51
|
Msimbira LA, Smith DL. The Roles of Plant Growth Promoting Microbes in Enhancing Plant Tolerance to Acidity and Alkalinity Stresses. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00106] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
52
|
Fürst-Jansen JMR, de Vries S, de Vries J. Evo-physio: on stress responses and the earliest land plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3254-3269. [PMID: 31922568 PMCID: PMC7289718 DOI: 10.1093/jxb/eraa007] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 05/19/2023]
Abstract
Embryophytes (land plants) can be found in almost any habitat on the Earth's surface. All of this ecologically diverse embryophytic flora arose from algae through a singular evolutionary event. Traits that were, by their nature, indispensable for the singular conquest of land by plants were those that are key for overcoming terrestrial stressors. Not surprisingly, the biology of land plant cells is shaped by a core signaling network that connects environmental cues, such as stressors, to the appropriate responses-which, thus, modulate growth and physiology. When did this network emerge? Was it already present when plant terrestrialization was in its infancy? A comparative approach between land plants and their algal relatives, the streptophyte algae, allows us to tackle such questions and resolve parts of the biology of the earliest land plants. Exploring the biology of the earliest land plants might shed light on exactly how they overcame the challenges of terrestrialization. Here, we outline the approaches and rationale underlying comparative analyses towards inferring the genetic toolkit for the stress response that aided the earliest land plants in their conquest of land.
Collapse
Affiliation(s)
- Janine M R Fürst-Jansen
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Göttingen, Germany
| | - Sophie de Vries
- Population Genetics, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan de Vries
- University of Göttingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
53
|
Bünger W, Jiang X, Müller J, Hurek T, Reinhold-Hurek B. Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants. Sci Rep 2020; 10:8692. [PMID: 32457320 PMCID: PMC7251102 DOI: 10.1038/s41598-020-65277-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/30/2020] [Indexed: 02/01/2023] Open
Abstract
Despite the relevance of complex root microbial communities for plant health, growth and productivity, the molecular basis of these plant-microbe interactions is not well understood. Verrucomicrobia are cosmopolitans in the rhizosphere, nevertheless their adaptations and functions are enigmatic since the proportion of cultured members is low. Here we report four cultivated Verrucomicrobia isolated from rice, putatively representing four novel species, and a novel subdivision. The aerobic strains were isolated from roots or rhizomes of Oryza sativa and O. longistaminata. Two of them are the first cultivated endophytes of Verrucomicrobia, as validated by confocal laser scanning microscopy inside rice roots after re-infection under sterile conditions. This extended known verrucomicrobial niche spaces. Two strains were promoting root growth of rice. Discovery of root compartment-specific Verrucomicrobia permitted an across-phylum comparison of the genomic conformance to life in soil, rhizoplane or inside roots. Genome-wide protein domain comparison with niche-specific reference bacteria from distant phyla revealed signature protein domains which differentiated lifestyles in these microhabitats. Our study enabled us to shed light into the dark microbial matter of root Verrucomicrobia, to define genetic drivers for niche adaptation of bacteria to plant roots, and provides cultured strains for revealing causal relationships in plant-microbe interactions by reductionist approaches.
Collapse
Affiliation(s)
- Wiebke Bünger
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | - Xun Jiang
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | - Jana Müller
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany.,Department of Botany, University of Bremen, Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, University of Bremen, Bremen, Germany
| | | |
Collapse
|
54
|
Fujinami R, Yamada T, Imaichi R. Root apical meristem diversity and the origin of roots: insights from extant lycophytes. JOURNAL OF PLANT RESEARCH 2020; 133:291-296. [PMID: 32002717 DOI: 10.1007/s10265-020-01167-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The independent origin of roots in lycophytes and euphyllophytes has been proposed, mainly based on paleobotanical records. However, the question of how roots evolved within these lineages remains unresolved. Root apical meristem (RAM) organization in lycophytes would provide a clue toward understanding the early evolution of roots. Recently, we examined RAM organization in lycophytes (Lycopodiaceae, Isoetaceae, and Selaginellaceae) in terms of cell division activity and anatomy, comparing RAM among vascular plants. Lycophyte RAM exhibited four organization types (I, II, III, and apical); thus, RAM organization in extant lycophytes was more diverse than expected. Type I RAM contained a region with very low cell division frequency, reminiscent of the quiescent center (QC) in seed plant RAM. Although some euphyllophyte RAMs were structurally similar to types II and III and apical cell-type RAM, lycophyte RAM of types II and III had no QC-like area. These results support the paleobotanical predictions that roots evolved several times in lycophytes, as well as in euphyllophytes. In this review, we also introduce recent findings on RAM organization in extant lycophytes and discuss the origin of roots in vascular plants.
Collapse
Affiliation(s)
- Rieko Fujinami
- Faculty of Education, Kyoto University of Education, 1 Fujinomori-cho, Fukakusa, Kyoto, 612-8522, Japan.
| | - Toshihiro Yamada
- Botanical Gardens, Faculty of Science, Osaka City University, Kisaichi, Katano, Osaka, 576-0004, Japan
| | - Ryoko Imaichi
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Tokyo, 112-8681, Japan
| |
Collapse
|
55
|
De-Jesús-García R, Rosas U, Dubrovsky JG. The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:383-397. [PMID: 32213271 DOI: 10.1071/fp19144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The root is the main organ through which water and mineral nutrients enter the plant organism. In addition, root fulfils several other functions. Here, we propose that the root also performs the barrier function, which is essential not only for plant survival but for plant acclimation and adaptation to a constantly changing and heterogeneous soil environment. This function is related to selective uptake and avoidance of some soil compounds at the whole plant level. We review the toolkit of morpho-anatomical, structural, and other components that support this view. The components of the root structure involved in selectivity, permeability or barrier at a cellular, tissue, and organ level and their properties are discussed. In consideration of the arguments supporting barrier function of plant roots, evolutionary aspects of this function are also reviewed. Additionally, natural variation in selective root permeability is discussed which suggests that the barrier function is constantly evolving and is subject of natural selection.
Collapse
Affiliation(s)
- Ramces De-Jesús-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico; and Corresponding author.
| |
Collapse
|
56
|
Ferrari C, Shivhare D, Hansen BO, Pasha A, Esteban E, Provart NJ, Kragler F, Fernie A, Tohge T, Mutwil M. Expression Atlas of Selaginella moellendorffii Provides Insights into the Evolution of Vasculature, Secondary Metabolism, and Roots. THE PLANT CELL 2020; 32:853-870. [PMID: 31988262 PMCID: PMC7145505 DOI: 10.1105/tpc.19.00780] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
Selaginella moellendorffii is a representative of the lycophyte lineage that is studied to understand the evolution of land plant traits such as the vasculature, leaves, stems, roots, and secondary metabolism. However, only a few studies have investigated the expression and transcriptional coordination of Selaginella genes, precluding us from understanding the evolution of the transcriptional programs behind these traits. We present a gene expression atlas comprising all major organs, tissue types, and the diurnal gene expression profiles for S. moellendorffii We show that the transcriptional gene module responsible for the biosynthesis of lignocellulose evolved in the ancestor of vascular plants and pinpoint the duplication and subfunctionalization events that generated multiple gene modules involved in the biosynthesis of various cell wall types. We demonstrate how secondary metabolism is transcriptionally coordinated and integrated with other cellular pathways. Finally, we identify root-specific genes and show that the evolution of roots did not coincide with an increased appearance of gene families, suggesting that the development of new organs does not coincide with increased fixation of new gene functions. Our updated database at conekt.plant.tools represents a valuable resource for studying the evolution of genes, gene families, transcriptomes, and functional gene modules in the Archaeplastida kingdom.
