51
|
Hasik AZ, Siepielski AM. Parasitism shapes selection by drastically reducing host fitness and increasing host fitness variation. Biol Lett 2022; 18:20220323. [PMID: 36321430 PMCID: PMC9627441 DOI: 10.1098/rsbl.2022.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 05/20/2023] Open
Abstract
Determining the effects of parasites on host reproduction is key to understanding how parasites affect the underpinnings of selection on hosts. Although infection is expected to be costly, reducing mean fitness, infection could also increase variation in fitness costs among hosts, both of which determine the potential for selection on hosts. To test these ideas, we used a phylogenetically informed meta-analysis of 118 studies to examine how changes in the mean and variance in the outcome of reproduction differed between parasitized and non-parasitized hosts. We found that parasites had severe negative effects on mean fitness, with parasitized hosts suffering reductions in fecundity, viability and mating success. Parasite infection also increased variance in reproduction, particularly fecundity and offspring viability. Surprisingly, parasites had similar effects on viability when either the male or female was parasitized. These results not only provide the first synthetic, comparative, and quantitative summary of the strong deleterious effects of parasites on host reproductive fitness, but also reveal a consistent role for parasites in shaping the opportunity for selection.
Collapse
Affiliation(s)
- Adam Z. Hasik
- Biological Sciences, University of Arkansas, SCEN 601, 850 W. Dickson St., Fayetteville, AR 72701, USA
| | - Adam M. Siepielski
- Biological Sciences, University of Arkansas, SCEN 601, 850 W. Dickson St., Fayetteville, AR 72701, USA
| |
Collapse
|
52
|
Feng Z, Wang L, Wan X, Yang J, Peng Q, Liang T, Wang Y, Zhong B, Rinklebe J. Responses of soil greenhouse gas emissions to land use conversion and reversion-A global meta-analysis. GLOBAL CHANGE BIOLOGY 2022; 28:6665-6678. [PMID: 35989422 DOI: 10.1111/gcb.16370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Exploring the responses of greenhouse gas (GHG) emissions to land use conversion or reversion is significant for taking effective land use measures to alleviate global warming. A global meta-analysis was conducted to analyze the responses of carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) emissions to land use conversion or reversion, and determine their temporal evolution, driving factors, and potential mechanisms. Our results showed that CH4 and N2 O responded positively to land use conversion while CO2 responded negatively to the changes from natural herb and secondary forest to plantation. By comparison, CH4 responded negatively to land use reversion and N2 O also showed negative response to the reversion from agricultural land to forest. The conversion of land use weakened the function of natural forest and grassland as CH4 sink and the artificial nitrogen (N) addition for plantation increased N source for N2 O release from soil, while the reversion of land use could alleviate them to some degree. Besides, soil carbon would impact CO2 emission for a long time after land use conversion, and secondary forest reached the CH4 uptake level similar to that of primary forest after over 40 years. N2 O responses had negative relationships with time interval under the conversions from forest to plantation, secondary forest, and pasture. In addition, meta-regression indicated that CH4 had correlations with several environmental variables, and carbon-nitrogen ratio had contrary relationships with N2 O emission responses to land use conversion and reversion. And the importance of driving factors displayed that CO2 , CH4 , and N2 O response to land use conversion and reversion was easily affected by NH4 + and soil moisture, mean annual temperature and NO3 - , total nitrogen and mean annual temperature, respectively. This study would provide enlightenments for scientific land management and reduction of GHG emissions.
Collapse
Affiliation(s)
- Zhaohui Feng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Wan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jun Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qin Peng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yazhu Wang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Buqing Zhong
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, University of Wuppertal, Wuppertal, Germany
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
53
|
Gilman E, Chaloupka M, Benaka LR, Bowlby H, Fitchett M, Kaiser M, Musyl M. Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: a global meta-analytic synthesis. Sci Rep 2022; 12:18164. [PMID: 36307432 PMCID: PMC9616952 DOI: 10.1038/s41598-022-21976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Apex and mesopredators such as elasmobranchs are important for maintaining ocean health and are the focus of conservation efforts to mitigate exposure to fishing and other anthropogenic hazards. Quantifying fishing mortality components such as at-vessel mortality (AVM) is necessary for effective bycatch management. We assembled a database for 61 elasmobranch species and conducted a global meta-synthesis to estimate pelagic longline AVM rates. Evolutionary history was a significant predictor of AVM, accounting for up to 13% of variance in Bayesian phylogenetic meta-regression models for Lamniformes and Carcharhiniformes clades. Phylogenetically related species may have a high degree of shared traits that explain AVM. Model-estimated posterior mean AVM rates ranged from 5% (95% HDI 0.1%-16%) for pelagic stingrays and 76% (95% HDI 49%-90%) for salmon sharks. Measures that reduce catch, and hence AVM levels, such as input controls, bycatch quotas and gear technology to increase selectivity are appropriate for species with higher AVM rates. In addition to reducing catchability, handling-and-release practices and interventions such as retention bans in shark sanctuaries and bans on shark finning and trade hold promise for species with lower AVM rates. Robust, and where applicable, phylogenetically-adjusted elasmobranch AVM rates are essential for evidence-informed bycatch policy.
Collapse
Affiliation(s)
- Eric Gilman
- The Safina Center, Honolulu, USA.
- The Lyell Centre, Heriot-Watt University, Edinburgh, UK.
| | - Milani Chaloupka
- Ecological Modelling Services Pty Ltd and Marine Spatial Ecology Lab, University of Queensland, Brisbane, Australia
| | - Lee R Benaka
- Office of Science and Technology, U.S. NOAA Fisheries, Silver Spring, USA
| | - Heather Bowlby
- Bedford Institute of Oceanography, Fisheries and Oceans, Dartmouth, Canada
| | - Mark Fitchett
- Western Pacific Regional Fishery Management Council, Honolulu, USA
| | - Michel Kaiser
- The Lyell Centre, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
54
|
Herzog P, Kaiser T. Is it worth it to personalize the treatment of PTSD? - A variance-ratio meta-analysis and estimation of treatment effect heterogeneity in RCTs of PTSD. J Anxiety Disord 2022; 91:102611. [PMID: 35963147 DOI: 10.1016/j.janxdis.2022.102611] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022]
Abstract
Several evidence-based treatments for posttraumatic stress disorder (PTSD) are recommended by international guidelines (e.g., APA, NICE). While their average effects are in general high, non-response rates indicate differential treatment effects. Here, we used a large database of RCTs on psychotherapy for PTSD to determine a reliable estimate of this heterogeneity in treatment effects (HTE) by applying Bayesian variance ratio meta-analysis. In total, 66 studies with a total of 8803 patients were included in our study. HTE was found for all psychological treatments, with varying degrees of certainty, only slight differences between psychological treatments, and active control groups yielding a smaller variance ratio compared to waiting list control groups. Across all psychological treatment and control group types, the estimate for the intercept was 0.12, indicating a 12% higher variance of posttreatment values in the intervention groups after controlling for differences in treatment outcomes. This study is the first to determine the maximum increase in treatment effects of psychological treatments for PTSD by personalization. The results indicate that there is comparatively high heterogeneity in treatment effects across all psychological treatment and control groups, which in turn allow personalizing psychological treatments by using treatment selection approaches.
Collapse
Affiliation(s)
- Philipp Herzog
- Department of Psychology, University of Koblenz-Landau, Ostbahnstraße 10, D-76829 Landau, Germany; Department of Psychology, University of Greifswald, Franz-Mehring-Straße 47, D-17489 Greifswald, Germany.
| | - Tim Kaiser
- Department of Psychology, University of Greifswald, Franz-Mehring-Straße 47, D-17489 Greifswald, Germany
| |
Collapse
|
55
|
Shao J, Li G, Li Y, Zhou X. Intraspecific responses of plant productivity and crop yield to experimental warming: A global synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156685. [PMID: 35714738 DOI: 10.1016/j.scitotenv.2022.156685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Maintaining plant productivity and crop yield in a warming world requires local adaptation to new environment and selection of high-yield cultivars, which both depend on the genetically-based intraspecific differences in the plant response to warming (referred to as "genetically-based intraspecific responses"). However, how the genetically-based intraspecific responses mediate warming effects on plants remains unclear, especially at the global scale. Here, a dataset was compiled from 118 common-garden experiments to examine the responses of plant growth, productivity, and crop yield to warming among different ecotypes/genotypes/cultivars. Our results showed that the genetically-based intraspecific responses on average accounted for 34.7 % of the total variance in the warming responses across all the studies but with large variability (2 %-77 %). The intraspecific responses of plant productivity and crop yield were larger than those of organ level traits and biomass allocation, suggesting that plant growth was mainly achieved by iterating the relatively invariant terminal modules (e.g., leaves). The warming-induced changes in intraspecific variability of aboveground biomass were larger in woody plants, non-leguminous herbs, perennial herbs and noncrops than those in nonwoody, leguminous, annual and crop ones, respectively, indicating the potential important role of plant longevity in mediating the change in intraspecific variability. Moreover, larger intraspecific responses reduced the consistence of relative performance between control and warming treatments for both plant productivity and crop yield. These results highlight the unneglectable role of genetically-based intraspecific differences in plant responses to warming, indicating the difficulty of maintaining high crop yield and tree productivity under global climate change, and posing a grave threat to the food security and wood supply in the near future.
Collapse
Affiliation(s)
- Junjiong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Gaobo Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China; Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
56
|
Verroca A, de Rienzo CM, Gambarota F, Sessa P. Mapping the perception-space of facial expressions in the era of face masks. Front Psychol 2022; 13:956832. [PMID: 36176786 PMCID: PMC9514388 DOI: 10.3389/fpsyg.2022.956832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
With the advent of the severe acute respiratory syndrome-Corona Virus type 2 (SARS-CoV-2) pandemic, the theme of emotion recognition from facial expressions has become highly relevant due to the widespread use of face masks as one of the main devices imposed to counter the spread of the virus. Unsurprisingly, several studies published in the last 2 years have shown that accuracy in the recognition of basic emotions expressed by faces wearing masks is reduced. However, less is known about the impact that wearing face masks has on the ability to recognize emotions from subtle expressions. Furthermore, even less is known regarding the role of interindividual differences (such as alexithymic and autistic traits) in emotion processing. This study investigated the perception of all the six basic emotions (anger, disgust, fear, happiness, sadness, and surprise), both as a function of the face mask and as a function of the facial expressions' intensity (full vs. subtle) in terms of participants' uncertainty in their responses, misattribution errors, and perceived intensity. The experiment was conducted online on a large sample of participants (N = 129). Participants completed the 20-item Toronto Alexithymia Scale and the Autistic Spectrum Quotient and then performed an emotion-recognition task that involved face stimuli wearing a mask or not, and displaying full or subtle expressions. Each face stimulus was presented alongside the Geneva Emotion Wheel (GEW), and participants had to indicate what emotion they believed the other person was feeling and its intensity using the GEW. For each combination of our variables, we computed the indices of 'uncertainty' (i.e., the spread of responses around the correct emotion category), 'bias' (i.e., the systematic errors in recognition), and 'perceived intensity' (i.e., the distance from the center of the GEW). We found that face masks increase uncertainty for all facial expressions of emotion, except for fear when intense, and that disgust was systematically confused with anger (i.e., response bias). Furthermore, when faces were covered by the mask, all the emotions were perceived as less intense, and this was particularly evident for subtle expressions. Finally, we did not find any evidence of a relationship between these indices and alexithymic/autistic traits.
