51
|
Song W, Xin S, He M, Pfeiffer S, Cao A, Li H, Schick JA, Jin X. Evolutionary and functional analyses demonstrate conserved ferroptosis protection by Arabidopsis GPXs in mammalian cells. FASEB J 2021; 35:e21550. [PMID: 33960023 DOI: 10.1096/fj.202000856r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 01/14/2023]
Abstract
Species have evolved unique mechanisms to combat the effects of oxidative stress inside cells. A particularly devastating consequence of an unhindered oxidation of membrane lipids in the presence of iron results in cell death, known as ferroptosis. Hallmarks of ferroptosis, including peroxidation of polyunsaturated fatty acids, are conserved among animals and plants, however, early divergence of an ancestral mammalian GPX4 (mGPX4) has complicated our understanding of mechanistic similarities between species. To this end, we performed a comprehensive phylogenetic analysis and identified that orthologous Arabidopsis GPXs (AtGPXs) are more highly related to mGPX4 than mGPX4 is to other mammalian GPXs. This high degree of conservation suggested that experimental substitution may be possible. We, therefore, ectopically expressed AtGPX1-8 in ferroptosis-sensitive mouse fibroblasts. This substitution experiment revealed highest protection against ferroptosis induction by AtGPX5, as well as moderate protection by AtGPX2, -7, and -8. Further analysis of these cells revealed substantial abatement of lipid peroxidation in response to pharmacological challenge. The results suggest that the presence of ancestral GPX4 resulted in later functional divergence and specialization of GPXs in plants. The results also challenge a strict requirement for selenocysteine activity and suggest thioredoxin as a potent parallel antioxidant system in both plants and mammals.
Collapse
Affiliation(s)
- Wangyang Song
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China.,Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Shan Xin
- Institute of Molecular Toxicology and Pharmacology, Genetics and Cellular Engineering Group, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Meng He
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Susanne Pfeiffer
- Institute of Molecular Toxicology and Pharmacology, Genetics and Cellular Engineering Group, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Joel A Schick
- Institute of Molecular Toxicology and Pharmacology, Genetics and Cellular Engineering Group, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China.,Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
52
|
Müller-Schüssele SJ, Bohle F, Rossi J, Trost P, Meyer AJ, Zaffagnini M. Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites. BMC PLANT BIOLOGY 2021; 21:322. [PMID: 34225654 PMCID: PMC8256493 DOI: 10.1186/s12870-021-03087-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/08/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Flexibility of plant metabolism is supported by redox regulation of enzymes via posttranslational modification of cysteine residues, especially in plastids. Here, the redox states of cysteine residues are partly coupled to the thioredoxin system and partly to the glutathione pool for reduction. Moreover, several plastid enzymes involved in reactive oxygen species (ROS) scavenging and damage repair draw electrons from glutathione. In addition, cysteine residues can be post-translationally modified by forming a mixed disulfide with glutathione (S-glutathionylation), which protects thiol groups from further oxidation and can influence protein activity. However, the evolution of the plastid glutathione-dependent redox network in land plants and the conservation of cysteine residues undergoing S-glutathionylation is largely unclear. RESULTS We analysed the genomes of nine representative model species from streptophyte algae to angiosperms and found that the antioxidant enzymes and redox proteins belonging to the plastid glutathione-dependent redox network are largely conserved, except for lambda- and the closely related iota-glutathione S-transferases. Focussing on glutathione-dependent redox modifications, we screened the literature for target thiols of S-glutathionylation, and found that 151 plastid proteins have been identified as glutathionylation targets, while the exact cysteine residue is only known for 17% (26 proteins), with one or multiple sites per protein, resulting in 37 known S-glutathionylation sites for plastids. However, 38% (14) of the known sites were completely conserved in model species from green algae to flowering plants, with 22% (8) on non-catalytic cysteines. Variable conservation of the remaining sites indicates independent gains and losses of cysteines at the same position during land plant evolution. CONCLUSIONS We conclude that the glutathione-dependent redox network in plastids is highly conserved in streptophytes with some variability in scavenging and damage repair enzymes. Our analysis of cysteine conservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.
Collapse
Affiliation(s)
- Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany.
- Present Address: Department of Biology, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany.
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
53
|
Tamaki S, Mochida K, Suzuki K. Diverse Biosynthetic Pathways and Protective Functions against Environmental Stress of Antioxidants in Microalgae. PLANTS (BASEL, SWITZERLAND) 2021; 10:1250. [PMID: 34205386 PMCID: PMC8234872 DOI: 10.3390/plants10061250] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
Eukaryotic microalgae have been classified into several biological divisions and have evolutionarily acquired diverse morphologies, metabolisms, and life cycles. They are naturally exposed to environmental stresses that cause oxidative damage due to reactive oxygen species accumulation. To cope with environmental stresses, microalgae contain various antioxidants, including carotenoids, ascorbate (AsA), and glutathione (GSH). Carotenoids are hydrophobic pigments required for light harvesting, photoprotection, and phototaxis. AsA constitutes the AsA-GSH cycle together with GSH and is responsible for photooxidative stress defense. GSH contributes not only to ROS scavenging, but also to heavy metal detoxification and thiol-based redox regulation. The evolutionary diversity of microalgae influences the composition and biosynthetic pathways of these antioxidants. For example, α-carotene and its derivatives are specific to Chlorophyta, whereas diadinoxanthin and fucoxanthin are found in Heterokontophyta, Haptophyta, and Dinophyta. It has been suggested that AsA is biosynthesized via the plant pathway in Chlorophyta and Rhodophyta and via the Euglena pathway in Euglenophyta, Heterokontophyta, and Haptophyta. The GSH biosynthetic pathway is conserved in all biological kingdoms; however, Euglenophyta are able to synthesize an additional thiol antioxidant, trypanothione, using GSH as the substrate. In the present study, we reviewed and discussed the diversity of microalgal antioxidants, including recent findings.
Collapse
Affiliation(s)
- Shun Tamaki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
| | - Keiichi Mochida
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kengo Suzuki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
- euglena Co., Ltd., Tokyo 108-0014, Japan
| |
Collapse
|
54
|
Martínez C, Valenzuela JL, Jamilena M. Genetic and Pre- and Postharvest Factors Influencing the Content of Antioxidants in Cucurbit Crops. Antioxidants (Basel) 2021; 10:894. [PMID: 34199481 PMCID: PMC8228042 DOI: 10.3390/antiox10060894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cucurbitaceae is one of the most economically important plant families, and includes some worldwide cultivated species like cucumber, melons, and squashes, and some regionally cultivated and feral species that contribute to the human diet. For centuries, cucurbits have been appreciated because of their nutritional value and, in traditional medicine, because of their ability to alleviate certain ailments. Several studies have demonstrated the remarkable contents of valuable compounds in cucurbits, including antioxidants such as polyphenols, flavonoids, and carotenoids, but also tannins and terpenoids, which are abundant. This antioxidant power is beneficial for human health, but also in facing plant diseases and abiotic stresses. This review brings together data on the antioxidant properties of cucurbit species, addressing the genetic and pre- and postharvest factors that regulate the antioxidant content in different plant organs. Environmental conditions, management, storage, and pre- and postharvest treatments influencing the biosynthesis and activity of antioxidants, together with the biodiversity of this family, are determinant in improving the antioxidant potential of this group of species. Plant breeding, as well as the development of innovative biotechnological approaches, is also leading to new possibilities for exploiting cucurbits as functional products.
Collapse
Affiliation(s)
| | | | - Manuel Jamilena
- Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3) and CIAIMBITAL Reseach Center, University of Almería, 04120 Almería, Spain; (C.M.); (J.L.V.)
| |
Collapse
|
55
|
Cejudo FJ, González MC, Pérez-Ruiz JM. Redox regulation of chloroplast metabolism. PLANT PHYSIOLOGY 2021; 186:9-21. [PMID: 33793865 PMCID: PMC8154093 DOI: 10.1093/plphys/kiaa062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX-FTR-TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX-FTR-TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.
Collapse
Affiliation(s)
- Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
- Author for communication:
| | - María-Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
56
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
57
|
Montillet JL, Rondet D, Brugière S, Henri P, Rumeau D, Reichheld JP, Couté Y, Leonhardt N, Rey P. Plastidial and cytosolic thiol reductases participate in the control of stomatal functioning. PLANT, CELL & ENVIRONMENT 2021; 44:1417-1435. [PMID: 33537988 DOI: 10.1111/pce.14013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Stomatal movements via the control of gas exchanges determine plant growth in relation to environmental stimuli through a complex signalling network involving reactive oxygen species that lead to post-translational modifications of Cys and Met residues, and alter protein activity and/or conformation. Thiol-reductases (TRs), which include thioredoxins, glutaredoxins (GRXs) and peroxiredoxins (PRXs), participate in signalling pathways through the control of Cys redox status in client proteins. Their involvement in stomatal functioning remains poorly characterized. By performing a mass spectrometry-based proteomic analysis, we show that numerous thiol reductases, like PRXs, are highly abundant in guard cells. When investigating various Arabidopsis mutants impaired in the expression of TR genes, no change in stomatal density and index was noticed. In optimal growth conditions, a line deficient in cytosolic NADPH-thioredoxin reductases displayed higher stomatal conductance and lower leaf temperature evaluated by thermal infrared imaging. In contrast, lines deficient in plastidial 2-CysPRXs or type-II GRXs exhibited compared to WT reduced conductance and warmer leaves in optimal conditions, and enhanced stomatal closure in epidermal peels treated with abscisic acid or hydrogen peroxide. Altogether, these data strongly support the contribution of thiol redox switches within the signalling network regulating guard cell movements and stomatal functioning.