Collapse
Affiliation(s)
- Camilla Ferrari
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Devendra Shivhare
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bjoern Oest Hansen
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
57
|
Patino-Ramirez F, Arson C. Transportation networks inspired by leaf venation algorithms. BIOINSPIRATION & BIOMIMETICS 2020; 15:036012. [PMID: 32050175 DOI: 10.1088/1748-3190/ab7571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological systems have adapted to environmental constraints and limited resource availability. In the present study, we evaluate the algorithm underlying leaf venation (LV) deployment using graph theory. We compare the traffic balance, travel and cost efficiency of simply-connected LV networks to those of the fan tree and of the spanning tree. We use a Pareto front to show that the total length of leaf venations (LVs) is close to optimal. Then we apply the LV algorithm to design transportation networks in the city of Atlanta. Results show that leaf-inspired models can perform similarly or better than computer-intensive optimization algorithms in terms of network cost and service performance, which could facilitate the design of engineering transportation networks.
Collapse
Affiliation(s)
- Fernando Patino-Ramirez
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | | |
Collapse
|
58
|
Caroline Silva Lopes E, Pereira Rodrigues W, Ruas Fraga K, Machado Filho JA, Rangel da Silva J, Menezes de Assis-Gomes M, Moura Assis Figueiredo FAM, Gresshoff PM, Campostrini E. Hypernodulating soybean mutant line nod4 lacking 'Autoregulation of Nodulation' (AON) has limited root-to-shoot water transport capacity. ANNALS OF BOTANY 2019; 124:979-991. [PMID: 30955042 PMCID: PMC6881229 DOI: 10.1093/aob/mcz040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/01/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Although hypernodulating phenotype mutants of legumes, such as soybean, possess a high leaf N content, the large number of root nodules decreases carbohydrate availability for plant growth and seed yield. In addition, under conditions of high air vapour pressure deficit (VPD), hypernodulating plants show a limited capacity to replace water losses through transpiration, resulting in stomatal closure, and therefore decreased net photosynthetic rates. Here, we used hypernodulating (nod4) (282.33 ± 28.56 nodules per plant) and non-nodulating (nod139) (0 nodules per plant) soybean mutant lines to determine explicitly whether a large number of nodules reduces root hydraulic capacity, resulting in decreased stomatal conductance and net photosynthetic rates under high air VPD conditions. METHODS Plants were either inoculated or not inoculated with Bradyrhizobium diazoefficiens (strain BR 85, SEMIA 5080) to induce nitrogen-fixing root nodules (where possible). Absolute root conductance and root conductivity, plant growth, leaf water potential, gas exchange, chlorophyll a fluorescence, leaf 'greenness' [Soil Plant Analysis Development (SPAD) reading] and nitrogen content were measured 37 days after sowing. KEY RESULTS Besides the reduced growth of hypernodulating soybean mutant nod4, such plants showed decreased root capacity to supply leaf water demand as a consequence of their reduced root dry mass and root volume, which resulted in limited absolute root conductance and root conductivity normalized by leaf area. Thereby, reduced leaf water potential at 1300 h was observed, which contributed to depression of photosynthesis at midday associated with both stomatal and non-stomatal limitations. CONCLUSIONS Hypernodulated plants were more vulnerable to VPD increases due to their limited root-to-shoot water transport capacity. However, greater CO2 uptake caused by the high N content can be partly compensated by the stomatal limitation imposed by increased VPD conditions.
Collapse
Affiliation(s)
- Emile Caroline Silva Lopes
- Setor de Fisiologia Vegetal, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, CEP, Ilhéus, Bahia, Braz il
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Weverton Pereira Rodrigues
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Katherine Ruas Fraga
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - José Altino Machado Filho
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, ES, Brazil
| | - Jefferson Rangel da Silva
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Mara Menezes de Assis-Gomes
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Peter M Gresshoff
- Integrative Legume Research Group, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
59
|
Bodner G, Loiskandl W, Hartl W, Erhart E, Sobotik M. Characterization of Cover Crop Rooting Types from Integration of Rhizobox Imaging and Root Atlas Information. PLANTS (BASEL, SWITZERLAND) 2019; 8:E514. [PMID: 31744188 PMCID: PMC6918168 DOI: 10.3390/plants8110514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 11/24/2022]
Abstract
Plant root systems are essential for sustainable agriculture, conveying resource-efficient genotypes and species with benefits to soil ecosystem functions. Targeted selection of species/genotypes depends on available root system information. Currently there is no standardized approach for comprehensive root system characterization, suggesting the need for data integration across methods and sources. Here, we combine field measured root descriptors from the classical Root Atlas series with traits from controlled-environment root imaging for 10 cover crop species to (i) detect descriptors scaling between distant experimental methods, (ii) provide traits for species classification, and (iii) discuss implications for cover crop ecosystem functions. Results revealed relation of single axes measures from root imaging (convex hull, primary-lateral length ratio) to Root Atlas field descriptors (depth, branching order). Using composite root variables (principal components) for branching, morphology, and assimilate investment traits, cover crops were classified into species with (i) topsoil-allocated large diameter rooting type, (ii) low-branched primary/shoot-born axes-dominated rooting type, and (iii) highly branched dense rooting type, with classification trait-dependent distinction according to depth distribution. Data integration facilitated identification of root classification variables to derive root-related cover crop distinction, indicating their agro-ecological functions.
Collapse
Affiliation(s)
- Gernot Bodner
- Institute of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
- Austrian Society of Root Research, Muthgasse 18, A-1190 Vienna, Austria; (W.L.); (W.H.); (E.E.); (M.S.)
| | - Willibald Loiskandl
- Austrian Society of Root Research, Muthgasse 18, A-1190 Vienna, Austria; (W.L.); (W.H.); (E.E.); (M.S.)
- Institute for Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Wilfried Hartl
- Austrian Society of Root Research, Muthgasse 18, A-1190 Vienna, Austria; (W.L.); (W.H.); (E.E.); (M.S.)
- Bioforschung Austria, Esslinger Hauptstrasse 132-134, A-1220 Vienna, Austria
| | - Eva Erhart
- Austrian Society of Root Research, Muthgasse 18, A-1190 Vienna, Austria; (W.L.); (W.H.); (E.E.); (M.S.)
- Bioforschung Austria, Esslinger Hauptstrasse 132-134, A-1220 Vienna, Austria
| | - Monika Sobotik
- Austrian Society of Root Research, Muthgasse 18, A-1190 Vienna, Austria; (W.L.); (W.H.); (E.E.); (M.S.)
- Pflanzensoziologisches Institut, Pichlern 9, A-4822 Bad Goisern, Austria
| |
Collapse
|
60
|
Schaefer I, Caruso T. Oribatid mites show that soil food web complexity and close aboveground-belowground linkages emerged in the early Paleozoic. Commun Biol 2019; 2:387. [PMID: 31667361 PMCID: PMC6805910 DOI: 10.1038/s42003-019-0628-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
The early evolution of ecosystems in Palaeozoic soils remains poorly understood because the fossil record is sparse, despite the preservation of soil microarthropods already from the Early Devonian (~410 Mya). The soil food web plays a key role in the functioning of ecosystems and its organisms currently express traits that have evolved over 400 my. Here, we conducted a phylogenetic trait analysis of a major soil animal group (Oribatida) to reveal the deep time story of the soil food web. We conclude that this group, central to the trophic structure of the soil food web, diversified in the early Paleozoic and resulted in functionally complex food webs by the late Devonian. The evolution of body size, form, and an astonishing trophic diversity demonstrates that the soil food web was as structured as current food webs already in the Devonian, facilitating the establishment of higher plants in the late Paleozoic.
