomedicines 2021; 9:biomedicines9070763. [PMID: 34209418 PMCID: PMC8301356 DOI: 10.3390/biomedicines9070763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) heads the list of legal blindness among the elderly population in developed countries. Due to the complex nature of the retina and the variety of risk factors and mechanisms involved, the molecular pathways underlying AMD are not yet fully defined. Persistent low-grade inflammation and oxidative stress eventually lead to retinal pigment epithelium dysfunction and outer blood-retinal barrier (oBRB) breakdown. The identification of AMD susceptibility genes encoding complement factors, and the presence of inflammatory mediators in drusen, the hallmark deposits of AMD, supports the notion that immune-mediated processes are major drivers of AMD pathobiology. Complement factor H (FH), the main regulator of the alternative pathway of the complement system, may have a key contribution in the pathogenesis of AMD as it is able to regulate both inflammatory and oxidative stress responses in the oBRB. Indeed, genetic variants in the CFH gene account for the strongest genetic risk factors for AMD. In this review, we focus on the roles of inflammation and oxidative stress and their connection with FH and related proteins as regulators of both phenomena in the context of AMD.
Collapse
|
84
|
Hu ML, Quinn J, Xue K. Interactions between Apolipoprotein E Metabolism and Retinal Inflammation in Age-Related Macular Degeneration. Life (Basel) 2021; 11:life11070635. [PMID: 34210002 PMCID: PMC8305051 DOI: 10.3390/life11070635] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial retinal disorder that is a major global cause of severe visual impairment. The development of an effective therapy to treat geographic atrophy, the predominant form of AMD, remains elusive due to the incomplete understanding of its pathogenesis. Central to AMD diagnosis and pathology are the hallmark lipid and proteinaceous deposits, drusen and reticular pseudodrusen, that accumulate in the subretinal pigment epithelium and subretinal spaces, respectively. Age-related changes and environmental stressors, such as smoking and a high-fat diet, are believed to interact with the many genetic risk variants that have been identified in several major biochemical pathways, including lipoprotein metabolism and the complement system. The APOE gene, encoding apolipoprotein E (APOE), is a major genetic risk factor for AMD, with the APOE2 allele conferring increased risk and APOE4 conferring reduced risk, in comparison to the wildtype APOE3. Paradoxically, APOE4 is the main genetic risk factor in Alzheimer’s disease, a disease with features of neuroinflammation and amyloid-beta deposition in common with AMD. The potential interactions of APOE with the complement system and amyloid-beta are discussed here to shed light on their roles in AMD pathogenesis, including in drusen biogenesis, immune cell activation and recruitment, and retinal inflammation.
Collapse
Affiliation(s)
- Monica L. Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia;
| | - Joel Quinn
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Correspondence:
| |
Collapse
|
85
|
Pescina S, Sonvico F, Clementino A, Padula C, Santi P, Nicoli S. Preliminary Investigation on Simvastatin-Loaded Polymeric Micelles in View of the Treatment of the Back of the Eye. Pharmaceutics 2021; 13:pharmaceutics13060855. [PMID: 34207544 PMCID: PMC8230077 DOI: 10.3390/pharmaceutics13060855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022] Open
Abstract
There is increasing consensus in considering statins beneficial for age-related macular degeneration and in general, for immune and inflammatory mediated diseases affecting the posterior segment of the eye. However, all available data relate to oral administration, and safety and effectiveness of statins directly administered to the eye are not yet known, despite their ophthalmic administration could be beneficial. The aim was the development and the characterization of polymeric micelles based on TPGS or TPGS/poloxamer 407 to increase simvastatin solubility and stability and to enhance the delivery of the drug to the posterior segment of the eye via trans-scleral permeation. Simvastatin was chosen as a model statin and its active hydroxy acid metabolite was investigated as well. Results demonstrated that polymeric micelles increased simvastatin solubility at least 30-fold and particularly TPGS/poloxamer 407 mixed micelles, successfully stabilized simvastatin over time, preventing the hydrolysis when stored for 1 month at 4 °C. Furthermore, both TPGS (1.3 mPas) and mixed micelles (33.2 mPas) showed low viscosity, suitable for periocular administration. TPGS micelles resulted the best performing in delivery simvastatin either across conjunctiva or sclera in ex vivo porcine models. The data pave the way for a future viable ocular administration of statins.
