51
|
Su G, Qin X, Yang C, Sabatino A, Kelly JT, Avesani CM, Carrero JJ. Fiber intake and health in people with chronic kidney disease. Clin Kidney J 2022; 15:213-225. [PMID: 35145637 PMCID: PMC8825222 DOI: 10.1093/ckj/sfab169] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that diet, particularly one that is rich in dietary fiber, may prevent the progression of chronic kidney disease (CKD) and its associated complications in people with established CKD. This narrative review summarizes the current evidence and discusses the opportunities for increasing fiber intake in people with CKD to improve health and reduce disease complications. A higher consumption of fiber exerts multiple health benefits, such as increasing stool output, promoting the growth of beneficial microbiota, improving the gut barrier and decreasing inflammation, as well decreasing uremic toxin production. Despite this, the majority of people with CKD consume less than the recommended dietary fiber intake, which may be due in part to the competing dietary potassium concern. Based on existing evidence, we see benefits from adopting a higher intake of fiber-rich food, and recommend cooperation with the dietitian to ensure an adequate diet plan. We also identify knowledge gaps for future research and suggest means to improve patient adherence to a high-fiber diet.
Collapse
Affiliation(s)
- Guobin Su
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Global Public Health, Health Systems and Policy, Karolinska Institutet, Stockholm, Sweden
| | - Xindong Qin
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changyuan Yang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Alice Sabatino
- Department of Nephrology, Parma University Hospital, Parma, Italy
| | - Jaimon T Kelly
- Centre for Online Health, The University of Queensland, Brisbane, Australia.,Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| | - Carla Maria Avesani
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Medical Unit Clinical Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
52
|
Rudolph K, Schneider D, Fichtel C, Daniel R, Heistermann M, Kappeler PM. Drivers of gut microbiome variation within and between groups of a wild Malagasy primate. MICROBIOME 2022; 10:28. [PMID: 35139921 PMCID: PMC8827170 DOI: 10.1186/s40168-021-01223-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/20/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Various aspects of sociality can benefit individuals' health. The host social environment and its relative contributions to the host-microbiome relationship have emerged as key topics in microbial research. Yet, understanding the mechanisms that lead to structural variation in the social microbiome, the collective microbial metacommunity of an animal's social network, remains difficult since multiple processes operate simultaneously within and among animal social networks. Here, we examined the potential drivers of the convergence of the gut microbiome on multiple scales among and within seven neighbouring groups of wild Verreaux's sifakas (Propithecus verreauxi) - a folivorous primate of Madagascar. RESULTS Over four field seasons, we collected 519 faecal samples of 41 animals and determined gut communities via 16S and 18S rRNA gene amplicon analyses. First, we examined whether group members share more similar gut microbiota and if diet, home range overlap, or habitat similarity drive between-group variation in gut communities, accounting for seasonality. Next, we examined within-group variation in gut microbiota by examining the potential effects of social contact rates, male rank, and maternal relatedness. To explore the host intrinsic effects on the gut community structure, we investigated age, sex, faecal glucocorticoid metabolites, and female reproductive state. We found that group members share more similar gut microbiota and differ in alpha diversity, while none of the environmental predictors explained the patterns of between-group variation. Maternal relatedness played an important role in within-group microbial homogeneity and may also explain why adult group members shared the least similar gut microbiota. Also, dominant males differed in their bacterial composition from their group mates, which might be driven by rank-related differences in physiology and scent-marking behaviours. Links to sex, female reproductive state, or faecal glucocorticoid metabolites were not detected. CONCLUSIONS Environmental factors define the general set-up of population-specific gut microbiota, but intrinsic and social factors have a stronger impact on gut microbiome variation in this primate species. Video abstract.
Collapse
Affiliation(s)
- Katja Rudolph
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| |
Collapse
|
53
|
Wu G, Tang X, Fan C, Wang L, Shen W, Ren S, Zhang L, Zhang Y. Gastrointestinal Tract and Dietary Fiber Driven Alterations of Gut Microbiota and Metabolites in Durco × Bamei Crossbred Pigs. Front Nutr 2022; 8:806646. [PMID: 35155525 PMCID: PMC8836464 DOI: 10.3389/fnut.2021.806646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal tract and dietary fiber (DF) are known to influence gut microbiome composition. However, the combined effect of gut segment and long-term intake of a high fiber diet on pig gut microbiota and metabolite profiles is unclear. Here, we applied 16S rRNA gene sequencing and untargeted metabolomics to investigate the effect of broad bean silage on the composition and metabolites of the cecal and jejunal microbiome in Durco × Bamei crossbred pigs. Twenty-four pigs were allotted to four graded levels of DF chow, and the content of jejunum and cecum were collected. Our results demonstrated that cecum possessed higher α-diversity and abundance of Bacteroidetes, unidentified Ruminococcaceae compared to jejunum, while jejunum possessed higher abundance of Lactobacillus, Streptococcus. DF intake significantly altered diversity of the bacterial community. The abundance of Bacteroidetes and Turicibacter increased with the increase of DF in cecum and jejunum respectively. Higher concentrations of amino acids and conjugated bile acids were detected in the jejunum, whereas free bile acids and fatty acids were enriched in the cecum. The concentrations of fatty acids, carbohydrate metabolites, organic acids, 2-oxoadipic acid, and succinate in cecum were higher in the high DF groups. Overall, the results indicate that the composition of bacteria and the microbiota metabolites were distinct in different gut segments. DF had a significant influence on the bacterial composition and structure in the cecum and jejunum, and that the cecal metabolites may further affect host health, growth, and slaughter performance.
Collapse
Affiliation(s)
- Guofang Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Wenjuan Shen
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- *Correspondence: Liangzhi Zhang
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- Yanming Zhang
| |
Collapse
|
54
|
Cosme F, Inês A, Vilela A. Consumer's acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Food Res Int 2022; 151:110842. [PMID: 34980381 DOI: 10.1016/j.foodres.2021.110842] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Human gut microbiota is a protective agent of intestinal and systemic health, and its modulation is of great interest for human wellbeing. In the world of biotics, besides probiotics, prebiotics, and synbiotics, also appears the denomination of "postbiotics" and "psychobiotics". Fermented dairy products are, traditionally, the major source of probiotics. Nevertheless, due to the increasing number of lactose-intolerant individuals and strict vegetarians, there is a need for innovative non-dairy products. Non-dairy biotics are being included in the normal diet and due to technological advances, many products are created using non-conventional food matrices like kombucha tea, herbal tea, baking mix, and cereal-based products. The microorganisms most used as probiotics in many of the non-dairy products are strains belonging to the genera Bifidobacterium, Enterococcus, Lactobacillus, Lactococcus, Streptococcus, and Bacillus, and some yeast strains namely Saccharomyces cerevisiae var. boulardii. Recently, several other yeasts have been described as having probiotic properties. This review describes gut-derived effects in humans of possible microorganisms, such as yeasts, and bacteria, isolated from non-dairy fermented and non-fermented foods and beverages. The microorganisms responsible for the processing of these non-dairy fermented products, together with the prebiotics, form a class of nutrients that have been proven to be beneficial for our gut health.
Collapse
Affiliation(s)
- Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
55
|
Wegh CAM, Baaleman DF, Tabbers MM, Smidt H, Benninga MA. Nonpharmacologic Treatment for Children with Functional Constipation: A Systematic Review and Meta-analysis. J Pediatr 2022; 240:136-149.e5. [PMID: 34536492 DOI: 10.1016/j.jpeds.2021.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the effectiveness and safety of nonpharmacologic interventions for the treatment of childhood functional constipation. STUDY DESIGN Randomized controlled trials (RCTs) evaluating nonpharmacologic treatments in children with functional constipation which reported at least 1 outcome of the core outcome set for children with functional constipation. RESULTS We included 52 RCTs with 4668 children, aged between 2 weeks and 18 years, of whom 47% were females. Studied interventions included gut microbiome-directed interventions, other dietary interventions, oral supplements, pelvic floor-directed interventions, electrical stimulation, dry cupping, and massage therapy. An overall high risk of bias was found across the majority of studies. Meta-analyses for treatment success and/or defecation frequency, including 20 RCTs, showed abdominal electrical stimulation (n = 3), Cassia Fistula emulsion (n = 2), and a cow's milk exclusion diet (n = 2 in a subpopulation with constipation as a possible manifestation of cow's milk allergy) may be effective. Evidence from RCTs not included in the meta-analyses, indicated that some prebiotic and fiber mixtures, Chinese herbal medicine (Xiao'er Biantong granules), and abdominal massage are promising therapies. In contrast, studies showed no benefit for the use of probiotics, synbiotics, an increase in water intake, dry cupping, or additional biofeedback or behavioral therapy. We found no RCTs on physical movement or acupuncture. CONCLUSIONS More well-designed high quality RCTs concerning nonpharmacologic treatments for children with functional constipation are needed before changes in current guidelines are indicated.
