51
|
Henshaw FR, Dewsbury LS, Lim CK, Steiner GZ. The Effects of Cannabinoids on Pro- and Anti-Inflammatory Cytokines: A Systematic Review of In Vivo Studies. Cannabis Cannabinoid Res 2021; 6:177-195. [PMID: 33998900 PMCID: PMC8266561 DOI: 10.1089/can.2020.0105] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: Some cannabinoids have been identified as anti-inflammatory agents; however, their potential therapeutic or prophylactic applications remain controversial. The aim of this systematic review was to provide a timely and comprehensive insight into cannabinoid-mediated pro- and anti-inflammatory cytokine responses in preclinical in vivo studies. Methods and Materials: A systematic search was conducted using PubMed, Web of Science, EMBASE, and Scopus. Eligible studies where cannabinoids had been evaluated for their effect on inflammation in animal models were included in the analysis. Data were extracted from 26 of 4247 eligible full text articles, and risk of bias was assessed using the SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) tool. Studies examined cannabidiol (CBD; n=20); cannabigerol (CBG; n=1); delta 9-tetrahydrocannabinol (THC; n=2); THC and CBD separately (n=1); and THC and CBD in combination (n=2). Results: Tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, and interferon gamma were the most commonly studied pro-inflammatory cytokines and their levels were consistently reduced after treatment with CBD, CBG, or CBD+THC, but not with THC alone. The association between cannabinoid-induced anti-inflammatory response and disease severity was examined. In 22 studies where CBD, CBG, or CBD in combination with THC were administered, a reduction in the levels of at least one inflammatory cytokine was observed, and in 24 studies, some improvements in disease or disability were apparent. THC alone did not reduce pro-inflammatory cytokine levels (n=3), but resulted in improvements in neuropathic pain in one study. Conclusions: This review shows that CBD, CBG, and CBD+THC combination exert a predominantly anti-inflammatory effect in vivo, whereas THC alone does not reduce pro-inflammatory or increase anti-inflammatory cytokines. It is anticipated that this information could be used to inform human clinical trials of cannabinoids, focusing on CBD and CBG to reduce inflammation across a range of pathophysiological processes.
Collapse
Affiliation(s)
- Frances R. Henshaw
- School of Health Science, Western Sydney University, Penrith, Australia
- Translational Health Research Institute (THRI), Western Sydney University, Penrith, Australia
| | - Lauren S. Dewsbury
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Chai K. Lim
- Department of Biomedical Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Macquarie Park, Australia
| | - Genevieve Z. Steiner
- Translational Health Research Institute (THRI), Western Sydney University, Penrith, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| |
Collapse
|
52
|
Ramírez A, Viveros JM. Brewing with
Cannabis sativa
vs.
Humulus lupulus
: a review. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Alejandra Ramírez
- University Center for Exact Sciences and Engineering University of Guadalajara Blvd. Gral. Marcelino García Barragán 1421, Olímpica Guadalajara Jalisco 44430 Mexico
| | - Juan M. Viveros
- University Center for Exact Sciences and Engineering University of Guadalajara Blvd. Gral. Marcelino García Barragán 1421, Olímpica Guadalajara Jalisco 44430 Mexico
| |
Collapse
|
53
|
Osafo N, Yeboah OK, Antwi AO. Endocannabinoid system and its modulation of brain, gut, joint and skin inflammation. Mol Biol Rep 2021; 48:3665-3680. [PMID: 33909195 DOI: 10.1007/s11033-021-06366-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
The discovery of endogenous cannabinoid receptors CB1 and CB2 and their endogenous ligands has generated interest in the endocannabinoid system and has contributed to the understanding of the role of the endocannabinoid system. Its role in the normal physiology of the body and its implication in pathological states such as cardiovascular diseases, neoplasm, depression and pain have been subjects of scientific interest. In this review the authors focus on the endogenous cannabinoids, and the critical role of cannabinoid receptor signaling in neurodegeneration and other inflammatory responses such as gut, joint and skin inflammation. This review also discusses the potential of endocannabinoid pathways as drug targets in the amelioration of some inflammatory conditions. Though the exact role of the endocannabinoid system is not fully understood, the evidence found much clearly points to a great potential in exploiting both its central and peripheral pathways in disease management. Cannabinoid therapy has proven promising in several preclinical and clinical trials.
Collapse
Affiliation(s)
- Newman Osafo
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Oduro K Yeboah
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Aaron O Antwi
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
54
|
Wu CK, Lin JF, Lee TS, Kou YR, Tarng DC. Role of TRPA1 in Tissue Damage and Kidney Disease. Int J Mol Sci 2021; 22:3415. [PMID: 33810314 PMCID: PMC8036557 DOI: 10.3390/ijms22073415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
TRPA1, a nonselective cation channel, is expressed in sensory afferent that innervates peripheral targets. Neuronal TRPA1 can promote tissue repair, remove harmful stimuli and induce protective responses via the release of neuropeptides after the activation of the channel by chemical, exogenous, or endogenous irritants in the injured tissue. However, chronic inflammation after repeated noxious stimuli may result in the development of several diseases. In addition to sensory neurons, TRPA1, activated by inflammatory agents from some non-neuronal cells in the injured area or disease, might promote or protect disease progression. Therefore, TRPA1 works as a molecular sentinel of tissue damage or as an inflammation gatekeeper. Most kidney damage cases are associated with inflammation. In this review, we summarised the role of TRPA1 in neurogenic or non-neurogenic inflammation and in kidney disease, especially the non-neuronal TRPA1. In in vivo animal studies, TRPA1 prevented sepsis-induced or Ang-II-induced and ischemia-reperfusion renal injury by maintaining mitochondrial haemostasis or via the downregulation of macrophage-mediated inflammation, respectively. Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate hypoxia-reoxygenation injury in vitro and ischaemia-reperfusion-induced kidney injury in vivo through MAPKs/NF-kB signalling. Acute kidney injury (AKI) patients with high renal tubular TRPA1 expression had low complete renal function recovery. In renal disease, TPRA1 plays different roles in different cell types accordingly. These findings depict the important role of TRPA1 and warrant further investigation.