Collapse
|
86
|
Schwaber EJ, Thompson AC, Smilnak G, Stinnett SS, Whitson HE, Lad EM. Co-Prevalence of Alzheimer's Disease and Age-Related Macular Degeneration Established by Histopathologic Diagnosis. J Alzheimers Dis 2021; 76:207-215. [PMID: 32444545 DOI: 10.3233/jad-200111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Previous epidemiologic studies have suggested an association between AMD and AD, and several therapeutic agents are being developed based on this principle. However, prior studies have provided conflicting results due in part to their reliance on clinical diagnoses that are not based on gold-standard histopathology. OBJECTIVE To use histopathologic standards for diagnosis in order to determine the co-prevalence of AD among patients with and without AMD. METHODS This is a cross-sectional study of 157 autopsy ocular specimens from patients with and without AMD that were greater than 75 years of age at death. Sarks staging was used to document the severity of AMD, and Braak and Braak staging was used to assess the severity of AD in corresponding brain specimens. The prevalence of AD within different severities of AMD was determined using univariable and multivariable logistic regression. RESULTS 58% of autopsy eyes had AMD. The prevalence of AD was lower in AMD subjects (63%) compared to non-AMD subjects (73%), even when grouped by severity (all p > 0.15). The likelihood of AD was significantly less in AMD subjects, even after adjusting for age and sex in multivariable analysis (OR 0.47, p = 0.049). CONCLUSION Histopathologic diagnoses fail to support an increase in prevalence of AD among subjects with AMD, even when disease severity is considered.
Collapse
Affiliation(s)
- Eric J Schwaber
- Department of Internal Medicine, Griffin Hospital, Derby, CT, USA
| | - Atalie C Thompson
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Gordon Smilnak
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Sandra S Stinnett
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Heather E Whitson
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA.,Department of Medicine, Division of Geriatrics, Duke University Medical Center, Durham, NC, USA
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
87
|
Armento A, Ueffing M, Clark SJ. The complement system in age-related macular degeneration. Cell Mol Life Sci 2021; 78:4487-4505. [PMID: 33751148 PMCID: PMC8195907 DOI: 10.1007/s00018-021-03796-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) is a chronic and progressive degenerative disease of the retina, which culminates in blindness and affects mainly the elderly population. AMD pathogenesis and pathophysiology are incredibly complex due to the structural and cellular complexity of the retina, and the variety of risk factors and molecular mechanisms that contribute to disease onset and progression. AMD is driven by a combination of genetic predisposition, natural ageing changes and lifestyle factors, such as smoking or nutritional intake. The mechanism by which these risk factors interact and converge towards AMD are not fully understood and therefore drug discovery is challenging, where no therapeutic attempt has been fully effective thus far. Genetic and molecular studies have identified the complement system as an important player in AMD. Indeed, many of the genetic risk variants cluster in genes of the alternative pathway of the complement system and complement activation products are elevated in AMD patients. Nevertheless, attempts in treating AMD via complement regulators have not yet been successful, suggesting a level of complexity that could not be predicted only from a genetic point of view. In this review, we will explore the role of complement system in AMD development and in the main molecular and cellular features of AMD, including complement activation itself, inflammation, ECM stability, energy metabolism and oxidative stress.