Collapse
Affiliation(s)
- Ina Schaefer
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
- JFB Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Tancredi Caruso
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| |
Collapse
|
61
|
Feng K, Zhang Y, He Z, Ning D, Deng Y. Interdomain ecological networks between plants and microbes. Mol Ecol Resour 2019; 19:1565-1577. [PMID: 31479575 DOI: 10.1111/1755-0998.13081] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
While macroscopic interkingdom relationships have been intensively investigated in various ecosystems, the above-belowground ecology in natural ecosystems has been poorly understood, especially for the plant-microbe associations at a regional scale. In this study, we proposed a workflow to construct interdomain ecological networks (IDEN) between multiple plants and various microbes (bacteria and archaea in this study). Across 30 latitudinal forests in China, the regional IDEN showed particular topological features, including high connectance, nested structure, asymmetric specialization and modularity. Also, plant species exhibited strong preference to specific microbial groups, and the observed network was significantly different from randomly rewired networks. Network module analysis indicated that a majority of microbes associated with plants within modules rather than across modules, suggesting specialized associations between plants and microorganisms. Consistent plant-microbe associations were captured via IDENs constructed within individual forest locations, which reinforced the validity of IDEN analysis. In addition, the plant-forest link distribution showed the geographical distribution of plants had higher endemicity than that of microorganisms. With cautious experimental design and data processing, this study shows interdomain species associations between plants and microbes in natural forest ecosystems and provides new insights into our understanding of meta-communities across different domain species.
Collapse
Affiliation(s)
- Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuguang Zhang
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Beijing, China
| | - Zhili He
- Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
62
|
The efficiency paradox: How wasteful competitors forge thrifty ecosystems. Proc Natl Acad Sci U S A 2019; 116:17619-17623. [PMID: 31420512 DOI: 10.1073/pnas.1901785116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Organic waste, an inevitable byproduct of metabolism, increases in amount as metabolic rates (per capita power) of animals and plants rise. Most of it is recycled within aerobic ecosystems, but some is lost to the system and is sequestered in the crust for millions of years. Here, I identify and resolve a previously overlooked paradox concerning the long-term loss of organic matter. In this efficiency paradox, high-powered species are inefficient in that they release copious waste, but the ecosystems they inhabit lose almost no organic matter. Systems occupied by more efficient low-powered species suffer greater losses because of less efficient recycling. Over Phanerozoic time, ecosystems have become more productive and increasingly efficient at retaining and redistributing organic matter even as opportunistic and highly competitive producers and consumers gained power and became less efficient. These patterns and trends are driven by natural selection at the level of individuals and coherent groups, which favors winners that are more powerful, active, and wasteful. The activities of these competitors collectively create conditions that are increasingly conducive to more efficient recycling and retention of organic matter in the ecosystem.
Collapse
|
63
|
Reyes-Hernández BJ, Shishkova S, Amir R, Quintana-Armas AX, Napsucialy-Mendivil S, Cervantes-Gamez RG, Torres-Martínez HH, Montiel J, Wood CD, Dubrovsky JG. Root stem cell niche maintenance and apical meristem activity critically depend on THREONINE SYNTHASE1. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3835-3849. [PMID: 30972413 DOI: 10.1093/jxb/erz165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/22/2019] [Indexed: 05/23/2023]
Abstract
Indeterminate root growth depends on the stem cell niche (SCN) and root apical meristem (RAM) maintenance whose regulation permits plasticity in root system formation. Using a forward genetics approach, we isolated the moots koom1 ('short root' in Mayan) mutant that shows complete primary RAM exhaustion and abolished SCN activity. We identified that this phenotype is caused by a point mutation in the METHIONINE OVERACCUMULATOR2 (MTO2) gene that encodes THREONINE SYNTHASE1 and renamed the mutant as mto2-2. The amino acid profile showed drastic changes, most notorious of which was accumulation of methionine. In non-allelic mto1-1 (Arabidopsis thaliana cystathionine gamma-synthetase1) and mto3-1 (S-adenosylmethionine synthetase) mutants, both with an increased methionine level, the RAM size was similar to that of the wild type, suggesting that methionine overaccumulation itself did not cause RAM exhaustion in mto2 mutants. When mto2-2 RAM is not yet completely exhausted, exogenous threonine induced de novo SCN establishment and root growth recovery. The threonine-dependent RAM re-establishment in mto2-2 suggests that threonine is a limiting factor for RAM maintenance. In the root, MTO2 was predominantly expressed in the RAM. The essential role of threonine in mouse embryonic stem cells and in RAM maintenance suggests that common regulatory mechanisms may operate in plant and animal SCN maintenance.
Collapse
Affiliation(s)
- Blanca Jazmín Reyes-Hernández
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | - Aranza Xhaly Quintana-Armas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Rocio Guadalupe Cervantes-Gamez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Héctor Hugo Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Jesús Montiel
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Christopher D Wood
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| |
Collapse
|
64
|
Zhang Y, Xiao G, Wang X, Zhang X, Friml J. Evolution of fast root gravitropism in seed plants. Nat Commun 2019; 10:3480. [PMID: 31375675 PMCID: PMC6677796 DOI: 10.1038/s41467-019-11471-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/05/2019] [Indexed: 01/08/2023] Open
Abstract
An important adaptation during colonization of land by plants is gravitropic growth of roots, which enabled roots to reach water and nutrients, and firmly anchor plants in the ground. Here we provide insights into the evolution of an efficient root gravitropic mechanism in the seed plants. Architectural innovation, with gravity perception constrained in the root tips along with a shootward transport route for the phytohormone auxin, appeared only upon the emergence of seed plants. Interspecies complementation and protein domain swapping revealed functional innovations within the PIN family of auxin transporters leading to the evolution of gravitropism-specific PINs. The unique apical/shootward subcellular localization of PIN proteins is the major evolutionary innovation that connected the anatomically separated sites of gravity perception and growth response via the mobile auxin signal. We conclude that the crucial anatomical and functional components emerged hand-in-hand to facilitate the evolution of fast gravitropic response, which is one of the major adaptations of seed plants to dry land.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, China
| | - Xiaojuan Wang
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, China
- College of Life Sciences, Northwest University, 710069, Xi'an, China
| | - Xixi Zhang
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria.
| |
Collapse
|
65
|
Ge L, Chen R. Negative gravitropic response of roots directs auxin flow to control root gravitropism. PLANT, CELL & ENVIRONMENT 2019; 42:2372-2383. [PMID: 30968964 DOI: 10.1111/pce.13559] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 04/05/2019] [Indexed: 05/03/2023]
Abstract
Root tip is capable of sensing and adjusting its growth direction in response to gravity, a phenomenon known as root gravitropism. Previously, we have shown that negative gravitropic response of roots (NGR) is essential for the positive gravitropic response of roots. Here, we show that NGR, a plasma membrane protein specifically expressed in root columella and lateral root cap cells, controls the positive root gravitropic response by regulating auxin efflux carrier localization in columella cells and the direction of lateral auxin flow in response to gravity. Pharmacological and genetic studies show that the negative root gravitropic response of the ngr mutants depends on polar auxin transport in the root elongation zone. Cell biology studies further demonstrate that polar localization of the auxin efflux carrier PIN3 in root columella cells and asymmetric lateral auxin flow in the root tip in response to gravistimulation is reversed in the atngr1;2;3 triple mutant. Furthermore, simultaneous mutations of three PIN genes expressed in root columella cells impaired the negative root gravitropic response of the atngr1;2;3 triple mutant. Our work revealed a critical role of NGR in root gravitropic response and provided an insight of the early events and molecular basis of the positive root gravitropism.