Collapse
Affiliation(s)
- Chung-Kuan Wu
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Ji-Fan Lin
- Precision Medicine Center, Department of Research, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Tzong-Shyuan Lee
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Yu Ru Kou
- Department of Institue of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Der-Cherng Tarng
- Department of Institue of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu 300, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
55
|
Different Cannabis sativa Extraction Methods Result in Different Biological Activities against a Colon Cancer Cell Line and Healthy Colon Cells. PLANTS 2021; 10:plants10030566. [PMID: 33802757 PMCID: PMC8002592 DOI: 10.3390/plants10030566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/14/2023]
Abstract
Cannabis sativa is one of the oldest medicinal plants used by humans, containing hundreds of bioactive compounds. The biological effects and interplay of these compounds are far from fully understood, although the plant’s therapeutic effects are beyond doubt. Extraction methods for these compounds are becoming an integral part of modern Cannabis-based medicine. Still, little is known about how different methods affect the final composition of Cannabis extracts and thus, their therapeutic effects. In this study, different extraction methods were tested, namely maceration, Soxhlet, ultrasound-assisted extraction (UAE), and supercritical CO2 extraction methods. The obtained extracts were evaluated for their cannabinoid content, antioxidant properties, and in vitro bioactivity on human colon cancer and healthy colon cells. Our data suggest that Cannabis extracts, when properly prepared, can significantly decrease cancer cell viability while protecting healthy cells from cytotoxic effects. However, post-processing of extracts poses a significant limitation in predicting therapeutic response based on the composition of the crude extract, as it affects not only the actual amounts of the respective cannabinoids but also their relative ratio to the primary extracts. These effects must be carefully considered in the future preparations of new therapeutic extracts.
Collapse
|
56
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
57
|
Cerino P, Buonerba C, Cannazza G, D'Auria J, Ottoni E, Fulgione A, Di Stasio A, Pierri B, Gallo A. A Review of Hemp as Food and Nutritional Supplement. Cannabis Cannabinoid Res 2021; 6:19-27. [PMID: 33614949 DOI: 10.1089/can.2020.0001] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The term "hemp" refers to Cannabis sativa cultivars grown for industrial purposes that are characterized by lower levels of tetrahydrocannabinol (THC), the active principle responsible for Cannabis psychotropic effects. Hemp is an extraordinary crop, with enormous social and economic value, since it can be used to produce food, textiles, clothing, biodegradable plastics, paper, paint, biofuel, and animal feed, as well as lighting oil. Various parts of the hemp plant represent a valuable source of food and ingredients for nutritional supplements. While hemp inflorescence is rich in nonpsychoactive, yet biologically active cannabinoids, such as cannabidiol (CBD), which exerts potent anxiolytic, spasmolytic, as well as anticonvulsant effects, hempseed has a pleasant nutty taste and represents a valuable source of essential amino acids and fatty acids, minerals, vitamins, and fibers. In addition, hempseed oil is a source of healthy polyunsaturated fatty acids, and hemp sprouts are rich in antioxidants. This review article aims to provide a comprehensive outlook from a multidisciplinary perspective on the scientific evidence supporting hemp beneficial properties when consumed as food or supplement. Marketing of hemp-derived products is subjected to diversified and complex regulations worldwide for several reasons, including the fact that CBD is also the active principal of pharmaceutical agents and that regulatory bodies in some cases ban Cannabis inflorescence regardless of its THC content. Some key regulatory aspects of such a complex scenario are also analyzed and discussed in this review article.
Collapse
Affiliation(s)
- Pellegrino Cerino
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Department of Public Health, "Federico II" University, Naples, Italy.,Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italy
| | - Carlo Buonerba
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Department of Oncology and Hematology, Regional Reference Center for Rare Tumors, AOU Federico II of Naples, Naples, Italy
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,CNR NANOTEC, Campus Ecotekne of the University of Salento, Lecce, Italy
| | - Jacopo D'Auria
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Ermete Ottoni
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Andrea Fulgione
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Antonio Di Stasio
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| | - Biancamaria Pierri
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy
| | - Alfonso Gallo
- National Reference Center for Environmental Health, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy.,Multidisciplinary Center on Cannabinoid Research-REICA, Zoo-Prophylactic Institute of Southern Italy, Portici, Italy
| |
Collapse
|
58
|
Sampson PB. Phytocannabinoid Pharmacology: Medicinal Properties of Cannabis sativa Constituents Aside from the "Big Two". JOURNAL OF NATURAL PRODUCTS 2021; 84:142-160. [PMID: 33356248 DOI: 10.1021/acs.jnatprod.0c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant-based therapies date back centuries. Cannabis sativa is one such plant that was used medicinally up until the early part of the 20th century. Although rich in diverse and interesting phytochemicals, cannabis was largely ignored by the modern scientific community due to its designation as a schedule 1 narcotic and restrictions on access for research purposes. There was renewed interest in the early 1990s when the endocannabinoid system (ECS) was discovered, a complex network of signaling pathways responsible for physiological homeostasis. Two key components of the ECS, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), were identified as the molecular targets of the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC). Restrictions on access to cannabis have eased worldwide, leading to a resurgence in interest in the therapeutic potential of cannabis. Much of the focus has been on the two major constituents, Δ9-THC and cannabidiol (CBD). Cannabis contains over 140 phytocannabinoids, although only a handful have been tested for pharmacological activity. Many of these minor cannabinoids potently modulate receptors, ionotropic channels, and enzymes associated with the ECS and show therapeutic potential individually or synergistically with other phytocannabinoids. The following review will focus on the pharmacological developments of the next generation of phytocannabinoid therapeutics.