Collapse
Affiliation(s)
- Angela Armento
- Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Simon J Clark
- Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
88
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
89
|
Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom 2021; 88:269-81. [PMID: 16255686 DOI: 10.1111/j.1444-0938.2005.tb06711.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/27/2005] [Accepted: 07/01/2005] [Indexed: 01/14/2023] Open
Abstract
The central retina in primates is adapted for high acuity vision. The most significant adaptations to neural retina in this respect are: 1. The very high density of cone photoreceptors on the visual axis; 2. The dominance of Midget pathways arising from these cones and 3. The diminishment of retinal blood supply in the macula, and its absence on the visual axis. Restricted blood supply to the part of the retina that has the highest density of neural elements is paradoxical. Inhibition of vascular growth and proliferation is evident during foetal life and results in metabolic stress in ganglion cells and Muller cells, which is resolved during formation of the foveal depression. In this review we argue that at the macula stressed retinal neurons adapt during development to a limited blood supply from the choriocapillaris, which supplies little in excess of metabolic demand of the neural retina under normal conditions. We argue also that while adaptation of the choriocapillaris underlying the foveal region may initially augment the local supply of oxygen and nutrients by diffusion, in the long term these adaptations make the region more vulnerable to age-related changes, including the accumulation of insoluble material in Bruch's membrane and beneath the retinal pigment epithelium. These changes eventually impact on delivery of oxygen and nutrients to the RPE and outer neural retina because of reduced flow in the choriocapillaris and the increasing barriers to effective diffusion. Both the inflammatory response and the sequelae of oxidative stress are predictable outcomes in this scenario.
Collapse
Affiliation(s)
- Jan M Provis
- Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT, 2601, Australia.
| | | | | | | | | |
Collapse
|
90
|
Histopathology of Age-Related Macular Degeneration and Implications for Pathogenesis and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33847998 DOI: 10.1007/978-3-030-66014-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Aging is associated with a number of histological changes in the choroid, Bruch's membrane, RPE, and neuroretina. Outside of the normal physiologic aging spectrum of changes, abnormal deposits such as basal laminar deposits, basal linear deposits, and soft drusen are known to be associated with AMD. Progression of AMD to advanced stages involving geographic atrophy, choroidal neovascularization, and/or disciform scars can result in debilitating vision loss. Knowledge of the angiogenic pathway and its components that stimulate neovascularization has led to the development of a new paradigm of intravitreal anti-VEGF pharmacotherapy in the management of neovascular AMD. Currently however, there are no available treatments for the modification of disease progression in non-neovascular AMD, or for the treatment of geographic atrophy. Further understanding of the histopathology of AMD and the molecular mechanisms that contribute to pathogenesis of the disease may reveal additional therapeutic targets.
Collapse
|
91
|
Matías-Pérez D, García-Montalvo IA. Fatty Acids and Lipid Derivatives Protecting Photooxidative Attack in Age-related Macular Degeneration. J Oleo Sci 2021; 70:453-458. [PMID: 33692241 DOI: 10.5650/jos.ess20314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective is the systematic review of studies published in Scielo, Redalyc, Dialnet, Web of Science, Scopus and Pubmed, related to the inclusion of fatty acids and lipid derivatives in the daily diet to prevent or delay the appearance or progression of Age-Related Macular Degeneration (AMD). The analysis of the research results consulted shows that AMD is one of the most frequent causes of blindness in subjects over 55 years of age. AMD is characterized by decreased vision, metamorphopsia, macropsies, micropsies, and central scotoma. Disease that must be diagnosed early as it can lead to irreversible blindness. Among the components of the diet that in numerous epidemiological studies have shown an association in the treatment of AMD and that are reviewed in this work are fatty acids, vitamins and carotenoids. There is ample evidence that fatty acids and lipid derivatives can be included in the diet plans of subjects with AMD.