Collapse
Affiliation(s)
- Jean-Luc Montillet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Damien Rondet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
- Laboratoire Nixe, Sophia-Antipolis, Valbonne, France
| | - Sabine Brugière
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Patricia Henri
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Dominique Rumeau
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, Perpignan, France
| | - Yohann Couté
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Nathalie Leonhardt
- SAVE Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
58
|
Thioredoxin h2 and o1 Show Different Subcellular Localizations and Redox-Active Functions, and Are Extrachloroplastic Factors Influencing Photosynthetic Performance in Fluctuating Light. Antioxidants (Basel) 2021; 10:antiox10050705. [PMID: 33946819 PMCID: PMC8147087 DOI: 10.3390/antiox10050705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Arabidopsis contains eight different h-type thioredoxins (Trx) being distributed in different cell organelles. Although Trx h2 is deemed to be confined to mitochondria, its subcellular localization and function are discussed controversially. Here, cell fractionation studies were used to clarify this question, showing Trx h2 protein to be exclusively localized in microsomes rather than mitochondria. Furthermore, Arabidopsis trxo1, trxh2 and trxo1h2 mutants were analyzed to compare the role of Trx h2 with mitochondrial Trx o1. Under medium light, trxo1 and trxo1h2 showed impaired growth, while trxh2 was similar to wild type. In line with this, trxo1 and trxo1h2 clustered differently from wild type with respect to nocturnal metabolite profiles, revealing a decrease in ascorbate and glutathione redox states. Under fluctuating light, these genotypic differences were attenuated. Instead, the trxo1h2 double mutant showed an improved NADPH redox balance, compared to wild type, accompanied by increased photosynthetic efficiency, specifically in the high-light phases. Conclusively, Trx h2 and Trx o1 are differentially localized in microsomes and mitochondria, respectively, which is associated with different redox-active functions and effects on plant growth in constant light, while there is a joint role of both Trxs in regulating NADPH redox balance and photosynthetic performance in fluctuating light.
Collapse
|
59
|
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. BIOLOGY 2021; 10:267. [PMID: 33810535 PMCID: PMC8066271 DOI: 10.3390/biology10040267] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The stationary life of plants has led to the evolution of a complex gridded antioxidant defence system constituting numerous enzymatic components, playing a crucial role in overcoming various stress conditions. Mainly, these plant enzymes are superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR), which work as part of the antioxidant defence system. These enzymes together form a complex set of mechanisms to minimise, buffer, and scavenge the reactive oxygen species (ROS) efficiently. The present review is aimed at articulating the current understanding of each of these enzymatic components, with special attention on the role of each enzyme in response to the various environmental, especially abiotic stresses, their molecular characterisation, and reaction mechanisms. The role of the enzymatic defence system for plant health and development, their significance, and cross-talk mechanisms are discussed in detail. Additionally, the application of antioxidant enzymes in developing stress-tolerant transgenic plants are also discussed.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Harish
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lav Sharma
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Francisco Roberto Quiroz-Figueroa
- Laboratorio de Fitomejoramiento Molecular, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., 81101 Guasave, Mexico;
| | - Mukesh Meena
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, NH 11C, Kant Kalwar, Jaipur 303002, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| |
Collapse
|
60
|
Determining the ROS and the Antioxidant Status of Leaves During Cold Acclimation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2156:241-254. [PMID: 32607985 DOI: 10.1007/978-1-0716-0660-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cold slows down Calvin cycle activity stronger than photosynthetic electron transport, which supports production of reactive oxygen species (ROS). Even under extreme temperature conditions, most ROS are detoxified by the combined action of low-molecular weight antioxidants and antioxidant enzymes. Subsequent regeneration of the low-molecular weight antioxidants by NAD(P)H and thioredoxin/thiol-dependent pathways relaxes the electron pressure in the photosynthetic electron transport chain. In general, the chloroplast antioxidant system protects plants from severe damage of enzymes, metabolites, and cellular structures by both ROS detoxification and antioxidant recycling. Various methods have been developed to quantify ROS and antioxidant levels in photosynthetic tissues. Here, we summarize a series of exceptionally fast and easily applicable methods that show local ROS accumulation and provide information on the overall availability of reducing sugars, mainly ascorbate, and of thiols.
Collapse
|
61
|
Haskirli H, Yilmaz O, Ozgur R, Uzilday B, Turkan I. Melatonin mitigates UV-B stress via regulating oxidative stress response, cellular redox and alternative electron sinks in Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 182:112592. [PMID: 33316594 DOI: 10.1016/j.phytochem.2020.112592] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 11/13/2020] [Indexed: 05/18/2023]
Abstract
Melatonin plays an active role in neutralizing free radicals, especially by triggering the defense system and certain enzymes that work under stress in both mammals and plant systems. Exposure to ultraviolet (UV-B) stress can be deadly for plants since UV-B can induce production of reactive oxygen species and damage nucleic acids. In the present study, to uncover the possible alleviative role of melatonin against UV-B stress, Arabidopsis thaliana plants were treated with melatonin (10 μM) and were exposed to UV-B stress for 90 min and 180 min (46 and 92 kJ m-2 d-1). Plants treated with melatonin had lower lipid peroxidation levels and higher Fv/Fm values at both time points. UV-B stress-induced activities of superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX), but no additional induction was observed in melatonin treated groups. Moreover, melatonin differentially regulated the expression of glutathione peroxidase 2 (GPX2) and GPX7 genes under UV-B stress. Melatonin treatment did not have any effect on glutathione biosynthesis and catabolism genes. However, expression of alternative oxidase 1a (AOX1a) and AOX1d were lower in UV-B + melatonin treated plants when compared to only UV-B treated plants, which indicates lower oxidative load in mitochondria.
Collapse
Affiliation(s)
- Hasan Haskirli
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey
| | - Oguzhan Yilmaz
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey.
| |
Collapse
|
62
|
Kuang Y, Guo X, Guo A, Ran X, He Y, Zhang Y, Guo L. Single-molecule enzymatic reaction dynamics and mechanisms of GPX3 and TRXh9 from Arabidopsis thaliana. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118778. [PMID: 32810779 DOI: 10.1016/j.saa.2020.118778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Glutathione peroxidases (GPXs) regulate the levels of reactive oxygen species in cells and tissues. During the redox cycling, the plant GPX is regenerated by thioredoxins (TRXs) as reductant rather than glutathione as the electron donor. However, the direct experimental observation on the interaction dynamics between GPXs and TRXs has not been reported, and the redox mechanism is unclear. In this work, the protein interactions between oxidized AtGPX3 and reduced AtTRXh9 have been studied using single-molecule fluorescence resonance energy transfer (smFRET). The obtained results indicate there are four processes in these two protein interaction, including biological recognition, binding, intermediate and unbinding state. Two enzymatic reaction intermediate states have been identified in the dissociation of AtGPX3-AtTRXh9 complex from binding to unbinding state, suggesting two types of interaction pathways and intermediate complexes. In particular, the dynamical study reveals that the redox reaction between oxidized AtGPX3 and reduced AtTRXh9 is realized through the forming and breaking of disulfide bonds via the active sites of Cys4 and Cys57 in AtTRXh9. These findings are of significant for deep understanding the redox reaction and mechanism between GPXs and TRXs enzymes, and studying other protein dynamics at single-molecule level.
Collapse
Affiliation(s)
- Yanmin Kuang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China; School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Xing Guo
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Aiyu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China
| | - Xia Ran
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China; School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yulu He
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China
| | - Lijun Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China; School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
63
|
Meyer AJ, Dreyer A, Ugalde JM, Feitosa-Araujo E, Dietz KJ, Schwarzländer M. Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants - and where to go next. Biol Chem 2020; 402:399-423. [PMID: 33544501 DOI: 10.1515/hsz-2020-0291] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Cys-based redox regulation was long regarded a major adjustment mechanism of photosynthesis and metabolism in plants, but in the recent years, its scope has broadened to most fundamental processes of plant life. Drivers of the recent surge in new insights into plant redox regulation have been the availability of the genome-scale information combined with technological advances such as quantitative redox proteomics and in vivo biosensing. Several unexpected findings have started to shift paradigms of redox regulation. Here, we elaborate on a selection of recent advancements, and pinpoint emerging areas and questions of redox biology in plants. We highlight the significance of (1) proactive H2O2 generation, (2) the chloroplast as a unique redox site, (3) specificity in thioredoxin complexity, (4) how to oxidize redox switches, (5) governance principles of the redox network, (6) glutathione peroxidase-like proteins, (7) ferroptosis, (8) oxidative protein folding in the ER for phytohormonal regulation, (9) the apoplast as an unchartered redox frontier, (10) redox regulation of respiration, (11) redox transitions in seed germination and (12) the mitochondria as potential new players in reductive stress safeguarding. Our emerging understanding in plants may serve as a blueprint to scrutinize principles of reactive oxygen and Cys-based redox regulation across organisms.