Collapse
Affiliation(s)
- Liangfa Ge
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Plant Genetics and Development, Noble Research Institute, Ardmore, 73401, Oklahoma
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Laboratory of Plant Genetics and Development, Noble Research Institute, Ardmore, 73401, Oklahoma
| |
Collapse
|
66
|
Lu M, Lu Y, Ikejiri T, Hogancamp N, Sun Y, Wu Q, Carroll R, Çemen I, Pashin J. Geochemical Evidence of First Forestation in the Southernmost Euramerica from Upper Devonian (Famennian) Black Shales. Sci Rep 2019; 9:7581. [PMID: 31110279 PMCID: PMC6527553 DOI: 10.1038/s41598-019-43993-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/02/2019] [Indexed: 11/09/2022] Open
Abstract
The global dispersal of forests and soils has been proposed as a cause for the Late Devonian mass extinctions of marine organisms, but detailed spatiotemporal records of forests and soils at that time remain lacking. We present data from microscopic and geochemical analyses of the Upper Devonian Chattanooga Shale (Famennian Stage). Plant residues (microfossils, vitrinite and inertinite) and biomarkers derived from terrestrial plants and wildfire occur throughout the stratigraphic section, suggesting widespread forest in the southern Appalachian Basin, a region with no macro plant fossil record during the Famennian. Inorganic geochemical results, as shown by increasing values of SiO2/Al2O3, Ti/Al, Zr/Al, and the Chemical Index of Alteration (CIA) upon time sequence, suggest enhanced continental weathering that may be attributed to the invasion of barren lands by rooted land plants. Our geochemical data collectively provide the oldest evidence of the influences of land plants from the southernmost Appalachian Basin. Our synthesis of vascular plant fossil record shows a more rapid process of afforestation and pedogenesis across south-central Euramerica during the Frasnian and Famennian than previously documented. Together, these results lead us to propose a new hypothesis that global floral dispersal had progressed southward along the Acadian landmass rapidly during the Late Devonian.
Collapse
Affiliation(s)
- Man Lu
- Department of Geological Sciences, Alabama Water Institute, University of Alabama, Tuscaloosa, AL, 35485, USA
| | - YueHan Lu
- Department of Geological Sciences, Alabama Water Institute, University of Alabama, Tuscaloosa, AL, 35485, USA. .,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Takehito Ikejiri
- Department of Geological Sciences, Alabama Water Institute, University of Alabama, Tuscaloosa, AL, 35485, USA.,Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL, 35485, USA
| | | | - Yongge Sun
- Environmental and Biogeochemical Institute (ebig), School of Earth Science, Zhejiang University, Hangzhou, 310027, China
| | - Qihang Wu
- Key Laboratory of Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Richard Carroll
- Energy Investigation Program, Geological Survey of Alabama, Tuscaloosa, AL, 35401, USA
| | - Ibrahim Çemen
- Department of Geological Sciences, Alabama Water Institute, University of Alabama, Tuscaloosa, AL, 35485, USA
| | - Jack Pashin
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
67
|
Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, De Smet I. Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:153-186. [PMID: 30525926 DOI: 10.1146/annurev-arplant-042817-040413] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During the past decade, a flurry of research focusing on the role of peptides as short- and long-distance signaling molecules in plant cell communication has been undertaken. Here, we focus on peptides derived from nonfunctional precursors, and we address several key questions regarding peptide signaling. We provide an overview of the regulatory steps involved in producing a biologically active peptide ligand that can bind its corresponding receptor(s) and discuss how this binding and subsequent activation lead to specific cellular outputs. We discuss different experimental approaches that can be used to match peptide ligands with their receptors. Lastly, we explore how peptides evolved from basic signaling units regulating essential processes in plants to more complex signaling systems as new adaptive traits developed and how nonplant organisms exploit this signaling machinery by producing peptide mimics.
Collapse
Affiliation(s)
- Vilde Olsson
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Lisa Joos
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
68
|
Hajheidari M, Koncz C, Bucher M. Chromatin Evolution-Key Innovations Underpinning Morphological Complexity. FRONTIERS IN PLANT SCIENCE 2019; 10:454. [PMID: 31031789 PMCID: PMC6474313 DOI: 10.3389/fpls.2019.00454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
The history of life consists of a series of major evolutionary transitions, including emergence and radiation of complex multicellular eukaryotes from unicellular ancestors. The cells of multicellular organisms, with few exceptions, contain the same genome, however, their organs are composed of a variety of cell types that differ in both structure and function. This variation is largely due to the transcriptional activity of different sets of genes in different cell types. This indicates that complex transcriptional regulation played a key role in the evolution of complexity in eukaryotes. In this review, we summarize how gene duplication and subsequent evolutionary innovations, including the structural evolution of nucleosomes and chromatin-related factors, contributed to the complexity of the transcriptional system and provided a basis for morphological diversity.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Biological Research Center, Institute of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
69
|
Chang Y, Desirò A, Na H, Sandor L, Lipzen A, Clum A, Barry K, Grigoriev IV, Martin FM, Stajich JE, Smith ME, Bonito G, Spatafora JW. Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. THE NEW PHYTOLOGIST 2019; 222:511-525. [PMID: 30485448 DOI: 10.1111/nph.15613] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Endogonales (Mucoromycotina), composed of Endogonaceae and Densosporaceae, is the only known non-Dikarya order with ectomycorrhizal members. They also form mycorrhizal-like association with some nonspermatophyte plants. It has been recently proposed that Endogonales were among the earliest mycorrhizal partners with land plants. It remains unknown whether Endogonales possess genomes with mycorrhizal-lifestyle signatures and whether Endogonales originated around the same time as land plants did. We sampled sporocarp tissue from four Endogonaceae collections and performed shotgun genome sequencing. After binning the metagenome data, we assembled and annotated the Endogonaceae genomes. We performed comparative analysis on plant-cell-wall-degrading enzymes (PCWDEs) and small secreted proteins (SSPs). We inferred phylogenetic placement of Endogonaceae and estimated the ages of Endogonaceae and Endogonales with expanded taxon sampling. Endogonaceae have large genomes with high repeat content, low diversity of PCWDEs, but without elevated SSP/secretome ratios. Dating analysis estimated that Endogonaceae originated in the Permian-Triassic boundary and Endogonales originated in the mid-late Silurian. Mycoplasma-related endobacterium sequences were identified in three Endogonaceae genomes. Endogonaceae genomes possess typical signatures of mycorrhizal lifestyle. The early origin of Endogonales suggests that the mycorrhizal association between Endogonales and plants might have played an important role during the colonization of land by plants.
Collapse
Affiliation(s)
- Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Alessandro Desirò
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis M Martin
- Institut national de la recherche agronomique, Laboratoire d'excellence ARBRE, Centre INRA-Grand Est, Unité mixte de recherche Inra-Université de Lorraine "Interactions Arbres/Microorganismes", 54280, Champenoux, France
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
70
|
Bai SN. Plant Morphogenesis 123: a renaissance in modern botany? SCIENCE CHINA-LIFE SCIENCES 2019; 62:453-466. [PMID: 30810962 DOI: 10.1007/s11427-018-9457-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Shu-Nong Bai
- College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
71
|
Hetherington AJ, Dolan L. Rhynie chert fossils demonstrate the independent origin and gradual evolution of lycophyte roots. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:119-126. [PMID: 30562673 DOI: 10.1016/j.pbi.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 05/13/2023]
Abstract
Mapping fossil traits onto the land plant phylogenetic framework indicates that there were at least two independent origins of roots among extant vascular plants - once in lycophytes and independently in euphyllophytes. At least two rooting structural types are found among extinct species preserved in the Rhynie chert. First, species that lacked roots and developed horizontal axes that developed rhizoids. Second, the rooting axes of Asteroxylon mackiei resembled the roots of extant lycopsids but lacked root hairs and root caps. These two rooting structures preceded the evolution of the roots of extant lycophytes comprising axes on which root hairs and root caps developed. These data demonstrate the defining root characters evolved gradually in the lycophyte lineage.