Collapse
Affiliation(s)
- Carrie A M Wegh
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Gastroenterology and Nutrition, Amsterdam, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Desiree F Baaleman
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Gastroenterology and Nutrition, Amsterdam, the Netherlands
| | - Merit M Tabbers
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Gastroenterology and Nutrition, Amsterdam, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Marc A Benninga
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Gastroenterology and Nutrition, Amsterdam, the Netherlands
| |
Collapse
|
56
|
Liu L, Zhang J, Cheng Y, Zhu M, Xiao Z, Ruan G, Wei Y. Gut microbiota: A new target for T2DM prevention and treatment. Front Endocrinol (Lausanne) 2022; 13:958218. [PMID: 36034447 PMCID: PMC9402911 DOI: 10.3389/fendo.2022.958218] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the fastest growing metabolic diseases, has been characterized by metabolic disorders including hyperglycemia, hyperlipidemia and insulin resistance (IR). In recent years, T2DM has become the fastest growing metabolic disease in the world. Studies have indicated that patients with T2DM are often associated with intestinal flora disorders and dysfunction involving multiple organs. Metabolites of the intestinal flora, such as bile acids (BAs), short-chain fatty acids (SCFAs) and amino acids (AAs)may influence to some extent the decreased insulin sensitivity associated with T2DM dysfunction and regulate metabolic as well as immune homeostasis. In this paper, we review the changes in the gut flora in T2DM and the mechanisms by which the gut microbiota modulates metabolites affecting T2DM, which may provide a basis for the early identification of T2DM-susceptible individuals and guide targeted interventions. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to inform the improvement of T2DM progression.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiheng Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Zhu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| |
Collapse
|
57
|
Zhang S, Hu J, Sun Y, Tan H, Yin J, Geng F, Nie S. Review of structure and bioactivity of the Plantago (Plantaginaceae) polysaccharides. Food Chem X 2021; 12:100158. [PMID: 34825168 PMCID: PMC8604743 DOI: 10.1016/j.fochx.2021.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023] Open
Abstract
Plantago (Plantaginaceae) is an herbal plant, which is used in folk medicine, functional food, and dietary supplement products. Recent pharmacological and phytochemical studies have shown that polysaccharides isolated from Plantago have multiple medicinal and nutritional benefits, including improve intestinal health, hypoglycemic effect, immunomodulatory effect, etc. These health and pharmacological benefits are of great interest to the public, academia, and biotechnology industries. This paper provides an overview of recent advances in the physicochemical, structural features, and biological effects of Plantago polysaccharides and highlights the similarities and differences of the polysaccharides from different species and in different parts, including leaves, seeds, and husks. The scientific support for its use as a prebiotic is also addressed. The purpose of this review is to provide background as well as useful and up-to-date information for future research and applications of these polysaccharides.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| |
Collapse
|
58
|
Guan ZW, Yu EZ, Feng Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021; 26:molecules26226802. [PMID: 34833893 PMCID: PMC8624670 DOI: 10.3390/molecules26226802] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary fiber is a widely recognized nutrient for human health. Previous studies proved that dietary fiber has significant implications for gastrointestinal health by regulating the gut microbiota. Moreover, mechanistic research showed that the physiological functions of different dietary fibers depend to a great extent on their physicochemical characteristics, one of which is solubility. Compared with insoluble dietary fiber, soluble dietary fiber can be easily accessed and metabolized by fiber-degrading microorganisms in the intestine and produce a series of beneficial and functional metabolites. In this review, we outlined the structures, characteristics, and physiological functions of soluble dietary fibers as important nutrients. We particularly focused on the effects of soluble dietary fiber on human health via regulating the gut microbiota and reviewed their effects on dietary and clinical interventions.
Collapse
Affiliation(s)
- Zhi-Wei Guan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- School of Life Science, Qi Lu Normal University, Jinan 250200, China
| | - En-Ze Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
59
|
Abstract
Research characterising the gut microbiota in different populations and diseases has mushroomed since the advent of next-generation sequencing techniques. However, there has been less emphasis on the impact of dietary fibres and other dietary components that influence gut microbial metabolic activities. Dietary fibres are the main energy source for gut bacteria. However, fibres differ in their physicochemical properties, their effects on the gut and their fermentation characteristics. The diversity of carbohydrates and associated molecules in fibre-rich foods can have a major influence on microbiota composition and production of bioactive molecules, for example SCFAs and phenolic acids. Several of these microbial metabolites may influence the functions of body systems including the gut, liver, adipose tissues and brain. Dietary fibre intake recommendations have recently been increased (to 30 g daily) in response to growing obesity and other health concerns. Increasing intakes of specific fibre and plant food sources may differentially influence the bacteria and their metabolism. However, in vitro studies show great individual variability in the response of the gut microbiota to different fibres and fibre combinations, making it difficult to predict which foods or food components will have the greatest impact on levels of bioactive molecules produced in the colon of individuals. Greater understanding of individual responses to manipulation of the diet, in relation to microbiome composition and production of metabolites with proven beneficial impact on body systems, would allow the personalised approach needed to best promote good health.
Collapse
Affiliation(s)
- Catriona Thomson
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ada L Garcia
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christine A Edwards
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
60
|
Kodithuwakku KAHT, Owada H, Miura H, Maruyama D, Hirano K, Suzuki Y, Kobayashi Y, Koike S. Effects of oral administration of timothy hay and psyllium on the growth performance and fecal microbiota of preweaning calves. J Dairy Sci 2021; 104:12472-12485. [PMID: 34538491 DOI: 10.3168/jds.2021-20259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
The objective of this study was to evaluate the effects of oral administration of fiber from the first week of life on the growth and hindgut environment of preweaning calves. Twenty newborn female Holstein calves were divided into 2 groups as control and treatment. Calves in both groups were reared under the same feeding program except for oral fiber administration. Timothy hay and psyllium were mixed at a 50-to-6 ratio as a treatment diet for oral fiber administration. Calves in the treatment group were orally administered 50 g of fiber daily from 3 to 7 d of age and 100 g of fiber from 8 d of age until weaning. Feed intake and occurrence of diarrhea were recorded daily, and body weight (BW) was recorded weekly for the individual calf. Fresh feces were collected from calves at 7, 21, 35, 49, and 56 d of age to analyze fermentation parameters and microbiota to characterize the hindgut environment. Higher fiber intake in the treatment group due to oral administration of timothy and psyllium did not affect the starter intake and achieved higher BW at 21 d of age. The fecal pH, total volatile fatty acid, lactate, and ammonia nitrogen concentrations were not affected by oral fiber administration; meanwhile, the molar proportion of propionate was higher in the treatment group at 7 d of age. The difference in fecal microbiota in the calves subjected to the oral administration of fiber was observed within 21 d of life; Lactobacillus spp. and Prevotella spp. showed higher abundance, whereas that of Clostridium perfringens was decreased. These higher abundances of beneficial bacteria and lower abundance of pathogenic bacteria during early life may partly explain the higher BW of calves in the treatment group at 21 d of age. Furthermore, no adverse effect was observed for the BW and health status in the treatment group throughout the preweaning period. Therefore, early fiber feeding via oral administration potentially contributes to improving the hindgut environment in newborn calves, which leads to better growth of calves during the early stage of life.
Collapse
Affiliation(s)
| | - H Owada
- Central Research Institute for Feed and Livestock, ZEN-NOH, Kasama 319-0205, Japan
| | - H Miura
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - D Maruyama
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - K Hirano
- Central Research Institute for Feed and Livestock, ZEN-NOH, Kasama 319-0205, Japan
| | - Y Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Y Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - S Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
61
|
So D, Yao CK, Gill PA, Pillai N, Gibson PR, Muir JG. Screening dietary fibres for fermentation characteristics and metabolic profiles using a rapid in vitro approach: implications for irritable bowel syndrome. Br J Nutr 2021; 126:208-218. [PMID: 33028442 DOI: 10.1017/s0007114520003943] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The therapeutic value of specific fibres is partly dependent on their fermentation characteristics. Some fibres are rapidly degraded with the generation of gases that induce symptoms in patients with irritable bowel syndrome (IBS), while more slowly or non-fermentable fibres may be more suitable. More work is needed to profile a comprehensive range of fibres to determine suitability for IBS. Using a rapid in vitro fermentation model, gas production and metabolite profiles of a range of established and novel fibres were compared. Fibre substrates (n 15) were added to faecal slurries from three healthy donors for 4 h with gas production measured using real-time headspace sampling. Concentrations of SCFA and ammonia were analysed using GC and enzymatic assay, respectively. Gas production followed three patterns: rapid (≥60 ml/g over 4 h) for fructans, carrot fibre and maize-derived xylo-oligosaccharide (XOS); mild (30-60 ml/g) for partially hydrolysed guar gum, almond shell-derived XOS and one type of high-amylose resistant starch 2 (RS2) and minimal (no differences with blank controls) for methylcellulose, another high-amylose RS2, acetylated or butyrylated RS2, RS4, acacia gum and sugarcane bagasse. Gas production correlated positively with total SCFA (r 0·80, P < 0·001) and negatively with ammonia concentrations (r -0·68, P < 0·001). Proportions of specific SCFA varied: fermentation of carrot fibre, XOS and acetylated RS2 favoured acetate, while fructans favoured butyrate. Gas production and metabolite profiles differed between fibre types and within fibre classes over a physiologically relevant 4-h time course. Several fibres resisted rapid fermentation and may be candidates for clinical trials in IBS patients.
Collapse
Affiliation(s)
- Daniel So
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| | - Chu K Yao
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| | - Paul A Gill
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| | - Naresh Pillai
- School of Engineering, RMIT University, Melbourne, VIC3000, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| | - Jane G Muir
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC3004, Australia
| |
Collapse
|
62
|
Vaillant MF, Alligier M, Baclet N, Capelle J, Dousseaux MP, Eyraud E, Fayemendy P, Flori N, Guex E, Hennequin V, Lavandier F, Martineau C, Morin MC, Mokaddem F, Parmentier I, Rossi-Pacini F, Soriano G, Verdier E, Zeanandin G, Quilliot D. Guidelines on Standard and Therapeutic Diets for Adults in Hospitals by the French Association of Nutritionist Dieticians (AFDN) and the French Speaking Society of Clinical Nutrition and Metabolism (SFNCM). Nutrients 2021; 13:2434. [PMID: 34371943 PMCID: PMC8308628 DOI: 10.3390/nu13072434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
AIM Hospital food provision is subject to multiple constraints (meal production, organization, health safety, environmental respect) which influence the meal tray offered to the patient. Multiple diets can add complexity and contribute to non-consumption of the meal. To avoid undernutrition, it appeared necessary to propose guidelines for foods and diets in hospitals. METHODS These guidelines were developed using the Delphi method, as recommended by the HAS (French Health Authority), based on a formal consensus of experts and led by a group of practitioners and dieticians from the AFDN (French Association of Nutritionist Dieticians) and SFNCM (French Society of Clinical Nutrition and Metabolism). RESULTS Twenty-three recommendations were deemed appropriate and validated by a panel of 50 national experts, following three rounds of consultations, modifications and final strong agreement. These recommendations aim to define in adults: 1-harmonized vocabulary related to food and diets in hospitals; 2-quantitative and qualitative food propositions; 3-nutritional prescriptions; 4-diet patterns and patient adaptations; 5-streamlining of restrictions to reduce unnecessary diets and without scientific evidence; 6-emphasizing the place of an enriched and adapted diet for at-risk and malnourished patients. CONCLUSION These guidelines will enable catering services and health-care teams to rationalize hospital food and therapeutic food prescriptions in order to focus on individual needs and tasty foods. All efforts should be made to create meals that follow these recommendations while promoting the taste quality of the dishes and their presentation such that the patient rediscovers the pleasure of eating in the hospital.