Collapse
Affiliation(s)
- Diana Matías-Pérez
- Division of Graduate Studies and Research, National Technology of Mexico/Technological Institute of Oaxaca
| | | |
Collapse
|
92
|
de Jong S, Gagliardi G, Garanto A, de Breuk A, Lechanteur YTE, Katti S, van den Heuvel LP, Volokhina EB, den Hollander AI. Implications of genetic variation in the complement system in age-related macular degeneration. Prog Retin Eye Res 2021; 84:100952. [PMID: 33610747 DOI: 10.1016/j.preteyeres.2021.100952] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022]
Abstract
Age-related macular degeneration (AMD) is the main cause of vision loss among the elderly in the Western world. While AMD is a multifactorial disease, the complement system was identified as one of the main pathways contributing to disease risk. The strong link between the complement system and AMD was demonstrated by genetic associations, and by elevated complement activation in local eye tissue and in the systemic circulation of AMD patients. Several complement inhibitors have been and are being explored in clinical trials, but thus far with limited success, leaving the majority of AMD patients without treatment options to date. This indicates that there is still a gap of knowledge regarding the functional implications of the complement system in AMD pathogenesis and how to bring these towards clinical translation. Many different experimental set-ups and disease models have been used to study complement activation in vivo and in vitro, and recently emerging patient-derived induced pluripotent stem cells and genome-editing techniques open new opportunities to study AMD disease mechanisms and test new therapeutic strategies in the future. In this review we provide an extensive overview of methods employed to understand the molecular processes of complement activation in AMD pathogenesis. We discuss the findings, advantages and challenges of each approach and conclude with an outlook on how recent, exciting developments can fill in current knowledge gaps and can aid in the development of effective complement-targeting therapeutic strategies in AMD.
Collapse
Affiliation(s)
- Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Giuliana Gagliardi
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Pediatrics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Yara T E Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Suresh Katti
- Gemini Therapeutics Inc., Cambridge, MA, 02139, USA
| | - Lambert P van den Heuvel
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Elena B Volokhina
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Amalia Children's Hospital, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Laboratory Medicine, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, the Netherlands.
| |
Collapse
|
93
|
Fatoba O, Itokazu T, Yamashita T. Complement cascade functions during brain development and neurodegeneration. FEBS J 2021; 289:2085-2109. [PMID: 33599083 DOI: 10.1111/febs.15772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The complement system, an essential tightly regulated innate immune system, is a key regulator of normal central nervous system (CNS) development and function. However, aberrant complement component expression and activation in the brain may culminate into marked neuroinflammatory response, neurodegenerative processes and cognitive impairment. Over the years, complement-mediated neuroinflammatory responses and complement-driven neurodegeneration have been increasingly implicated in the pathogenesis of a wide spectrum of CNS disorders. This review describes how complement system contributes to normal brain development and function. We also discuss how pathologic insults such as misfolded proteins, lipid droplet/lipid droplet-associated protein or glycosaminoglycan accumulation could trigger complement-mediated neuroinflammatory responses and neurodegenerative process in neurodegenerative proteinopathies, age-related macular degeneration and neurodegenerative lysosomal storage disorders.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
94
|
Subthreshold Nano-Second Laser Treatment and Age-Related Macular Degeneration. J Clin Med 2021; 10:jcm10030484. [PMID: 33525639 PMCID: PMC7866172 DOI: 10.3390/jcm10030484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 12/26/2022] Open
Abstract
The presence of drusen is an important hallmark of age-related macular degeneration (AMD). Laser-induced regression of drusen, first observed over four decades ago, has led to much interest in the potential role of lasers in slowing the progression of the disease. In this article, we summarise the key insights from pre-clinical studies into the possible mechanisms of action of various laser interventions that result in beneficial changes in the retinal pigment epithelium/Bruch's membrane/choriocapillaris interface. Key learnings from clinical trials of laser treatment in AMD are also summarised, concentrating on the evolution of laser technology towards short pulse, non-thermal delivery such as the nanosecond laser. The evolution in our understanding of AMD, through advances in multimodal imaging and functional testing, as well as ongoing investigation of key pathological mechanisms, have all helped to set the scene for further well-conducted randomised trials to further explore potential utility of the nanosecond and other subthreshold short pulse lasers in AMD.