Collapse
Affiliation(s)
- Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113Bonn, Germany
| | - Anna Dreyer
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501Bielefeld, Germany
| | - José M Ugalde
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113Bonn, Germany
| | - Elias Feitosa-Araujo
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143Münster, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501Bielefeld, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143Münster, Germany
| |
Collapse
|
64
|
Wu F, Jiang G, Yan H, Xiao L, Liang H, Zhang D, Jiang Y, Duan X. Redox regulation of glutathione peroxidase by thioredoxin in longan fruit in relation to senescence and quality deterioration. Food Chem 2020; 345:128664. [PMID: 33340895 DOI: 10.1016/j.foodchem.2020.128664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 10/02/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Thioredoxins (Trxs) are important redox regulators in organisms. However, their involvement in fruit senescence and quality deterioration remains unclear. In this study, one Trx (DlTrx1) and one NADPH-dependent Trx reductase (DlNRT1) cDNAs, were cloned from longan fruit. The DlTrx1 could be effectively reduced by the DlNTR1. Expression of DlTrx1 and DlNTR1 were up-regulated during fruit senescence and quality deterioration. We further identified 33 potential Trx target proteins in longan, including one glutathione peroxidase (DlGpx). DlTrx1 could physically interact with DlGpx. DlTrx1 in combination with DlNTR1 effectively activated DlGpx activity by regulating its redox state. Cys90 in DlGPx could form a disulfide bond with either Cys42 or Cys71, which were the sites of redox modulation. Furthermore, DlGpx exhibited a higher ratio of disulfide bonds to sulfhydryl groups in senescent or deteriorative fruit. We propose that Trx-mediated redox regulation of DlGpx is involved in senescence or quality deterioration of harvested longan fruit.
Collapse
Affiliation(s)
- Fuwang Wu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Foshan University, Foshan 528225, China
| | - Guoxiang Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huiling Yan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Xiao
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hanzhi Liang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
65
|
The mitochondrial isoform glutathione peroxidase 3 (OsGPX3) is involved in ABA responses in rice plants. J Proteomics 2020; 232:104029. [PMID: 33160103 DOI: 10.1016/j.jprot.2020.104029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Different environmental conditions can lead plants to a condition termed oxidative stress, which is characterized by a disruption in the equilibrium between the production of reactive oxygen species (ROS) and antioxidant defenses. Glutathione peroxidase (GPX), an enzyme that acts as a peroxide scavenger in different organisms, has been identified as an important component in the signaling pathway during the developmental process and in stress responses in plants and yeast. Here, we demonstrate that the mitochondrial isoform of rice (Oryza sativa L. ssp. Japonica cv. Nipponbare) OsGPX3 is induced after treatment with the phytohormone abscisic acid (ABA) and is involved in its responses and in epigenetic modifications. Plants that have been silenced for OsGPX3 (gpx3i) present substantial changes in the accumulation of proteins related to these processes. These plants also have several altered ABA responses, such as germination, ROS accumulation, stomatal closure, and dark-induced senescence. This study is the first to demonstrate that OsGPX3 plays a role in ABA signaling and corroborate that redox homeostasis enzymes can act in different and complex pathways in plant cells. SIGNIFICANCE: This work proposes the mitochondrial glutathione peroxidase (OsGPX3) as a novel ABA regulatory pathway component. Our results suggest that this antioxidant enzyme is involved in ABA-responses, highlighting the complex pathways that these proteins can participate beyond the regulation of cellular redox status.
Collapse
|
66
|
Exploring the Functional Relationship between y-Type Thioredoxins and 2-Cys Peroxiredoxins in Arabidopsis Chloroplasts. Antioxidants (Basel) 2020; 9:antiox9111072. [PMID: 33142810 PMCID: PMC7694023 DOI: 10.3390/antiox9111072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022] Open
Abstract
Thioredoxins (Trxs) are small, ubiquitous enzymes that catalyze disulphide–dithiol interchange in target enzymes. The large set of chloroplast Trxs, including f, m, x and y subtypes, use reducing equivalents fueled by photoreduced ferredoxin (Fdx) for fine-tuning photosynthetic performance and metabolism through the control of the activity of redox-sensitive proteins. Although biochemical analyses suggested functional diversity of chloroplast Trxs, genetic studies have established that deficiency in a particular Trx subtype has subtle phenotypic effects, leading to the proposal that the Trx isoforms are functionally redundant. In addition, chloroplasts contain an NADPH-dependent Trx reductase with a joint Trx domain, termed NTRC. Interestingly, Arabidopsis mutants combining the deficiencies of x- or f-type Trxs and NTRC display very severe growth inhibition phenotypes, which are partially rescued by decreased levels of 2-Cys peroxiredoxins (Prxs). These findings indicate that the reducing capacity of Trxs f and x is modulated by the redox balance of 2-Cys Prxs, which is controlled by NTRC. In this study, we explored whether NTRC acts as a master regulator of the pool of chloroplast Trxs by analyzing its functional relationship with Trxs y. While Trx y interacts with 2-Cys Prxs in vitro and in planta, the analysis of Arabidopsis mutants devoid of NTRC and Trxs y suggests that Trxs y have only a minor effect, if any, on the redox state of 2-Cys Prxs.
Collapse
|
67
|
Bobrovskikh A, Zubairova U, Kolodkin A, Doroshkov A. Subcellular compartmentalization of the plant antioxidant system: an integrated overview. PeerJ 2020; 8:e9451. [PMID: 32742779 PMCID: PMC7369019 DOI: 10.7717/peerj.9451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023] Open
Abstract
The antioxidant system (AOS) maintains the optimal concentration of reactive oxygen species (ROS) in a cell and protects it against oxidative stress. In plants, the AOS consists of seven main classes of antioxidant enzymes, low-molecular antioxidants (e.g., ascorbate, glutathione, and their oxidized forms) and thioredoxin/glutaredoxin systems which can serve as reducing agents for antioxidant enzymes. The number of genes encoding AOS enzymes varies between classes, and same class enzymes encoded by different gene copies may have different subcellular localizations, functional loads and modes of evolution. These facts hereafter reinforce the complex nature of AOS regulation and functioning. Further studies can describe new trends in the behavior and functioning of systems components, and provide new fundamental knowledge about systems regulation. The system is revealed to have a lot of interactions and interplay pathways between its components at the subcellular level (antioxidants, enzymes, ROS level, and hormonal and transcriptional regulation). These facts should be taken into account in further studies during the AOS modeling by describing the main pathways of generating and utilizing ROS, as well as the associated signaling processes and regulation of the system on cellular and organelle levels, which is a complicated and ambitious task. Another objective for studying the phenomenon of the AOS is related to the influence of cell dynamics and circadian rhythms on it. Therefore, the AOS requires an integrated and multi-level approach to study. We focused this review on the existing scientific background and experimental data used for the systems biology research of the plant AOS.
Collapse
Affiliation(s)
- Aleksandr Bobrovskikh
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Ulyana Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Alexey Kolodkin
- University of Amsterdam, Amsterdam, Netherlands
- The University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Luxembourg, Luxembourg
| | - Alexey Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
68
|
Cubas-Gaona LL, de Francisco P, Martín-González A, Gutiérrez JC. Tetrahymena Glutathione Peroxidase Family: A Comparative Analysis of These Antioxidant Enzymes and Differential Gene Expression to Metals and Oxidizing Agents. Microorganisms 2020; 8:microorganisms8071008. [PMID: 32635666 PMCID: PMC7409322 DOI: 10.3390/microorganisms8071008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
In the present work, an extensive analysis of the putative glutathione peroxidases (GPx) of the eukaryotic microorganism model Tetrahymena thermophila is carried out. A comparative analysis with GPx present in other Tetrahymena species and other very taxonomically diverse ciliates is also performed. A majority of ciliate GPx have replaced the selenocysteine (Sec) by Cys in its catalytic center, so they can be considered as phospholipid hydroperoxide glutathione peroxidases (PHGPx). Selenocysteine insertion sequence (SECIS) elements have been detected in several ciliate GPx that do not incorporate Sec in their amino acid sequences, and conversely, in other ciliate GPx with Sec, no SECIS elements are detected. These anomalies are analyzed and discussed. From the phylogenetic analysis using the ciliate GPx amino acid sequences, the existence of extensive intra- and interspecific gene duplications that produced multiple GPx isoforms in each species is inferred. The ancestral character of the selenoproteins is also corroborated. The analysis by qRT-PCR of six selected T. thermophila GPx genes has shown a quantitative differential expression between them, depending on the stressor (oxidizing agents, apoptotic inducer or metals) and the time of exposure.
Collapse
Affiliation(s)
| | - Patricia de Francisco
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Ana Martín-González
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología. C/. José Antonio Nováis, 12. Universidad Complutense (UCM), 28040 Madrid, Spain;
| | - Juan Carlos Gutiérrez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología. C/. José Antonio Nováis, 12. Universidad Complutense (UCM), 28040 Madrid, Spain;
- Correspondence:
| |
Collapse
|
69
|
Ciacka K, Tymiński M, Gniazdowska A, Krasuska U. Carbonylation of proteins-an element of plant ageing. PLANTA 2020; 252:12. [PMID: 32613330 PMCID: PMC7329788 DOI: 10.1007/s00425-020-03414-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/23/2020] [Indexed: 05/25/2023]
Abstract
Carbonylation-ROS-dependent posttranslational modification of proteins-may be regarded as one of the important events in the process of ageing or senescence in plants. Ageing is the progressive process starting from seed development (plants) and birth (animals). The life-span of living organisms depends on many factors and stresses, which influence reactive oxygen species (ROS) level. The imbalance of their production and scavenging causes pathophysiological conditions that accelerate ageing. ROS modify nucleic acids, lipids, sugars and proteins. The level of carbonylated proteins can serve as an indicator of an oxidative cellular status. Several pathways of protein carbonylation, e.g. the conjugation with reactive carbonyl species, and/or a direct metal-catalysed oxidative attack on amino acids residues are known. Dysfunctional carbonylated proteins are more prone to degradation or form aggregates when the proteolytic machinery is inhibited, as observed in ageing. Protein carbonylation may contribute to formation of organelle-specific signal and to the control of protein quality. Carbonylated proteins are formed during the whole plant life; nevertheless, accelerated ageing stimulates the accumulation of carbonyl derivatives. In the medicine-related literature, concerned ageing and ROS-mediated protein modifications, this topic is extensively analysed, in comparison to the plant science. In plant science, ageing and senescence are considered to describe slightly different processes (physiological events). However, senescence (Latin: senēscere) means "to grow old". This review describes the correlation of protein carbonylation level to ageing or/and senescence in plants. Comparing data from the area of plant and animal research, it is assumed that some basic mechanism of time-dependent alterations in the cellular biochemical processes are common and the protein carbonylation is one of the important causes of ageing.