Collapse
Affiliation(s)
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
72
|
|
73
|
|
74
|
Mello A, Efroni I, Rahni R, Birnbaum KD. The Selaginella rhizophore has a unique transcriptional identity compared to root and shoot meristems. THE NEW PHYTOLOGIST 2018; 222:10.1111/nph.15630. [PMID: 30614003 PMCID: PMC6559876 DOI: 10.1111/nph.15630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/30/2018] [Indexed: 05/12/2023]
Abstract
The genus Selaginella resides in an early branch of the land plant lineage that possesses a vasculature and roots. The majority of the Selaginella root system is shoot borne and emerges through a distinctive structure known as the rhizophore, the organ identity of which has been a long-debated question. The rhizophore of Selaginella moellendorffii - a model for the lycophytes - shows plasticity to develop into a root or shoot up until 8 d after angle meristem emergence, after which it is committed to root fate. We subsequently use morphology and plasticity to define the stage of rhizophore identity. Transcriptomic analysis of the rhizophore during its plastic stage reveals that, despite some resemblance to the root meristem, rhizophore gene expression patterns are largely distinct from both shoot and root meristems. Based on this transcriptomic analysis and on historical anatomical work, we conclude that the rhizophore is a distinct organ with unique features.
Collapse
Affiliation(s)
- Alison Mello
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, N.Y. 10003, USA
| | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, POB 12, Rehovot 76100, Israel
| | - Ramin Rahni
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, N.Y. 10003, USA
| | - Kenneth D. Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, N.Y. 10003, USA
| |
Collapse
|
75
|
Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. THE NEW PHYTOLOGIST 2018; 220:1012-1030. [PMID: 29573278 DOI: 10.1111/nph.15076] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/14/2018] [Indexed: 05/05/2023]
Abstract
Contents Summary 1012 I. Introduction 1013 II. The mycorrhizal symbiosis at the dawn and rise of the land flora 1014 III. From early land plants to early trees: the origin of roots and true mycorrhizas 1016 IV. The diversification of the AM symbiosis 1019 V. The ECM symbiosis 1021 VI. The recently evolved ericoid and orchid mycorrhizas 1023 VII. Limits of paleontological vs genetic approaches and perspectives 1023 Acknowledgements 1025 References 1025 SUMMARY: The ability of fungi to form mycorrhizas with plants is one of the most remarkable and enduring adaptations to life on land. The occurrence of mycorrhizas is now well established in c. 85% of extant plants, yet the geological record of these associations is sparse. Fossils preserved under exceptional conditions provide tantalizing glimpses into the evolutionary history of mycorrhizas, showing the extent of their occurrence and aspects of their evolution in extinct plants. The fossil record has important roles to play in establishing a chronology of when key fungal associations evolved and in understanding their importance in ecosystems through time. Together with calibrated phylogenetic trees, these approaches extend our understanding of when and how groups evolved in the context of major environmental change on a global scale. Phylogenomics furthers this understanding into the evolution of different types of mycorrhizal associations, and genomic studies of both plants and fungi are shedding light on how the complex set of symbiotic traits evolved. Here we present a review of the main phases of the evolution of mycorrhizal interactions from palaeontological, phylogenetic and genomic perspectives, with the aim of highlighting the potential of fossil material and a geological perspective in a cross-disciplinary approach.
Collapse
Affiliation(s)
- Christine Strullu-Derrien
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Lorraine, Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 INRA-Université de Lorraine, 54280, Champenoux, France
| | - Marc-André Selosse
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP39, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Francis M Martin
- Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Lorraine, Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 INRA-Université de Lorraine, 54280, Champenoux, France
| |
Collapse
|
76
|
Field KJ, Pressel S. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. THE NEW PHYTOLOGIST 2018; 220:996-1011. [PMID: 29696662 DOI: 10.1111/nph.15158] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/06/2018] [Indexed: 05/16/2023]
Abstract
Contents Summary 996 I. Introduction 996 II. An ancient, and diverse, symbiosis 998 III. Structural diversity in ancient plant-fungal partnerships 1000 IV. Mycorrhizal unity in host plant nutrition 1002 V. Plant-to-fungus carbon transfer 1003 VI. From individuals to networks 1003 VII. Diverse responses of mycorrhizal functioning to dynamic environments 1006 VIII. Summary of future research direction 1007 Acknowledgements 1006 References 1006 SUMMARY: Mycorrhizal symbiosis is an ancient and widespread mutualism between plants and fungi that facilitated plant terrestrialisation > 500 million years ago, with key roles in ecosystem functioning at multiple scales. Central to the symbiosis is the bidirectional exchange of plant-fixed carbon for fungal-acquired nutrients. Within this unifying role of mycorrhizas, considerable diversity in structure and function reflects the diversity of the partners involved. Early diverging plants form mutualisms not only with arbuscular mycorrhizal Glomeromycotina fungi, but also with poorly characterised Mucoromycotina, which may also colonise the roots of 'higher' plants as fine root endophytes. Functional diversity in these symbioses depends on both fungal and plant life histories and is influenced by the environment. Recent studies have highlighted the roles of lipids/fatty acids in plant-to-fungus carbon transport and potential contributions of Glomeromycotina fungi to plant nitrogen nutrition. Together with emerging appreciation of mycorrhizal networks as multi-species resource-sharing systems, these insights are broadening our views on mycorrhizas and their roles in nutrient cycling. It is crucial that the diverse array of biotic and abiotic factors that together shape the dynamics of carbon-for-nutrient exchange between plants and fungi are integrated, in addition to embracing the unfolding and potentially key role of Mucoromycotina fungi in these processes.
Collapse
Affiliation(s)
- Katie J Field
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
77
|
Lamport DTA, Tan L, Held M, Kieliszewski MJ. The Role of the Primary Cell Wall in Plant Morphogenesis. Int J Mol Sci 2018; 19:E2674. [PMID: 30205598 PMCID: PMC6165521 DOI: 10.3390/ijms19092674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023] Open
Abstract
Morphogenesis remains a riddle, wrapped in a mystery, inside an enigma. It remains a formidable problem viewed from many different perspectives of morphology, genetics, and computational modelling. We propose a biochemical reductionist approach that shows how both internal and external physical forces contribute to plant morphogenesis via mechanical stress⁻strain transduction from the primary cell wall tethered to the plasma membrane by a specific arabinogalactan protein (AGP). The resulting stress vector, with direction defined by Hechtian adhesion sites, has a magnitude of a few piconewtons amplified by a hypothetical Hechtian growth oscillator. This paradigm shift involves stress-activated plasma membrane Ca2+ channels and auxin-activated H⁺-ATPase. The proton pump dissociates periplasmic AGP-glycomodules that bind Ca2+. Thus, as the immediate source of cytosolic Ca2+, an AGP-Ca2+ capacitor directs the vectorial exocytosis of cell wall precursors and auxin efflux (PIN) proteins. In toto, these components comprise the Hechtian oscillator and also the gravisensor. Thus, interdependent auxin and Ca2+ morphogen gradients account for the predominance of AGPs. The size and location of a cell surface AGP-Ca2+ capacitor is essential to differentiation and explains AGP correlation with all stages of morphogenetic patterning from embryogenesis to root and shoot. Finally, the evolutionary origins of the Hechtian oscillator in the unicellular Chlorophycean algae reflect the ubiquitous role of chemiosmotic proton pumps that preceded DNA at the dawn of life.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | | |
Collapse
|
78
|
Abstract
Roots are one of the three fundamental organ systems of vascular plants1, and have roles in anchorage, symbiosis, and nutrient and water uptake2-4. However, the fragmentary nature of the fossil record obscures the origins of roots and makes it difficult to identify when the sole defining characteristic of extant roots-the presence of self-renewing structures called root meristems that are covered by a root cap at their apex1-9-evolved. Here we report the discovery of what are-to our knowledge-the oldest meristems of rooting axes, found in the earliest-preserved terrestrial ecosystem10 (the 407-million-year-old Rhynie chert). These meristems, which belonged to the lycopsid Asteroxylon mackiei11-14, lacked root caps and instead developed a continuous epidermis over the surface of the meristem. The rooting axes and meristems of A. mackiei are unique among vascular plants. These data support the hypothesis that roots, as defined in extant vascular plants by the presence of a root cap7, were a late innovation in the vascular lineage. Roots therefore acquired traits in a stepwise fashion. The relatively late origin in lycophytes of roots with caps is consistent with the hypothesis that roots evolved multiple times2 rather than having a single origin1, and the extensive similarities between lycophyte and euphyllophyte roots15-18 therefore represent examples of convergent evolution. The key phylogenetic position of A. mackiei-with its transitional rooting organ-between early diverging land plants that lacked roots and derived plants that developed roots demonstrates how roots were 'assembled' during the course of plant evolution.