Collapse
|
95
|
Pugazhendhi A, Hubbell M, Jairam P, Ambati B. Neovascular Macular Degeneration: A Review of Etiology, Risk Factors, and Recent Advances in Research and Therapy. Int J Mol Sci 2021; 22:1170. [PMID: 33504013 PMCID: PMC7866170 DOI: 10.3390/ijms22031170] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Neovascular age-related macular degeneration (exudative or wet AMD) is a prevalent, progressive retinal degenerative macular disease that is characterized by neovascularization of the choroid, mainly affecting the elderly population causing gradual vision impairment. Risk factors such as age, race, genetics, iris color, smoking, drinking, BMI, and diet all play a part in nvAMD's progression, with anti-vascular endothelial growth factor (anti-VEGF) therapy being the mainstay of treatment. Current therapeutic advancements slow the progression of the disease but do not cure or reverse its course. Newer therapies such as gene therapies, Rho-kinase inhibitors, and levodopa offer potential new targets for treatment.
Collapse
Affiliation(s)
- Arunbalaji Pugazhendhi
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| | - Margaret Hubbell
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| | - Pooja Jairam
- Vagelos College of Physicians & Surgeons, Columbia Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - Balamurali Ambati
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| |
Collapse
|
96
|
Edwards M, Lutty GA. Bruch's Membrane and the Choroid in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:89-119. [PMID: 33847999 DOI: 10.1007/978-3-030-66014-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A healthy choroidal vasculature is necessary to support the retinal pigment epithelium (RPE) and photoreceptors, because there is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex. This relationship is compromised in age-related macular degeneration (AMD) by the dysfunction or death of the choroidal vasculature. This chapter will provide a basic description of the human Bruch's membrane and choroidal anatomy and physiology and how they change in AMD.The choriocapillaris is the lobular, fenestrated capillary system of choroid. It lies immediately posterior to the pentalaminar Bruch's membrane (BrMb). The blood supply for this system is the intermediate blood vessels of Sattler's layer and the large blood vessels in Haller's layer.In geographic atrophy (GA), an advanced form of dry AMD, large confluent drusen form on BrMb, and hyperpigmentation (presumably dysfunction in RPE) appears to be the initial insult. The resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of GA. The death and dysfunction of CC and photoreceptors appear to be secondary events to loss in RPE. The loss of choroidal vasculature may be the initial insult in neovascular AMD (nAMD). We have observed a loss of CC with an intact RPE monolayer in nAMD, by making RPE hypoxic. These hypoxic cells then produce angiogenic substances like vascular endothelial growth factor (VEGF), which stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). Reduction in blood supply to the CC, often stenosis of intermediate and large blood vessels, is associated with CC loss.The polymorphisms in the complement system components are associated with AMD. In addition, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of proinflammatory molecules like CRP and complement components during AMD. In this toxic milieu, CC die or become dysfunctional even early in AMD. The loss of CC might be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation.Therefore, the mutualistic symbiotic relationship of the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.
Collapse
Affiliation(s)
- Malia Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
97
|
Immunological Aspects of Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:143-189. [PMID: 33848001 DOI: 10.1007/978-3-030-66014-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Increasing evidence over the past two decades points to a pivotal role for immune mechanisms in age-related macular degeneration (AMD) pathobiology. In this chapter, we will explore immunological aspects of AMD, with a specific focus on how immune mechanisms modulate clinical phenotypes of disease and severity and how components of the immune system may serve as triggers for disease progression in both dry and neovascular AMD. We will briefly review the biology of the immune system, defining the role of immune mechanisms in chronic degenerative disease and differentiating from immune responses to acute injury or infection. We will explore current understanding of the roles of innate immunity (especially macrophages), antigen-specific immunity (T cells, B cells, and autoimmunity), immune amplifications systems, especially complement activity and the NLRP3 inflammasome, in the pathogenesis of both dry and neovascular AMD, reviewing data from pathology, experimental animal models, and clinical studies of AMD patients. We will also assess how interactions between the immune system and infectious pathogens could potentially modulate AMD pathobiology via alterations in in immune effector mechanisms. We will conclude by reviewing the paradigm of "response to injury," which provides a means to integrate various immunologic mechanisms along with nonimmune mechanisms of tissue injury and repair as a model to understand the pathobiology of AMD.