Collapse
Affiliation(s)
- K. Ciacka
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M. Tymiński
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - A. Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - U. Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
70
|
Ding H, Wang B, Han Y, Li S. The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3405-3416. [PMID: 32107543 DOI: 10.1093/jxb/eraa107] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2020] [Indexed: 05/20/2023]
Abstract
Under natural conditions, plants are exposed to various abiotic and biotic stresses that trigger rapid changes in the production and removal of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). The ascorbate-glutathione pathway has been recognized to be a key player in H2O2 metabolism, in which reduced glutathione (GSH) regenerates ascorbate by reducing dehydroascorbate (DHA), either chemically or via DHA reductase (DHAR), an enzyme belonging to the glutathione S-transferase (GST) superfamily. Thus, DHAR has been considered to be important in maintaining the ascorbate pool and its redox state. Although some GSTs and peroxiredoxins may contribute to GSH oxidation, analysis of Arabidopsis dhar mutants has identified the key role of DHAR in coupling H2O2 to GSH oxidation. The reaction of DHAR has been proposed to proceed by a ping-pong mechanism, in which binding of DHA to the free reduced form of the enzyme is followed by binding of GSH. Information from crystal structures has shed light on the formation of sulfenic acid at the catalytic cysteine of DHAR that occurs with the reduction of DHA. In this review, we discuss the molecular properties of DHAR and its importance in coupling the ascorbate and glutathione pools with H2O2 metabolism, together with its functions in plant defense, growth, and development.
Collapse
Affiliation(s)
- Haiyan Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Bipeng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yi Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
71
|
Sun H, Zhao W, Liu H, Su C, Qian Y, Jiao F. MaCDSP32 From Mulberry Enhances Resilience Post-drought by Regulating Antioxidant Activity and the Osmotic Content in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:419. [PMID: 32373141 PMCID: PMC7177052 DOI: 10.3389/fpls.2020.00419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Desiccation tolerance is a complex phenomenon that depends on the regulated expression of numerous genes during dehydration and subsequent rehydration. Our previous study identified a chloroplast drought-induced stress protein (MaCDSP32) in mulberry, a thioredoxin (Trx) that is upregulated under drought conditions and is likely to confer drought tolerance to transgenic plants. Mulberry (Morus spp.) is an ecologically and economically important perennial woody plant that is widely used in forest management to combat desertification. However, its stress tolerance physiology is not well understood. In this study, the functions of MaCDSP32 gene were investigated. The expression of MaCDSP32 exhibited a circadian rhythm and was induced by mild and severe water deficits. Under abiotic stress, MaCDSP32-overexpressing plants exhibited increased stress sensitivity with lower water retention capacity and more severe lipid peroxidation than the wild-type (WT) plants. Furthermore, the activity of superoxide dismutase (SOD), the contents of proline and soluble sugars and the expression of stress-related transcription factors were lower in the MaCDSP32-overexpressing plants than in the WT plants. However, the MaCDSP32-overexpressing lines exhibited stronger recovery capability after rewatering post-drought. Moreover, the SOD enzyme activity, proline content, and soluble sugar content were higher in the transgenic plants after rewatering than in the WT plants. The production of the reactive oxygen species (ROS) H2O2 and O2 - was significantly lower in the transgenic plants than in the WT plants. In addition, under abiotic stress, the MaCDSP32-overexpressing lines exhibited improved seed germination and seedling growth, these effects were regulated by a positive redox reaction involving MaCDSP32 and one of its targets. In summary, this study indicated that MaCDSP32 from mulberry regulates plant drought tolerance and ROS homeostasis mainly by controlling SOD enzyme activity and proline and soluble sugar concentrations and that this control might trigger the stress response during seed germination and plant growth. Overall, MaCDSP32 exerts pleiotropic effects on the stress response and stress recovery in plants.
Collapse
|
72
|
Probing the molecular toxic mechanism of di-(2-ethylhexyl) phthalate with glutathione transferase Phi8 from Arabidopsis thaliana. Int J Biol Macromol 2020; 145:165-172. [DOI: 10.1016/j.ijbiomac.2019.12.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
|
73
|
Lienkamp AC, Heine T, Tischler D. Glutathione: A powerful but rare cofactor among Actinobacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:181-217. [PMID: 32386605 DOI: 10.1016/bs.aambs.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine, GSH) is a powerful cellular redox agent. In nature only the l,l-form is common among the tree of life. It serves as antioxidant or redox buffer system, protein regeneration and activation by interaction with thiol groups, unspecific reagent for conjugation during detoxification, marker for amino acid or peptide transport even through membranes, activation or solubilization of compounds during degradative pathways or just as redox shuttle. However, the role of GSH production and utilization in bacteria is more complex and especially little is known for the Actinobacteria. Some recent reports on GSH use in degradative pathways came across and this is described herein. GSH is used by transferases to activate and solubilize epoxides. It allows funneling epoxides as isoprene oxide or styrene oxide into central metabolism. Thus, the distribution of GSH synthesis, recycling and application among bacteria and especially Actinobacteria are highlighted including the pathways and contributing enzymes.
Collapse
Affiliation(s)
- Anna C Lienkamp
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
74
|
Rohman MM, Islam MR, Monsur MB, Amiruzzaman M, Fujita M, Hasanuzzaman M. Trehalose Protects Maize Plants from Salt Stress and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2019; 8:E568. [PMID: 31817132 PMCID: PMC6963808 DOI: 10.3390/plants8120568] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
This study is undertaken to elucidate the role of trehalose (Tre) in mitigating oxidative stress under salinity and low P in maize. Eight-day-old maize seedlings of two maize varieties, BARI Hybrid Maize-7 and BARI Hybrid Maize-9, were subjected to salinity (150 mM NaCl), low P (5 µM KH2PO4) and their combined stress with or without 10 mM Tre for 15 d. Salinity and combined stress significantly inhibited the shoot length, root length, and root volume, whereas low P increased the root length and volume in both genotypes. Exogenous Tre in the stress treatments increased all of the growth parameters as well as decreased the salinity, low P, and combined stress-mediated Na+/K+, reactive oxygen species (ROS), malondialdehyde (MDA), lipoxygenase (LOX) activity, and methylglyoxal (MG) in both genotypes. Individually, salinity and low P increased superoxide dismutase (SOD) activity in both genotypes, but combined stress decreased the activity. Peroxidase (POD) activity increased in all stress treatments. Interestingly, Tre application enhanced the SOD activity in all the stress treatments but inhibited the POD activity. Both catalase (CAT) and glutathione peroxidase (GPX) activity were increased by saline and low P stress while the activities inhibited in combined stress. Similar results were found for ascorbate peroxidase (APX), glutathione peroxidase (GR), and dehydroascorbate reductase (DHAR) activities in both genotypes. However, monodehydroascorbate reductase (MDHAR) activity was inhibited in all the stresses. Interestingly, Tre enhanced CAT, APX, GPX, GR, MDHAR, and DHAR activities suggesting the amelioration of ROS scavenging in maize under all the stresses. Conversely, increased glyoxalase activities in saline and low P stress in BHM-9 suggested better MG detoxification system because of the down-regulation of glyoxalase-I (Gly-I) activity in BHM-7 in those stresses. Tre also increased the glyoxalase activities in both genotypes under all the stresses. Tre improved the growth in maize seedlings by decreasing Na+/K+, ROS, MDA, and MG through regulating antioxidant and glyoxalase systems.