Collapse
|
79
|
Strullu-Derrien C. Fossil filamentous microorganisms associated with plants in early terrestrial environments. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:122-128. [PMID: 29684703 DOI: 10.1016/j.pbi.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 05/16/2023]
Abstract
Microorganisms are ubiquitous in modern environments, where they have a variety of essential functions but little is known about their diversity and roles in early terrestrial environments. The earliest direct evidence of filamentous microorganisms associated with plants occurs around 407 million years ago in landscapes dominated by an herbaceous flora. 100 million years later, forests were well established and associations had increased in diversity. After more than a century since the first descriptions, the need for better understood fossils has renewed interest in their study. New discoveries and advances in imaging methods are beginning to reveal the importance of Cyanobacteria, Fungi and Oomycota and their interactions with plants in early floras.
Collapse
|
80
|
Feijen FAA, Vos RA, Nuytinck J, Merckx VSFT. Evolutionary dynamics of mycorrhizal symbiosis in land plant diversification. Sci Rep 2018; 8:10698. [PMID: 30013185 PMCID: PMC6048063 DOI: 10.1038/s41598-018-28920-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 11/08/2022] Open
Abstract
Mycorrhizal symbiosis between soil fungi and land plants is one of the most widespread and ecologically important mutualisms on earth. It has long been hypothesized that the Glomeromycotina, the mycorrhizal symbionts of the majority of plants, facilitated colonization of land by plants in the Ordovician. This view was recently challenged by the discovery of mycorrhiza-like associations with Mucoromycotina in several early diverging lineages of land plants. Utilizing a large, species-level database of plants' mycorrhiza-like associations and a Bayesian approach to state transition dynamics we here show that the recruitment of Mucoromycotina is the best supported transition from a non-mycorrhizal state. We further found that transitions between different combinations of either or both of Mucoromycotina and Glomeromycotina occur at high rates, and found similar promiscuity among combinations that include either or both of Glomeromycotina and Ascomycota with a nearly fixed association with Basidiomycota. Our results portray an evolutionary scenario of evolution of mycorrhizal symbiosis with a prominent role for Mucoromycotina in the early stages of land plant diversification.
Collapse
Affiliation(s)
- Frida A A Feijen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- ETH Zürich, Institute of Integrative Biology (IBZ), 8092, Zürich, Switzerland
| | - Rutger A Vos
- Naturalis Biodiversity Center, Vondellaan 55, 2332 AA, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Jorinde Nuytinck
- Naturalis Biodiversity Center, Vondellaan 55, 2332 AA, Leiden, The Netherlands
| | - Vincent S F T Merckx
- Naturalis Biodiversity Center, Vondellaan 55, 2332 AA, Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
81
|
Hetherington AJ, Dolan L. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0042. [PMID: 29254968 PMCID: PMC5745339 DOI: 10.1098/rstb.2017.0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system—rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri, Aglaophyton majus, Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’.
Collapse
Affiliation(s)
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
82
|
Liu W, Xu L. Recruitment of IC-WOX Genes in Root Evolution. TRENDS IN PLANT SCIENCE 2018; 23:490-496. [PMID: 29680635 DOI: 10.1016/j.tplants.2018.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 05/25/2023]
Abstract
Root evolution has resulted in the extant bifurcating roots in lycophytes, adventitious/lateral roots in euphyllophytes (ferns and seed plants), and primary roots in seed plants. Here, we hypothesize a role for intermediate-clade-WUSCHEL-RELATED HOMEOBOX (IC-WOX) genes in root evolution. IC-WOX might not be specifically involved in lycophyte bifurcation rooting. In the fern Ceratopteris richardii, IC-WOX is expressed in adventitious/lateral root founder cells. In the seed plant Arabidopsis thaliana, there are two IC-WOX subclades, AtWOX11/12 and AtWOX8/9, in adventitious and primary root founder cells, respectively. Thus, IC-WOX was recruited in the common ancestor of ferns and seed plants for adventitious/lateral root organogenesis and evolved into two subclades in seed plants: one was retained in adventitious root organogenesis, while the other was recruited for primary root organogenesis.
Collapse
Affiliation(s)
- Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
83
|
Chaffey N. Plant Cuttings: news in Botany. ANNALS OF BOTANY 2018; 121:v-viii. [PMID: 29514196 PMCID: PMC5838808 DOI: 10.1093/aob/mcy027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
|
84
|
Otani K, Ishizaki K, Nishihama R, Takatani S, Kohchi T, Takahashi T, Motose H. An evolutionarily conserved NIMA-related kinase directs rhizoid tip growth in the basal land plant Marchantia polymorpha. Development 2018; 145:dev.154617. [PMID: 29440300 DOI: 10.1242/dev.154617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
Abstract
Tip growth is driven by turgor pressure and mediated by the polarized accumulation of cellular materials. How a single polarized growth site is established and maintained is unclear. Here, we analyzed the function of NIMA-related protein kinase 1 (MpNEK1) in the liverwort Marchantia polymorpha In the wild type, rhizoid cells differentiate from the ventral epidermis and elongate through tip growth to form hair-like protrusions. In Mpnek1 knockout mutants, rhizoids underwent frequent changes in growth direction, resulting in a twisted and/or spiral morphology. The functional MpNEK1-Citrine protein fusion localized to microtubule foci in the apical growing region of rhizoids. Mpnek1 knockouts exhibited increases in both microtubule density and bundling in the apical dome of rhizoids. Treatment with the microtubule-stabilizing drug taxol phenocopied the Mpnek1 knockout. These results suggest that MpNEK1 directs tip growth in rhizoids through microtubule organization. Furthermore, MpNEK1 expression rescued ectopic outgrowth of epidermal cells in the Arabidopsis thaliana nek6 mutant, strongly supporting an evolutionarily conserved NEK-dependent mechanism of directional growth. It is possible that such a mechanism contributed to the evolution of the early rooting system in land plants.