Collapse
Affiliation(s)
- Marie-France Vaillant
- Service Diététique, CHU Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France;
- Laboratoire de Bioénergétique Fondamentale et Appliquée, Université Grenoble Alpes, U1055, CS 40700, CEDEX 9, 38058 Grenoble, France
| | - Maud Alligier
- FORCE (French Obesity Research Center of Excellence), FCRIN (French Clinical Research Infrastructure Network), CRNH Rhône-Alpes, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France;
| | - Nadine Baclet
- Service Diététique, Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83, Bd de l’Hôpital, CEDEX 13, 75651 Paris, France; (N.B.); (M.-P.D.)
| | - Julie Capelle
- Service Diététique, Centre Hospitalier Simone Veil de Blois, Mail Pierre Charlot, 41000 Blois, France;
| | - Marie-Paule Dousseaux
- Service Diététique, Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83, Bd de l’Hôpital, CEDEX 13, 75651 Paris, France; (N.B.); (M.-P.D.)
| | - Evelyne Eyraud
- Service Diététique, CHU de Nice Hôpital de l’Archet, 151 Route Saint Antoine de Ginestière, 06200 Nice, France;
| | - Philippe Fayemendy
- Unité de Nutrition, CHU Dupuytren, 2, Avenue Martin-Luther-King, CEDEX, 87042 Limoges, France;
- UMR 1094 Inserm Associée IRD—Neuroépidémiologie Tropicale, Faculté de Médecine, 2, Rue du Docteur Marcland, CEDEX, 87025 Limoges, France
| | - Nicolas Flori
- Clinical Nutrition, Gastroenterology and Endoscopy, Institut Régional du Cancer Montpellier (ICM), University of Montpellier, Parc Euromédecine, 208 Rue des Apothicaires, 34298 Montpellier, France;
| | - Esther Guex
- Nutrition Clinique, Service d’Endocrinologie-Diabétologie-Métabolisme, Centre Hospitalier et Universitaire Vaudois, 1011 Lausanne, Switzerland;
| | - Véronique Hennequin
- RESCLAN Champagne-Ardenne, Hôpital Sébastopol, 48, Rue de Sébastopol, 51092 Reims, France;
| | - Florence Lavandier
- Service Diététique, Centre Hospitalier Régional Universitaire de Tours, CEDEX 9, 37044 Tours, France;
| | - Caroline Martineau
- Unité Diététique, Hôpital Larrey, CHU de Toulouse, 20, Av. Larrieu-Thibaud, 31100 Toulouse, France;
| | - Marie-Christine Morin
- Service Diététique, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, CEDEX 20, 13915 Marseille, France;
| | - Fady Mokaddem
- Service de Gastro-Entérologie, Cliniques Sud Luxembourg Vivalia, Rue des Déportés 137, 6700 Arlon, Belgium;
| | - Isabelle Parmentier
- Service Diététique, CHRU Lille, 2 Avenue Oscar Lambret, 59037 Lille, France;
| | - Florence Rossi-Pacini
- Coordination Générale des Soins, Assistance Publique–Hôpitaux de Marseille, 80, Rue Brochier, CEDEX 05, 13354 Marseille, France;
| | - Gaëlle Soriano
- Gérontopôle, CHU Toulouse, CEDEX 9, 31059 Toulouse, France;
| | - Elisabeth Verdier
- Service diététique, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, 59, Bd Pinel, CEDEX, 69677 Bron, France;
| | - Gilbert Zeanandin
- Cabinet des Maladies de l’Appareil Digestif et Nutrition Clinique, Palais Bel Canto, 29, Avenue Malaussena, 06000 Nice, France;
| | - Didier Quilliot
- Unité Transversale de Nutrition et Unité d’Assistance Nutritionnelle, Service d’Endocrinologie Diabétologie et Nutrition, CHRU de Nancy, Rue du Morvan, 54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
63
|
Bongiovanni T, Yin MOL, Heaney L. The Athlete and Gut Microbiome: Short-chain Fatty Acids as Potential Ergogenic Aids for Exercise and Training. Int J Sports Med 2021; 42:1143-1158. [PMID: 34256388 DOI: 10.1055/a-1524-2095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced in the gut via microbial fermentation of dietary fibers referred to as microbiota-accessible carbohydrates (MACs). Acetate, propionate, and butyrate have been observed to regulate host dietary nutrient metabolism, energy balance, and local and systemic immune functions. In vitro and in vivo experiments have shown links between the presence of bacteria-derived SCFAs and host health through the blunting of inflammatory processes, as well as purported protection from the development of illness associated with respiratory infections. This bank of evidence suggests that SCFAs could be beneficial to enhance the athlete's immunity, as well as act to improve exercise recovery via anti-inflammatory activity and to provide additional energy substrates for exercise performance. However, the mechanistic basis and applied evidence for these relationships in humans have yet to be fully established. In this narrative review, we explore the existing knowledge of SCFA synthesis and the functional importance of the gut microbiome composition to induce SCFA production. Further, changes in gut microbiota associated with exercise and various dietary MACs are described. Finally, we provide suggestions for future research and practical applications, including how these metabolites could be manipulated through dietary fiber intake to optimize immunity and energy metabolism.
Collapse
Affiliation(s)
| | | | - Liam Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
64
|
Liu Q, Zhao J, Liu S, Fan Y, Mei J, Liu X, Wei T. Positive intervention of insoluble dietary fiber from defatted rice bran on hyperlipidemia in high fat diet fed rats. J Food Sci 2021; 86:3964-3974. [PMID: 34251041 DOI: 10.1111/1750-3841.15812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022]
Abstract
Increasing dietary fiber intake is considered to be an effective way to prevent and relieve the diseases associated with high-income lifestyles. Compared with soluble dietary fiber, comprehensive evaluation about the effects of insoluble dietary fiber on hyperlipidemia is rarely studied. In the present study, the insoluble dietary fiber was extracted from defatted rice bran by enzymatic treatments (IDF-dRB), followed by investigation about the adsorption and antioxidant activities in vitro. Moreover, the alleviating effects of IDF-dRB on hyperlipidemia were evaluated and analyzed. As a result, IDF-dRB possessed good adsorption capacities of glucose and cholesterol, and also exhibited excellent properties in scavenging radicals. Furthermore, intervention with IDF-dRB significantly improved lipid and glucose metabolism and alleviated inflammation and oxidative stress in rats fed high-fat diet. It was also observed that IDF-dRB treatment could recover the decline in species of gut microbiota caused by high fat diet, increase the community richness, and modulate the metabolic function of gut microbiota. In conclusion, the results indicated that IDF-dRB could ameliorate hyperlipidemia from many aspects and offered some perspectives about the effects of diet intervention with insoluble dietary fiber. PRACTICAL APPLICATION: Rice bran and defatted rice bran are coproducts in the rice processing industry and potentially valuable for the preparation of insoluble dietary fiber. Here an insoluble dietary fiber IDF-dRB was extracted from defatted rice bran and showed good properties in improving lipid and glucose levels, alleviating inflammation and oxidative stress, and modulating gut microbiota in rats fed high-fat diet, suggesting the potential application in ameliorating hyperlipidemia.
Collapse
Affiliation(s)
- Qian Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China.,College of Biochemical Engineering, Beijing Union University, Beijing, PR China
| | - Jieyu Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Sushi Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Yuchuan Fan
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Jiajia Mei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Xuanjiang Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China
| | - Tao Wei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, PR China.,College of Biochemical Engineering, Beijing Union University, Beijing, PR China
| |
Collapse
|
65
|
The composition of Australian Plantago seeds highlights their potential as nutritionally-rich functional food ingredients. Sci Rep 2021; 11:12692. [PMID: 34135417 PMCID: PMC8209032 DOI: 10.1038/s41598-021-92114-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
When wetted, Plantago seeds become covered with a polysaccharide-rich gel called mucilage that has value as a food additive and bulking dietary fibre. Industrially, the dry husk layer that becomes mucilage, called psyllium, is milled off Plantago ovata seeds, the only commercial-relevant Plantago species, while the residual inner seed tissues are either used for low value animal feed or discarded. We suggest that this practice is potentially wasting a highly nutritious resource and here describe the use of histological, physicochemical, and chromatographic analyses to compare whole seed composition/characteristics of P. ovata with 11 relatives already adapted to harsh Australian conditions that may represent novel commercial crop options. We show that substantial interspecific differences in mucilage yield and macromolecular properties are mainly a consequence of differences in heteroxylan and pectin composition and probably represent wide differences in hydrocolloid functionality that can be exploited in industry. We also show that non-mucilage producing inner seed tissues contain a substantial mannan-rich endosperm, high in fermentable sugars, protein, and fats. Whole seed Plantago flour, particularly from some species obtained from harsh Australian environments, may provide improved economic and health benefits compared to purified P. ovata psyllium husk, by retaining the functionality of the seed mucilage and providing additional essential nutrients.
Collapse
|
66
|
Cronin P, Joyce SA, O’Toole PW, O’Connor EM. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021; 13:nu13051655. [PMID: 34068353 PMCID: PMC8153313 DOI: 10.3390/nu13051655] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Dietary fibre has long been established as a nutritionally important, health-promoting food ingredient. Modern dietary practices have seen a significant reduction in fibre consumption compared with ancestral habits. This is related to the emergence of low-fibre “Western diets” associated with industrialised nations, and is linked to an increased prevalence of gut diseases such as inflammatory bowel disease, obesity, type II diabetes mellitus and metabolic syndrome. The characteristic metabolic parameters of these individuals include insulin resistance, high fasting and postprandial glucose, as well as high plasma cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Gut microbial signatures are also altered significantly in these cohorts, suggesting a causative link between diet, microbes and disease. Dietary fibre consumption has been hypothesised to reverse these changes through microbial fermentation and the subsequent production of short-chain fatty acids (SCFA), which improves glucose and lipid parameters in individuals who harbour diseases associated with dysfunctional metabolism. This review article examines how different types of dietary fibre can differentially alter glucose and lipid metabolism through changes in gut microbiota composition and function.