Collapse
Affiliation(s)
- Md. Motiar Rohman
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Md. Robyul Islam
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Mahmuda Binte Monsur
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Mohammad Amiruzzaman
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress responses, Faculty of Agriculture, Kagawa University, Kagawa 7610795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
75
|
Marty L, Bausewein D, Müller C, Bangash SAK, Moseler A, Schwarzländer M, Müller-Schüssele SJ, Zechmann B, Riondet C, Balk J, Wirtz M, Hell R, Reichheld JP, Meyer AJ. Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems. THE NEW PHYTOLOGIST 2019; 224:1569-1584. [PMID: 31372999 DOI: 10.1111/nph.16086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 05/27/2023]
Abstract
A highly negative glutathione redox potential (EGSH ) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing. Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ATP-binding cassette (ABC) transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
Collapse
Affiliation(s)
- Laurent Marty
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Daniela Bausewein
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Christopher Müller
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Sajid Ali Khan Bangash
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Markus Schwarzländer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Bernd Zechmann
- Center of Microscopy and Imaging, Baylor University, One Bear Place 97046, Waco, TX, 76798-7046, USA
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Via Domitia, F-66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860, Perpignan, France
| | - Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld, 360, D-69120, Heidelberg, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Via Domitia, F-66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860, Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| |
Collapse
|
76
|
Fibroin Delays Chilling Injury of Postharvest Banana Fruit via Enhanced Antioxidant Capability during Cold Storage. Metabolites 2019; 9:metabo9070152. [PMID: 31340556 PMCID: PMC6680957 DOI: 10.3390/metabo9070152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
storage Banana fruit after harvest is susceptible to chilling injury, which is featured by peel browning during cold, and it easily loses its nutrition and economic values. This study investigated the role of fibroin treatment in delaying peel browning in association with the antioxidant capability of postharvest banana fruit during cold storage. Compared to the control fruit, fibroin-treated fruit contained higher amounts of Pro and Cys during overall storage as well as higher glutathione (GSH) during the middle of storage. Conversely, fibroin-treated fruit exhibited a lower peel browning index and reactive oxygen species (ROS) level during overall storage as well as lower contents of hexadecanoic acid and octadecanoic acid by the end of storage compared to control fruit. In addition, fibroin-treated banana fruit showed higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in relation to upregulation SOD, CAT, and GR as well as peroxiredoxins (MT3 and GRX) during the middle of storage. These results highlighted the role of fibroin treatment in reducing peel browning by enhancing the antioxidant capability of harvested banana fruit during cold storage.
Collapse
|
77
|
Tuzet A, Rahantaniaina MS, Noctor G. Analyzing the Function of Catalase and the Ascorbate-Glutathione Pathway in H 2O 2 Processing: Insights from an Experimentally Constrained Kinetic Model. Antioxid Redox Signal 2019; 30:1238-1268. [PMID: 30044135 DOI: 10.1089/ars.2018.7601] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Plant stress involves redox signaling linked to reactive oxygen species such as hydrogen peroxide (H2O2), which can be generated at high rates in photosynthetic cells. The systems that process H2O2 include catalase (CAT) and the ascorbate-glutathione pathway, but interactions between them remain unclear. Modeling can aid interpretation and pinpoint areas for investigation. Recent Advances: Based on emerging data and concepts, we introduce a new experimentally constrained kinetic model to analyze interactions between H2O2, CAT, ascorbate, glutathione, and NADPH. The sensitivity points required for accurate simulation of experimental observations are analyzed, and the implications for H2O2-linked redox signaling are discussed. CRITICAL ISSUES We discuss several implications of the modeled results, in particular the following. (i) CAT and ascorbate peroxidase can share the load in H2O2 processing even in optimal conditions. (ii) Intracellular H2O2 concentrations more than the low μM range may rarely occur. (iii) Ascorbate redox turnover is largely independent of glutathione until ascorbate peroxidation exceeds a certain value. (iv) NADPH availability may determine glutathione redox status through its influence on monodehydroascorbate reduction. (v) The sensitivity of glutathione status to oxidative stress emphasizes its potential suitability as a sensor of increased H2O2. FUTURE DIRECTIONS Important future questions include the roles of other antioxidative systems in interacting with CAT and the ascorbate-glutathione pathway as well as the nature and significance of processes that achieve redox exchange between different subcellular compartments. Progress in these areas is likely to be favored by integrating kinetic modeling analyses into experimentally based programs, allowing each approach to inform the other.
Collapse
Affiliation(s)
- Andrée Tuzet
- 1 Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, INRA-AgroParisTech, Thiverval-Grignon, France
| | - Marie-Sylviane Rahantaniaina
- 1 Unité Mixte de Recherche ECOSYS/Pôle BIOCLIMATOLOGIE, INRA-AgroParisTech, Thiverval-Grignon, France.,2 Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Graham Noctor
- 2 Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
78
|
Meyer AJ, Riemer J, Rouhier N. Oxidative protein folding: state-of-the-art and current avenues of research in plants. THE NEW PHYTOLOGIST 2019; 221:1230-1246. [PMID: 30230547 DOI: 10.1111/nph.15436] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1230 I. Introduction 1230 II. Formation and isomerization of disulfides in the ER and the Golgi apparatus 1231 III. The disulfide relay in the mitochondrial intermembrane space: why are plants different? 1236 IV. Disulfide bond formation on luminal proteins in thylakoids 1240 V. Conclusion 1242 Acknowledgements 1242 References 1242 SUMMARY: Disulfide bonds are post-translational modifications crucial for the structure and function of thousands of proteins. Their formation and isomerization, referred to as oxidative folding, require specific protein machineries found in oxidizing subcellular compartments, namely the endoplasmic reticulum and the associated endomembrane system, the intermembrane space of mitochondria and the thylakoid lumen of chloroplasts. At least one protein component is required for transferring electrons from substrate proteins to an acceptor that is usually molecular oxygen. For oxidation reactions, incoming reduced substrates are oxidized by thiol-oxidoreductase proteins (or domains in case of chimeric proteins), which are usually themselves oxidized by a single thiol oxidase, the enzyme generating disulfide bonds de novo. By contrast, the description of the molecular actors and pathways involved in proofreading and isomerization of misfolded proteins, which require a tightly controlled redox balance, lags behind. Herein we provide a general overview of the knowledge acquired on the systems responsible for oxidative protein folding in photosynthetic organisms, highlighting their particularities compared to other eukaryotes. Current research challenges are discussed including the importance and specificity of these oxidation systems in the context of the existence of reducing systems in the same compartments.
Collapse
Affiliation(s)
- Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, 53113, Bonn, Germany
| | - Jan Riemer
- Institute of Biochemistry, University of Cologne, 50674, Cologne, Germany
| | | |
Collapse
|
79
|
Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. THE NEW PHYTOLOGIST 2019; 221:1197-1214. [PMID: 30222198 DOI: 10.1111/nph.15488] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1197 I. Introduction 1198 II. Measurement and imaging of H2 O2 1198 III. H2 O2 and O2·- toxicity 1199 IV. Production of H2 O2 : enzymes and subcellular locations 1200 V. H2 O2 transport 1205 VI. Control of H2 O2 concentration: how and where? 1205 VII. Metabolic functions of H2 O2 1207 VIII. H2 O2 signalling 1207 IX. Where next? 1209 Acknowledgements 1209 References 1209 SUMMARY: Hydrogen peroxide (H2 O2 ) is produced, via superoxide and superoxide dismutase, by electron transport in chloroplasts and mitochondria, plasma membrane NADPH oxidases, peroxisomal oxidases, type III peroxidases and other apoplastic oxidases. Intracellular transport is facilitated by aquaporins and H2 O2 is removed by catalase, peroxiredoxin, glutathione peroxidase-like enzymes and ascorbate peroxidase, all of which have cell compartment-specific isoforms. Apoplastic H2 O2 influences cell expansion, development and defence by its involvement in type III peroxidase-mediated polymer cross-linking, lignification and, possibly, cell expansion via H2 O2 -derived hydroxyl radicals. Excess H2 O2 triggers chloroplast and peroxisome autophagy and programmed cell death. The role of H2 O2 in signalling, for example during acclimation to stress and pathogen defence, has received much attention, but the signal transduction mechanisms are poorly defined. H2 O2 oxidizes specific cysteine residues of target proteins to the sulfenic acid form and, similar to other organisms, this modification could initiate thiol-based redox relays and modify target enzymes, receptor kinases and transcription factors. Quantification of the sources and sinks of H2 O2 is being improved by the spatial and temporal resolution of genetically encoded H2 O2 sensors, such as HyPer and roGFP2-Orp1. These H2 O2 sensors, combined with the detection of specific proteins modified by H2 O2 , will allow a deeper understanding of its signalling roles.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Dominique Arnaud
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
80
|
Wang X, Li M, Liu X, Zhang L, Duan Q, Zhang J. Quantitative Proteomic Analysis of Castor ( Ricinus communis L.) Seeds During Early Imbibition Provided Novel Insights into Cold Stress Response. Int J Mol Sci 2019; 20:E355. [PMID: 30654474 PMCID: PMC6359183 DOI: 10.3390/ijms20020355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Early planting is one of the strategies used to increase grain yield in temperate regions. However, poor cold tolerance in castor inhibits seed germination, resulting in lower seedling emergence and biomass. Here, the elite castor variety Tongbi 5 was used to identify the differential abundance protein species (DAPS) between cold stress (4 °C) and control conditions (30 °C) imbibed seeds. As a result, 127 DAPS were identified according to isobaric tag for relative and absolute quantification (iTRAQ) strategy. These DAPS were mainly involved in carbohydrate and energy metabolism, translation and posttranslational modification, stress response, lipid transport and metabolism, and signal transduction. Enzyme-linked immunosorbent assays (ELISA) demonstrated that the quantitative proteomics data collected here were reliable. This study provided some invaluable insights into the cold stress responses of early imbibed castor seeds: (1) up-accumulation of all DAPS involved in translation might confer cold tolerance by promoting protein synthesis; (2) stress-related proteins probably protect the cell against damage caused by cold stress; (3) up-accumulation of key DAPS associated with fatty acid biosynthesis might facilitate resistance or adaptation of imbibed castor seeds to cold stress by the increased content of unsaturated fatty acid (UFA). The data has been deposited to the ProteomeXchange with identifier PXD010043.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Min Li
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Xuming Liu
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Lixue Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Qiong Duan
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Jixing Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| |
Collapse
|
81
|
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. FRONTIERS IN PLANT SCIENCE 2019; 10:608. [PMID: 31191562 PMCID: PMC6540824 DOI: 10.3389/fpls.2019.00608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.