Collapse
|
59
|
Neuromolecular Mechanisms of Cannabis Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:15-28. [PMID: 33332001 DOI: 10.1007/978-3-030-57369-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Most of our current understanding of the neuromolecular mechanisms of Cannabis action focusses on two plant cannabinoids, THC and CBD. THC acts primarily through presynaptic CB cannabinoid receptors to regulate neurotransmitter release in the brain, spinal cord and peripheral nerves. CBD action, on the other hand, is probably mediated through multiple molecular targets.
Collapse
|
60
|
De Logu F, Trevisan G, Marone IM, Coppi E, Padilha Dalenogare D, Titiz M, Marini M, Landini L, Souza Monteiro de Araujo D, Li Puma S, Materazzi S, De Siena G, Geppetti P, Nassini R. Oxidative stress mediates thalidomide-induced pain by targeting peripheral TRPA1 and central TRPV4. BMC Biol 2020; 18:197. [PMID: 33317522 PMCID: PMC7737339 DOI: 10.1186/s12915-020-00935-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background The mechanism underlying the pain symptoms associated with chemotherapeutic-induced peripheral neuropathy (CIPN) is poorly understood. Transient receptor potential ankyrin 1 (TRPA1), TRP vanilloid 4 (TRPV4), TRPV1, and oxidative stress have been implicated in several rodent models of CIPN-evoked allodynia. Thalidomide causes a painful CIPN in patients via an unknown mechanism. Surprisingly, the pathway responsible for such proalgesic response has not yet been investigated in animal models. Results Here, we reveal that a single systemic administration of thalidomide and its derivatives, lenalidomide and pomalidomide, elicits prolonged (~ 35 days) mechanical and cold hypersensitivity in C57BL/6J mouse hind paw. Pharmacological antagonism or genetic deletion studies indicated that both TRPA1 and TRPV4, but not TRPV1, contribute to mechanical allodynia, whereas cold hypersensitivity was entirely due to TRPA1. Thalidomide per se did not stimulate recombinant and constitutive TRPA1 and TRPV4 channels in vitro, which, however, were activated by the oxidative stress byproduct, hydrogen peroxide. Systemic treatment with an antioxidant attenuated mechanical and cold hypersensitivity, and the increase in oxidative stress in hind paw, sciatic nerve, and lumbar spinal cord produced by thalidomide. Notably, central (intrathecal) or peripheral (intraplantar) treatments with channel antagonists or an antioxidant revealed that oxidative stress-dependent activation of peripheral TRPA1 mediates cold allodynia and part of mechanical allodynia. However, oxidative stress-induced activation of central TRPV4 mediated the residual TRPA1-resistant component of mechanical allodynia. Conclusions Targeting of peripheral TRPA1 and central TRPV4 may be required to attenuate pain associated with CIPN elicited by thalidomide and related drugs.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Ilaria Maddalena Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, Florence, Italy
| | | | - Mustafa Titiz
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Daniel Souza Monteiro de Araujo
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
61
|
Weigelt MA, Sivamani R, Lev-Tov H. The therapeutic potential of cannabinoids for integumentary wound management. Exp Dermatol 2020; 30:201-211. [PMID: 33205468 DOI: 10.1111/exd.14241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022]
Abstract
The increasing legalization of Cannabis for recreational and medicinal purposes in the United States has spurred renewed interest in the therapeutic potential of cannabinoids (CBs) for human disease. The skin has its own endocannabinoid system (eCS) which is a key regulator of various homeostatic processes, including those necessary for normal physiologic wound healing. Data on the use of CBs for wound healing are scarce. Compelling pre-clinical evidence supporting the therapeutic potential of CBs to improve wound healing by modulating key molecular pathways is herein reviewed. These findings merit further exploration in basic science, translational and clinical studies.