Collapse
Affiliation(s)
- Alessia Verroca
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | | | - Filippo Gambarota
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Paola Sessa
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
57
|
Bishop J, Garratt MPD, Nakagawa S. Animal pollination increases stability of crop yield across spatial scales. Ecol Lett 2022; 25:2034-2047. [PMID: 35843226 PMCID: PMC9544623 DOI: 10.1111/ele.14069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/08/2023]
Abstract
The benefits of animal pollination to crop yield are well known. In contrast, the effects of animal pollination on the spatial or temporal stability (the opposite of variability) of crop yield remain poorly understood. We use meta-analysis to combine variability information from 215 experimental comparisons between animal-pollinated and wind- or self-pollinated control plants in apple, oilseed rape and faba bean. Animal pollination increased yield stability (by an average of 32% per unit of yield) at between-flower, -plant, -plot and -field scales. Evidence suggests this occurs because yield benefits of animal pollination become progressively constrained closer to the maximum potential yield in a given context, causing clustering. The increase in yield stability with animal pollination is greatest when yield benefits of animal pollination are greatest, indicating that managing crop pollination to increase yield also increases yield stability. These additional pollination benefits have not yet been included in economic assessments but provide further justification for policies to protect pollinators.
Collapse
Affiliation(s)
- Jacob Bishop
- Department of Crop Science, School of Agriculture, Policy and DevelopmentUniversity of ReadingBerkshireUK
| | - Michael P. D. Garratt
- Centre for Agri‐Environmental Research, School of Agriculture, Policy and DevelopmentUniversity of ReadingBerkshireUK
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
58
|
Bertram MG, Martin JM, McCallum ES, Alton LA, Brand JA, Brooks BW, Cerveny D, Fick J, Ford AT, Hellström G, Michelangeli M, Nakagawa S, Polverino G, Saaristo M, Sih A, Tan H, Tyler CR, Wong BB, Brodin T. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol Rev Camb Philos Soc 2022; 97:1346-1364. [PMID: 35233915 PMCID: PMC9543409 DOI: 10.1111/brv.12844] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Jake M. Martin
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Erin S. McCallum
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Lesley A. Alton
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Jack A. Brand
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear PlaceWacoTexas76798‐7266U.S.A.
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in Ceske BudejoviceZátiší 728/IIVodnany389 25Czech Republic
| | - Jerker Fick
- Department of ChemistryUmeå UniversityLinnaeus väg 10UmeåVästerbottenSE‐907 36Sweden
| | - Alex T. Ford
- Institute of Marine SciencesUniversity of PortsmouthWinston Churchill Avenue, PortsmouthHampshirePO1 2UPU.K.
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences West (D26)SydneyNSW2052Australia
| | - Giovanni Polverino
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia35 Stirling HighwayPerthWA6009Australia
- Department of Ecological and Biological SciencesTuscia UniversityVia S.M. in Gradi n.4ViterboLazio01100Italy
| | - Minna Saaristo
- Environment Protection Authority VictoriaEPA Science2 Terrace WayMacleodVictoria3085Australia
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Hung Tan
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterDevonEX4 4QDU.K.
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| |
Collapse
|
59
|
Vendl C, Pottier P, Taylor MD, Bräunig J, Gibson MJ, Hesselson D, Neely GG, Lagisz M, Nakagawa S. Thermal processing reduces PFAS concentrations in blue food - A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119081. [PMID: 35367104 DOI: 10.1016/j.envpol.2022.119081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and often ingested with food. PFAS exposure in people can have detrimental health consequences. Therefore, reducing PFAS burdens in food items is of great importance to public health. Here, we investigated whether cooking reduces PFAS concentrations in animal-derived food products by synthesizing experimental studies. Further, we examined the moderating effects of the following five variables: cooking time, liquid/animal tissue ratio, cooking temperature, carbon chain length of PFAS and the cooking category (oil-based, water-based & no-liquid cooking). In our systematic review searches, we obtained 512 effect sizes (relative differences in PFAS concentration between raw and cooked samples) from 10 relevant studies. These studies exclusively explored changes in PFAS concentrations in cooked seafood and freshwater fish. Our multilevel-meta-analysis has revealed that, on average, cooking reduced PFAS concentrations by 29%, although heterogeneity among effect sizes was very high (I2 = 94.65%). Our five moderators cumulatively explained 49% of the observed heterogeneity. Specifically, an increase in cooking time and liquid/animal tissue ratio, as well as shorter carbon chain length of PFAS (when cooked with oil) were associated with significant reductions in PFAS concentrations. The effects of different ways of cooking depended on the other moderators, while the effect of cooking temperature itself was not significant. Overall, cooking can reduce PFAS concentrations in blue food (seafood and freshwater fish). However, it is important to note that complete PFAS elimination requires unrealistically long cooking times and large liquid/animal tissue ratios. Currently, literature on the impact of cooking of terrestrial animal produce on PFAS concentrations is lacking, which limits the inference and generalisation of our meta-analysis. However, our work represents the first step towards developing guidelines to reduce PFAS in food via cooking exclusively with common kitchen items and techniques.
Collapse
Affiliation(s)
- Catharina Vendl
- Evolution and Ecology Research Centre and School of Biology Earth & Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
| | - Patrice Pottier
- Evolution and Ecology Research Centre and School of Biology Earth & Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Matthew D Taylor
- Evolution and Ecology Research Centre and School of Biology Earth & Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia; Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Nelson Bay, Australia; Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Matthew J Gibson
- School of Computer Science and Engineering, University of New South Wales Sydney, Sydney, Australia
| | - Daniel Hesselson
- Centenary Institute and Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, And School of Life and Environmental Sciences, University of Sydney, Australia
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre and School of Biology Earth & Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biology Earth & Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
60
|
Koerich ACC, Borszcz FK, Thives Mello A, de Lucas RD, Hansen F. Effects of the ketogenic diet on performance and body composition in athletes and trained adults: a systematic review and Bayesian multivariate multilevel meta-analysis and meta-regression. Crit Rev Food Sci Nutr 2022; 63:11399-11424. [PMID: 35757868 DOI: 10.1080/10408398.2022.2090894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This systematic review with meta-analysis aimed to determine the effects of the ketogenic diet (KD) against carbohydrate (CHO)-rich diets on physical performance and body composition in trained individuals. The MEDLINE, EMBASE, CINAHL, SPORTDiscus, and The Cochrane Library were searched. Randomized and non-randomized controlled trials in athletes/trained adults were included. Meta-analytic models were carried out using Bayesian multilevel models. Eighteen studies were included providing estimates on cyclic exercise modes and strength one-maximum repetition (1-RM) performances and for total, fat, and free-fat masses. There were more favorable effects for CHO-rich than KD on time-trial performance (mode [95% credible interval]; -3.3% [-8.5%, 1.7%]), 1-RM (-5.7% [-14.9%, 2.6%]), and free-fat mass (-0.8 [-3.4, 1.9] kg); effects were more favorable to KD on total (-2.4 [-6.2, 1.8] kg) and fat mass losses (-2.4 [-5.4, 0.2] kg). Likely modifying effects on cyclic performance were the subject's sex and VO2max, intervention and performance durations, and mode of exercise. The intervention duration and subjects' sex were likely to modify effects on total body mass. KD can be a useful strategy for total and fat body losses, but a small negative effect on free-fat mass was observed. KD was not suitable for enhancing strength 1-RM or high-intensity cyclic performances.
Collapse
Affiliation(s)
- Ana Clara C Koerich
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| | - Fernando Klitzke Borszcz
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, University Campus, Pantanal, Florianópolis, Santa Catarina, Brazil
| | - Arthur Thives Mello
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, University Campus, Pantanal, Florianópolis, Santa Catarina, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
61
|
Poulin R, Jorge F, Salloum PM. Inter-individual variation in parasite manipulation of host phenotype: A role for parasite microbiomes? J Anim Ecol 2022; 92:807-812. [PMID: 35748637 DOI: 10.1111/1365-2656.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Alterations in host phenotype induced by metazoan parasites are widespread in nature, yet the underlying mechanisms and the sources of intraspecific variation in the extent of those alterations remain poorly understood. In light of the microbiome revolution sweeping through ecology and evolutionary biology, we hypothesise that the composition of symbiotic microbial communities living within individual parasites influences the nature and extent of their effect on host phenotype. The interests of both the parasite and its symbionts are aligned through the latter's vertical transmission, favouring joint contributions to the manipulation of host phenotype. Our hypothesis can explain the variation in the extent to which parasites alter host phenotype, as microbiome composition varies among individual parasites. We propose two non-exclusive approaches to test the hypothesis, furthering the integration of microbiomes into studies of host-parasite interactions.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fátima Jorge
- Otago Micro and Nano Imaging, Electron Microscopy Unit, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
62
|
Atkinson J, Brudvig LA, Mallen-Cooper M, Nakagawa S, Moles AT, Bonser SP. Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: A global meta-analysis. Ecol Lett 2022; 25:1725-1737. [PMID: 35559594 PMCID: PMC9320827 DOI: 10.1111/ele.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 04/23/2022] [Indexed: 12/01/2022]
Abstract
Ecological restoration projects often have variable and unpredictable outcomes, and these can limit the overall impact on biodiversity. Previous syntheses have investigated restoration effectiveness by comparing average restored conditions to average conditions in unrestored or reference systems. Here, we provide the first quantification of the extent to which restoration affects both the mean and variability of biodiversity outcomes, through a global meta-analysis of 83 terrestrial restoration studies. We found that, relative to unrestored (degraded) sites, restoration actions increased biodiversity by an average of 20%, while decreasing the variability of biodiversity (quantified by the coefficient of variation) by an average of 14%. As restorations aged, mean biodiversity increased and variability decreased relative to unrestored sites. However, restoration sites remained, on average, 13% below the biodiversity of reference (target) ecosystems, and were characterised by higher (20%) variability. The lower mean and higher variability in biodiversity at restored sites relative to reference sites remained consistent over time, suggesting that sources of variation (e.g. prior land use, restoration practices) have an enduring influence on restoration outcomes. Our results point to the need for new research confronting the causes of variability in restoration outcomes, and close variability and biodiversity gaps between restored and reference conditions.
Collapse
Affiliation(s)
- Joe Atkinson
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Max Mallen-Cooper
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| | - Stephen P Bonser
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
63
|
Hangartner S, Sgrò CM, Connallon T, Booksmythe I. Sexual dimorphism in phenotypic plasticity and persistence under environmental change: An extension of theory and meta-analysis of current data. Ecol Lett 2022; 25:1550-1565. [PMID: 35334155 PMCID: PMC9311083 DOI: 10.1111/ele.14005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Populations must adapt to environmental changes to remain viable. Both evolution and phenotypic plasticity contribute to adaptation, with plasticity possibly being more important for coping with rapid change. Adaptation is complex in species with separate sexes, as the sexes can differ in the strength or direction of natural selection, the genetic basis of trait variation, and phenotypic plasticity. Many species show sex differences in plasticity, yet how these differences influence extinction susceptibility remains unclear. We first extend theoretical models of population persistence in changing environments and show that persistence is affected by sexual dimorphism for phenotypic plasticity, trait genetic architecture, and sex-specific selection. Our models predict that female-biased adaptive plasticity-particularly in traits with modest-to-low cross-sex genetic correlations-typically promotes persistence, though we also identify conditions where sexually monomorphic or male-biased plasticity promotes persistence. We then perform a meta-analysis of sex-specific plasticity under manipulated thermal conditions. Although examples of sexually dimorphic plasticity are widely observed, systematic sex differences are rare. An exception-cold resistance-is systematically female-biased and represents a trait wherein sexually dimorphic plasticity might elevate population viability in changing environments. We discuss our results in light of debates about the roles of evolution and plasticity in extinction susceptibility.