Collapse
Affiliation(s)
- Elodie Sylvestre-Gonon
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Mathieu Schwartz
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Kevin Robe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Claude Didierjean
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| |
Collapse
|
82
|
Vanacker H, Guichard M, Bohrer AS, Issakidis-Bourguet E. Redox Regulation of Monodehydroascorbate Reductase by Thioredoxin y in Plastids Revealed in the Context of Water Stress. Antioxidants (Basel) 2018; 7:E183. [PMID: 30563207 PMCID: PMC6316508 DOI: 10.3390/antiox7120183] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
Thioredoxins (TRXs) are key players within the complex response network of plants to environmental constraints. Here, the physiological implication of the plastidial y-type TRXs in Arabidopsis drought tolerance was examined. We previously showed that TRXs y1 and y2 have antioxidant functions, and here, the corresponding single and double mutant plants were studied in the context of water deprivation. TRX y mutant plants showed reduced stress tolerance in comparison with wild-type (WT) plants that correlated with an increase in their global protein oxidation levels. Furthermore, at the level of the main antioxidant metabolites, while glutathione pool size and redox state were similarly affected by drought stress in WT and trxy1y2 plants, ascorbate (AsA) became more quickly and strongly oxidized in mutant leaves. Monodehydroascorbate (MDA) is the primary product of AsA oxidation and NAD(P)H-MDA reductase (MDHAR) ensures its reduction. We found that the extractable leaf NADPH-dependent MDHAR activity was strongly activated by TRX y2. Moreover, activity of recombinant plastid Arabidopsis MDHAR isoform (MDHAR6) was specifically increased by reduced TRX y, and not by other plastidial TRXs. Overall, these results reveal a new function for y-type TRXs and highlight their role as major antioxidants in plastids and their importance in plant stress tolerance.
Collapse
Affiliation(s)
- Hélène Vanacker
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| | - Marjorie Guichard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| | - Anne-Sophie Bohrer
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| | - Emmanuelle Issakidis-Bourguet
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| |
Collapse
|
83
|
Zhang L, Wu M, Yu D, Teng Y, Wei T, Chen C, Song W. Identification of Glutathione Peroxidase (GPX) Gene Family in Rhodiola crenulata and Gene Expression Analysis under Stress Conditions. Int J Mol Sci 2018; 19:E3329. [PMID: 30366446 PMCID: PMC6274781 DOI: 10.3390/ijms19113329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
Glutathione peroxidases (GPXs) are important enzymes in the glutathione-ascorbate cycle for catalyzing the reduction of H₂O₂ or organic hydroperoxides to water. GPXs play an essential role in plant growth and development by participating in photosynthesis, respiration, and stress tolerance. Rhodiola crenulata is a popular traditional Chinese medicinal plant which displays an extreme energy of tolerance to harsh alpine climate. The GPXs gene family might provide R. crenulata for extensively tolerance to environment stimulus. In this study, five GPX genes were isolated from R. crenulata. The protein amino acid sequences were analyzed by bioinformation softwares with the results that RcGPXs gene sequences contained three conserve cysteine residues, and the subcellular location predication were in the chloroplast, endoplasmic reticulum, or cytoplasm. Five RcGPXs members presented spatial and temporal specific expression with higher levels in young and green organs. And the expression patterns of RcGPXs in response to stresses or plant hormones were investigated by quantitative real-time PCR. In addition, the putative interaction proteins of RcGPXs were obtained by yeast two-hybrid with the results that RcGPXs could physically interact with specific proteins of multiple pathways like transcription factor, calmodulin, thioredoxin, and abscisic acid signal pathway. These results showed the regulation mechanism of RcGPXs were complicated and they were necessary for R. crenulata to adapt to the treacherous weather in highland.
Collapse
Affiliation(s)
- Lipeng Zhang
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Mei Wu
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Deshui Yu
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Yanjiao Teng
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Tao Wei
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Chengbin Chen
- College of Life Science, Nankai University, Tianjin, 300071 China.
| | - Wenqin Song
- College of Life Science, Nankai University, Tianjin, 300071 China.
| |
Collapse
|
84
|
Zannini F, Roret T, Przybyla-Toscano J, Dhalleine T, Rouhier N, Couturier J. Mitochondrial Arabidopsis thaliana TRXo Isoforms Bind an Iron⁻Sulfur Cluster and Reduce NFU Proteins In Vitro. Antioxidants (Basel) 2018; 7:E142. [PMID: 30322144 PMCID: PMC6210436 DOI: 10.3390/antiox7100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure⁻function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron⁻sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein⁻protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.
Collapse
Affiliation(s)
| | - Thomas Roret
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- CNRS, LBI2M, Sorbonne Universités, F-29680 Roscoff, France.
| | - Jonathan Przybyla-Toscano
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden.
| | | | | | | |
Collapse
|
85
|
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 2018; 7:38194. [PMID: 30311601 PMCID: PMC6221545 DOI: 10.7554/elife.38194] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/07/2018] [Indexed: 12/20/2022] Open
Abstract
Thiol-dependent redox regulation controls central processes in plant cells including photosynthesis. Thioredoxins reductively activate, for example, Calvin-Benson cycle enzymes. However, the mechanism of oxidative inactivation is unknown despite its importance for efficient regulation. Here, the abundant 2-cysteine peroxiredoxin (2-CysPrx), but not its site-directed variants, mediates rapid inactivation of reductively activated fructose-1,6-bisphosphatase and NADPH-dependent malate dehydrogenase (MDH) in the presence of the proper thioredoxins. Deactivation of phosphoribulokinase (PRK) and MDH was compromised in 2cysprxAB mutant plants upon light/dark transition compared to wildtype. The decisive role of 2-CysPrx in regulating photosynthesis was evident from reoxidation kinetics of ferredoxin upon darkening of intact leaves since its half time decreased 3.5-times in 2cysprxAB. The disadvantage of inefficient deactivation turned into an advantage in fluctuating light. Physiological parameters like MDH and PRK inactivation, photosynthetic kinetics and response to fluctuating light fully recovered in 2cysprxAB mutants complemented with 2-CysPrxA underlining the significance of 2-CysPrx. The results show that the 2-CysPrx serves as electron sink in the thiol network important to oxidize reductively activated proteins and represents the missing link in the reversal of thioredoxin-dependent regulation.
Collapse
Affiliation(s)
- Mohamad-Javad Vaseghi
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Kamel Chibani
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Michael Florian Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Melanie Gerken
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Helena Schnitzer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Sara Mareike Mueller
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
86
|
Identification and Characterization of the Glutathione Peroxidase (GPX) Gene Family in Watermelon and Its Expression under Various Abiotic Stresses. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8100206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Plant glutathione peroxidase (GPX) is an important antioxidant enzyme to maintain H2O2 homeostasis and regulate plant response to abiotic stress. In this paper, we present the first report of a genome-wide identification of GPX genes in watermelon. A total of six genes (ClGPX1–ClGPX6) were identified, which were unevenly located on four chromosomes of the watermelon genome. Based on phylogenetic analysis, the GPX genes of Arabidopsis, rice, cucumber, and sorghum were classified into four groups. Through analyzing the promoter regions of ClGPX genes, many development-, stress-, and hormone-responsive cis-acting regulatory elements were also identified. Expression pattern analysis by qRT-PCR indicated that all ClGPX genes were actively expressed in flowers and fruits, and exhibited relatively lower expression in other tissues, particularly roots and stems. In addition, the expression of ClGPX genes was significantly induced by salt, drought, and cold stresses, as well as abscisic acid (ABA) treatment at different time points, suggesting that they may be involved in response to abiotic stress and ABA. Taken together, our findings demonstrated that ClGPX genes might function in watermelon development, especially in flower and fruit tissue, as well as in response to abiotic stress and hormones.
Collapse
|
87
|
Xia Q, Saux M, Ponnaiah M, Gilard F, Perreau F, Huguet S, Balzergue S, Langlade N, Bailly C, Meimoun P, Corbineau F, El-Maarouf-Bouteau H. One Way to Achieve Germination: Common Molecular Mechanism Induced by Ethylene and After-Ripening in Sunflower Seeds. Int J Mol Sci 2018; 19:ijms19082464. [PMID: 30127315 PMCID: PMC6121958 DOI: 10.3390/ijms19082464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Dormancy is an adaptive trait that blocks seed germination until the environmental conditions become favorable for subsequent vegetative plant growth. Seed dormancy is defined as the inability to germinate in favorable conditions. Dormancy is alleviated during after-ripening, a dry storage period, during which dormant (D) seeds unable to germinate become non-dormant (ND), able to germinate in a wide range of environmental conditions. The treatment of dormant seeds with ethylene (D/ET) promotes seed germination, and abscisic acid (ABA) treatment reduces non-dormant (ND/ABA) seed germination in sunflowers (Helianthus annuus). Metabolomic and transcriptomic studies have been performed during imbibition to compare germinating seeds (ND and D/ET) and low-germinating seeds (D and ND/ABA). A PCA analysis of the metabolites content showed that imbibition did not trigger a significant change during the first hours (3 and 15 h). The metabolic changes associated with germination capacity occurred at 24 h and were related to hexoses, as their content was higher in ND and D/ET and was reduced by ABA treatment. At the transcriptional level, a large number of genes were altered oppositely in germinating, compared to the low-germinating seeds. The metabolomic and transcriptomic results were integrated in the interpretation of the processes involved in germination. Our results show that ethylene treatment triggers molecular changes comparable to that of after-ripening treatment, concerning sugar metabolism and ABA signaling inhibition.