Collapse
|
98
|
Innate Immunity in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:121-141. [PMID: 33848000 DOI: 10.1007/978-3-030-66014-7_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple lines of investigation have demonstrated that inflammation plays significant roles in etiology of age-related macular degeneration (AMD). Although interventional trials in AMD therapy targeting inflammatory pathways have been conducted, they have not yet been successful and a detailed understanding as to why some have failed is still elusive. One limitation is the relative dearth of information on how immune cells interact with retinal cells to generate AMD phenotypes at each disease stage. Here, we summarize current research evidence and hypotheses regarding potential pathogenic roles of innate immune cells in the eye, which include resident retinal microglia, macrophages derived from infiltrating systemic monocytes, and macrophages resident in the choroid. We relate recent findings regarding the physiology, function, and cellular interactions involving innate immune cells in the retina and choroid to AMD-related processes, including: (1) drusen formation and regression, (2) the onset and spread of degeneration in late atrophic AMD, and (3) the initiation, growth, and exudation of neovascular vessels in late "wet" AMD. Understanding how innate immune cells contribute to specific AMD phenotypes can assist in generating a comprehensive view on the inflammatory etiology of AMD and aid in identifying anti-inflammatory therapeutic strategies and selecting appropriate clinical outcomes for the planned interventions.
Collapse
|
99
|
Acadesine suppresses TNF-α induced complement component 3 (C3), in retinal pigment epithelial (RPE) cells. PLoS One 2020; 15:e0244307. [PMID: 33362238 PMCID: PMC7757886 DOI: 10.1371/journal.pone.0244307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Rationale Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness in the developed world. Aging, inflammation and complement dysregulation affecting the retinal pigment epithelium (RPE), are considered significant contributors in its pathogenesis and several evidences have linked tumor necrosis factor alpha (TNF-α) and complement component 3 (C3) with AMD. Acadesine, an analog of AMP and an AMP-activated protein kinase (AMPK) activator, has been shown to have cytoprotective effects in human clinical trials as well as having anti-inflammatory and anti-vascular exudative effects in animals. The purpose of this study was to evaluate if acadesine is able to suppress TNF-α induced C3 in RPE cells. Methods ARPE-19 and human primary RPE cells were cultured and allowed to grow to confluence. TNF-α was used for C3 induction in the presence or absence of acadesine. Small molecule inhibitors and siRNA were used to determine if acadesine exerts its effect via the extracellular or intracellular pathway and to evaluate the importance of AMPK for these effects. The expression level of C3 was determined by immunoblot analysis. Results Acadesine suppresses TNF-α induced C3 in a dose dependent manner. When we utilized the adenosine receptor inhibitor dipyridamole (DPY) along with acadesine, acadesine’s effects were abolished, indicating the necessity of acadesine to enter the cell in order to exert it’s action. However, pretreatment with 5-iodotubericidin (5-Iodo), an adenosine kinase (AK) inhibitor, didn’t prevent acadesine from decreasing TNF-α induced C3 expression suggesting that acadesine does not exert its effect through AMP conversion and subsequent activation of AMPK. Consistent with this, knockdown of AMPK α catalytic subunit did not affect the inhibitory effect of acadesine on TNF-α upregulation of C3. Conclusions Our results suggest that acadesine suppresses TNF-α induced C3, likely through an AMPK-independent pathway, and could have potential use in complement over activation diseases.
Collapse
|
100
|
Associations between the Complement System and Choroidal Neovascularization in Wet Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21249752. [PMID: 33371261 PMCID: PMC7765894 DOI: 10.3390/ijms21249752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.
Collapse
|