Collapse
Affiliation(s)
- Maximillian A Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Raja Sivamani
- Department of Dermatology, University of California-Davis, Sacramento, CA, USA.,Department of Biological Sciences, California State University, Sacramento, CA, USA.,School of Medicine, California Northstate University, Elk Grove, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA
| | - Hadar Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
62
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
63
|
Silvestri C, Pagano E, Lacroix S, Venneri T, Cristiano C, Calignano A, Parisi OA, Izzo AA, Di Marzo V, Borrelli F. Fish Oil, Cannabidiol and the Gut Microbiota: An Investigation in a Murine Model of Colitis. Front Pharmacol 2020; 11:585096. [PMID: 33162890 PMCID: PMC7580385 DOI: 10.3389/fphar.2020.585096] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disorders can be associated with alterations in gut microbiota (dysbiosis) and behavioral disturbances. In experimental colitis, administration of fish oil (FO) or cannabinoids, such as cannabidiol (CBD), reduce inflammation. We investigated the effect of combined FO/CBD administration on inflammation and dysbiosis in the dextran sulphate sodium (DSS) model of mouse colitis, which also causes behavioral disturbances. Colitis was induced in CD1 mice by 4% w/v DSS in drinking water for five consecutive days followed by normal drinking water. FO (20–75 mg/mouse) was administered once a day starting two days after DSS, whereas CBD (0.3–30 mg/kg), alone or after FO administration, was administered once a day starting 3 days after DSS, until day 8 (d8) or day 14 (d14). Inflammation was assessed at d8 and d14 (resolution phase; RP) by measuring the Disease Activity Index (DAI) score, change in body weight, colon weight/length ratio, myeloperoxidase activity and colonic interleukin (IL)-1β (IL-1β), IL-10, and IL-6 concentrations. Intestinal permeability was measured with the fluorescein isothiocyanate-dextran. Behavioral tests (novel object recognition (NOR) and light/dark box test) were performed at d8. Fecal microbiota composition was determined by ribosomal 16S DNA sequencing of faecal pellets at d8 and d14. DSS-induced inflammation was stronger at d8 and accompanied by anxiety-like behavior and impaired recognition memory. FO (35, 50, 75 mg/mouse) alone reduced inflammation at d8, whereas CBD alone produced no effect at any of the doses tested; however, when CBD (3, 10 mg/kg) was co-administered with FO (75 mg/mouse) inflammation was attenuated. FO (20 mg/mouse) and CBD (1 mg/kg) were ineffective when given alone, but when co-administered reduced all inflammatory markers and the increased intestinal permeability at both d8 and d14, but not the behavioral impairments. FO, CBD, and their combination affected gut bacteria taxa that were not affected by DSS per se. Akkermansia muciniphila, a species suggested to afford anti-inflammatory action in colitis, was increased by DSS only at d14, but its levels were significantly elevated by all treatments at d8. FO and CBD co-administered at per se ineffective doses reduce colon inflammation, in a manner potentially strengthened by their independent elevation of Akkermansia muciniphila.
Collapse
Affiliation(s)
- Cristoforo Silvestri
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec, QC, Canada.,Département de médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sébastien Lacroix
- Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Olga A Parisi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec, QC, Canada.,Département de médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada.,Institute of Biomolecular Chemistry, National Research Council (CNR) of Italy, Pozzuoli, Italy.,Centre Nutriss, École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada.,Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy.,Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
64
|
Ellermann M, Pacheco AR, Jimenez AG, Russell RM, Cuesta S, Kumar A, Zhu W, Vale G, Martin SA, Raj P, McDonald JG, Winter SE, Sperandio V. Endocannabinoids Inhibit the Induction of Virulence in Enteric Pathogens. Cell 2020; 183:650-665.e15. [PMID: 33031742 DOI: 10.1016/j.cell.2020.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alline R Pacheco
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Angel G Jimenez
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Regan M Russell
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Santiago Cuesta
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aman Kumar
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenhan Zhu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gonçalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah A Martin
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prithvi Raj
- Microbiome Research Lab, Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanessa Sperandio
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
65
|
Stone NL, Murphy AJ, England TJ, O'Sullivan SE. A systematic review of minor phytocannabinoids with promising neuroprotective potential. Br J Pharmacol 2020; 177:4330-4352. [PMID: 32608035 PMCID: PMC7484504 DOI: 10.1111/bph.15185] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Embase and PubMed were systematically searched for articles addressing the neuroprotective properties of phytocannabinoids, apart from cannabidiol and Δ9 -tetrahydrocannabinol, including Δ9 -tetrahydrocannabinolic acid, Δ9 -tetrahydrocannabivarin, cannabidiolic acid, cannabidivarin, cannabichromene, cannabichromenic acid, cannabichromevarin, cannabigerol, cannabigerolic acid, cannabigerivarin, cannabigerovarinic acid, cannabichromevarinic acid, cannabidivarinic acid, and cannabinol. Out of 2,341 studies, 31 articles met inclusion criteria. Cannabigerol (range 5 to 20 mg·kg-1 ) and cannabidivarin (range 0.2 to 400 mg·kg-1 ) displayed efficacy in models of Huntington's disease and epilepsy. Cannabichromene (10-75 mg·kg-1 ), Δ9 -tetrahydrocannabinolic acid (20 mg·kg-1 ), and tetrahydrocannabivarin (range 0.025-2.5 mg·kg-1 ) showed promise in models of seizure and hypomobility, Huntington's and Parkinson's disease. Limited mechanistic data showed cannabigerol, its derivatives VCE.003 and VCE.003.2, and Δ9 -tetrahydrocannabinolic acid mediated some of their effects through PPAR-γ, but no other receptors were probed. Further studies with these phytocannabinoids, and their combinations, are warranted across a range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Nicole L. Stone
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| | - Alexandra J. Murphy
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| | - Timothy J. England
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| | - Saoirse E. O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyUK
| |
Collapse
|
66
|
Matsumoto T, Takiyama M, Sanechika S, Nakayama A, Aoki K, Ohbuchi K, Kushida H, Kanno H, Nishi A, Watanabe J. In Vivo Pharmacokinetic Analysis Utilizing Non-Targeted and Targeted Mass Spectrometry and In Vitro Assay against Transient Receptor Potential Channels of Maobushisaishinto and Its Constituent Asiasari Radix. Molecules 2020; 25:E4283. [PMID: 32962000 PMCID: PMC7570662 DOI: 10.3390/molecules25184283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
The Japanese traditional medicine maobushisaishinto (MBST) has been prescribed for treating upper respiratory tract infections, such as a common cold. However, its mode of action is poorly understood, especially concerning the MBST constituent Asiasari Radix (AR). In this study, we focused on AR, with an objective of clarifying its bioavailable active ingredients and role within MBST by performing pharmacokinetic and pharmacological studies. Firstly, we performed qualitative non-targeted analysis utilizing high-resolution mass spectrometry to explore the bioavailable ingredients of AR as well as quantitative targeted analysis to reveal plasma concentrations following oral administration of MBST in rats. Secondly, we performed in vitro pharmacological study of bioavailable AR ingredients in addition to other ingredients of MBST to confirm any agonistic activities against transient receptor potential (TRP) channels. As a result, methyl kakuol and other compounds derived from AR were detected in the rat plasma and showed agonistic activity against TRPA1. This study suggests that methyl kakuol as well as other compounds have the potential to be an active ingredient in AR and thus presumably would contribute in part to the effects exerted by MBST.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Mikina Takiyama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Shou Sanechika
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Akiko Nakayama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Katsuyuki Aoki
- Botanical Raw Materials Research Laboratories, Botanical Raw Materials Division, Tsumura & Co., Ibaraki 3001192, Japan;
| | - Katsuya Ohbuchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Hirotaka Kushida
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Hitomi Kanno
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Akinori Nishi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| | - Junko Watanabe
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki 3001192, Japan; (M.T.); (S.S.); (A.N.); (K.O.); (H.K.); (H.K.); (A.N.); (J.W.)