Collapse
Affiliation(s)
- Peter Cronin
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (S.A.J.); (P.W.O.)
| | - Susan A. Joyce
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (S.A.J.); (P.W.O.)
- School of Biochemistry and Cell Biology, University College Cork, T12 K8AF Cork, Ireland
| | - Paul W. O’Toole
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (S.A.J.); (P.W.O.)
- Department of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Eibhlís M. O’Connor
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (S.A.J.); (P.W.O.)
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence:
| |
Collapse
|
67
|
Croisier E, D'cunha K, Brown T, Bauer J. Exploration of current dietetic practices for patients with gynaecological cancers undergoing radiotherapy in Australia: a cross-sectional survey. Support Care Cancer 2021; 29:6171-6174. [PMID: 33983485 DOI: 10.1007/s00520-021-06220-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/11/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Radiotherapy for gynaecological cancers often causes gastrointestinal (GI) toxicities such as diarrhoea. Evidence for the potential benefits of dietary interventions on the management of acute GI toxicities is inconclusive and of low quality, with no clear evidence-based guidelines to inform clinical practice. This study aims to provide an overview of current opinions and clinical practice of dietitians treating this cohort and to examine existing models of nutrition care in Australian cancer centres. METHODS Semi-structured interviews were conducted over a video conferencing service to collect information relating to: demographic characteristics; referral protocol and post-treatment pathways; management strategies and interventions prescribed; and attitudes and confidence in service provided. Descriptive analysis was performed on quantitative data, and thematic analysis was performed on qualitative data. RESULTS In total, 17 dietitians across Australia participated in the study. Almost all centres (94%) had dietetics services available for this patient cohort; however, most did not have an automatic referral pathway (94%) or post-treatment pathway (88%). The opinions and prescription of dietary interventions for symptom management had multiple variations of a 'low' or 'modified-fibre' diet with differing ratios of soluble and insoluble fibre. Over half of the respondents believed that practice was not standardized within their workplace (58%) or Australia (82%). CONCLUSION There are variations in service provision with respect to opinions and prescription of dietary modifications within dietetic practice across Australia. The present study highlights the need to investigate the efficacy of dietary interventions on symptom management to better inform evidence-based models of care.
Collapse
Affiliation(s)
- Emilie Croisier
- School of Human Movement and Nutrition Sciences, The University of Queensland, Level 2, Connell Building, St Lucia, Brisbane, QLD, 4072, Australia. .,Nutrition and Dietetics, Royal Brisbane and Women's Hospital, Brisbane, 4029, QLD, Australia.
| | - Kelly D'cunha
- School of Human Movement and Nutrition Sciences, The University of Queensland, Level 2, Connell Building, St Lucia, Brisbane, QLD, 4072, Australia
| | - Teresa Brown
- School of Human Movement and Nutrition Sciences, The University of Queensland, Level 2, Connell Building, St Lucia, Brisbane, QLD, 4072, Australia.,Nutrition and Dietetics, Royal Brisbane and Women's Hospital, Brisbane, 4029, QLD, Australia
| | - Judy Bauer
- School of Human Movement and Nutrition Sciences, The University of Queensland, Level 2, Connell Building, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
68
|
Liu H, Zhang M, Ma Q, Tian B, Nie C, Chen Z, Li J. Health beneficial effects of resistant starch on diabetes and obesity via regulation of gut microbiota: a review. Food Funct 2021; 11:5749-5767. [PMID: 32602874 DOI: 10.1039/d0fo00855a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resistant starch (RS) is well known to prevent type 2 diabetes mellitus (T2DM) and obesity. Recently, attention has been paid to gut microbiota which mediates the RS's impact on T2DM and obesity, while a mechanistic understanding of how RS prevents T2DM and obesity through gut microbiota is not clear yet. Therefore, this review aims at exploring the underlying mechanisms of it. RS prevents T2DM and obesity through gut microbiota by modifying selective microbial composition to produce starch-degrading enzymes, promoting the production of intestinal metabolites, and improving gut barrier function. Therefore, RS possessing good functional features can be used to increase the fiber content of healthier food. Furthermore, achieving highly selective effects on gut microbiota based on the slight differences of RS's chemical structure and focusing on the effects of RS on strain-levels are essential to manipulate the microbiota for human health.
Collapse
Affiliation(s)
- Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Baoming Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| |
Collapse
|
69
|
Dietary Intakes of Recipients of Faecal Microbiota Transplantation: An Observational Pilot Study. Nutrients 2021; 13:nu13051487. [PMID: 33924834 PMCID: PMC8147000 DOI: 10.3390/nu13051487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/28/2022] Open
Abstract
This study reports on the dietary intake of recipients of faecal microbiota transplantation (FMT), comparing this with dietary guidelines, and investigates the relationship between dietary intake and clinical outcomes. Males and females aged ≥ 16 years with irritable bowel syndrome or inflammatory bowel disease undergoing FMT were invited to complete validated symptom and quality of life (QOL) questionnaires and three-day weighed food diaries. Descriptive statistics were calculated for symptom scores, QOL scores, nutrients, and food group servings, and compared to Australian population norms, nutrient reference values, and dietary guidelines. The relationship between dietary intake, symptoms, and QOL was assessed. Participants (n = 18) reported baseline symptoms of urgency, abdominal pain, nausea, and bloating and reduced QOL. Of the participants who completed food diaries, 8/14 met the recommended 30 g of fibre when including supplements. Participants met the recommendations for micronutrients and food groups except calcium, fruit, and dairy/dairy alternatives. There was a non-significant trend towards lower symptom severity scores in participants who met the fibre target. The high degree of variability in participant fibre intakes highlights diet as a key variable that has not been previously controlled for in FMT intervention studies. Future studies examining FMT should include dietary analysis of habitual intake of the recipients and donors.
Collapse
|
70
|
Effect of arabinogalactan on the gut microbiome: A randomized, double-blind, placebo-controlled, crossover trial in healthy adults. Nutrition 2021; 90:111273. [PMID: 34004416 DOI: 10.1016/j.nut.2021.111273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/22/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Promising evidence suggests beneficial health effects of arabinogalactan, but little is known about the effect of this non-digestible carbohydrate on the gut microbiota, a crucial mediator of human health. The objective of this study was to investigate the effect of an arabinogalactan product (ResistAid) on the fecal microbiome and short-chain fatty acids and gastrointestinal tolerance in healthy adults in a randomized, double-blind, crossover trial. METHODS Thirty adults were randomly assigned to consume 15 g/d maltodextrin (control) or ResistAid for 6 wk. RESULTS At week 6, compared to placebo, ResistAid supplementation led to a significant decrease in the ratio of fecal Firmicutes to Bacteroidetes, driven by an increase in Bacteroidetes and a decrease in Firmicutes. Moreover, the relative abundance of Bifidobacterium tended to increase with ResistAid supplementation. Additionally, ResistAid significantly decreased the α-diversity of the fecal microbiome. Predicted functional abundances based on 16S rRNA sequences showed that ResistAid supplementation increased the gene abundance of the gut microbiome for α-l-rhamnosidase, β-fructosidase, and levanase, as well as tricarboxylic acid and vitamin B6 biosynthesis pathways. Fecal isovaleric, valeric, and hexanoic acids were significantly lower after ResistAid consumption. There were no statistically significant changes in bowel habit, stool consistency, gastrointestinal tolerance symptoms, chemistry profile, metabolic panel, or vitals, suggesting that consumption of 15 g daily ResistAid over 6 wk is safe. CONCLUSION These results demonstrate that the gut microbiome composition and predicted functions can be modulated by ResistAid consumption, perhaps suggesting a mechanistic explanation on its reported benefits in metabolic parameters and the immune system.
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW Precision nutrition and personalized diets are gaining popularity in nutritional science and medicine. To fully appreciate their potential benefits, a deep understanding of both macronutrients and nutrient-microbe interactions is required. RECENT FINDINGS Microbiome science has reaffirmed the importance of dietary fiber in microbial and host health. Additional macronutrients, digestible carbohydrate, protein and fat also influence the composition and diversity of the microbiome and, therefore, microbial response to dietary intervention. Attention to macronutrient source, dose, microbial effect and metabolite production allows the development of more established links between diet and health. SUMMARY The degree to which human diets need to be personalized for optimal health is still uncertain but a one-size-fits-all diet seems unlikely. However, for personal or precision nutrition to fulfill its promise, greater attention to the details of nutrient-microbe interactions will be required.
Collapse
Affiliation(s)
- John O'Grady
- APC Microbiome Ireland and Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
72
|
Lin X, Xu W, Liu L, Ou S, Peng X. In vitro fermentation of flaxseed polysaccharide by fecal bacteria inhibits energy intake and adipogenesis at physiological concentration. Food Res Int 2021; 139:109920. [PMID: 33509487 DOI: 10.1016/j.foodres.2020.109920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 11/21/2020] [Indexed: 12/26/2022]
Abstract
Obesity and its related metabolic disorders have been a global pandemic. Recently, we found an anti-obesity effect of flaxseed polysaccharide (FP) that could be achieved by regulating intestinal microbiota. The anti-obesity effect of FP is mainly attributed to the metabolites produced by the interaction with FP, which remains to be elucidated. In this research, the in vitro effects of metabolites of FP fermented by fecal bacteria on energy metabolism and adipogenesis were investigated. The effect of energy metabolism was analyzed by mRNA and protein expression of the intestinal glucose transporters, including sodium dependent glucose transporter (SGLT1) and glucose transporter 2 (GLUT2), and glucose uptake in intestinal Caco-2 cells. The lipogenic effect were evaluated by Oil red O staining of intracellular lipid droplets and the mRNA and protein expression of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT-enhancer-binding proteins (C/EBP) α and β in 3T3-L1 cells. The results showed the metabolites significantly inhibited glucose intake through downregulating the mRNA and protein expression of GLUT2 and SGLT1 in Caco-2 cells. Besides, they also led to the decrease of lipid accumulation through downregulating the mRNA and protein expression of PPARγ, C/EBPα, and C/EBPβ in differentiating adipocytes. The inhibitory effects on energy intake and adipogenesis were concentration dependent, and metabolites at physiological concentration showed the most significant effect. Metabolites of fecal bacteria fermenting FP inhibited energy intake and adipogenesis at physiological concentration, which might be one of the weight-loss mechanisms of FP-diet.