Collapse
Affiliation(s)
- Sandra Hangartner
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Isobel Booksmythe
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
64
|
Noble DWA, Pottier P, Lagisz M, Burke S, Drobniak SM, O'Dea RE, Nakagawa S. Meta-analytic approaches and effect sizes to account for 'nuisance heterogeneity' in comparative physiology. J Exp Biol 2022; 225:274278. [PMID: 35258606 DOI: 10.1242/jeb.243225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meta-analysis is a powerful tool used to generate quantitatively informed answers to pressing global challenges. By distilling data from broad sets of research designs and study systems into standardised effect sizes, meta-analyses provide physiologists with opportunities to estimate overall effect sizes and understand the drivers of effect variability. Despite this ambition, research designs in the field of comparative physiology can appear, at the outset, as being vastly different to each other because of 'nuisance heterogeneity' (e.g. different temperatures or treatment dosages used across studies). Methodological differences across studies have led many to believe that meta-analysis is an exercise in comparing 'apples with oranges'. Here, we dispel this myth by showing how standardised effect sizes can be used in conjunction with multilevel meta-regression models to both account for the factors driving differences across studies and make them more comparable. We assess the prevalence of nuisance heterogeneity in the comparative physiology literature - showing it is common and often not accounted for in analyses. We then formalise effect size measures (e.g. the temperature coefficient, Q10) that provide comparative physiologists with a means to remove nuisance heterogeneity without the need to resort to more complex statistical models that may be harder to interpret. We also describe more general approaches that can be applied to a variety of different contexts to derive new effect sizes and sampling variances, opening up new possibilities for quantitative synthesis. By using effect sizes that account for components of effect heterogeneity, in combination with existing meta-analytic models, comparative physiologists can explore exciting new questions while making results from large-scale data sets more accessible, comparable and widely interpretable.
Collapse
Affiliation(s)
- Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Patrice Pottier
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Malgorzata Lagisz
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Samantha Burke
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Szymon M Drobniak
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rose E O'Dea
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shinichi Nakagawa
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
65
|
Santana MS, Domingues de Melo G, Sandrini-Neto L, Di Domenico M, Prodocimo MM. A meta-analytic review of fish antioxidant defense and biotransformation systems following pesticide exposure. CHEMOSPHERE 2022; 291:132730. [PMID: 34743868 DOI: 10.1016/j.chemosphere.2021.132730] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Pesticides reach aquatic ecosystems and interact with various targets in cells of fish and other living organisms. Toxicity originates during the metabolization process, which may produce toxic metabolites or reactive oxygen species (ROS). Ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) activities, and levels of reduced glutathione (GSH) indicate toxicants interacted with drug-metabolizing and antioxidant systems, i.e., they are biomarkers of biotransformation and oxidative stress. We meta-analytically quantified the impact of pesticides on the mean response and variability of these biomarkers. Our goals were to verify (i) the overall effect of pesticides on oxidative stress and biotransformation, and how each biomarker respond to exposure; (ii) how the life stage of fish (juvenile and adult) influence biomarkers variability and mean activity; (iii) to what extent fish sex (male, female or mixed-sex groups) modify pesticides toxicity; (iv) how different classes of pesticides, and the combination of their concentration and time of exposure, affect each biomarker. Overall, pesticides induced oxidative stress and the biotransformation system. Regardless of life stage, EROD mean activity increased significantly. In exposed juveniles, CAT and GST variability decreased and increased, respectively. CAT mean activity was higher in females, while EROD and GST activities increased in males after pesticide exposure. Organophosphorus (OPs) and organochlorine insecticides, along with imidazole and triazole fungicides, affected biomarkers the most, however the combined effect of concentration and time of exposure of OPs was not detected. Notably, imidazoles and triazoles classes increased EROD by more than 100%. Additionally, we identified research gaps, such as the lack of effect estimates of relevant pesticides on EROD (e.g., pyrethroids and neonicotinoids) and the small number of studies evaluating GSH on female fish. Future researchers may use these gaps as a guide towards enhanced experimental designs and, consequently, a better understanding of pesticide toxic effects on fish.
Collapse
Affiliation(s)
- Manuela S Santana
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, Paraná, Brazil; Laboratório de Ecologia Marinha. Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil.
| | - Gabriel Domingues de Melo
- Programa de Pós-graduação em Sistemas Costeiros e Oceânicos, Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Leonardo Sandrini-Neto
- Laboratório de Ecologia Marinha. Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Maikon Di Domenico
- Laboratório de Ecologia Marinha. Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Maritana Mela Prodocimo
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
66
|
Macartney EL, Lagisz M, Nakagawa S. The Relative Benefits of Environmental Enrichment on Learning and Memory are Greater When Stressed: A Meta-analysis of Interactions in Rodents. Neurosci Biobehav Rev 2022; 135:104554. [PMID: 35149103 DOI: 10.1016/j.neubiorev.2022.104554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Environmental enrichment ("EE") is expected to alleviate the negative effects of stress on cognitive performance. However, there are complexities associated with interpreting interactions that obscure determining the benefit EE may play in mitigating the negative effects of stress. To clarify these complexities, we conducted a systematic review with meta-analysis on the main and interactive effects of EE and stress on learning and memory in rodents. We show that EE and stress interact 'synergistically' where EE provides a greater relative benefit to stressed individuals compared to those reared in conventional housing. Importantly, EE can fully-compensate for the negative effects of stress where stressed individuals with EE performed equally to enriched individuals without a stress manipulation. Additionally, we show the importance of other mediating factors, including the order of treatment exposure, duration and type of stress, type of EE, and type of cognitive assays used. This study not only quantifies the interactions between EE and stress, but also provides a clear example for how to conduct and interpret meta-analysis of interactions.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052.
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia Kensington Campus, UNSW, Sydney, NSW 2052
| |
Collapse
|
67
|
Yang Y, Hillebrand H, Lagisz M, Cleasby I, Nakagawa S. Low statistical power and overestimated anthropogenic impacts, exacerbated by publication bias, dominate field studies in global change biology. GLOBAL CHANGE BIOLOGY 2022; 28:969-989. [PMID: 34736291 PMCID: PMC9299651 DOI: 10.1111/gcb.15972] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/20/2021] [Indexed: 05/27/2023]
Abstract
Field studies are essential to reliably quantify ecological responses to global change because they are exposed to realistic climate manipulations. Yet such studies are limited in replicates, resulting in less power and, therefore, potentially unreliable effect estimates. Furthermore, while manipulative field experiments are assumed to be more powerful than non-manipulative observations, it has rarely been scrutinized using extensive data. Here, using 3847 field experiments that were designed to estimate the effect of environmental stressors on ecosystems, we systematically quantified their statistical power and magnitude (Type M) and sign (Type S) errors. Our investigations focused upon the reliability of field experiments to assess the effect of stressors on both ecosystem's response magnitude and variability. When controlling for publication bias, single experiments were underpowered to detect response magnitude (median power: 18%-38% depending on effect sizes). Single experiments also had much lower power to detect response variability (6%-12% depending on effect sizes) than response magnitude. Such underpowered studies could exaggerate estimates of response magnitude by 2-3 times (Type M errors) and variability by 4-10 times. Type S errors were comparatively rare. These observations indicate that low power, coupled with publication bias, inflates the estimates of anthropogenic impacts. Importantly, we found that meta-analyses largely mitigated the issues of low power and exaggerated effect size estimates. Rather surprisingly, manipulative experiments and non-manipulative observations had very similar results in terms of their power, Type M and S errors. Therefore, the previous assumption about the superiority of manipulative experiments in terms of power is overstated. These results call for highly powered field studies to reliably inform theory building and policymaking, via more collaboration and team science, and large-scale ecosystem facilities. Future studies also require transparent reporting and open science practices to approach reproducible and reliable empirical work and evidence synthesis.
Collapse
Affiliation(s)
- Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Department of Biosystems EngineeringZhejiang UniversityHangzhouChina
- Department of Infectious Diseases and Public HealthJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongHong KongChina
| | - Helmut Hillebrand
- Plankton Ecology LabInstitute for Chemistry and Biology of Marine Environments (ICBM)Carl‐von‐Ossietzky University OldenburgOldenburgGermany
- Helmholtz‐Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB)OldenburgGermany
- Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research (AWI)BremerhavenGermany
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ian Cleasby
- RSPB Centre for Conservation ScienceNorth Scotland Regional OfficeInvernessUK
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
68
|
Cait J, Cait A, Scott RW, Winder CB, Mason GJ. Conventional laboratory housing increases morbidity and mortality in research rodents: results of a meta-analysis. BMC Biol 2022; 20:15. [PMID: 35022024 PMCID: PMC8756709 DOI: 10.1186/s12915-021-01184-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Over 120 million mice and rats are used annually in research, conventionally housed in shoebox-sized cages that restrict natural behaviours (e.g. nesting and burrowing). This can reduce physical fitness, impair thermoregulation and reduce welfare (e.g. inducing abnormal stereotypic behaviours). In humans, chronic stress has biological costs, increasing disease risks and potentially shortening life. Using a pre-registered protocol ( https://atrium.lib.uoguelph.ca/xmlui/handle/10214/17955 ), this meta-analysis therefore tested the hypothesis that, compared to rodents in 'enriched' housing that better meets their needs, conventional housing increases stress-related morbidity and all-cause mortality. RESULTS Comprehensive searches (via Ovid, CABI, Web of Science, Proquest and SCOPUS on May 24 2020) yielded 10,094 publications. Screening for inclusion criteria (published in English, using mice or rats and providing 'enrichments' in long-term housing) yielded 214 studies (within 165 articles, using 6495 animals: 59.1% mice; 68.2% male; 31.8% isolation-housed), and data on all-cause mortality plus five experimentally induced stress-sensitive diseases: anxiety, cancer, cardiovascular disease, depression and stroke. The Systematic Review Center for Laboratory animal Experimentation (SYRCLE) tool assessed individual studies' risks of bias. Random-effects meta-analyses supported the hypothesis: conventional housing significantly exacerbated disease severity with medium to large effect sizes: cancer (SMD = 0.71, 95% CI = 0.54-0.88); cardiovascular disease (SMD = 0.72, 95% CI = 0.35-1.09); stroke (SMD = 0.87, 95% CI = 0.59-1.15); signs of anxiety (SMD = 0.91, 95% CI = 0.56-1.25); signs of depression (SMD = 1.24, 95% CI = 0.98-1.49). It also increased mortality rates (hazard ratio = 1.48, 95% CI = 1.25-1.74; relative median survival = 0.91, 95% CI = 0.89-0.94). Meta-regressions indicated that such housing effects were ubiquitous across species and sexes, but could not identify the most impactful improvements to conventional housing. Data variability (assessed via coefficient of variation) was also not increased by 'enriched' housing. CONCLUSIONS Conventional housing appears sufficiently distressing to compromise rodent health, raising ethical concerns. Results also add to previous work to show that research rodents are typically CRAMPED (cold, rotund, abnormal, male-biased, poorly surviving, enclosed and distressed), raising questions about the validity and generalisability of the data they generate. This research was funded by NSERC, Canada.