| |
Collapse
|
67
|
Karimian Azari E, Kerrigan A, O’Connor A. Naturally Occurring Cannabinoids and their Role in Modulation of Cardiovascular Health. J Diet Suppl 2020; 17:625-650. [DOI: 10.1080/19390211.2020.1790708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Aileen Kerrigan
- Research and Development department, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
68
|
Franco R, Rivas-Santisteban R, Reyes-Resina I, Casanovas M, Pérez-Olives C, Ferreiro-Vera C, Navarro G, Sánchez de Medina V, Nadal X. Pharmacological potential of varinic-, minor-, and acidic phytocannabinoids. Pharmacol Res 2020; 158:104801. [PMID: 32416215 DOI: 10.1016/j.phrs.2020.104801] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
While natural Δ9-tetrahidrocannabinol (Δ9THC), cannabidiol (CBD), and their therapeutic potential have been extensively researched, some cannabinoids have been less extensively investigated. The present article compiles data from the literature that highlight the health benefits and therapeutic potential of lesser known phytocannabinoids, which we have divided into varinic, acidic, and "minor" (i.e., cannabinoids that are not present in high quantities in common varieties of Cannabis sativa L). A growing interest in these compounds, which are enriched in some cannabis varieties, has already resulted in enough preclinical information to show that they are promising therapeutic agents for a variety of diseases. Every phytocannabinoid has a "preferential" mechanism of action, and often targets the cannabinoid receptors, CB1 and/or CB2. The recent resolution of the structure of cannabinoid receptors demonstrates the atypical nature of cannabinoid binding, and that different binding modes depend on the agonist or partial agonist/inverse agonist, which allows for differential signaling, even acting on the same cannabinoid receptor. In addition, other players and multiple signaling pathways may be targeted/engaged by phytocannabinoids, thereby expanding the mechanistic possibilities for therapeutic use.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CiberNed), Spain.
| | - Rafael Rivas-Santisteban
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CiberNed), Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CiberNed), Spain
| | - Mireia Casanovas
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CiberNed), Spain
| | - Catalina Pérez-Olives
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Spain
| | | | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
69
|
Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, del Castillo MD, Abalo R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci 2020; 21:E3067. [PMID: 32357565 PMCID: PMC7246936 DOI: 10.3390/ijms21093067] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.
Collapse
Affiliation(s)
- Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Amaia Iriondo De-Hond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Raquel Abalo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Campus de Alcorcón, Avda. de Atenas s/n, 28022 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain;
| |
Collapse
|
70
|
Zhang Y, Zhang H, Zhang K, Li Z, Guo T, Wu T, Hou X, Feng N. Co-hybridized composite nanovesicles for enhanced transdermal eugenol and cinnamaldehyde delivery and their potential efficacy in ulcerative colitis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102212. [PMID: 32334099 DOI: 10.1016/j.nano.2020.102212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/16/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Percutaneous absorption of drugs can be enhanced by ethosomes, which are nanocarriers with excellent deformability and drug-loading properties. However, the ethanol within ethosomes increases phospholipid membrane fluidity and permeability, leading to drug leakage during storage. Here, we developed and characterized a new phospholipid nanovesicles that is co-hybridized with hyaluronic acid (HA), ethanol and the encapsulated volatile oil medicines (eugenol and cinnamaldehyde [EUG/CAH]) for transdermal administration. In comparison with EUG/CAH-loaded ethosomes (ES), the formulation stability and percutaneous drug absorption of EUG/CAH-loaded HA-immobilized ethosomes (HA-ES) were significantly improved. After transdermal administration of HA-ES, the interstitial cells of Cajal in the colon of rats with trinitrobenzene sulfonate-induced ulcerative colitis (UC) were significantly increased, and the stem cell factor/c-kit signaling pathway was partly repaired. Overall, HA-ES possesses excellent deformability and showed improved efficacy against UC compared with ES, which is demonstrated as a promising transdermal delivery vehicle for volatile oil medicines.