Collapse
Affiliation(s)
- Xiaohong Lin
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Weiye Xu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
73
|
Ishikawa KH, Bueno MR, Kawamoto D, Simionato MRL, Mayer MPA. Lactobacilli postbiotics reduce biofilm formation and alter transcription of virulence genes of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2021; 36:92-102. [PMID: 33372378 DOI: 10.1111/omi.12330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Periodontitis is characterized by a dysbiotic microbial community and treatment strategies include the reestablishment of symbiosis by reducing pathogens abundance. Aggregatibacter actinomycetemcomitans (Aa) is frequently associated with rapidly progressing periodontitis. Since the oral ecosystem may be affected by metabolic end-products of bacteria, we evaluated the effect of soluble compounds released by probiotic lactobacilli, known as postbiotics, on Aa biofilm and expression of virulence-associated genes. Cell-free pH-neutralized supernatants (CFS) of Lactobacillus rhamnosus Lr32, L. rhamnosus HN001, Lactobacillus acidophilus LA5, and L. acidophilus NCFM were tested against a fimbriated clinical isolate of Aa JP2 genotype (1 × 107 CFU/well) on biofilm formation for 24 hr, and early and mature preformed biofilms (2 and 24 hr). Lactobacilli CFS partially reduced Aa viable counts and biofilms biomass, but did not affect the number of viable non-adherent bacteria, except for LA5 CFS. Furthermore, LA5 CFS and, in a lesser extent HN001 CFS, influenced Aa preformed biofilms. Lactobacilli postbiotics altered expression profile of Aa in a strain-specific fashion. Transcription of cytolethal distending toxin (cdtB) and leukotoxin (ltxA) was downregulated by CFS of LA5 and LR32 CFS. Although all probiotics produced detectable peroxide, transcription of katA was downregulated by lactobacilli CFS. Transcription of dspB was abrogated by LR32 and NCFM CFS, but increased by HN001, whereas expression of pgA was not affected by any postbiotic. Our data indicated the potential of postbiotics from lactobacilli, especially LA5, to reduce colonization levels of Aa and to modulate the expression of virulence factors implicated in evasion of host defenses.
Collapse
Affiliation(s)
- Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Manuela R Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria R L Simionato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
74
|
Calabrese CM, Valentini A, Calabrese G. Gut Microbiota and Type 1 Diabetes Mellitus: The Effect of Mediterranean Diet. Front Nutr 2021; 7:612773. [PMID: 33521039 PMCID: PMC7838384 DOI: 10.3389/fnut.2020.612773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease resulting from a complex interplay between genetic susceptibility and environmental factors. Regarding the latter, gut microbiota has a pivotal role in the pathogenesis of T1DM, by affecting intestinal permeability, molecular mimicry, and modulating innate and adaptive immune system, as described in several previous studies. The composition of the gut microbiota is largely influenced by diet. Some observational studies have shown that a low fiber intake is associated with the development of many inflammatory and immune-mediated diseases. In this context, the Mediterranean diet (MD), which is based on high consumption of cereals (preferably as whole grains), legumes, nuts, vegetables, fruits, olive oil, and fish, could play a protective role. Many of the characteristic components of MD have functional characteristics with positive effects on health and well-being. Eating habits are the main significant determinants of the microbial multiplicity of the intestine and the food components influence both microbial populations and their metabolic activities from the early stages of life. Moreover, food metabolites influence the immune response. The intestine is considered the primary site where food metabolites mediate their effects, through epithelial integrity or mucosal immunity. The compromised epithelial integrity allows the translocation of bacteria and/or the diffusion of their products, such as food antigens and lipopolysaccharides, from the intestinal lumen to the tissues, which could enhance the stimulation of immune cells, contributing to the pathogenesis of autoimmune diseases, such as T1DM. The intake of a high amount of fiber and therefore of prebiotics with MD allows the microbiota to have a good microbial balance. Moreover, as more dietary fibers are ingested, a higher amount of short-chain fatty acids (SCFAs) is produced by anaerobic gut microbiota, promoting gut homeostasis, to which also contribute tryptophan metabolites and omega-3-fatty acids. Furthermore, the higher intake of polyunsaturated fatty acids and omega-3-fatty-acids contribute to a better metabolic control. In this review we report the relationship between gut microbiota and T1DM and we explore the effects of Mediterranean diet on microbiota as a potential therapeutic strategy, aimed at preventing or delaying progression of T1DM and its complications.
Collapse
Affiliation(s)
| | - Alessia Valentini
- Dipartimento di Medicina Interna, Ospedale Madre Giuseppina Vannini, Rome, Italy
| | - Giorgio Calabrese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Alessandria, Italy
| |
Collapse
|
75
|
The Habitual Diet of Dutch Adult Patients with Eosinophilic Esophagitis Has Pro-Inflammatory Properties and Low Diet Quality Scores. Nutrients 2021; 13:nu13010214. [PMID: 33451130 PMCID: PMC7828600 DOI: 10.3390/nu13010214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/07/2023] Open
Abstract
We determined the nutritional adequacy and overall quality of the diets of adult patients with eosinophilic esophagitis (EoE). Dietary intakes stratified by sex and age were compared to Dietary Reference Values (DRV). Overall diet quality was assessed by two independent Diet-Quality-Indices scores, the PANDiet and DHD-index, and compared to age- and gender-matched subjects from the general population. Lastly, food and nutrient intakes of EoE patients were compared to intakes of the general population. Saturated fat intake was significantly higher and dietary fiber intake significantly lower than the DRV in both males and females. In males, the DRV were not reached for potassium, magnesium, selenium, and vitamins A and D. In females, the DRV were not reached for iron, sodium, potassium, selenium, and vitamins A, B2, C and D. EoE patients had a significantly lower PANDiet and DHD-index compared to the general population, although the relative intake (per 1000 kcal) of vegetables/fruits/olives was significantly higher (yet still up to 65% below the recommended daily amounts) and alcohol intake was significantly lower compared to the general Dutch population. In conclusion, the composition of the habitual diet of adult EoE patients has several pro-inflammatory and thus unfavorable immunomodulatory properties, just as the general Dutch population, and EoE patients had lower overall diet quality scores than the general population. Due to the observational character of this study, further research is needed to explore whether this contributes to the development and progression of EoE.
Collapse
|
76
|
Saettone V, Biasato I, Radice E, Schiavone A, Bergero D, Meineri G. State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals (Basel) 2020; 10:ani10122199. [PMID: 33255356 PMCID: PMC7759783 DOI: 10.3390/ani10122199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Antibiotic resistance represents a worldwide recognized issue affecting both human and veterinary medicine, with a particular focus being directed towards monogastric animals destined for human consumption. This scenario is the result of frequent utilization of the antibiotics either for therapeutic purposes (humans and animals) or as growth promoters (farmed animals). Therefore, the search for nutritional alternatives has progressively been the object of significant efforts by the scientific community. So far, probiotics, prebiotics and postbiotics are considered the most promising products, as they are capable of preventing or treating gastrointestinal diseases as well as restoring a eubiosis condition after antibiotic-induced dysbiosis development. This review provides an updated state-of-the-art of these nutritional alternatives in both humans and monogastric animals. Abstract In recent years, the indiscriminate use of antibiotics has been perpetrated across human medicine, animals destined for zootechnical productions and companion animals. Apart from increasing the resistance rate of numerous microorganisms and generating multi-drug resistance (MDR), the nonrational administration of antibiotics causes sudden changes in the structure of the intestinal microbiota such as dysbiotic phenomena that can have a great clinical significance for both humans and animals. The aim of this review is to describe the state-of-the-art of alternative therapies to the use of antibiotics and their effectiveness in humans and monogastric animals (poultry, pigs, fish, rabbits, dogs and cats). In particular, those molecules (probiotics, prebiotics and postbiotics) which have a direct function on the gastrointestinal health are herein critically analysed in the prevention or treatment of gastrointestinal diseases or dysbiosis induced by the consumption of antibiotics.
Collapse
Affiliation(s)
- Vittorio Saettone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy
- Correspondence:
| | - Elisabetta Radice
- Department of Surgical Sciences, Medical School, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy;
| | - Achille Schiavone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Domenico Bergero
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| |
Collapse
|
77
|
Abstract
Probiotics and prebiotics are microbiota-management instruments for improving human health once they may be beneficial for maintaining a healthy community of gut microbiota and bowel function. Probiotic’s main target is the gut, via the gastrointestinal tract, although direct application to other body zones such as the vaginal tract, the oral cavity, and skin have been studied. The major source of probiotics is fermented dairy products, however, currently, there is a need for novel and non-dairy probiotics, due to the increasing number of lactose-intolerant persons in the world population, tied with the adverse effect of cholesterol contained in fermented dairy foods as well as the increasing number of strict vegetarians. In this review, we describe gut-derived effects in humans of possible microorganisms isolated from wine, such as Saccharomyces and non-Saccharomyces yeasts and bacteria, and other non-dairy fermented beverages. Those microorganisms can be grown and consumed as recommended probiotics, moreover, wine, and other beverages may also be a source of prebiotics such as polyphenols.
Collapse
|
78
|
Gong L, Wen T, Wang J. Role of the Microbiome in Mediating Health Effects of Dietary Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12820-12835. [PMID: 32131598 DOI: 10.1021/acs.jafc.9b08231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous recent observation and intervention studies suggest that the microbiota in the gut and oral cavity play important roles in host physiology, including disease development and progression. Of the many environmental factors involved, dietary components play a pivotal role in shaping the microbiota community and function, thus eliciting beneficial or detrimental consequences on host health. The microbiota affect human physiology by altering the chemical structures of dietary components, thus creating new biological properties and modifying their lifetime and bioavailability. This review will describe the causal mechanisms between the microbiota and some specific bacterial species and diet components providing health benefits and how this knowledge could be incorporated in dietary strategies for improving human health.