Collapse
Affiliation(s)
- Jessica Cait
- Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Alissa Cait
- Department of Translational Immunology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - R Wilder Scott
- School of Biomedical Engineering, Faculty of Medicine and Applied Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte B Winder
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Georgia J Mason
- Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
69
|
Bann D, Wright L, Cole TJ. Risk factors relate to the variability of health outcomes as well as the mean: A GAMLSS tutorial. eLife 2022; 11:72357. [PMID: 34985412 PMCID: PMC8791632 DOI: 10.7554/elife.72357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Risk factors or interventions may affect the variability as well as the mean of health outcomes. Understanding this can aid aetiological understanding and public health translation, in that interventions which shift the outcome mean and reduce variability are typically preferable to those which affect only the mean. However, most commonly used statistical tools do not test for differences in variability. Tools that do have few epidemiological applications to date, and fewer applications still have attempted to explain their resulting findings. We thus provide a tutorial for investigating this using GAMLSS (Generalised Additive Models for Location, Scale and Shape). Methods: The 1970 British birth cohort study was used, with body mass index (BMI; N = 6007) and mental wellbeing (Warwick-Edinburgh Mental Wellbeing Scale; N = 7104) measured in midlife (42–46 years) as outcomes. We used GAMLSS to investigate how multiple risk factors (sex, childhood social class, and midlife physical inactivity) related to differences in health outcome mean and variability. Results: Risk factors were related to sizable differences in outcome variability—for example males had marginally higher mean BMI yet 28% lower variability; lower social class and physical inactivity were each associated with higher mean and higher variability (6.1% and 13.5% higher variability, respectively). For mental wellbeing, gender was not associated with the mean while males had lower variability (–3.9%); lower social class and physical inactivity were each associated with lower mean yet higher variability (7.2% and 10.9% higher variability, respectively). Conclusions: The results highlight how GAMLSS can be used to investigate how risk factors or interventions may influence the variability in health outcomes. This underutilised approach to the analysis of continuously distributed outcomes may have broader utility in epidemiologic, medical, and psychological sciences. A tutorial and replication syntax is provided online to facilitate this (https://osf.io/5tvz6/). Funding: DB is supported by the Economic and Social Research Council (grant number ES/M001660/1), The Academy of Medical Sciences / Wellcome Trust (“Springboard Health of the Public in 2040” award: HOP001/1025); DB and LW are supported by the Medical Research Council (MR/V002147/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- David Bann
- Centre for Longitudinal Studies, Social Research Institute, University College London, London, United Kingdom
| | - Liam Wright
- Centre for Longitudinal Studies, Social Research Institute, University College London, London, United Kingdom
| | - Tim J Cole
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
70
|
Anwer H, Morris MJ, Noble DWA, Nakagawa S, Lagisz M. Transgenerational effects of obesogenic diets in rodents: A meta-analysis. Obes Rev 2022; 23:e13342. [PMID: 34595817 DOI: 10.1111/obr.13342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
Obesity is a major health condition that affects millions worldwide. There is an increased interest in understanding the adverse outcomes associated with obesogenic diets. A multitude of studies have investigated the transgenerational impacts of maternal and parental obesogenic diets on subsequent generations of offspring, but results have largely been mixed. We conducted a systematic review and meta-analysis on rodent studies to elucidate how obesogenic diets impact the mean and variance of grand-offspring traits. Our study focused on transgenerational effects (i.e., F2 and F3 generations) in one-off and multigenerational exposure studies. From 33 included articles, we obtained 407 effect sizes representing pairwise comparisons of control and treatment grand-offspring groups pertaining to measures of body weight, adiposity, glucose, insulin, leptin, and triglycerides. We found evidence that male and female grand-offspring descended from grandparents exposed to an obesogenic diet displayed phenotypes consistent with metabolic syndrome, especially in cases where the obesogenic diet was continued across generations. Further, we found stronger evidence for the effects of grand-maternal than grand-paternal exposure on grand-offspring traits. A high-fat diet in one-off exposure studies did not seem to impact phenotypic variation, whereas in multigenerational exposure studies it reduced variation in several traits.
Collapse
Affiliation(s)
- Hamza Anwer
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Margaret J Morris
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel W A Noble
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
71
|
Harrison LM, Noble DWA, Jennions MD. A meta-analysis of sex differences in animal personality: no evidence for the greater male variability hypothesis. Biol Rev Camb Philos Soc 2021; 97:679-707. [PMID: 34908228 DOI: 10.1111/brv.12818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
The notion that men are more variable than women has become embedded into scientific thinking. For mental traits like personality, greater male variability has been partly attributed to biology, underpinned by claims that there is generally greater variation among males than females in non-human animals due to stronger sexual selection on males. However, evidence for greater male variability is limited to morphological traits, and there is little information regarding sex differences in personality-like behaviours for non-human animals. Here, we meta-analysed sex differences in means and variances for over 2100 effects (204 studies) from 220 species (covering five broad taxonomic groups) across five personality traits: boldness, aggression, activity, sociality and exploration. We also tested if sexual size dimorphism, a proxy for sex-specific sexual selection, explains variation in the magnitude of sex differences in personality. We found no significant differences in personality between the sexes. In addition, sexual size dimorphism did not explain variation in the magnitude of the observed sex differences in the mean or variance in personality for any taxonomic group. In sum, we find no evidence for widespread sex differences in variability in non-human animal personality.
Collapse
Affiliation(s)
- Lauren M Harrison
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| |
Collapse
|
72
|
Palaniyappan L, Sabesan P, Li X, Luo Q. Schizophrenia Increases Variability of the Central Antioxidant System: A Meta-Analysis of Variance From MRS Studies of Glutathione. Front Psychiatry 2021; 12:796466. [PMID: 34916980 PMCID: PMC8669304 DOI: 10.3389/fpsyt.2021.796466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with schizophrenia diverge in their clinical trajectories. Such diverge outcomes may result from the resilience provided by antioxidant response system centered on glutathione (GSH). Proton Magnetic Resonance Spectroscopy (1H-MRS) has enabled the precise in vivo measurement of intracortical GSH; but individual studies report highly variable results even when GSH levels are measured from the same brain region. This inconsistency could be due to the presence of distinct subgroups of schizophrenia with varying GSH-levels. At present, we do not know if schizophrenia increases the interindividual variability of intracortical GSH relative to matched healthy individuals. We reviewed all 1H-MRS GSH studies in schizophrenia focused on the Anterior Cingulate Cortex published until August 2021. We estimated the relative variability of ACC GSH levels in patients compared to control groups using the variability ratio (VR) and coefficient of variation ratio (CVR). The presence of schizophrenia significantly increases the variability of intracortical GSH in the ACC (logVR = 0.12; 95% CI: 0.03-0.21; log CVR = 0.15; 95% CI = 0.06-0.23). Insofar as increased within-group variability (heterogeneity) could result from the existence of subtypes, our results call for a careful examination of intracortical GSH distribution in schizophrenia to seek redox-deficient and redox-sufficient subgroups. An increase in GSH variability among patients also indicate that the within-group predictability of adaptive response to oxidative stress may be lower in schizophrenia. Uncovering the origins of this illness-related reduction in the redox system stability may provide novel treatment targets in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | | | - Xuan Li
- MOE-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qiang Luo
- MOE-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
73
|
Slow and Steady, or Hard and Fast? A Systematic Review and Meta-Analysis of Studies Comparing Body Composition Changes between Interval Training and Moderate Intensity Continuous Training. Sports (Basel) 2021; 9:sports9110155. [PMID: 34822354 PMCID: PMC8619923 DOI: 10.3390/sports9110155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose: To conduct a systematic review and multilevel meta-analysis of the current literature as to the effects of interval training (IT) vs moderate intensity continuous training (MICT) on measures of body composition, both on a whole-body and regional level. Methods: We searched English-language papers on PubMed/MEDLINE, Scopus, CINAHL, and sportrxiv for the following inclusion criteria: (a) randomized controlled trials that directly compared IT vs MICT body composition using a validated measure in healthy children and adults; (b) training was carried out a minimum of once per week for at least four weeks; (c) published in a peer-reviewed English language journal or on a pre-print server. Results: The main model for fat mass effects revealed a trivial standardized point estimate with high precision for the interval estimate, with moderate heterogeneity (−0.016 (95%CI −0.07 to 0.04); I2 = 36%). The main model for fat-free mass (FFM) effects revealed a trivial standardized point estimate with high precision for the interval estimate, with negligible heterogeneity (−0.0004 (95%CI −0.05 to 0.05); I2 = 16%). The GRADE summary of findings suggested high certainty for both main model effects. Conclusions: Our findings provide compelling evidence that the pattern of intensity of effort and volume during endurance exercise (i.e., IT vs MICT) has minimal influence on longitudinal changes in fat mass and FFM, which are likely to minimal anyway. Trial registration number: This study was preregistered on the Open Science Framework.
Collapse
|
74
|
Gender-related differences in prevalence, intensity and associated risk factors of Schistosoma infections in Africa: A systematic review and meta-analysis. PLoS Negl Trop Dis 2021; 15:e0009083. [PMID: 34788280 PMCID: PMC8635327 DOI: 10.1371/journal.pntd.0009083] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 12/01/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Schistosomiasis remains a global-health problem with over 90% of its burden concentrated in Africa. Field studies reflect the complex ways in which socio-cultural and socio-economic variables, affect the distribution of Schistosoma infections across different populations. This review set out to systematically investigate and quantify the differences in Schistosoma infection burdens between males and females in Africa for two of the most prevalent Schistosoma species-Schistosoma mansoni and Schistosoma haematobium. METHODOLOGY We searched (from inception to 11th March 2020) Embase, MEDLINE, PubMed, and Web of Science for relevant studies on schistosomiasis. We included studies that report S. mansoni and/or S. haematobium prevalence and/or intensity data distributed between males and females. We conducted meta-analyses on the male to female (M:F) prevalence of infection ratios. Subgroup analyses were performed according to study baseline prevalence, sample size and the lower and upper age limit of study participants. We also present a descriptive analysis of differential risk and intensity of infection across males and females. Evidence for differences in the prevalence of schistosomiasis infection between males and females is presented, stratified by Schistosoma species. RESULT We identified 128 relevant studies, with over 200,000 participants across 23 countries. Of all the reported differences in the prevalence of infection between males and females, only 41% and 34% were statistically significant for S. mansoni and S. haematobium, respectively. Similar proportions of studies (27% and 34% for for S. haematobium and S. mansoni, respectively) of the reported differences in intensity of infection between males and females were statistically significant. The meta-analyses summarized a higher prevalence of infection in males; pooled random-effects weighted M:F prevalence of infection ratios were 1.20 (95% CI 1.11-1.29) for S. haematobium and 1.15 (95% CI 1.08-1.22) for S. mansoni. However, females are underrespresented in some of the studies. Additionally, there was significant heterogeneity across studies (Higgins I2 statistic (p-values < 0.001, I2values>95%)). Results of the subgroup analysis showed that the baseline prevalence influenced the M:F prevalence ratios for S. haematobium and S. mansoni, with higher M:F prevalence of infection ratios in settings with a lower baseline prevalence of infection. Across the studies, we identified four major risk factors associated with infection rates: occupational and recreational water contact, knowledge, socio-economic factors and demographic factors. The effect of these risk factors on the burden of infection in males and females varied across studies. CONCLUSIONS We find evidence of differences in prevalence of infection between males and females which may reflect differences in gender norms and water contact activities, suggesting that policy changes at the regional level may help ameliorate gender-related disparities in schistosomiasis infection burden. Collecting, robustly analysing, and reporting, sex-disaggregated epidemiological data, is currently lacking, but would be highly informative for planning effective treatment programmes and establishing those most at risk of schistosomiasis infections.