Collapse
Affiliation(s)
- Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
71
|
Izzo AA, Teixeira M, Alexander SPH, Cirino G, Docherty JR, George CH, Insel PA, Ji Y, Kendall DA, Panattieri RA, Sobey CG, Stanford SC, Stefanska B, Stephens G, Ahluwalia A. A practical guide for transparent reporting of research on natural products in the British Journal of Pharmacology: Reproducibility of natural product research. Br J Pharmacol 2020; 177:2169-2178. [PMID: 32298474 DOI: 10.1111/bph.15054] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Mauro Teixeira
- Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | - Paul A Insel
- University of San Diego, San Diego, California, USA
| | - Yong Ji
- Nanjing University, Nanjing, China
| | | | | | | | | | - Barbara Stefanska
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Amrita Ahluwalia
- William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
72
|
Liebling JP, Clarkson NJ, Gibbs BW, Yates AS, O'Sullivan SE. An Analysis of Over-the-Counter Cannabidiol Products in the United Kingdom. Cannabis Cannabinoid Res 2020; 7:207-213. [PMID: 33998849 PMCID: PMC9070743 DOI: 10.1089/can.2019.0078] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Over-the-counter cannabidiol (CBD) products have seen unprecedented recent growth in the United Kingdom. However, analysis of these predominantly unregulated products from other countries tells us that they are often mislabeled or contain unlabeled and potentially dangerous chemicals. Thus, the aim of the present study was to analyze CBD oils available in the United Kingdom. Materials and Methods: Phytocannabinoids, residual solvent, and heavy metals were measured blinded in 29 widely available CBD products by an independent testing facility using high-performance liquid chromatography with diode-array detection for cannabinoids, Headspace-gas chromatography-flame ionization detector and gas chromatography-mass spectrometry for residual solvents, and inductively coupled plasma-mass spectrometry for heavy metals. Results: The mean advertised CBD content was 4.5%, and the actual mean measured CBD content of products was 3.2% (p=0.053, Mann-Whitney test). Only 11/29 (38%) products were within 10% of the advertised CBD content. Fifty five percent of products had measurable levels of the controlled substances Δ9-tetrahydrocannabinol (mean content 0.04%) or cannabinol (mean content 0.01%), as well as most other phytocannabinoid compounds including cannabidiolic acid (CBDA), cannabidivarin (CBDV), and cannabidivarin acid (CBDVA). Detectable levels of N-pentane, ethanol, isopropanol, heptane, lead, and arsenic were found in many of the CBD products, but these were within acceptable levels. Conclusions: As demonstrated in other countries, the quality of over-the-counter CBD products in the United Kingdom can be substandard, particularly with regard to CBD content, and often contains levels of controlled substances. We recommend that these products be more strictly regulated for consumer welfare.
Collapse
Affiliation(s)
- Jonathan Paul Liebling
- Centre for Medicinal Cannabis, London, United Kingdom
- Cannabis Patient Advocacy & Support Services, London, United Kingdom
| | | | | | | | - Saoirse Elizabeth O'Sullivan
- Centre for Medicinal Cannabis, London, United Kingdom
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
73
|
Chen Y, Mu J, Zhu M, Mukherjee A, Zhang H. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front Immunol 2020; 11:180. [PMID: 32153564 PMCID: PMC7044176 DOI: 10.3389/fimmu.2020.00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
The transient receptor potential (TRP) cation channels are present in abundance across the gastrointestinal (GI) tract, serving as detectors for a variety of stimuli and secondary transducers for G-protein coupled receptors. The activation of TRP channels triggers neurogenic inflammation with related neuropeptides and initiates immune reactions by extra-neuronally regulating immune cells, contributing to the GI homeostasis. However, under pathological conditions, such as inflammatory bowel disease (IBD), TRP channels are involved in intestinal inflammation. An increasing number of human and animal studies have indicated that TRP channels are correlated to the visceral hypersensitivity (VHS) and immune pathogenesis in IBD, leading to an exacerbation or amelioration of the VHS or intestinal inflammation. Thus, TRP channels are a promising target for novel therapeutic methods for IBD. In this review, we comprehensively summarize the functions of TRP channels, especially their potential roles in immunity and IBD. Additionally, we discuss the contradictory findings of prior studies and offer new insights with regard to future research.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxi Mu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
74
|
Perisetti A, Rimu AH, Khan SA, Bansal P, Goyal H. Role of cannabis in inflammatory bowel diseases. Ann Gastroenterol 2020; 33:134-144. [PMID: 32127734 PMCID: PMC7049239 DOI: 10.20524/aog.2020.0452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
For many centuries, cannabis (marijuana) has been used for both recreational and medicinal purposes. Currently, there are about 192 million cannabis users worldwide, constituting approximately 3.9% of the global population. Cannabis comprises more than 70 aromatic hydrocarbon compounds known as cannabinoids. Endogenous circulating cannabinoids, or endocannabinoids, such as anandamide and 2-arachidonoyl-glycerol, their metabolizing enzymes (fatty acid amide hydrolase and monoacylglycerol lipase) and 2 G-protein coupled cannabinoid receptors, CB1 and CB2, together represent the endocannabinoid system and are present throughout the human body. In the gastrointestinal (GI) tract, the activated endocannabinoid system reduces gut motility, intestinal secretion and epithelial permeability, and induces inflammatory leukocyte recruitment and immune modulation through the cannabinoid receptors present in the enteric nervous and immune systems. Because of the effects of cannabinoids on the GI tract, attempts have been made to investigate their medicinal properties, particularly for GI disorders such as pancreatitis, hepatitis, and inflammatory bowel diseases (IBD). The effects of cannabis on IBD have been elucidated in several small observational and placebo-controlled studies, but with varied results. The small sample size and short follow-up duration in these studies make it difficult to show the clear benefits of cannabis in IBD. However, cannabis is now being considered as a potential drug for inflammatory GI conditions, particularly IBD, because of its spreading legalization in the United States and other countries and the growing trend in its use. More high-quality controlled studies are warranted to elucidate the mechanism and benefits of cannabis use as a possible option in IBD management.