Collapse
Affiliation(s)
- Lingxiao Gong
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Tingting Wen
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| |
Collapse
|
79
|
P. NPV, Joye IJ. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020; 12:E3045. [PMID: 33027944 PMCID: PMC7599874 DOI: 10.3390/nu12103045] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023] Open
Abstract
The consumption of whole grain products is often related to beneficial effects on consumer health. Dietary fibre is an important component present in whole grains and is believed to be (at least partially) responsible for these health benefits. The dietary fibre composition of whole grains is very distinct over different grains. Whole grains of cereals and pseudo-cereals are rich in both soluble and insoluble functional dietary fibre that can be largely classified as e.g., cellulose, arabinoxylan, β-glucan, xyloglucan and fructan. However, even though the health benefits associated with the consumption of dietary fibre are well known to scientists, producers and consumers, the consumption of dietary fibre and whole grains around the world is substantially lower than the recommended levels. This review will discuss the types of dietary fibre commonly found in cereals and pseudo-cereals, their nutritional significance and health benefits observed in animal and human studies.
Collapse
|
80
|
Hu Y, Chen D, Yu B, Yan H, Zheng P, Mao X, Yu J, He J, Huang Z, Luo Y, Luo J, Zhang X, Luo L. Effects of dietary fibres on gut microbial metabolites and liver lipid metabolism in growing pigs. J Anim Physiol Anim Nutr (Berl) 2020; 104:1484-1493. [DOI: 10.1111/jpn.13429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yaolian Hu
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Daiwen Chen
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Bing Yu
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Hui Yan
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Ping Zheng
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Jie Yu
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Jun He
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Yuheng Luo
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Junqiu Luo
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Xianghui Zhang
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| | - Luhong Luo
- Key Laboratory of Animal Disease‐Resistant Nutrition Ministry of Education Animal Nutrition Institute Sichuan Agricultural University Ya’an People’s Republic of China
| |
Collapse
|
81
|
Borodina G, Morozov S. Children With Gastroesophageal Reflux Disease Consume More Calories and Fat Compared to Controls of Same Weight and Age. J Pediatr Gastroenterol Nutr 2020; 70:808-814. [PMID: 32044832 DOI: 10.1097/mpg.0000000000002652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study was to compare the rates of nutrients consumption in children and adolescents with gastroesophageal reflux disease (GERD) compared to the control group without the disease. METHODS Based on symptom evaluation and esophageal pH-impedance recordings patients were allocated on to GERD and control groups. All patients underwent esophagogastroscopy. Levels of nutrients consumption were assessed with the use of food frequency questionnaire in the regard to the presence of the disease, esophagitis, and z score body mass index (BMI). RESULTS Data of 219 children and adolescents were available for the final analysis. Risks to have GERD were higher in groups with obesity (risk ratio 1.2 [95% confidence interval 0.8-1.7]) and excessive weight (1.1 [0.9-1.4]). Energy values of the rations and amount of fat consumption were higher in the GERD group compared to the control when rations were compared according to z score BMI. In contrast to nonerosive form of GERD, patients with erosive esophagitis consumed more protein (percentage deviation from the recommended daily allowance Me [25%;75%]): 14.3 (11.07; 19.1) % versus 8.5 (6.71; 14.1) %, total fat 36.8 (12.5; 75.5) % versus 16.9 (10.1; 17.9) %, and less polyunsaturated fats -54.3 (-73.4; -47.7) % versus -45.6 (-56.2; -33.1) %, P < 0.05. CONCLUSIONS The rations of children with GERD are characterized by higher calorie values and larger amounts of fat intake compared to the control group in the regard to z score BMI. Low dietary fiber consumption is additional factor associated with GERD in children with excessive weight and obesity. Compared to nonerosive GERD, higher intake of energy, protein, and total fat and lower of polyunsaturated fats revealed in patients with GERD with erosive esophagitis.
Collapse
Affiliation(s)
- Galina Borodina
- Department of Pediatric Gastroenterology, Hepatology and Dietology, Federal Research Center of Nutrition, Biotechnology and Food Safety
- Department of Propaedeutics of Children's Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Sergey Morozov
- Department of Gastroenterology and Hepatology, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| |
Collapse
|
82
|
Meira RDCF, Capitani CD, Barros Filho ADA, Barros MBDA, Assumpção DD. Contribution of different foods according to the Nova classification to dietary fiber intake in adolescents. CIENCIA & SAUDE COLETIVA 2020; 26:3147-3160. [PMID: 34378705 DOI: 10.1590/1413-81232021268.09592020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
The aims of the present study were to evaluate dietary fiber intake and associated factors in adolescents, identify food sources of the nutrient, and determine associations between indicators of dietary patterns (energy/macronutrients/micronutrients) and dietary fiber intake. A population-based cross-sectional study was conducted involving 24-hour recall data. The NOVA classification was used to determine the contribution of foods to dietary fiber intake. Reference values from the World Health Organization (≥12.5 g) and the US Institute of Medicine (14 g) per 1,000 kcal were used to assess intake. The mean intake of dietary fiber/1,000 kcal/day was 6.4 g (1.5 g of soluble fiber and 4.9 g of insoluble fiber) among the 891 adolescents. Fiber intake was low, especially among those who ate fruits, vegetables, and beans less, those who consumed soft drinks and processed meats more, and those who did not eat breakfast every day. Unprocessed/minimally processed foods provided 68.8%, 53.7%, and 72.1% of total, soluble, and insoluble fiber, respectively, whereas ultra-processed products provided 24.8%, 37.9%, and 21.0% respectively. Fiber intake was inversely associated with energy intake, fat, free sugar, and animal protein in the diet. The insufficient fiber intake underscores the need for actions that promote healthy nutrition on the individual and family levels.
Collapse
Affiliation(s)
- Rafaela de Campos Felippe Meira
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP). R. Tessália Vieira de Camargo 126, Cidade Universitária. 13083-887 Campinas SP Brasil.
| | | | - Antonio de Azevedo Barros Filho
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP). R. Tessália Vieira de Camargo 126, Cidade Universitária. 13083-887 Campinas SP Brasil.
| | | | - Daniela de Assumpção
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP). R. Tessália Vieira de Camargo 126, Cidade Universitária. 13083-887 Campinas SP Brasil.
| |
Collapse
|
83
|
Bai L, Gao M, Cheng X, Kang G, Cao X, Huang H. Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice. Microb Cell Fact 2020; 19:94. [PMID: 32334588 PMCID: PMC7183672 DOI: 10.1186/s12934-020-01350-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Obesity is a major problem worldwide and severely affects public safety. As a metabolite of gut microbiota, endogenous butyric acid participates in energy and material metabolism. Considering the serious side effects and weight regain associated with existing weight loss interventions, novel strategies are urgently needed for prevention and treatment of obesity. Results In the present study, we engineered Bacillus subtilis SCK6 to exhibited enhanced butyric acid production. Compared to the original Bacillus subtilis SCK6 strain, the genetically modified BsS-RS06550 strain had higher butyric acid production. The mice were randomly divided into four groups: a normal diet (C) group, a high-fat diet (HFD) group, an HFD + Bacillus subtilis SCK6 (HS) group and an HFD + BsS-RS06550 (HE) group. The results showed BsS-RS06550 decreased the body weight, body weight gain, and food intake of HFD mice. BsS-RS06550 had beneficial effects on blood glucose, insulin resistance and hepatic biochemistry. After the 14-week of experiment, fecal samples were collected for nontargeted liquid chromatography-mass spectrometry analysis to identify and quantify significant changes in metabolites. Sixteen potentially significant metabolites were screened, and BsS-RS06550 was shown to potentially regulate disorders in glutathione, methionine, tyrosine, phenylalanine, and purine metabolism and secondary bile acid biosynthesis. Conclusions In this study, we successfully engineered Bacillus subtilis SCK6 to have enhanced butyric acid production. The results of this work revealed that the genetically modified live bacterium BsS-RS06550 showed potential anti-obesity effects, which may have been related to regulating the levels of metabolites associated with obesity. These results indicate that the use of BsS-RS06550 may be a promising strategy to attenuate obesity.![]()
Collapse
Affiliation(s)
- Liang Bai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Mengxue Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Xiaoming Cheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
84
|
Nutrition and gut health: the impact of specific dietary components - it's not just five-a-day. Proc Nutr Soc 2020; 80:9-18. [PMID: 32003320 DOI: 10.1017/s0029665120000026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The health benefits of fruit, vegetables and dietary fibre have been promoted for many years. Much of the supporting evidence is circumstantial or even contradictory and mechanisms underlying health benefits of specific foods are poorly understood. Colorectal cancer shows marked geographical differences in incidence, probably linked with diet, and explanations for this require knowledge of the complex interactions between diet, microbiota and the gut epithelium. Dietary fibres can act as prebiotics, encouraging growth of saccharolytic bacteria, but other mechanisms are also important. Some but not all soluble fibres have a 'contrabiotic' effect inhibiting bacterial adherence to the epithelium. This is particularly a property of pectins (galacturonans) whereas dietary fructans, previously regarded as beneficial prebiotics, can have a proinflammatory effect mediated via toxic effects of high butyrate concentrations. This also suggests that ulcerative colitis could in part result from potentially toxic faecal butyrate concentrations in the presence of a damaged mucus layer. Epithelial adherence of lectins, either dietary lectins as found in legumes, or bacterial lectins such as the galactose-binding lectin expressed by colon cancer-associated Fusobacterium nucleatum, may also be important and could be inhibitable by specific dietary glycans. Conversely, emulsifiers in processed foods may increase bacterial translocation and alter the microbiota thus promoting inflammation or cancer. Focusing on one condition is of limited value although in developing public health messages and growing evidence for impacts of dietary components on all-cause mortality is gaining more attention. We are only just starting to understand the complex interactions between food, the microbiota and health.