Collapse
Affiliation(s)
- Kento Otani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryuichi Nishihama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shogo Takatani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Takayuki Kohchi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
85
|
Harrison CJ, Morris JL. The origin and early evolution of vascular plant shoots and leaves. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160496. [PMID: 29254961 PMCID: PMC5745332 DOI: 10.1098/rstb.2016.0496] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2017] [Indexed: 12/22/2022] Open
Abstract
The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo-devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in 'telome theory' hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- C Jill Harrison
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jennifer L Morris
- School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
86
|
Plett JM, Martin FM. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:729-746. [PMID: 29265527 DOI: 10.1111/tpj.13802] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Microorganisms, or 'microbes', have formed intimate associations with plants throughout the length of their evolutionary history. In extant plant systems microbes still remain an integral part of the ecological landscape, impacting plant health, productivity and long-term fitness. Therefore, to properly understand the genetic wiring of plants, we must first determine what perception systems plants have evolved to parse beneficial from commensal from pathogenic microbes. In this review, we consider some of the most recent advances in how plants respond at the molecular level to different microbial lifestyles. Further, we cover some of the means by which microbes are able to manipulate plant signaling pathways through altered destructiveness and nutrient sinks, as well as the use of effector proteins and micro-RNAs (miRNAs). We conclude by highlighting some of the major questions still to be answered in the field of plant-microbe research, and suggest some of the key areas that are in greatest need of further research investment. The results of these proposed studies will have impacts in a wide range of plant research disciplines and will, ultimately, translate into stronger agronomic crops and forestry stock, with immune perception and response systems bred to foster beneficial microbial symbioses while repudiating pathogenic symbioses.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche, 1136 INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
87
|
Augstein F, Carlsbecker A. Getting to the Roots: A Developmental Genetic View of Root Anatomy and Function From Arabidopsis to Lycophytes. FRONTIERS IN PLANT SCIENCE 2018; 9:1410. [PMID: 30319672 PMCID: PMC6167918 DOI: 10.3389/fpls.2018.01410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/05/2018] [Indexed: 05/11/2023]
Abstract
Roots attach plants to the ground and ensure efficient and selective uptake of water and nutrients. These functions are facilitated by the morphological and anatomical structures of the root, formed by the activity of the root apical meristem (RAM) and consecutive patterning and differentiation of specific tissues with distinct functions. Despite the importance of this plant organ, its evolutionary history is not clear, but fossils suggest that roots evolved at least twice, in the lycophyte (clubmosses and their allies) and in the euphyllophyte (ferns and seed plants) lineages. Both lycophyte and euphyllophyte roots grow indeterminately by the action of an apical meristem, which is protected by a root cap. They produce root hairs, and in most species the vascular stele is guarded by a specialized endodermal cell layer. Hence, most of these traits must have evolved independently in these lineages. This raises the question if the development of these apparently analogous tissues is regulated by distinct or homologous genes, independently recruited from a common ancestor of lycophytes and euphyllophytes. Currently, there are few studies of the genetic and molecular regulation of lycophyte and fern roots. Therefore, in this review, we focus on key regulatory networks that operate in root development in the model angiosperm Arabidopsis. We describe current knowledge of the mechanisms governing RAM maintenance as well as patterning and differentiation of tissues, such as the endodermis and the vasculature, and compare with other species. We discuss the importance of comparative analyses of anatomy and morphology of extant and extinct species, along with analyses of gene regulatory networks and, ultimately, gene function in plants holding key phylogenetic positions to test hypotheses of root evolution.
Collapse
|
88
|
Olatunji D, Geelen D, Verstraeten I. Control of Endogenous Auxin Levels in Plant Root Development. Int J Mol Sci 2017; 18:E2587. [PMID: 29194427 PMCID: PMC5751190 DOI: 10.3390/ijms18122587] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture.
Collapse
Affiliation(s)
- Damilola Olatunji
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Inge Verstraeten
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
89
|
How the Land Became the Locus of Major Evolutionary Innovations. Curr Biol 2017; 27:3178-3182.e1. [DOI: 10.1016/j.cub.2017.08.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/23/2022]
|
90
|
Berbee ML, James TY, Strullu-Derrien C. Early Diverging Fungi: Diversity and Impact at the Dawn of Terrestrial Life. Annu Rev Microbiol 2017; 71:41-60. [DOI: 10.1146/annurev-micro-030117-020324] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mary L. Berbee
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
91
|
Bodner G, Alsalem M, Nakhforoosh A, Arnold T, Leitner D. RGB and Spectral Root Imaging for Plant Phenotyping and Physiological Research: Experimental Setup and Imaging Protocols. J Vis Exp 2017:56251. [PMID: 28809835 PMCID: PMC5614140 DOI: 10.3791/56251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Better understanding of plant root dynamics is essential to improve resource use efficiency of agricultural systems and increase the resistance of crop cultivars against environmental stresses. An experimental protocol is presented for RGB and hyperspectral imaging of root systems. The approach uses rhizoboxes where plants grow in natural soil over a longer time to observe fully developed root systems. Experimental settings are exemplified for assessing rhizobox plants under water stress and studying the role of roots. An RGB imaging setup is described for cheap and quick quantification of root development over time. Hyperspectral imaging improves root segmentation from the soil background compared to RGB color based thresholding. The particular strength of hyperspectral imaging is the acquisition of chemometric information on the root-soil system for functional understanding. This is demonstrated with high resolution water content mapping. Spectral imaging however is more complex in image acquisition, processing and analysis compared to the RGB approach. A combination of both methods can optimize a comprehensive assessment of the root system. Application examples integrating root and aboveground traits are given for the context of plant phenotyping and plant physiological research. Further improvement of root imaging can be obtained by optimizing RGB image quality with better illumination using different light sources and by extension of image analysis methods to infer on root zone properties from spectral data.
Collapse
Affiliation(s)
- Gernot Bodner
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences;
| | - Mouhannad Alsalem
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences
| | - Alireza Nakhforoosh
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences
| | - Thomas Arnold
- Carinthian Tech Research AG, High Tech Campus Villach
| | - Daniel Leitner
- Computational Science Center, University of Vienna; Simulationswerkstatt
| |
Collapse
|
92
|
Fujinami R, Yamada T, Nakajima A, Takagi S, Idogawa A, Kawakami E, Tsutsumi M, Imaichi R. Root apical meristem diversity in extant lycophytes and implications for root origins. THE NEW PHYTOLOGIST 2017; 215:1210-1220. [PMID: 28585243 DOI: 10.1111/nph.14630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/25/2017] [Indexed: 05/25/2023]
Abstract
Root apical meristem (RAM) organization in lycophytes could be a key to understanding the early evolution of roots, but this topic has been insufficiently explored. We examined the RAM organization of lycophytes in terms of cell division activities and anatomies, and compared RAMs among vascular plants. RAMs of 13 species of lycophytes were semi-thin-sectioned and observed under a light microscope. Furthermore, the frequency of cell division in the RAM of species was analyzed using thymidine analogs. RAMs of lycophytes exhibited four organization types: type I (Lycopodium and Diphasiastrum), II (Huperzia and Lycopodiella), III (Isoetes) and RAM with apical cell (Selaginella). The type I RAM found in Lycopodium had a region with a very low cell division frequency, reminiscent of the quiescent center (QC) in angiosperm roots. This is the first clear indication that a QC-like region is present in nonseed plants. At least four types of RAM are present in extant lycophytes, suggesting that RAM organization is more diverse than expected. Our results support the paleobotanical hypothesis that roots evolved several times in lycophytes, as well as in euphyllophytes.