Collapse
Affiliation(s)
- Abhilash Perisetti
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences (Abhilash Perisetti)
| | - Afrina Hossain Rimu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX (Afrina Hossain Rimu)
| | - Salman Ali Khan
- University of Arkansas for Medical Sciences, AR (Salman Ali Khan)
| | - Pardeep Bansal
- Department of Gastroenterology, Regional Hospital and Moses Taylor Hospital, PA (Pardeep Bansal)
| | - Hemant Goyal
- Department of Medicine, The Wright Center for Graduate Medical Education (Hemant Goyal), USA
| |
Collapse
|
75
|
Udoh M, Santiago M, Devenish S, McGregor IS, Connor M. Cannabichromene is a cannabinoid CB 2 receptor agonist. Br J Pharmacol 2019; 176:4537-4547. [PMID: 31368508 DOI: 10.1111/bph.14815] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabichromene (CBC) is one of the most abundant phytocannabinoids in Cannabis spp. It has modest antinociceptive and anti-inflammatory effects and potentiates some effects of Δ9 -tetrahydrocannabinol in vivo. How CBC exerts these effects is poorly defined and there is little information about its efficacy at cannabinoid receptors. We sought to determine the functional activity of CBC at cannabinoid CB1 and CB2 receptors. EXPERIMENTAL APPROACH AtT20 cells stably expressing haemagglutinin-tagged human CB1 and CB2 receptors were used. Assays of cellular membrane potential and loss of cell surface receptors were performed. KEY RESULTS CBC activated CB2 but not CB1 receptors to produce hyperpolarization of AtT20 cells. This activation was inhibited by a CB2 receptor antagonist AM630, and sensitive to Pertussis toxin. Application of CBC reduced activation of CB2 , but not CB1 , receptors by subsequent co-application of CP55,940, an efficacious CB1 and CB2 receptor agonist. Continuous CBC application induced loss of cell surface CB2 receptors and desensitization of the CB2 receptor-induced hyperpolarization. CONCLUSIONS AND IMPLICATIONS CBC is a selective CB2 receptor agonist displaying higher efficacy than tetrahydrocannabinol in hyperpolarizing AtT20 cells. CBC can also recruit CB2 receptor regulatory mechanisms. CBC may contribute to the potential therapeutic effectiveness of some cannabis preparations, potentially through CB2 receptor-mediated modulation of inflammation.
Collapse
Affiliation(s)
- Michael Udoh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marina Santiago
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Steven Devenish
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Iain S McGregor
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
76
|
Holleran G, Scaldaferri F, Gasbarrini A, Currò D. Herbal medicinal products for inflammatory bowel disease: A focus on those assessed in double-blind randomised controlled trials. Phytother Res 2019; 34:77-93. [PMID: 31701598 DOI: 10.1002/ptr.6517] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/01/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease patients frequently use herbal products as complementary or alternative medicines to current pharmacotherapies and obtain information on them mainly from the internet, social media, or unlicensed practitioners. Clinicians should therefore take a more active role and become knowledgeable of the mechanisms of action and potential drug interactions of herbal medicines for which evidence of efficacy is available. The therapeutic efficacy and safety of several herbal medicines have been studied in double-blind randomised controlled trials (RCTs). Evidence of efficacy is available for Andrographis paniculata extract; curcumin; a combination of myrrh, extract of chamomile flower, and coffee charcoal; and the Chinese herbal medicines Fufangkushen colon-coated capsule and Xilei san in patients with ulcerative colitis; and Artemisia absinthium extract and Boswellia serrata resin extract in patients with Crohn's disease. However, most of this evidence comes from single small RCTs with short follow-up, and the long-term effects and safety of their use have not yet been established. Thus, our findings indicate that further appropriately sized RCTs are necessary prior to the recommended use of these herbal medicines in therapy. In the meantime, increasing awareness of their use, and potential drug interactions among physicians may help to reduce unwanted effects and adverse disease outcomes.
Collapse
Affiliation(s)
- Grainne Holleran
- Department of Gastroenterology and Clinical Medicine, Trinity Centre for Health Sciences, Tallaght Hospital, Dublin, Ireland
| | - Franco Scaldaferri
- Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, 00168, Italy
| | - Antonio Gasbarrini
- Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, 00168, Italy.,Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Diego Currò
- Unità Operativa Complessa di Farmacologia, Direzione Sanitaria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, 00168, Italy.,Istituto di Farmacologia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| |
Collapse
|
77
|
Pagano E, Romano B, Iannotti F, Parisi O, D’Armiento M, Pignatiello S, Coretti L, Lucafò M, Venneri T, Stocco G, Lembo F, Orlando P, Capasso R, Di Marzo V, Izzo A, Borrelli F. The non-euphoric phytocannabinoid cannabidivarin counteracts intestinal inflammation in mice and cytokine expression in biopsies from UC pediatric patients. Pharmacol Res 2019; 149:104464. [PMID: 31553934 DOI: 10.1016/j.phrs.2019.104464] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/27/2023]
|
78
|