Collapse
|
85
|
Ong KJ, Ede JD, Pomeroy-Carter CA, Sayes CM, Mulenos MR, Shatkin JA. A 90-day dietary study with fibrillated cellulose in Sprague-Dawley rats. Toxicol Rep 2020; 7:174-182. [PMID: 32021807 PMCID: PMC6994281 DOI: 10.1016/j.toxrep.2020.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/31/2022] Open
Abstract
Novel forms of fibrillated cellulose offer improved attributes for use in foods. Conventional cellulose and many of its derivatives are already widely used as food additives and are authorized as safe for use in foods in many countries. However, novel forms have not yet been thoroughly investigated using standardized testing methods. This study assesses the 90-day dietary toxicity of fibrillated cellulose, as compared to a conventional cellulose, Solka Floc. Sprague Dawley rats were fed 2 %, 3 %, or 4 % fibrillated cellulose for 90 consecutive days, and parallel Solka Floc groups were used as controls. Survival, clinical observations, body weight, food consumption, ophthalmologic evaluations, hematology, serum chemistry, urinalysis, post-mortem anatomic pathology, and histopathology were monitored and performed. No adverse observations were noted in relation to the administration of fibrillated cellulose. Under the conditions of this study and based on the toxicological endpoints evaluated, the no-observed-adverse-effect level (NOAEL) for fibrillated cellulose was 2194.2 mg/kg/day (males) and 2666.6 mg/kg/day (females), corresponding to the highest dose tested (4 %) for male and female Sprague Dawley rats. These results demonstrate that fibrillated cellulose behaves similarly to conventional cellulose and raises no safety concerns when used as a food ingredient at these concentrations.
Collapse
Key Words
- % RET, percent reticulocyte
- 90-day subchronic study
- ABAS, absolute basophil
- AEOS, absolute eosinophil
- ALB, albumin
- ALKP, alkaline phosphatase
- ALT, alanine aminotransferase
- ALUC, absolute large unstained cell
- ALYM, absolute lymphocyte
- AMON, absolute monocyte
- ANEU, absolute neutrophil
- ANOVA, one-way analysis of variance
- ARET, absolute reticulocyte
- AST, aspartate aminotransferase
- BUN, urea nitrogen
- CAS, Chemical Abstracts Service
- CHOL, cholesterol
- CREAT, creatinine
- Cellulose
- DLS, dynamic light scattering
- EDXS, energy-dispersive X-ray spectroscopy
- EFSA, European Food Safety Authority
- FDA, U.S. Food and Drug Administration
- Fibrillated cellulose
- GLOB, globulin
- GLP, good laboratory practice
- GLU, glucose
- GRAS, generally recognized as safe
- HBG, hemoglobin
- HCT, hematocrit
- MCH, mean corpuscular cell hemoglobin
- MCHC, mean corpuscular cell hemoglobin concentration
- MCV, mean corpuscular cell volume
- NOAEL
- NOAEL, no-observed-adverse-effect level
- OECD 408
- OECD, Organisation for Economic Co-operation and Development
- Oral exposure
- PLT, platelet count
- RBC, red blood cell count
- RDW, red cell distribution width
- SCOGS, Select Committee on GRAS Substances
- SDH, sorbitol dehydrogenase
- SEM, scanning electron microscopy
- TBA, total bile acids
- TBIL, total bilirubin
- TEM, transmission electron microscopy
- TEMPO, 2,2,6,6-tetramethyl-piperidinyloxyl
- TP, total protein
- TRIG, triglycerides
- WBC, white blood cell count
Collapse
Affiliation(s)
| | - James D. Ede
- Vireo Advisors, LLC, Boston, MA 02130-4323, United States
| | | | - Christie M. Sayes
- Baylor University, Department of Environmental Science, One Bear Place #97266, Waco, TX 76798- 7266, United States
| | - Marina R. Mulenos
- Baylor University, Department of Environmental Science, One Bear Place #97266, Waco, TX 76798- 7266, United States
| | | |
Collapse
|
86
|
A Message from the Editors. Aliment Pharmacol Ther 2020; 51:4-5. [PMID: 31850567 DOI: 10.1111/apt.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
87
|
Olmo-Cunillera A, Escobar-Avello D, Pérez AJ, Marhuenda-Muñoz M, Lamuela-Raventós RM, Vallverdú-Queralt A. Is Eating Raisins Healthy? Nutrients 2019; 12:E54. [PMID: 31878160 PMCID: PMC7019280 DOI: 10.3390/nu12010054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022] Open
Abstract
Raisins are dried grapes consumed worldwide that contain beneficial components for human health. They are rich in fiber and phytochemicals such as phenolic compounds. Despite a 60% sugar content, several studies have reported health-promoting properties for raisins and this review compiles the intervention studies, as well as the cell line and animal model studies carried out to date. It has been demonstrated that raisins possess a low-to-moderate glycemic index, which makes them a healthy snack. They seem to contribute to a better diet quality and may reduce appetite. Their antioxidant capacity has been correlated to the phenolic content and this may be involved in the improvement of cardiovascular health. In addition, raisins maintain a good oral health due to their antibacterial activity, low adherence to teeth and an optimum oral pH. Raisin consumption also seems to be favorable for colon function, although more studies should be done to conclude this benefit. Moreover, gut microbiota could be affected by the prebiotic content of raisins. Cell line and animal model studies show other potential benefits in specific diseases, such as cancer and Alzheimer's disease. However, deeper research is required and future intervention studies with humans are needed. Overall, incorporating an 80-90 g portion of raisins (half a cup) into the daily diet may be favorable for human health.
Collapse
Affiliation(s)
- Alexandra Olmo-Cunillera
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
| | - Danilo Escobar-Avello
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
| | - Andy J. Pérez
- Departmento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4191996, Chile;
| | - María Marhuenda-Muñoz
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Rosa Mª Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (A.O.-C.); (D.E.-A.); (M.M.-M.); (R.M.L.-R.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
88
|
Yang H, Sun Y, Cai R, Chen Y, Gu B. The impact of dietary fiber and probiotics in infectious diseases. Microb Pathog 2019; 140:103931. [PMID: 31846741 DOI: 10.1016/j.micpath.2019.103931] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
Abstract
Although antibiotics are commonly used to treat infectious diseases, emergence of antibiotic resistant strains highlights the necessity for developing novel alternative approaches. Meanwhile, clinically, antibiotics can destroy the gut microbes balance, which is not conducive to the recovery of infectious disorders. As a result, recent studies have begun to explore potential prevention and treatment methods for infectious diseases, starting with more readily available dietary fiber and probiotics. Moreover, researches have shown the personalized nature of host responses to dietary fiber intervention, with outcomes being dependent on individual pre-treatment gut microbes. In this review, we will focus on the roles of dietary fiber and probiotics on infectious diseases, how probiotics and dietary fiber work on infectious diseases and then explore their mechanisms, so as to guide clinical consideration of new therapies for infectious diseases.
Collapse
Affiliation(s)
- Huan Yang
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yiran Sun
- Clinical School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Rui Cai
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Chen
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
89
|
Vaillant MF, Alligier M, Baclet N, Capelle J, Dousseaux MP, Eyraud E, Fayemendy P, Flori N, Guex E, Hennequin V, Lavandier F, Martineau C, Morin MC, Mokaddem F, Parmentier I, Rossi-Pacini F, Soriano G, Verdier E, Zeanandin G, Quilliot D. Recommandations sur les alimentations standard et thérapeutiques chez l’adulte en établissements de santé. NUTR CLIN METAB 2019. [DOI: 10.1016/j.nupar.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
90
|
Raczkowska E, Bronkowska M. The Effect of the Body Mass Indexes of Young Healthy Individuals on the Glyacemic Indexes of Traditional and Modified Vegetarian Meals. Nutrients 2019; 11:E2546. [PMID: 31652553 PMCID: PMC6835997 DOI: 10.3390/nu11102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022] Open
Abstract
Blood glucose concentration increases after the consumption of any carbohydrate-containing meal. Several factors affect the course of glucose metabolism, including nutritional status. This study evaluated the effect of the nutritional statuses of adults on their glycaemic responses after the consumption of some vegetarian meals (dumplings with potato and curd cheese stuffing; curd cheese dumplings; pancakes with curd cheese), prepared according to the traditional recipe and a partly modified recipe. The 105 participants, aged 20-27 years, with different body mass indexes (BMI), took an oral glucose tolerance test after the intake of a standard glucose solution, and also after each meal (previously analysed for energy value and approximate composition). The consumption of each meal by participants with different nutritional statuses elicited different glycaemic responses, which were reflected in the diverse glycaemic indexes (GIs). The partial modification of the meal recipes contributed to lowering their GIs. Vast differences were observed in the glycaemic responses among the surveyed participants after the consumption of the same meals. The GIs of meals should be determined in different groups of people.
Collapse
Affiliation(s)
- Ewa Raczkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland.
| | - Monika Bronkowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland.
| |
Collapse
|
91
|
Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci 2019; 20:E4673. [PMID: 31547172 PMCID: PMC6801921 DOI: 10.3390/ijms20194673] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Postbiotics are functional bioactive compounds, generated in a matrix during fermentation, which may be used to promote health. The term postbiotics can be regarded as an umbrella term for all synonyms and related terms of these microbial fermentation components. Therefore, postbiotics can include many different constituents including metabolites, short-chain fatty acids (SCFAs), microbial cell fractions, functional proteins, extracellular polysaccharides (EPS), cell lysates, teichoic acid, peptidoglycan-derived muropeptides and pili-type structures. Postbiotics is also a rather new term in the '-biotics' field. Where consensus exists for the definitions of pre- and probiotics, this is not yet the case for postbiotics. Here we propose a working definition and review currently known postbiotic compounds, their proposed mechanisms, clinical evidence and potential applications. Research to date indicates that postbiotics can have direct immunomodulatory and clinically relevant effects and evidence can be found for the use of postbiotics in healthy individuals to improve overall health and to relief symptoms in a range of diseases such as infant colic and in adults atopic dermatitis and different causes of diarrhea.
Collapse
Affiliation(s)
- Carrie A M Wegh
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands.
| | - Sharon Y Geerlings
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands.
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands.
- Danone-Nutricia Research, 3584 CT Utrecht, The Netherlands.
| | - Guus Roeselers
- Danone-Nutricia Research, 3584 CT Utrecht, The Netherlands.