Collapse
Affiliation(s)
- Qiong Xia
- Sorbonne Université, IBPS, CNRS, UMR 7622, 75005 Paris, France.
| | - Marine Saux
- Sorbonne Université, IBPS, CNRS, UMR 7622, 75005 Paris, France.
| | | | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Saclay Plant Sciences, Bâtiment 630, 91405 Orsay, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Stéphanie Huguet
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Saclay Plant Sciences, Bâtiment 630, 91405 Orsay, France.
- Unité de Recherche en Génomique Végétale (URGV), 91057 Evry CEDEX, France.
| | - Sandrine Balzergue
- Unité de Recherche en Génomique Végétale (URGV), 91057 Evry CEDEX, France.
- IRHS, équipe EPICENTER, 49071 Beaucouzé CEDEX, France.
| | - Nicolas Langlade
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France.
| | | | - Patrice Meimoun
- Sorbonne Université, IBPS, CNRS, UMR 7622, 75005 Paris, France.
| | | | | |
Collapse
|
88
|
Tyagi S, Sembi JK, Upadhyay SK. Gene architecture and expression analyses provide insights into the role of glutathione peroxidases (GPXs) in bread wheat (Triticum aestivum L.). JOURNAL OF PLANT PHYSIOLOGY 2018; 223:19-31. [PMID: 29471272 DOI: 10.1016/j.jplph.2018.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 05/05/2023]
Abstract
Glutathione peroxidases (GPXs) are redox sensor proteins that maintain a steady-state of H2O2 in plant cells. They exhibit distinct sub-cellular localization and have diverse functionality in response to different stimuli. In this study, a total of 14 TaGPX genes and three splice variants were identified in the genome of Triticum aestivum and evaluated for various physicochemical properties. The TaGPX genes were scattered on the various chromosomes of the A, B, and D sub-genomes and clustered into five homeologous groups based on high sequence homology. The majority of genes were derived from the B sub-genome and localized on chromosome 2. The intron-exon organization, motif and domain architecture, and phylogenetic analyses revealed the conserved nature of TaGPXs. The occurrence of both development-related and stress-responsive cis-acting elements in the promoter region, the differential expression of these genes during various developmental stages, and the modulation of expression in the presence of biotic and abiotic stresses suggested their diverse role in T. aestivum. The majority of TaGPX genes showed higher expression in various leaf developmental stages. However, TaGPX1-A1 was upregulated in the presence of each abiotic stress treatment. A co-expression analysis revealed the interaction of TaGPXs with numerous development and stress-related genes, which indicated their vital role in numerous biological processes. Our study revealed the opportunities for further characterization of individual TaGPX proteins, which might be useful in designing future crop improvement strategies.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh,160014, India
| | - Jaspreet K Sembi
- Department of Botany, Panjab University, Chandigarh,160014, India
| | | |
Collapse
|
89
|
Genome-wide identification of glutathione peroxidase (GPX) gene family and their response to abiotic stress in cucumber. 3 Biotech 2018. [PMID: 29515965 DOI: 10.1007/s13205-018-1185-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant glutathione peroxidases (GPXs) are non-heme thiol peroxidases that play vital roles in maintaining H2O2 homeostasis and regulating plant response to abiotic stress. Here, we performed a comparative genomic analysis of the GPX gene family in cucumber (Cucumis sativus). As a result, a total of 6 CsGPX genes were identified, which were unevenly located in four out of the seven chromosomes in cucumber genome. Based on the phylogenetic analysis, the GPX genes of cucumber, Arabidopsis and rice could be classified into five groups. Analysis of the distribution of conserved domains of GPX proteins showed that all these proteins contain three highly conserved motifs, as well as other conserved sequences and residues. Gene structure analysis revealed a conserved exon-intron organization pattern of these genes. Through analyzing the promoter regions of CsGPX genes, many hormone-, stress-, and development-responsive cis-elements were identified. Moreover, we also investigated their expression patterns in different tissues and developmental stages as well as in response to abiotic stress and x acid (ABA) treatments. The qRT-PCR results showed that the transcripts of CsGPX genes varied largely under abiotic stress and ABA treatments at different time points. These results demonstrate that cucumber GPX gene family may function in tissue development and plant stress responses.
Collapse
|
90
|
Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice. PLoS One 2018; 13:e0192116. [PMID: 29425206 PMCID: PMC5806864 DOI: 10.1371/journal.pone.0192116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.
Collapse
|
91
|
Ben Massoud M, Sakouhi L, Karmous I, Zhu Y, El Ferjani E, Sheehan D, Chaoui A. Protective role of exogenous phytohormones on redox status in pea seedlings under copper stress. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:51-61. [PMID: 29247887 DOI: 10.1016/j.jplph.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 05/08/2023]
Abstract
The present work aims to provide insight on the role of phytohormone application in developing efficient practical defense strategies to improve plants tolerance under heavy metal contamination. For this purpose, pea (Pisum sativum L.) seeds were germinated in an aqueous solution of 200μM CuCl2 up to the 3rd day and then continued to germinate in the presence of distilled water (stress cessation) or were subjected to following combinations: Cu+1μM IAA and Cu+1μM GA3 for 3 additional days. The results showed that copper excess induced oxidative stress in germinating seeds, which resulted in changes of the redox state of glutathione and cysteine, and proteomics revealed Cu-induced modifications of thiols (SH) and carbonyls (CO) (indicators of protein oxidation). However, application of IAA or GA3 in the germination medium after 3days of Cu exposure alleviated toxicity on seedlings, despite the persistence of Cu up to 6th day. This improving effect seems to be mediated by a cell Cu accumulation decrease and a protein reduced status recovery, since phytohormones modulate thioredoxin/ferredoxin systems in favor of protecting proteins against oxidation. In addition, an IAA and GA3 protective effect was evidenced by a cellular homeostasis amelioration resulting from the balance conservation between the regeneration and consumption processes of glutathione and cysteine reduced forms. The exogenous effectors also induced modifications of profiles of SH and CO, suggesting changes in the regulation and expression of proteins that could be involved in defense mechanism against Cu stress.
Collapse
Affiliation(s)
- Marouane Ben Massoud
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, 7021 Zarzouna, Tunisia; Proteomics Research Group, School of Biochemistry and Cell Biology & Environmental Research Institute, University College Cork, Ireland.
| | - Lamia Sakouhi
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, 7021 Zarzouna, Tunisia.
| | - Inès Karmous
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, 7021 Zarzouna, Tunisia.
| | - Yao Zhu
- Teagasc Food Research Center, Department of Food Chemistry and Technology, Ashton, Dublin 15, Ireland.
| | - Ezzedine El Ferjani
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, 7021 Zarzouna, Tunisia.
| | - David Sheehan
- Proteomics Research Group, School of Biochemistry and Cell Biology & Environmental Research Institute, University College Cork, Ireland; College of Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Abdelilah Chaoui
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, 7021 Zarzouna, Tunisia.
| |
Collapse
|
92
|
Postharvest UV-C application to improve health promoting secondary plant compound pattern in vegetable amaranth. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
93
|
Uzilday B, Ozgur R, Sekmen AH, Turkan I. Endoplasmic reticulum stress regulates glutathione metabolism and activities of glutathione related enzymes in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:284-296. [PMID: 32291042 DOI: 10.1071/fp17151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 07/30/2017] [Indexed: 05/16/2023]
Abstract
Stress conditions generate an extra load on protein folding machinery in the endoplasmic reticulum (ER) and if the ER cannot overcome this load, unfolded proteins accumulate in the ER lumen, causing ER stress. ER lumen localised protein disulfide isomerase (PDI) catalyses the generation of disulfide bonds in conjugation with ER oxidoreductase1 (ERO1) during protein folding. Mismatched disulfide bonds are reduced by the conversion of GSH to GSSG. Under prolonged ER stress, GSH pool is oxidised and H2O2 is produced via increased activity of PDI-ERO1. However, it is not known how glutathione metabolism is regulated under ER stress in plants. So, in this study, ER stress was induced with tunicamycin (0.15, 0.3, 0.45μg mL-1 Tm) in Arabidopsis thaliana (L.) Heynh. Glutathione content was increased by ER stress, which was accompanied by induction of glutathione biosynthesis genes (GSH1, GSH2). Also, the apoplastic glutathione degradation pathway (GGT1) was induced. Further, the activities of glutathione reductase (GR), dehydroascorbate reductase (DHAR), glutathione peroxidase (GPX) and glutathione S-transferase (GST) were increased under ER stress. Results also showed that chloroplastic GPX genes were specifically downregulated with ER stress. This is the first report on regulation of glutathione metabolism and glutathione related enzymes in response to ER stress in plants.