Collapse
|
75
|
Winkler L, Moiron M, Morrow EH, Janicke T. Stronger net selection on males across animals. eLife 2021; 10:e68316. [PMID: 34787569 PMCID: PMC8598160 DOI: 10.7554/elife.68316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022] Open
Abstract
Sexual selection is considered the major driver for the evolution of sex differences. However, the eco-evolutionary dynamics of sexual selection and their role for a population's adaptive potential to respond to environmental change have only recently been explored. Theory predicts that sexual selection promotes adaptation at a low demographic cost only if sexual selection is aligned with natural selection and if net selection is stronger on males compared to females. We used a comparative approach to show that net selection is indeed stronger in males and provide preliminary support that this sex bias is associated with sexual selection. Given that both sexes share the vast majority of their genes, our findings corroborate the notion that the genome is often confronted with a more stressful environment when expressed in males. Collectively, our study supports one of the long-standing key assumptions required for sexual selection to bolster adaptation, and sexual selection may therefore enable some species to track environmental change more efficiently.
Collapse
Affiliation(s)
| | - Maria Moiron
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| | - Edward H Morrow
- Department for Environmental and Life Sciences, Karlstad UniversityKarlstadSweden
| | - Tim Janicke
- Applied Zoology, Technical University DresdenDresdenGermany
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| |
Collapse
|
76
|
Mills HL, Higgins JP, Morris RW, Kessler D, Heron J, Wiles N, Davey Smith G, Tilling K. Detecting Heterogeneity of Intervention Effects Using Analysis and Meta-analysis of Differences in Variance Between Trial Arms. Epidemiology 2021; 32:846-854. [PMID: 34432720 PMCID: PMC8478324 DOI: 10.1097/ede.0000000000001401] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Randomized controlled trials (RCTs) with continuous outcomes usually only examine mean differences in response between trial arms. If the intervention has heterogeneous effects, then outcome variances will also differ between arms. Power of an individual trial to assess heterogeneity is lower than the power to detect the same size of main effect. METHODS We describe several methods for assessing differences in variance in trial arms and apply them to a single trial with individual patient data and to meta-analyses using summary data. Where individual data are available, we use regression-based methods to examine the effects of covariates on variation. We present an additional method to meta-analyze differences in variances with summary data. RESULTS In the single trial, there was agreement between methods, and the difference in variance was largely due to differences in prevalence of depression at baseline. In two meta-analyses, most individual trials did not show strong evidence of a difference in variance between arms, with wide confidence intervals. However, both meta-analyses showed evidence of greater variance in the control arm, and in one example, this was perhaps because mean outcome in the control arm was higher. CONCLUSIONS Using meta-analysis, we overcame low power of individual trials to examine differences in variance using meta-analysis. Evidence of differences in variance should be followed up to identify potential effect modifiers and explore other possible causes such as varying compliance.
Collapse
Affiliation(s)
- Harriet L. Mills
- From the Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Julian P.T. Higgins
- From the Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, United Kingdom
| | - Richard W. Morris
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David Kessler
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, United Kingdom
| | - Jon Heron
- From the Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicola Wiles
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- From the Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kate Tilling
- From the Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, United Kingdom
| |
Collapse
|
77
|
Thompson MJ, Capilla-Lasheras P, Dominoni DM, Réale D, Charmantier A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol Evol 2021; 37:171-182. [PMID: 34690006 DOI: 10.1016/j.tree.2021.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
In the past decade, numerous studies have explored how urbanisation affects the mean phenotypes of populations, but it remains unknown how urbanisation impacts phenotypic variation, a key target of selection that shapes, and is shaped by, eco-evolutionary processes. Our review suggests that urbanisation may often increase intraspecific phenotypic variation through several processes; a conclusion aligned with results from our illustrative analysis on tit morphology across 13 European city/forest population pairs. Urban-driven changes in phenotypic variation will have immense implications for urban populations and communities, particularly through urbanisation's effects on individual fitness, species interactions, and conservation. We call here for studies that incorporate phenotypic variation in urban eco-evolutionary research alongside advances in theory.
Collapse
Affiliation(s)
- M J Thompson
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - P Capilla-Lasheras
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D M Dominoni
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - D Réale
- Département des sciences biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - A Charmantier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
78
|
Neumeier MS, Homan S, Vetter S, Seifritz E, Kane JM, Huhn M, Leucht S, Homan P. Examining Side Effect Variability of Antipsychotic Treatment in Schizophrenia Spectrum Disorders: A Meta-analysis of Variance. Schizophr Bull 2021; 47:1601-1610. [PMID: 34374418 PMCID: PMC8530397 DOI: 10.1093/schbul/sbab078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Side effects of antipsychotic drugs play a key role in nonadherence of treatment in schizophrenia spectrum disorders (SSD). While clinical observations suggest that side effect variability between patients may be considerable, statistical evidence is required to confirm this. Here, we hypothesized to find larger side effect variability under treatment compared with control. We included double-blind, placebo-controlled, randomized controlled trials (RCTs) of adults with a diagnosis of SSD treated with 1 out of 14 antipsychotics. Standard deviations of the pre-post treatment differences of weight gain, prolactin levels, and corrected QT (QTc) times were extracted. The outcome measure was the variability ratio of treatment to control for individual antipsychotic drugs and the overall variability ratio of treatment to control across RCTs. Individual variability ratios were weighted by the inverse-variance method and entered into a random-effects model. We included N = 16 578 patients for weight gain, N = 16 633 patients for prolactin levels, and N = 10 384 patients for QTc time. Variability ratios (VR) were significantly increased for weight gain (VR = 1.08; 95% CI: 1.02-1.14; P = .004) and prolactin levels (VR = 1.38; 95% CI: 1.17-1.62; P < .001) but did not reach significance for QTc time (VR = 1.05; 95% CI: 0.98-1.12; P = 0.135). We found marked differences between individual antipsychotics and increased variability in side effects in patients under treatment with antipsychotics suggesting that subgroups of patients or individual patients may benefit from treatment allocation through stratified or personalized medicine.
Collapse
Affiliation(s)
| | - Stephanie Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Stefan Vetter
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Erich Seifritz
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - John M Kane
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | - Maximilian Huhn
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| |
Collapse
|
79
|
McCutcheon RA, Merritt K, Howes OD. Dopamine and glutamate in individuals at high risk for psychosis: a meta-analysis of in vivo imaging findings and their variability compared to controls. World Psychiatry 2021; 20:405-416. [PMID: 34505389 PMCID: PMC8429330 DOI: 10.1002/wps.20893] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dopaminergic and glutamatergic dysfunction is believed to play a central role in the pathophysiology of schizophrenia. However, it is unclear if abnormalities predate the onset of schizophrenia in individuals at high clinical or genetic risk for the disorder. We systematically reviewed and meta-analyzed studies that have used neuroimaging to investigate dopamine and glutamate function in individuals at increased clinical or genetic risk for psychosis. EMBASE, PsycINFO and Medline were searched form January 1, 1960 to November 26, 2020. Inclusion criteria were molecular imaging measures of striatal presynaptic dopaminergic function, striatal dopamine receptor availability, or glutamate function. Separate meta-analyses were conducted for genetic high-risk and clinical high-risk individuals. We calculated standardized mean differences between high-risk individuals and controls, and investigated whether the variability of these measures differed between the two groups. Forty-eight eligible studies were identified, including 1,288 high-risk individuals and 1,187 controls. Genetic high-risk individuals showed evidence of increased thalamic glutamate + glutamine (Glx) concentrations (Hedges' g=0.36, 95% CI: 0.12-0.61, p=0.003). There were no significant differences between high-risk individuals and controls in striatal presynaptic dopaminergic function, striatal D2/D3 receptor availability, prefrontal cortex glutamate or Glx, hippocampal glutamate or Glx, or basal ganglia Glx. In the meta-analysis of variability, genetic high-risk individuals showed reduced variability of striatal D2/D3 receptor availability compared to controls (log coefficient of variation ratio, CVR=-0.24, 95% CI: -0.46 to -0.02, p=0.03). Meta-regressions of publication year against effect size demonstrated that the magnitude of differences between clinical high-risk individuals and controls in presynaptic dopaminergic function has decreased over time (estimate=-0.06, 95% CI: -0.11 to -0.007, p=0.025). Thus, other than thalamic glutamate concentrations, no neurochemical measures were significantly different between individuals at risk for psychosis and controls. There was also no evidence of increased variability of dopamine or glutamate measures in high-risk individuals compared to controls. Significant heterogeneity, however, exists between studies, which does not allow to rule out the existence of clinically meaningful differences.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
80
|
Degree of anisogamy is unrelated to the intensity of sexual selection. Sci Rep 2021; 11:19424. [PMID: 34593863 PMCID: PMC8484679 DOI: 10.1038/s41598-021-98616-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Males and females often display different behaviours and, in the context of reproduction, these behaviours are labelled sex roles. The Darwin–Bateman paradigm argues that the root of these differences is anisogamy (i.e., differences in size and/or function of gametes between the sexes) that leads to biased sexual selection, and sex differences in parental care and body size. This evolutionary cascade, however, is contentious since some of the underpinning assumptions have been questioned. Here we investigate the relationships between anisogamy, sexual size dimorphism, sex difference in parental care and intensity of sexual selection using phylogenetic comparative analyses of 64 species from a wide range of animal taxa. The results question the first step of the Darwin–Bateman paradigm, as the extent of anisogamy does not appear to predict the intensity of sexual selection. The only significant predictor of sexual selection is the relative inputs of males and females into the care of offspring. We propose that ecological factors, life-history and demography have more substantial impacts on contemporary sex roles than the differences of gametic investments between the sexes.
Collapse
|
81
|
Noble DWA, Senior AM, Uller T, Schwanz LE. Heightened among-individual variation in life history but not morphology is related to developmental temperature in reptiles. J Evol Biol 2021; 34:1793-1802. [PMID: 34543488 DOI: 10.1111/jeb.13938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Abstract
Increases in phenotypic variation under extreme (e.g. novel or stressful) environmental conditions are emerging as a crucial process through which evolutionary adaptation can occur. Lack of prior stabilizing selection, as well as potential instability of developmental processes in these environments, may lead to a release of phenotypic variation that can have important evolutionary consequences. Although such patterns have been shown in model study organisms, we know little about the generality of trait variance across environments for non-model organisms. Here, we test whether extreme developmental temperatures increase the phenotypic variation across diverse reptile taxa. We find that the among-individual variation in a key life-history trait (post-hatching growth) increases at extreme cold and hot temperatures. However, variations in two measures of hatchling morphology and in hatchling performance were not related to developmental temperature. Although extreme developmental temperatures may increase the variation in growth, our results suggest that plastic responses to stressful incubation conditions do not generally make more extreme phenotypes available to selection. We discuss the reasons for the general lack of increased variability at extreme incubation temperatures and the implications this has for local adaptation in hatchling morphology and physiology.