Collapse
Affiliation(s)
- Rieko Fujinami
- Faculty of Education, Kyoto University of Education, 1 Fujinomori-cho, Fukakusa, Kyoto, 612-8522, Japan
| | - Toshihiro Yamada
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma, Ishikawa, 920-1192, Japan
| | - Atsuko Nakajima
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Tokyo, 112-8681, Japan
| | - Shoko Takagi
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Tokyo, 112-8681, Japan
| | - Ai Idogawa
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Tokyo, 112-8681, Japan
| | - Eri Kawakami
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Tokyo, 112-8681, Japan
| | - Maiko Tsutsumi
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Tokyo, 112-8681, Japan
| | - Ryoko Imaichi
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai, Tokyo, 112-8681, Japan
| |
Collapse
|
93
|
Reconstructing Extinct Plant Water Use for Understanding Vegetation–Climate Feedbacks: Methods, Synthesis, and a Case Study Using the Paleozoic-Era Medullosan Seed Ferns. ACTA ACUST UNITED AC 2017. [DOI: 10.1017/s1089332600003004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vegetation affects feedbacks in Earth's hydrologic system, but is constrained by physiological adaptations. In extant ecosystems, the mechanisms controlling plant water used can be measured experimentally; for extinct plants in the recent geological past, water use can be inferred from nearest living relatives, assuming minimal evolutionary change. In deep time, where no close living relatives exist, fossil material provides the only information for inferring plant water use. However, mechanistic models for extinct plant water use must be built on first principles and tested on extant plants. Plants serve as a conduit for water movement from the soil to the atmosphere, constrained by tissue-level construction and gross architecture. No single feature, such as stomata or veins, encompasses enough of the complexity underpinning water-use physiology to serve as the basis of a model of functional water use in all (or perhaps any) extinct plants. Rather, a “functional whole plant” model must be used. To understand the interplay between plant and atmosphere, water use in relation to environmental conditions is investigated in an extinct plant, the seed fernMedullosa((Division Pteridospermatophyta), by reviewing methods for reconstructing physiological variables such as leaf and stem hydraulic capacity, photosynthetic rate, transpiration rate, stomatal conductance, and albedo. Medullosans had the potential for extremely high photosynthetic and assimilation rates, water transport, stomatal conductance, and transpiration—rates comparable to later angiosperms. When these high growth and gas exchange rates of medullosans are combined with the unique atmospheric gas composition of the late Paleozoic atmosphere, complex vegetation-environmental feedbacks are expected despite their basal phylogenetic position relative to post-Paleozoic seed plants.
Collapse
|
94
|
Kutschera U, Niklas KJ. Boron and the evolutionary development of roots. PLANT SIGNALING & BEHAVIOR 2017; 12:e1320631. [PMID: 28692333 PMCID: PMC5586391 DOI: 10.1080/15592324.2017.1320631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Experimental work has shown that Boron (i.e., Boric acid, B) is an essential and multifunctional microelement for vascular plant development. In addition to its other functions, which include xylem development and lignin biosynthesis, we now know that B is involved in phytohormone-signaling and influences the mechanical properties of intercellular pectins. From these data, we conclude that B played an important role during the evolutionary development of lignified tissues, and that it may have been involved in the evolution of vascular plant roots, as hypothesized by D. H. Lewis in 1980. Herein, we review the data pertaining to Lewis' hypothesis, present experimental results on the role of B in root (vs. rhizoid) formation in sunflower vs. a liverwort, and describe the appearance of roots in the fossil record. Open questions are addressed, notably the lack of our knowledge concerning soil microbes and their interactive roles with the micronutrient B during root formation.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Institute of Biology, University of Kassel, Heinrich-Plett-Strasse, Kassel, Germany
| | - Karl J. Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
95
|
Martin FM, Uroz S, Barker DG. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 2017; 356:356/6340/eaad4501. [DOI: 10.1126/science.aad4501] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
96
|
Jill Harrison C. Development and genetics in the evolution of land plant body plans. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150490. [PMID: 27994131 PMCID: PMC5182422 DOI: 10.1098/rstb.2015.0490] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
The colonization of land by plants shaped the terrestrial biosphere, the geosphere and global climates. The nature of morphological and molecular innovation driving land plant evolution has been an enigma for over 200 years. Recent phylogenetic and palaeobotanical advances jointly demonstrate that land plants evolved from freshwater algae and pinpoint key morphological innovations in plant evolution. In the haploid gametophyte phase of the plant life cycle, these include the innovation of mulitcellular forms with apical growth and multiple growth axes. In the diploid phase of the life cycle, multicellular axial sporophytes were an early innovation priming subsequent diversification of indeterminate branched forms with leaves and roots. Reverse and forward genetic approaches in newly emerging model systems are starting to identify the genetic basis of such innovations. The data place plant evo-devo research at the cusp of discovering the developmental and genetic changes driving the radiation of land plant body plans.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- C Jill Harrison
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
97
|
Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ. Mutualism Persistence and Abandonment during the Evolution of the Mycorrhizal Symbiosis. Am Nat 2016; 188:E113-E125. [DOI: 10.1086/688675] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
98
|
Ge L, Chen R. Negative gravitropism in plant roots. NATURE PLANTS 2016; 2:16155. [PMID: 27748769 DOI: 10.1038/nplants.2016.155] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/13/2016] [Indexed: 05/03/2023]
Abstract
Plants are capable of orienting their root growth towards gravity in a process termed gravitropism, which is necessary for roots to grow into soil, for water and nutrient acquisition and to anchor plants. Here we show that root gravitropism depends on the novel protein, NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR). In both Medicago truncatula and Arabidopsis thaliana, loss of NGR reverses the direction of root gravitropism, resulting in roots growing upward.
Collapse
Affiliation(s)
- Liangfa Ge
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | - Rujin Chen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
99
|
Rao IM, Miles JW, Beebe SE, Horst WJ. Root adaptations to soils with low fertility and aluminium toxicity. ANNALS OF BOTANY 2016; 118:593-605. [PMID: 27255099 PMCID: PMC5055624 DOI: 10.1093/aob/mcw073] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/18/2016] [Accepted: 03/01/2016] [Indexed: 05/21/2023]
Abstract
Background Plants depend on their root systems to acquire the water and nutrients necessary for their survival in nature, and for their yield and nutritional quality in agriculture. Root systems are complex and a variety of root phenes have been identified as contributors to adaptation to soils with low fertility and aluminium (Al) toxicity. Phenotypic characterization of root adaptations to infertile soils is enabling plant breeders to develop improved cultivars that not only yield more, but also contribute to yield stability and nutritional security in the face of climate variability. Scope In this review the adaptive responses of root systems to soils with low fertility and Al toxicity are described. After a brief introduction, the purpose and focus of the review are outlined. This is followed by a description of the adaptive responses of roots to low supply of mineral nutrients [with an emphasis on low availability of nitrogen (N) and phosphorus (P) and on toxic levels of Al]. We describe progress in developing germplasm adapted to soils with low fertility or Al toxicity using selected examples from ongoing breeding programmes on food (maize, common bean) and forage/feed (Brachiaria spp.) crops. A number of root architectural, morphological, anatomical and metabolic phenes contribute to the superior performance and yield on soils with low fertility and Al toxicity. Major advances have been made in identifying root phenes in improving adaptation to low N (maize), low P (common bean) or high Al [maize, common bean, species and hybrids of brachiariagrass, bulbous canarygrass (Phalaris aquatica) and lucerne (Medicago sativa)]. Conclusions Advanced root phenotyping tools will allow dissection of root responses into specific root phenes that will aid both conventional and molecular breeders to develop superior cultivars. These new cultivars will play a key role in sustainable intensification of crop-livestock systems, particularly in smallholder systems of the tropics. Development of these new cultivars adapted to soils with low fertility and Al toxicity is needed to improve global food and nutritional security and environmental sustainability.
Collapse
Affiliation(s)
- Idupulapati M. Rao
- Centro Internacional de Agricultura Tropical (CIAT), A. A. 6713, Cali, Colombia and
| | - John W. Miles
- Centro Internacional de Agricultura Tropical (CIAT), A. A. 6713, Cali, Colombia and
| | - Stephen E. Beebe
- Centro Internacional de Agricultura Tropical (CIAT), A. A. 6713, Cali, Colombia and
| | - Walter J. Horst
- Leibniz University of Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
100
|
Xue J, Deng Z, Huang P, Huang K, Benton MJ, Cui Y, Wang D, Liu J, Shen B, Basinger JF, Hao S. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant. Proc Natl Acad Sci U S A 2016; 113:9451-6. [PMID: 27503883 PMCID: PMC5003246 DOI: 10.1073/pnas.1605051113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated.
Collapse
Affiliation(s)
- Jinzhuang Xue
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China; Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China;
| | - Zhenzhen Deng
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Pu Huang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Kangjun Huang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom
| | - Ying Cui
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755
| | - Deming Wang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianbo Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Bing Shen
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - James F Basinger
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Shougang Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|