Collapse
Affiliation(s)
- Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey
| | - A Hediye Sekmen
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
94
|
Mai VC, Nguyen BH, Nguyen DD, Nguyen LAV. Nostoc calcicola extract improved the antioxidative response of soybean to cowpea aphid. BOTANICAL STUDIES 2017; 58:55. [PMID: 29185129 PMCID: PMC5705527 DOI: 10.1186/s40529-017-0211-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Soybean (Glycine max (L.) Merr. cv. "Nam Dan") is one of the most valuable crops in agricultural production in Nghe An province (Vietnam). Our previous study revealed that extract of the cyanobacterium strain Nostoc calcicola HN9 expressed positive effect on growth and development, and raised soybean productivity (Tran et al. in Proceeding of Vietnam national conference of research on biology, Da Nang, 2016). We hypothesized that N. calcicola HN9 would improve the defense responses of G. max cv. "Nam Dan" to cowpea aphid (Aphis craccivora Koch)-a serious pest of leguminous crops. RESULTS Infestation of A. craccivora caused oxidative stress in leaves of G. max cv. "Nam Dan". A strong generation of endogenous reactive oxygen species (ROS) such as superoxide anion radical (O 2·- ) and hydrogen peroxide (H2O2) resulted in the cellular damages in the aphid-infested leaves through high levels of injury percentage and lipid peroxidation. To protect from aphid attack themselves, soybean plants triggered the antioxidant defense systems, in which, enzymatic antioxidants such as superoxide dismutase (SOD, 1.15.1.1), catalase (CAT, 1.11.1.6) and GPx (EC 1.11.1.9) were strongly accumulated to reduce the toxic effects of ROS. Components of N. calcicola HN9 extract might strengthen the defensive capability of G. max cv. "Nam Dan" to cowpea aphid infestation via establishing the chemical constraints on oxidative stress. Under effect of cyanobacteria extract, generation of O 2·- and H2O2 was strictly limited, activities of SOD, CAT and GPx were remarkably accumulated in the aphid-infested leaves leading to a significant reduction of oxidative damages. CONCLUSIONS Nostoc calcicola HN9 extract probably not only controlled the generation and effects of O 2·- and H2O2 but also augmented the accumulated activity of SOD, CAT and GPx in soybean leaves that allowed them to control oxidative stress, contributed to increase the resistance of G. max cv. "Nam Dan" to A. craccivora. The improvement of cyanobacteria extract on the antioxidative response of soybean "Nam Dan" to cowpea aphid can be a novel aspect to contribute to current knowledge regarding the soybean-aphid interaction.
Collapse
Affiliation(s)
- Van-Chung Mai
- Department of Plant Physiology, School of Natural Sciences Education, Vinh University, str. Le Duan 182, Vinh, Nghe An Province Vietnam
| | - Ba-Hoanh Nguyen
- Department of Plant Physiology, School of Natural Sciences Education, Vinh University, str. Le Duan 182, Vinh, Nghe An Province Vietnam
| | - Duc-Dien Nguyen
- Department of Environmental Sciences, School of Chemo-Biology and Environment Technology, Vinh University, str. Le Duan 182, Vinh, Nghe An Province Vietnam
| | - Le-Ai-Vinh Nguyen
- Department of Environmental Sciences, School of Chemo-Biology and Environment Technology, Vinh University, str. Le Duan 182, Vinh, Nghe An Province Vietnam
| |
Collapse
|
95
|
Biochemistry and Physiology of Reactive Oxygen Species in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:47-64. [PMID: 28429317 DOI: 10.1007/978-3-319-54910-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are by-products of various metabolic processes in aerobic organisms including Euglena. Chloroplasts and mitochondria are the main sites of ROS generation by photosynthesis and respiration, respectively, through the active electron transport chain. An efficient antioxidant network is required to maintain intracellular ROS pools at optimal conditions for redox homeostasis. A comparison with the networks of plants and animals revealed that Euglena has acquired some aspects of ROS metabolic process. Euglena lacks catalase and a typical selenocysteine containing animal-type glutathione peroxidase for hydrogen peroxide scavenging, but contains enzymes involved in ascorbate-glutathione cycle solely in the cytosol. Ascorbate peroxidase in Euglena, which plays a central role in the ascorbate-glutathione cycle, forms a unique intra-molecular dimer structure that is related to the recognition of peroxides. We recently identified peroxiredoxin and NADPH-dependent thioredoxin reductase isoforms in cellular compartments including chloroplasts and mitochondria, indicating the physiological significance of the thioredoxin system in metabolism of ROS. Besides glutathione, Euglena contains the unusual thiol compound trypanothione, an unusual form of glutathione involving two molecules of glutathione joined by a spermidine linker, which has been identified in pathogenic protists such as Trypanosomatida and Schizopyrenida. Furthermore, in contrast to plants, photosynthesis by Euglena is not susceptible to hydrogen peroxide because of resistance of the Calvin cycle enzymes fructose-1,6-bisphosphatse, NADP+-glyceraldehyde-3-phosphatase, sedoheptulose-1,7-bisphosphatase, and phosphoribulokinase to hydrogen peroxide. Consequently, these characteristics of Euglena appear to exemplify a strategy for survival and adaptation to various environmental conditions during the evolutionary process of euglenoids.
Collapse
|
96
|
Karmous I, Trevisan R, El Ferjani E, Chaoui A, Sheehan D. Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: Evidence for differential redox buffering in seedlings and cotyledon. PLoS One 2017; 12:e0184396. [PMID: 28981522 PMCID: PMC5628808 DOI: 10.1371/journal.pone.0184396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
In agriculture, heavy metal contamination of soil interferes with processes associated with plant growth, development and productivity. Here, we describe oxidative and redox changes, and deleterious injury within cotyledons and seedlings caused by exposure of germinating (Phaseolus vulgaris L. var. soisson nain hâtif) seeds to copper (Cu). Cu induced a marked delay in seedling growth, and was associated with biochemical disturbances in terms of intracellular oxidative status, redox regulation and energy metabolism. In response to these alterations, modulation of activities of antioxidant proteins (thioredoxin and glutathione reductase, peroxiredoxin) occurred, thus preventing oxidative damage. In addition, oxidative modification of proteins was detected in both cotyledons and seedlings by one- and two-dimensional electrophoresis. These modified proteins may play roles in redox buffering. The changes in activities of redox proteins underline their fundamental roles in controlling redox homeostasis. However, observed differential redox responses in cotyledon and seedling tissues showed a major capacity of the seedlings' redox systems to protect the reduced status of protein thiols, thus suggesting quantitatively greater antioxidant protection of proteins in seedlings compared to cotyledon. To our knowledge, this is the first comprehensive redox biology investigation of the effect of Cu on seed germination.
Collapse
Affiliation(s)
- Inès Karmous
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Ezzeddine El Ferjani
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| | - Abdelilah Chaoui
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| | - David Sheehan
- College of Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
97
|
Zhang JJ, Xu JY, Lu FF, Jin SF, Yang H. Detoxification of Atrazine by Low Molecular Weight Thiols in Alfalfa (Medicago sativa). Chem Res Toxicol 2017; 30:1835-1846. [DOI: 10.1021/acs.chemrestox.7b00166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Jing Zhang
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College
of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiang Yan Xu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - She Feng Jin
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
98
|
Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. MOLECULAR PLANT 2017; 10:1107-1125. [PMID: 28739495 DOI: 10.1016/j.molp.2017.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Adeline Mauriès
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marion Hamon
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, 75005 Paris, France; Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FRC550, CNRS, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
99
|
Rahantaniaina MS, Li S, Chatel-Innocenti G, Tuzet A, Mhamdi A, Vanacker H, Noctor G. Glutathione oxidation in response to intracellular H 2O 2: Key but overlapping roles for dehydroascorbate reductases. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356531. [PMID: 28782990 PMCID: PMC5616140 DOI: 10.1080/15592324.2017.1356531] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/05/2017] [Indexed: 05/20/2023]
Abstract
Glutathione is a pivotal molecule in oxidative stress, during which it is potentially oxidized by several pathways linked to H2O2 detoxification. We have investigated the response and functional importance of 3 potential routes for glutathione oxidation pathways mediated by glutathione S-transferases (GST), glutaredoxin-dependent peroxiredoxins (PRXII), and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Loss-of-function gstU8, gstU24, gstF8, prxIIE and prxIIF mutants as well as double gstU8 gstU24, gstU8 gstF8, gstU24 gstF8, prxIIE prxIIF mutants were obtained. No mutant lines showed marked changes in their phenotype and glutathione profiles in comparison to the wild-type plants in either optimal conditions or oxidative stress triggered by catalase inhibition. By contrast, multiple loss of DHAR functions markedly decreased glutathione oxidation triggered by catalase deficiency. To assess whether this effect was mediated directly by loss of DHAR enzyme activity, or more indirectly by upregulation of other enzymes involved in glutathione and ascorbate recycling, we measured expression of glutathione reductase (GR) and expression and activity of monodehydroascorbate reductases (MDHAR). No evidence was obtained that either GRs or MDHARs were upregulated in plants lacking DHAR function. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H2O2 metabolism.
Collapse
Affiliation(s)
- Marie-Sylviane Rahantaniaina
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, France
| | - Shengchun Li
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, France
| | - Gilles Chatel-Innocenti
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, France
| | - Andrée Tuzet
- Unité Mixte de Recherche ECOSYS / Pôle BIOCLIMATOLOGIE, INRA – AgroParisTech, Route de la Ferme, Thiverval-Grignon, France
| | - Amna Mhamdi
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, France
| | - Hélène Vanacker
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, France
| | - Graham Noctor
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, France
- CONTACT Graham Noctor , IPS2, University of Paris sud, Bâtiment 630, Orsay, None 91405, France
| |
Collapse
|
100
|
Expression Profiling in Pinus pinaster in Response to Infection with the Pine Wood Nematode Bursaphelenchus xylophilus. FORESTS 2017. [DOI: 10.3390/f8080279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|