Collapse
Affiliation(s)
- Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Alistair M Senior
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney University, Sydney, NSW, Australia
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Skåne, Sweden
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
82
|
Halperin I, Malleron T, Har-Nir I, Androulakis-Korakakis P, Wolf M, Fisher J, Steele J. Accuracy in Predicting Repetitions to Task Failure in Resistance Exercise: A Scoping Review and Exploratory Meta-analysis. Sports Med 2021; 52:377-390. [PMID: 34542869 DOI: 10.1007/s40279-021-01559-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Prescribing repetitions relative to task failure is an emerging approach to resistance training. Under this approach, participants terminate the set based on their prediction of the remaining repetitions left to task failure. While this approach holds promise, an important step in its development is to determine how accurate participants are in their predictions. That is, what is the difference between the predicted and actual number of repetitions remaining to task failure, which ideally should be as small as possible. OBJECTIVE The aim of this study was to examine the accuracy in predicting repetitions to task failure in resistance exercises. DESIGN Scoping review and exploratory meta-analysis. SEARCH AND INCLUSION A systematic literature search was conducted in January 2021 using the PubMed, SPORTDiscus, and Google Scholar databases. Inclusion criteria included studies with healthy participants who predicted the number of repetitions they can complete to task failure in various resistance exercises, before or during an ongoing set, which was performed to task failure. Sixteen publications were eligible for inclusion, of which 13 publications covering 12 studies, with a total of 414 participants, were included in our meta-analysis. RESULTS The main multilevel meta-analysis model including all effects sizes (262 across 12 clusters) revealed that participants tended to underpredict the number of repetitions to task failure by 0.95 repetitions (95% confidence interval [CI] 0.17-1.73), but with considerable heterogeneity (Q(261) = 3060, p < 0.0001, I2 = 97.9%). Meta-regressions showed that prediction accuracy slightly improved when the predictions were made closer to set failure (β = - 0.025, 95% CI - 0.05 to 0.0014) and when the number of repetitions performed to task failure was lower (≤ 12 repetitions: β = 0.06, 95% CI 0.04-0.09; > 12 repetitions: β = 0.47, 95% CI 0.44-0.49). Set number trivially influenced prediction accuracy with slightly increased accuracy in later sets (β = - 0.07 repetitions, 95% CI - 0.14 to - 0.005). In contrast, participants' training status did not seem to influence prediction accuracy (β = - 0.006 repetitions, 95% CI - 0.02 to 0.007) and neither did the implementation of upper or lower body exercises (upper body - lower body = - 0.58 repetitions; 95% CI - 2.32 to 1.16). Furthermore, there was minimal between-participant variation in predictive accuracy (standard deviation 1.45 repetitions, 95% CI 0.99-2.12). CONCLUSIONS Participants were imperfect in their ability to predict proximity to task failure independent of their training background. It remains to be determined whether the observed degree of inaccuracy should be considered acceptable. Despite this, prediction accuracies can be improved if they are provided closer to task failure, when using heavier loads, or in later sets. To reduce the heterogeneity between studies, future studies should include a clear and detailed account of how task failure was explained to participants and how it was confirmed.
Collapse
Affiliation(s)
- Israel Halperin
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel.
| | - Tomer Malleron
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel
| | - Itai Har-Nir
- School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, Tel-Aviv, Israel
| | | | - Milo Wolf
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| | - James Fisher
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| | - James Steele
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
83
|
Janicke T, Fromonteil S. Sexual selection and sexual size dimorphism in animals. Biol Lett 2021; 17:20210251. [PMID: 34520680 PMCID: PMC8440037 DOI: 10.1098/rsbl.2021.0251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
Sexual selection is often considered as a critical evolutionary force promoting sexual size dimorphism (SSD) in animals. However, empirical evidence for a positive relationship between sexual selection on males and male-biased SSD received mixed support depending on the studied taxonomic group and on the method used to quantify sexual selection. Here, we present a meta-analytic approach accounting for phylogenetic non-independence to test how standardized metrics of the opportunity and strength of pre-copulatory sexual selection relate to SSD across a broad range of animal taxa comprising up to 95 effect sizes from 59 species. We found that SSD based on length measurements was correlated with the sex difference in the opportunity for sexual selection but showed a weak and statistically non-significant relationship with the sex difference in the Bateman gradient. These findings suggest that pre-copulatory sexual selection plays a limited role for the evolution of SSD in a broad phylogenetic context.
Collapse
Affiliation(s)
- Tim Janicke
- Centre d’Écologie Fonctionnelle et Évolutive, UMR 5175 CNRS, Université de Montpellier, École Pratique des Hautes Études, Montpellier, France
- Applied Zoology, Technical University Dresden, Zellescher Weg 20b, Dresden 01062, Germany
| | - Salomé Fromonteil
- Centre d’Écologie Fonctionnelle et Évolutive, UMR 5175 CNRS, Université de Montpellier, École Pratique des Hautes Études, Montpellier, France
| |
Collapse
|
84
|
Solanes A, Palau P, Fortea L, Salvador R, González-Navarro L, Llach CD, Valentí M, Vieta E, Radua J. Biased accuracy in multisite machine-learning studies due to incomplete removal of the effects of the site. Psychiatry Res Neuroimaging 2021; 314:111313. [PMID: 34098248 DOI: 10.1016/j.pscychresns.2021.111313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Brain MRI researchers conducting multisite studies, such as within the ENIGMA Consortium, are very aware of the importance of controlling the effects of the site (EoS) in the statistical analysis. Conversely, authors of the novel machine-learning MRI studies may remove the EoS when training the machine-learning models but not control them when estimating the models' accuracy, potentially leading to severely biased estimates. We show examples from a toy simulation study and real MRI data in which we remove the EoS from both the "training set" and the "test set" during the training and application of the model. However, the accuracy is still inflated (or occasionally shrunk) unless we further control the EoS during the estimation of the accuracy. We also provide several methods for controlling the EoS during the estimation of the accuracy, and a simple R package ("multisite.accuracy") that smoothly does this task for several accuracy estimates (e.g., sensitivity/specificity, area under the curve, correlation, hazard ratio, etc.).
Collapse
Affiliation(s)
- Aleix Solanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Pol Palau
- FIDMAG Research Foundation, Barcelona, Spain; CASM Benito Menni Granollers-Hospital General de Granollers, Barcelona, Spain
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Research Foundation, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Cristian Daniel Llach
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
| | - Marc Valentí
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
85
|
|
86
|
Lehmann GUC, Kuchenreuther S, Lehmann AW, Dickhaus T. Correlated sexual selection on male genitalia, copulatory performance and nuptial gifts in a bushcricket (Orthoptera: Tettigoniidae) indicated by allometric scaling. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We adopt an allometric framework of scaling relationships for comparison between mating-related traits in the middle European bushcricket Roeseliana roeselii (Hagenbach, 1822). Eight characters, covering ontogenetic fitness (size traits; fixed at final moult), male condition (mass traits) and mating motivation (reproductive behaviours), were analysed in unrestricted matings and in matings involving genital manipulation. Shortening the male titillators had no effect on mating-related traits in males. However, titillators, known to be under sexual selection, scale hyperallometrically, with larger males possessing proportionally longer titillators, performing more titillator movements and exhibiting a reduced duration of copulation. Scaling was also hyperallometric for spermatophore mass, with larger males being heavier and transferring heavier nuptial gifts. Both titillator length and spermatophore mass might be condition-dependent indicators, because their variances were nearly twice as large those of body size or body mass. Mass traits were also dynamic, increasing by 11% for male body mass and 17% for spermatophore mass between the first and second matings. Sexual selection by female choice seems to favour larger trait size in the bushcricket R. roeselii, acting in concert on titillator length, intensity of titillator movements and spermatophore mass.
Collapse
Affiliation(s)
- Gerlind U C Lehmann
- Evolutionary Ecology, Department of Biology, Humboldt University Berlin, Invalidenstrasse 110, Berlin, Germany
| | - Sina Kuchenreuther
- Evolutionary Ecology, Department of Biology, Humboldt University Berlin, Invalidenstrasse 110, Berlin, Germany
| | | | | |
Collapse
|
87
|
Bensch HM, O'Connor EA, Cornwallis CK. Living with relatives offsets the harm caused by pathogens in natural populations. eLife 2021; 10:e66649. [PMID: 34309511 PMCID: PMC8313236 DOI: 10.7554/elife.66649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/19/2021] [Indexed: 01/23/2023] Open
Abstract
Living with relatives can be highly beneficial, enhancing reproduction and survival. High relatedness can, however, increase susceptibility to pathogens. Here, we examine whether the benefits of living with relatives offset the harm caused by pathogens, and if this depends on whether species typically live with kin. Using comparative meta-analysis of plants, animals, and a bacterium (nspecies = 56), we show that high within-group relatedness increases mortality when pathogens are present. In contrast, mortality decreased with relatedness when pathogens were rare, particularly in species that live with kin. Furthermore, across groups variation in mortality was lower when relatedness was high, but abundances of pathogens were more variable. The effects of within-group relatedness were only evident when pathogens were experimentally manipulated, suggesting that the harm caused by pathogens is masked by the benefits of living with relatives in nature. These results highlight the importance of kin selection for understanding disease spread in natural populations.
Collapse
|
88
|
Usui T, Macleod MR, McCann SK, Senior AM, Nakagawa S. Meta-analysis of variation suggests that embracing variability improves both replicability and generalizability in preclinical research. PLoS Biol 2021; 19:e3001009. [PMID: 34010281 PMCID: PMC8168858 DOI: 10.1371/journal.pbio.3001009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/01/2021] [Accepted: 05/04/2021] [Indexed: 01/11/2023] Open
Abstract
The replicability of research results has been a cause of increasing concern to the scientific community. The long-held belief that experimental standardization begets replicability has also been recently challenged, with the observation that the reduction of variability within studies can lead to idiosyncratic, lab-specific results that cannot be replicated. An alternative approach is to, instead, deliberately introduce heterogeneity, known as "heterogenization" of experimental design. Here, we explore a novel perspective in the heterogenization program in a meta-analysis of variability in observed phenotypic outcomes in both control and experimental animal models of ischemic stroke. First, by quantifying interindividual variability across control groups, we illustrate that the amount of heterogeneity in disease state (infarct volume) differs according to methodological approach, for example, in disease induction methods and disease models. We argue that such methods may improve replicability by creating diverse and representative distribution of baseline disease state in the reference group, against which treatment efficacy is assessed. Second, we illustrate how meta-analysis can be used to simultaneously assess efficacy and stability (i.e., mean effect and among-individual variability). We identify treatments that have efficacy and are generalizable to the population level (i.e., low interindividual variability), as well as those where there is high interindividual variability in response; for these, latter treatments translation to a clinical setting may require nuance. We argue that by embracing rather than seeking to minimize variability in phenotypic outcomes, we can motivate the shift toward heterogenization and improve both the replicability and generalizability of preclinical research.