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
92
|
Dietary Fiber and Gut Microbiota in Renal Diets. Nutrients 2019; 11:nu11092149. [PMID: 31505733 PMCID: PMC6770883 DOI: 10.3390/nu11092149] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
Nutrition is crucial for the management of patients affected by chronic kidney disease (CKD) to slow down disease progression and to correct symptoms. The mainstay of the nutritional approach to renal patients is protein restriction coupled with adequate energy supply to prevent malnutrition. However, other aspects of renal diets, including fiber content, can be beneficial. This paper summarizes the latest literature on the role of different types of dietary fiber in CKD, with special attention to gut microbiota and the potential protective role of renal diets. Fibers have been identified based on aqueous solubility, but other features, such as viscosity, fermentability, and bulking effect in the colon should be considered. A proper amount of fiber should be recommended not only in the general population but also in CKD patients, to achieve an adequate composition and metabolism of gut microbiota and to reduce the risks connected with obesity, diabetes, and dyslipidemia.
Collapse
|
93
|
Bruno G, Zaccari P, Rocco G, Scalese G, Panetta C, Porowska B, Pontone S, Severi C. Proton pump inhibitors and dysbiosis: Current knowledge and aspects to be clarified. World J Gastroenterol 2019; 25:2706-2719. [PMID: 31235994 PMCID: PMC6580352 DOI: 10.3748/wjg.v25.i22.2706] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Proton pump inhibitors (PPIs) are common medications within the practice of gastroenterology. These drugs, which act through the irreversible inhibition of the hydrogen/potassium pump (H+/K+-ATPase pump) in the gastric parietal cells, are used in the treatment of several acid-related disorders. PPIs are generally well tolerated but, through the long-term reduction of gastric acid secretion, can increase the risk of an imbalance in gut microbiota composition (i.e., dysbiosis). The gut microbiota is a complex ecosystem in which microbes coexist and interact with the human host. Indeed, the resident gut bacteria are needed for multiple vital functions, such as nutrient and drug metabolism, the production of energy, defense against pathogens, the modulation of the immune system and support of the integrity of the gut mucosal barrier. The bacteria are collected in communities that vary in density and composition within each segment of the gastrointestinal (GI) tract. Therefore, every change in the gut ecosystem has been connected to an increased susceptibility or exacerbation of various GI disorders. The aim of this review is to summarize the recently available data on PPI-related microbiota alterations in each segment of the GI tract and to analyze the possible involvement of PPIs in the pathogenesis of several specific GI diseases.
Collapse
Affiliation(s)
- Giovanni Bruno
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, Rome 00161, Italy
| | - Piera Zaccari
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, Rome 00161, Italy
| | - Giulia Rocco
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, Rome 00161, Italy
| | - Giulia Scalese
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, Rome 00161, Italy
| | - Cristina Panetta
- Department of Surgical Sciences, Sapienza University of Rome, Rome 00161, Italy
| | - Barbara Porowska
- Department of Cardio-Thoracic, Vascular Surgery and Transplants, Sapienza University of Rome, Rome 00161, Italy
| | - Stefano Pontone
- Department of Surgical Sciences, Sapienza University of Rome, Rome 00161, Italy
| | - Carola Severi
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, Rome 00161, Italy
| |
Collapse
|
94
|
O'Grady J, Shanahan F. Letter: dietary fibre benefits for the oesophagus-physical rather than metabolic action? Authors' reply. Aliment Pharmacol Ther 2019; 49:1368-1369. [PMID: 31016771 DOI: 10.1111/apt.15238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John O'Grady
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
95
|
Morozov S. Letter: dietary fibre benefits for the oesophagus-physical rather than metabolic action? Aliment Pharmacol Ther 2019; 49:1367-1368. [PMID: 31016773 DOI: 10.1111/apt.15233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sergey Morozov
- Department of Gastroenterology and Hepatology, Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| |
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW Functional constipation (FC) in children is a common health problem with reported worldwide prevalence rates up to 32.2%. The majority of children with constipation respond to oral laxative treatment. After 5 years of intensive treatment, however, approximately 50% of children remain symptomatic. To discuss the evidence for new treatments in these children, including pre- and probiotics, pelvic physiotherapy, prucalopride, sacral nerve stimulation, and surgery, and to highlight the controversies surrounding them. RECENT FINDINGS Pre- and probiotics and prucalopride are not effective in the treatment of childhood constipation. Pelvic physiotherapy and sacral nerve stimulation are promising treatment options but larger trials are needed. Surgery for pediatric constipation is the treatment of last resort. Large, well-designed placebo-controlled trials with proper outcome measures, as suggested by the Rome foundation pediatric subcommittee on clinical trials, are necessary to provide more insight regarding the efficacy of new treatments in childhood constipation.
Collapse
|
97
|
Keohane DM, Woods T, O'Connor P, Underwood S, Cronin O, Whiston R, O'Sullivan O, Cotter P, Shanahan F, Molloy MGM. Four men in a boat: Ultra-endurance exercise alters the gut microbiome. J Sci Med Sport 2019; 22:1059-1064. [PMID: 31053425 DOI: 10.1016/j.jsams.2019.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Compositional and functional adaptions occur in the gut microbiome in response to habitual physical activity. The response of the gut microbiome to sustained, intense exercise in previously active individuals, however, is unknown. This study aimed to prospectively explore the gut microbiome response of four well-trained male athletes to prolonged, high intensity trans-oceanic rowing, describing changes in microbial diversity, abundance and metabolic capacity. DESIGN A prospective, repeated-measures, within-subject report. METHODS Serial stool samples were obtained from four male athletes for metagenomic whole-genome shotgun sequencing to record microbial community structure and relevant functional gene profiles before, during and after a continuous, unsupported 33-day, 5000 km transoceanic rowing race. Calorific intake and macronutrient composition were recorded by validated food frequency questionnaire and anthropometry was determined by body composition analysis and cardiorespiratory testing. RESULTS Microbial diversity increased throughout the ultra-endurance event. Variations in taxonomic composition included increased abundance of butyrate producing species and species associated with improved metabolic health, including improved insulin sensitivity. The functional potential of bacterial species involved in specific amino and fatty acid biosynthesis also increased. Many of the adaptions in microbial community structure and metaproteomics persisted at three months follow up. CONCLUSIONS These findings demonstrate that prolonged, intense exercise positively influences gut microbial diversity, increases the relative abundance of some bacterial species and up-regulates the metabolic potential of specific pathways expressing microbial gene products. These adaptions may play a compensatory role in controlling the physiological stress associated with sustained exertion as well as negating the deleterious consequences accompanying endurance exercise.
Collapse
Affiliation(s)
- David M Keohane
- Department of Medicine, Cork University Hospital, Ireland; APC Microbiome Ireland, University College Cork, Ireland; Irish Centre for Arthritic Research and Education (I.C.A.R.E), Cork University Hospital, Ireland; School Of Medicine, University College Cork, Brookfield Health Science Complex, Ireland.
| | - Trevor Woods
- Human Performance Laboratory, Mardyke Arena, University College Cork, Ireland
| | - Pat O'Connor
- Department of Medicine, Cork University Hospital, Ireland
| | - Sean Underwood
- Department of Medicine, Cork University Hospital, Ireland
| | - Owen Cronin
- Department of Medicine, Cork University Hospital, Ireland; APC Microbiome Ireland, University College Cork, Ireland; Irish Centre for Arthritic Research and Education (I.C.A.R.E), Cork University Hospital, Ireland
| | | | - Orla O'Sullivan
- APC Microbiome Ireland, University College Cork, Ireland; Teagasc Sequencing Facility, Moorepark, Ireland
| | - Paul Cotter
- APC Microbiome Ireland, University College Cork, Ireland; Teagasc Sequencing Facility, Moorepark, Ireland
| | - Fergus Shanahan
- Department of Medicine, Cork University Hospital, Ireland; APC Microbiome Ireland, University College Cork, Ireland; Irish Centre for Arthritic Research and Education (I.C.A.R.E), Cork University Hospital, Ireland; School Of Medicine, University College Cork, Brookfield Health Science Complex, Ireland
| | - Michael G M Molloy
- Department of Medicine, Cork University Hospital, Ireland; APC Microbiome Ireland, University College Cork, Ireland; Irish Centre for Arthritic Research and Education (I.C.A.R.E), Cork University Hospital, Ireland; School Of Medicine, University College Cork, Brookfield Health Science Complex, Ireland
| |
Collapse
|
98
|
Wu Y, Hu H, Dai X, Che H, Zhang H. Effects of dietary intake of potatoes on body weight gain, satiety-related hormones, and gut microbiota in healthy rats. RSC Adv 2019; 9:33290-33301. [PMID: 35529109 PMCID: PMC9073283 DOI: 10.1039/c9ra04867g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/03/2019] [Indexed: 12/27/2022] Open
Abstract
Potatoes, as a prominent staple food, have exerted diverse intestinal health benefits, but few studies have addressed the gut microecology modulatory effects of consuming potatoes in realistic quantities. The objective of this study was to evaluate the effects of ingesting potatoes in different doses on body weight gain (BWG), food intake, short chain fatty acids (SCFAs), fecal microbiota, gut hormones, and colon morphology of healthy rats. Male Sprague-Dawley rats of 6–8 weeks old were randomized to five groups and fed AIN-93 G or diets containing graded concentrations of potato powder (low, medium, high, and higher) for 7 weeks. Accordingly, the final body weight was significantly lower for rats fed the high and/or higher potato diets than their control counterparts (P < 0.05). Potato intervention caused a significant dose-dependent increment in full cecum, and SCFAs production. The relative abundance of “S24-7” (order Bacteroidales), Bifidobacterium, “NK3B31” (family Prevotellaceae), Parasutterella, and Ruminococcus_1 increased in high and higher potato diets. Furthermore, a Spearman's correlation analysis revealed that Parasutterella was negatively correlated with BWG, triglyceride (TG), and low-density lipoproteins (LDL). The maximum number of goblet cells, longest crypt depth, and highest level of PYY were found in the distal colon of rats fed higher potato diets. The results suggested that potato powder could provide the potential for hopeful impact on weight control. Supplementation of potato powders with 54.88 g kg−1 would significantly reduce the body weight gain by enriching Bifidobacterium and Parasutterella.![]()
Collapse
Affiliation(s)
- Yu Wu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
- China
| | - Honghai Hu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
- China
| | - Xiaofeng Dai
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
- China
| | - Huilian Che
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Hong Zhang
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
- China
| |
Collapse
|