Collapse
Affiliation(s)
- Takuji Usui
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- The Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Malcolm R. Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah K. McCann
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
- Charité—Universitätsmedizin Berlin Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alistair M. Senior
- The Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- The Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
89
|
Atsumi K, Lagisz M, Nakagawa S. Nonadditive genetic effects induce novel phenotypic distributions in male mating traits of F1 hybrids. Evolution 2021; 75:1304-1315. [PMID: 33818793 DOI: 10.1111/evo.14224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Hybridization is a source of phenotypic novelty and variation because of increased additive genetic variation. Yet, the roles of nonadditive allelic interactions in shaping phenotypic mean and variance of hybrids have been underappreciated. Here, we examine the distributions of male-mating traits in F1 hybrids via a meta-analysis of 3208 effect sizes from 39 animal species pairs. Although additivity sets phenotypic distributions of F1s to be intermediate, F1s also showed recessivity and resemblance to maternal species. F1s expressed novel phenotypes (beyond the range of both parents) in 65% of species pairs, often associated with increased phenotypic variability. Overall, however, F1s expressed smaller variation than parents in 51% of traits. Although genetic divergence between parents did not impact phenotypic novelty, it increased phenotypic variability of F1s. By creating novel phenotypes with increased variability, nonadditivity of heterozygotic genome may play key roles in determining mating success of F1s, and their subsequent extinction or speciation.
Collapse
Affiliation(s)
- Keisuke Atsumi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
90
|
McCutcheon R, Pillinger T, Welby G, Vano L, Cummings C, Guo X, Heron TA, Efthimiou O, Cipriani A, Howes O. Magnitude and variability of structural brain abnormalities in neuropsychiatric disease: protocol for a network meta-analysis of MRI studies. EVIDENCE-BASED MENTAL HEALTH 2021; 24:ebmental-2020-300229. [PMID: 33849995 PMCID: PMC8311078 DOI: 10.1136/ebmental-2020-300229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Structural MRI is the most frequently used method to investigate brain volume alterations in neuropsychiatric disease. Previous meta-analyses have typically focused on a single diagnosis, thereby precluding transdiagnostic comparisons. METHODS AND ANALYSIS We will include all structural MRI studies of adults that report brain volumes for participants from at least two of the following diagnostic groups: healthy controls, schizophrenia, schizoaffective disorder, delusional disorder, psychotic depression, clinical high risk for psychosis, schizotypal personality disorder, psychosis unspecified, bipolar disorder, autism spectrum disorder, major depressive disorder, attention deficit hyperactivity disorder, obsessive compulsive disorder, post-traumatic stress disorder, emotionally unstable personality disorder, 22q11 deletion syndrome, generalised anxiety disorder, social anxiety disorder, panic disorder, mixed anxiety and depression. Network meta-analysis will be used to synthesise eligible studies. The primary analysis will examine standardised mean difference in average volume, a secondary analysis will examine differences in variability of volumes. DISCUSSION This network meta-analysis will provide a transdiagnostic integration of structural neuroimaging studies, providing researchers with a valuable summary of a large literature. PROSPERO REGISTRATION NUMBER CRD42020221143.
Collapse
Affiliation(s)
- Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - George Welby
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Luke Vano
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Connor Cummings
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Xin Guo
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Toni Ann Heron
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Orestis Efthimiou
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, London, UK
| |
Collapse
|
91
|
The efficacy and heterogeneity of antipsychotic response in schizophrenia: A meta-analysis. Mol Psychiatry 2021; 26:1310-1320. [PMID: 31471576 PMCID: PMC7610422 DOI: 10.1038/s41380-019-0502-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The response to antipsychotic treatment in schizophrenia appears to vary, and as such it has been proposed that different subtypes of schizophrenia exist, defined by treatment-response. This has not been formally examined using meta-analysis. Randomised controlled trials comparing placebo and antipsychotics in acute treatment of schizophrenia listed in PubMed, EMBASE and PsycINFO from inception until 30 November 2018 were examined. Relative variability of symptomatic improvement in antipsychotic-treated individuals compared to placebo-treated individuals was quantified using coefficient of variation ratio (CVR). Mean difference in symptom change was quantified using Hedges' g. In addition, individual patient data from two clinical trials was examined in terms of both the distribution of total symptom change, and the variability of individual symptoms and symptom factors. In total, 11,006 articles were identified. Sixty six met inclusion criteria, reporting on 17,202 patients. Compared with placebo, antipsychotic-treated patients demonstrated greater total symptom improvement (g = 0.47, p < 0.001) and reduced variability in symptomatic improvement for total (CVR = 0.86, p < 0.001), positive (CVR = 0.89, p < 0.001), and negative symptoms (CVR = 0.86, p = 0.001). Lower variability in antipsychotic-response relative to placebo was associated with studies published earlier (z = 3.98, p < 0.001), younger patients (z = 3.07, p = 0.002), higher dose treatments (z = -2.62, p = 0.009), and greater mean-difference in symptom-change (z = -5.70, p < 0.001). In the individual patient dataset (N = 522 patients), antipsychotic treated patients did not show significantly increased variability for any individual symptom, and there was no evidence of a bimodal distribution of response. Compared to placebo, antipsychotic treatment shows greater improvement and lower variability of change in total, positive and negative symptoms. This is contrary to the hypothesis that there is a subtype of antipsychotic non-responsive schizophrenia. Instead our findings, provide evidence for a relatively homogeneous effect of antipsychotic treatment in improving symptoms of schizophrenia.
Collapse
|
92
|
Yang Y, Lagisz M, Foo YZ, Noble DWA, Anwer H, Nakagawa S. Beneficial intergenerational effects of exercise on brain and cognition: a multilevel meta-analysis of mean and variance. Biol Rev Camb Philos Soc 2021; 96:1504-1527. [PMID: 33783115 DOI: 10.1111/brv.12712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Physical exercise not only helps to improve physical health but can also enhance brain development and cognition. Recent reports on parental (both maternal and paternal) effects raise the possibility that parental exercise may provide benefits to offspring through intergenerational inheritance. However, the general magnitude and consistency of parental exercise effects on offspring is still controversial. Additionally, empirical research has long overlooked an important aspect of exercise: its effects on variability in neurodevelopmental and cognitive traits. Here, we compiled data from 52 studies involving 4786 rodents (412 effect sizes) to quantify the intergenerational transmission of exercise effects on brain and cognition. Using a multilevel meta-analytic approach, we found that, overall, parental exercise showed a tendency for increasing their offspring's brain structure by 12.7% (albeit statistically non-significant) probably via significantly facilitating neurogenesis (16.5%). Such changes in neural anatomy go in hand with a significant 20.8% improvement in neurobehaviour (improved learning and memory, and reduced anxiety). Moreover, we found parental exercise significantly reduces inter-individual differences (i.e. reduced variance in the treatment group) in progeny's neurobehaviour by 10.2% (coefficient of variation ratio, lnCVR), suggesting the existence of an individual by intervention interaction. The positive effects of exercise are modulated by several covariates (i.e. moderators), such as the exercised parent's sex, offspring's sex, and age, mode of exercise, and exercise timing. In particular, parental forced exercise is more efficient than voluntary exercise at significantly improving offspring neurobehaviour (26.0%) and reducing its variability (14.2%). We observed larger effects when parental exercise started before pregnancy. However, exercising only during pregnancy also had positive effects. Mechanistically, exercise significantly upregulated brain-derived neurotrophic factor (BDNF) by 28.9%, vascular endothelial growth factor (VEGF) by 35.8%, and significantly decreased hippocampal DNA methylation by 3.5%, suggesting that brain growth factor cascades and epigenetic modifications can moderate the transmission of parental exercise effects. Collectively, by coupling mean with variance effects, our analyses draw a more integrated picture of the benefits that parental exercise has on offspring: not only does it improve offspring brain development and cognitive performance, but it also reduces inter-individual differences in cognition-related traits. We advocate that meta-analysis of variation together with the mean of a trait provides novel insights for old controversies as well as emerging new questions, opening up a new era for generating variance-based hypotheses.
Collapse
Affiliation(s)
- Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yong Zhi Foo
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daniel W A Noble
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Hamza Anwer
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
93
|
Santana MS, Sandrini-Neto L, Di Domenico M, Prodocimo MM. Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143829. [PMID: 33248758 DOI: 10.1016/j.scitotenv.2020.143829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Fish cholinesterases (ChEs) - like acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) - are common biomarkers of environmental contamination due to their sensitivity to a variety of toxicants. To understand pesticide effects on fish ChEs mean activity and variability, we conducted a systematic review and meta-analyses. Our goal was to verify (i) if brain and muscle ChEs responded differently to pesticide exposure; (ii) how fish size and life stage (i.e., juvenile and adult) influence ChEs variability and mean activity; (iii) what type of pesticides (i.e., herbicide, insecticide, and fungicide) has the strongest effect, and if the analytical-grade compounds differ from commercial formulations; (iv) if increasing concentrations combined with prolonged exposure leads to stronger ChEs inhibition; and (v) how each class of pesticide affects these enzymes. We validated ChEs reliability as biomarkers and identified factors influencing their response. Regardless of tissue, BChE response was more variable than AChE, and no difference between their average activity was detected. The size of juvenile fish is an important factor affecting ChEs mean activity and variability, whereas pesticide had no significant effect on adult fish ChEs. Insecticides were stronger inhibitors compared to herbicides and fungicides. Analytical-grade compounds decreased ChEs mean activity to a higher degree than commercial formulations. The combined effect of concentration and time was only significant for fungicides and insecticides. Among classes, organophosphorus insecticides had the strongest effect on ChEs, followed by carbamates, organochlorines, and pyrethroids. Organophosphorus herbicides and oxazolidinones were the only herbicides to decrease ChEs mean activity significantly, and their effects were similar from those of pyrethroids and organochlorines. Additionally, our results identified research gaps, such as the small number of studies on fungicides, neonicotinoids and other relevant pesticides. These findings suggest future directions, which might help researchers identify robust cause-effect relationships between fish ChEs and pesticides.
Collapse
Affiliation(s)
- Manuela S Santana
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil; Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976 Pontal do Paraná, Paraná, Brazil.
| | - Leonardo Sandrini-Neto
- Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976 Pontal do Paraná, Paraná, Brazil
| | - Maikon Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976 Pontal do Paraná, Paraná, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
94
|
Rodgers EM, Franklin CE, Noble DWA. Diving in hot water: a meta-analytic review of how diving vertebrate ectotherms will fare in a warmer world. J Exp Biol 2021; 224:224/Suppl_1/jeb228213. [PMID: 33627460 DOI: 10.1242/jeb.228213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diving ectothermic vertebrates are an important component of many aquatic ecosystems, but the threat of climate warming is particularly salient to this group. Dive durations typically decrease as water temperatures rise; yet, we lack an understanding of whether this trend is apparent in all diving ectotherms and how this group will fare under climate warming. We compiled data from 27 studies on 20 ectothermic vertebrate species to quantify the effect of temperature on dive durations. Using meta-analytic approaches, we show that, on average, dive durations decreased by 11% with every 1°C increase in water temperature. Larger increases in temperature (e.g. +3°C versus +8-9°C) exerted stronger effects on dive durations. Although species that respire bimodally are projected to be more resilient to the effects of temperature on dive durations than purely aerial breathers, we found no significant difference between these groups. Body mass had a weak impact on mean dive durations, with smaller divers being impacted by temperature more strongly. Few studies have examined thermal phenotypic plasticity (N=4) in diving ectotherms, and all report limited plasticity. Average water temperatures in marine and freshwater habitats are projected to increase between 1.5 and 4°C in the next century, and our data suggest that this magnitude of warming could translate to substantial decreases in dive durations, by approximately 16-44%. Together, these data shed light on an overlooked threat to diving ectothermic vertebrates and suggest that time available for underwater activities, such as predator avoidance and foraging, may be shortened under future warming.
Collapse
Affiliation(s)
- Essie M Rodgers
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, 4072 Queensland, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
95
|
Kaminski J, Mascarell-Maricic L, Fukuda Y, Katthagen T, Heinz A, Schlagenhauf F. Glutamate in the Dorsolateral Prefrontal Cortex in Patients With Schizophrenia: A Meta-analysis of 1H-Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2021; 89:270-277. [PMID: 33129486 DOI: 10.1016/j.biopsych.2020.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND To date, there is no systematic overview of glutamate in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia. Here, we meta-analyzed case-control studies of high-field proton magnetic resonance spectroscopy (1H-MRS) investigating glutamate in DLPFC. Additionally, we estimated variance ratios to investigate homo/heterogeneity. METHODS Preregistration of the study was performed on September 20, 2019. The predefined literature search on PubMed comprised articles with search terms (magnetic resonance spectroscopy OR MRS) AND (glutamate OR glut∗ OR GLX) AND (schizophrenia OR psychosis OR schizophren∗). Meta-analyses with a fixed- and random-effects model with inverse variance method, DerSimonian-Laird estimator for τ2, and Cohen's d were calculated. For differences in variability, we calculated a random-effects model for measures of variance ratios. The primary study outcome was the difference in glutamate in the DLPFC in cases versus controls. Secondary outcomes were differences in variability. RESULTS The quantitative analysis comprised 429 cases and 365 controls. Overall, we found no group difference (d = 0.03 [95% confidence interval (CI), -0.20 to 0.26], z = 0.28, p = .78). Sensitivity analysis revealed an effect for medication status (Q = 8.35, p = .039), i.e., increased glutamate in antipsychotic-naïve patients (d = 0.46 [95% CI, 0.08 to 0.84], z = 2.37, p = .018). Concerning variance ratios, we found an effect of medication status (Q = 16.95, p < .001) due to lower coefficient of variation ratio (CVR) in medication-naïve patients (logCVR = -0.49 [95% CI, -0.78 to -0.20], z = -3.33, p < .001). In studies with medicated patients, we found higher CVR (logCVR = 0.22 [95% CI, 0.06 to 0.39], z = 2.67; p = .008). CONCLUSIONS We carefully interpret the higher levels and lower variability in cortical glutamate in antipsychotic-naïve patients as a possible key factor resulting from a putative allostatic mechanism. We conclude that care has to be taken when evaluating metabolite levels in clinical samples in which medication might confound findings.
Collapse
Affiliation(s)
- Jakob Kaminski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| | - Lea Mascarell-Maricic
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Yu Fukuda
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Teresa Katthagen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany
| | - Andreas Heinz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Florian Schlagenhauf
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| |
Collapse
|
96
|
Homan S, Muscat W, Joanlanne A, Marousis N, Cecere G, Hofmann L, Ji E, Neumeier M, Vetter S, Seifritz E, Dierks T, Homan P. Treatment effect variability in brain stimulation across psychiatric disorders: A meta-analysis of variance. Neurosci Biobehav Rev 2021; 124:54-62. [PMID: 33482243 DOI: 10.1016/j.neubiorev.2020.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/26/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Noninvasive brain stimulation methods such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are promising add-on treatments for a number of psychiatric conditions. Yet, some of the initial excitement is wearing off. Randomized controlled trials (RCT) have found inconsistent results. This inconsistency is suspected to be the consequence of variation in treatment effects and solvable by identifying responders in RCTs and individualizing treatment. However, is there enough evidence from RCTs that patients respond differently to treatment? This question can be addressed by comparing the variability in the active stimulation group with the variability in the sham group. We searched MEDLINE/PubMed and included all double-blinded, sham-controlled RCTs and crossover trials that used TMS or tDCS in adults with a unipolar or bipolar depression, bipolar disorder, schizophrenia spectrum disorder, or obsessive compulsive disorder. In accordance with the PRISMA guidelines to ensure data quality and validity, we extracted a measure of variability of the primary outcome. A total of 130 studies with 5748 patients were considered in the analysis. We calculated variance-weighted variability ratios for each comparison of active stimulation vs sham and entered them into a random-effects model. We hypothesized that treatment effect variability in TMS or tDCS would be reflected by increased variability after active compared with sham stimulation, or in other words, a variability ratio greater than one. Across diagnoses, we found only a minimal increase in variability after active stimulation compared with sham that did not reach statistical significance (variability ratio = 1.03; 95% CI, 0.97, 1.08, P = 0.358). In conclusion, this study found little evidence for treatment effect variability in brain stimulation, suggesting that the need for personalized or stratified medicine is still an open question.
Collapse
Affiliation(s)
- Stephanie Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Whitney Muscat
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | - Andrea Joanlanne
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | | | - Giacomo Cecere
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Lena Hofmann
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Ellen Ji
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Maria Neumeier
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Stefan Vetter
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Erich Seifritz
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Philipp Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA.
| |
Collapse
|
97
|
Parker SD, Perkin JS, Bean MG, Lutz‐Carrillo D, Acre MR. Temporal distribution modelling reveals upstream habitat drying and downstream non‐native introgression are squeezing out an imperiled headwater fish. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Stephanie D. Parker
- Department of Ecology and Conservation Biology Texas A&M University College Station TX USA
| | - Joshuah S. Perkin
- Department of Ecology and Conservation Biology Texas A&M University College Station TX USA
| | - Megan G. Bean
- Inland Fisheries Texas Parks and Wildlife Department Mountain Home TX USA
| | - Dijar Lutz‐Carrillo
- Analytical Services Laboratory Inland Fisheries Texas Parks and Wildlife Department San Marcos TX USA
| | - Matthew R. Acre
- Department of Ecology and Conservation Biology Texas A&M University College Station TX USA
| |
Collapse
|
98
|
Wieland L, Fromm S, Hetzer S, Schlagenhauf F, Kaminski J. Neuromelanin-Sensitive Magnetic Resonance Imaging in Schizophrenia: A Meta-Analysis of Case-Control Studies. Front Psychiatry 2021; 12:770282. [PMID: 34777070 PMCID: PMC8581671 DOI: 10.3389/fpsyt.2021.770282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Psychiatry is in urgent need of reliable biomarkers. Novel neuromelanin-sensitive magnetic resonance imaging (NM-MRI) sequences provide a time-efficient and non-invasive way to investigate the human brain in-vivo. This gives insight into the metabolites of dopaminergic signaling and may provide further evidence for potential dopaminergic alterations in patients with schizophrenia (SCZ). The present systematic review provides a meta-analysis of case-control studies using neuromelanin-sensitive sequences in SCZ vs. healthy controls (HC). Methods: According to predefined search terms and inclusion criteria studies were extracted on PubMed. Meta-analyses with a fixed and random-effects model with inverse variance method, DerSimonian-Laird estimator for τ2, and Cohen's d were calculated. Bias was assessed using funnel plots. The primary study outcome was contrast-to-noise ratio (CNR) in the substantia nigra compared between HC and SCZ. Results: The total sample of k = 6 studies included n = 183 cases and n = 162 controls. Across all studies we found a significant elevation of CNR in the substantia nigra (d = 0.42 [0.187; 0.655], z = 3.521, p < 0.001) in cases compared to controls. We found no significant difference in the control region of locus coeruleus (d = -0.07 [-0.446; 0.302], z = -0.192, p = 0.847), with CNR for the latter only reported in k = 3 studies. Conclusion: CNR in the substantia nigra were significantly elevated in cases compared to controls. Our results support neuromelanin as a candidate biomarker for dopaminergic dysfunction in schizophrenia. Further studies need to assess this candidate marker in large, longitudinal cohorts and address potential effects of disease state, medication and correlations with symptoms.
Collapse
Affiliation(s)
- Lara Wieland
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sophie Fromm
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jakob Kaminski
- Department of Psychiatry and Psychotherapy Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
99
|
Byers-Heinlein K, Tsui ASM, Bergmann C, Black AK, Brown A, Carbajal MJ, Durrant S, Fennell CT, Fiévet AC, Frank MC, Gampe A, Gervain J, Gonzalez-Gomez N, Hamlin JK, Havron N, Hernik M, Kerr S, Killam H, Klassen K, Kosie JE, Kovács ÁM, Lew-Williams C, Liu L, Mani N, Marino C, Mastroberardino M, Mateu V, Noble C, Orena AJ, Polka L, Potter CE, Schreiner M, Singh L, Soderstrom M, Sundara M, Waddell C, Werker JF, Wermelinger S. A multi-lab study of bilingual infants: Exploring the preference for infant-directed speech. ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE 2021; 4:10.1177/2515245920974622. [PMID: 35821764 PMCID: PMC9273003 DOI: 10.1177/2515245920974622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
From the earliest months of life, infants prefer listening to and learn better from infant-directed speech (IDS) than adult-directed speech (ADS). Yet, IDS differs within communities, across languages, and across cultures, both in form and in prevalence. This large-scale, multi-site study used the diversity of bilingual infant experiences to explore the impact of different types of linguistic experience on infants' IDS preference. As part of the multi-lab ManyBabies 1 project, we compared lab-matched samples of 333 bilingual and 385 monolingual infants' preference for North-American English IDS (cf. ManyBabies Consortium, 2020: ManyBabies 1), tested in 17 labs in 7 countries. Those infants were tested in two age groups: 6-9 months (the younger sample) and 12-15 months (the older sample). We found that bilingual and monolingual infants both preferred IDS to ADS, and did not differ in terms of the overall magnitude of this preference. However, amongst bilingual infants who were acquiring North-American English (NAE) as a native language, greater exposure to NAE was associated with a stronger IDS preference, extending the previous finding from ManyBabies 1 that monolinguals learning NAE as a native language showed a stronger preference than infants unexposed to NAE. Together, our findings indicate that IDS preference likely makes a similar contribution to monolingual and bilingual development, and that infants are exquisitely sensitive to the nature and frequency of different types of language input in their early environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Judit Gervain
- Integrative Neuroscience and Cognition Center (INCC), CNRS & Université Paris Descartes
| | | | | | | | | | - Shila Kerr
- McGill University, School of Communication Sciences and Disorders
| | | | | | | | | | | | | | | | - Caterina Marino
- Integrative Neuroscience and Cognition Center (INCC), CNRS & Université Paris Descartes
| | | | | | | | | | - Linda Polka
- McGill University, School of Communication Sciences and Disorders
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Clark TJ, Hebblewhite M. Predator control may not increase ungulate populations in the future: A formal meta‐analysis. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. J. Clark
- Wildlife Biology Program Department of Ecosystem and Conservation Sciences W. A. Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Mark Hebblewhite
- Wildlife Biology Program Department of Ecosystem and Conservation Sciences W. A. Franke College of Forestry and Conservation University of Montana Missoula MT USA
| |
Collapse
|