Ma S, Zhang Y, He K, Wang P, Wang DH. Knockout of TRPA1 exacerbates angiotensin II-induced kidney injury. Am J Physiol Renal Physiol 2019; 317:F623-F631. [PMID: 31339777 DOI: 10.1152/ajprenal.00069.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophage-mediated inflammation plays a critical role in hypertensive kidney disease. Here, we investigated the role of transient receptor potential ankyrin 1 (TRPA1), a sensor of inflammation, in angiotensin II (ANG II)-induced renal injury. Subcutaneous infusion of ANG II (600 ng·min-1·kg-1) for 28 days was used to induce hypertension and renal injury in mice. The results showed that ANG II-induced hypertensive mice have decreased renal Trpa1 expression (P < 0.01), whereas ANG II receptor type 1a-deficient hypotensive mice have increased renal Trpa1 expression (P < 0.05) compared with their normotensive counterparts. ANG II induced similar elevations of systolic blood pressure in Trpa1-/- and wild-type (WT) mice but led to higher levels of blood urea nitrogen (P < 0.05), serum creatinine (P < 0.05), and renal fibrosis (P < 0.01) in Trpa1-/- mice than WT mice. Similarly, ANG II increased both CD68+/inducible nitric oxide synthase+ M1 and CD68+/arginase 1+ M2 macrophages in the kidneys of both Trpa1-/- and WT mice (all P < 0.01), with higher extents in Trpa1-/- mice (both P < 0.01). Compared with WT mice, Trpa1-/- mice had significantly increased expression levels of inflammatory cytokines and their receptors in the kidney. Cultured murine macrophages were stimulated with phorbol 12-myristate 13-acetate, which downregulated gene expression of TRPA1 (P < 0.01). A TRPA1 agonist, cinnamaldehyde, significantly inhibited phorbol 12-myristate 13-acetate-stimulated expression of IL-1β and chemokine (C-C motif) ligand 2 in macrophages, which were attenuated by pretreatment with a TRPA1 antagonist, HC030031. Furthermore, activation of TRPA1 with cinnamaldehyde induced apoptosis of macrophages. These findings suggest that TRPA1 may play a protective role in ANG II-induced renal injury, likely through inhibiting macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan
| | - Yan Zhang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Kecheng He
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
79
|
Giorgi S, Nikolaeva-Koleva M, Alarcón-Alarcón D, Butrón L, González-Rodríguez S. Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain? Int J Mol Sci 2019; 20:ijms20122906. [PMID: 31197115 PMCID: PMC6627658 DOI: 10.3390/ijms20122906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
- AntalGenics, SL. Ed. Quorum III, Parque Científico Universidad Miguel Hernández, Avda de la Universidad s/n, 03202 Elche, Spain.
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
80
|
Kumar A, Premoli M, Aria F, Bonini SA, Maccarinelli G, Gianoncelli A, Memo M, Mastinu A. Cannabimimetic plants: are they new cannabinoidergic modulators? PLANTA 2019; 249:1681-1694. [PMID: 30877436 DOI: 10.1007/s00425-019-03138-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/12/2019] [Indexed: 05/21/2023]
Abstract
Phytochemicals and secondary metabolites able to interact with the endocannabinoid system (Cannabimimetics) have been recently described in a broad range of plants and fruits. These findings can open new alternative avenues to explore for the development of novel therapeutic compounds. The cannabinoids regulate many physiological and pathological functions in both animals and plants. Cannabis sativa is the main plant that produces phytocannabinoids inside resins capable to defend the plant from the aggression of parasites and herbivores. Animals produce anandamide and 2-arachidonoyl glycerol, which thanks to binding with main receptors such as type-1 cannabinoid receptor (CB1R) and the type-2 cannabinoid receptor (CB2R) are involved in inflammation processes and several brain functions. Endogenous cannabinoids, enzymes for synthesis and degradation of cannabinoids, and CB1R and CB2R constitute the endocannabinoid system (ECS). Other plants can produce cannabinoid-like molecules such as perrottetinene extracted from Radula perrottetii, or anandamide and 2-arachidonoyl glycerol extracted from some bryophytes. Moreover, several other secondary metabolites can also interact with the ECS of animals and take the name of cannabimimetics. These phytoextracts not derived from Cannabis sativa can act as receptor agonists or antagonist, or enzyme inhibitors of ECS and can be involved in the inflammation, oxidative stress, cancer, and neuroprotection. Finally, given the evolutionary heterogeneity of the cannabimimetic plants, some authors speculated on the fascinating thesis of the evolutionary convergence between plants and animals regarding biological functions of ECS. The review aims to provide a critical and complete assessment of the botanical, chemical and therapeutic aspects of cannabimimetic plants to evaluate their spread in the world and medicinal potentiality.
Collapse
Affiliation(s)
- Amit Kumar
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Blickagången 16, Huddinge, Sweden
| | - Marika Premoli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Francesca Aria
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Giuseppina Maccarinelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Alessandra Gianoncelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Andrea Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy.
| |
Collapse
|
81
|
Borgonetti V, Governa P, Montopoli M, Biagi M. Cannabis sativa L. Constituents and Their Role in Neuroinflammation. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407214666180703130525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interest in Cannabis sativa L. phytocomplex as a medicinal tool is a recently-emerging topic. Neurodegenerative diseases represent a promising field of application for cannabis and its preparations, as most of this pathologic conditions relies on an inflammatory etiology. Several cannabis constituents display anti-inflammatory effects targeting multiple pathways. In this review, a comprehensive overview of the available literature on C. sativa constituents activities in neuroinflammation is given. On the basis that the anti-inflammatory activity of cannabis is not attributable to only a single constituent, we discuss the possible advantages of administering the whole phytocomplex in order to fully exploit the “entourage effect” in neuroinflammatory-related conditions.
Collapse
Affiliation(s)
| | | | | | - Marco Biagi
- SIFITLab, Via Laterina 8, 53100 Siena, Italy
| |
Collapse
|
82
|
Ambrose T, Simmons A. Cannabis, Cannabinoids, and the Endocannabinoid System-Is there Therapeutic Potential for Inflammatory Bowel Disease? J Crohns Colitis 2019; 13:525-535. [PMID: 30418525 PMCID: PMC6441301 DOI: 10.1093/ecco-jcc/jjy185] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cannabis sativa and its extracts have been used for centuries, both medicinally and recreationally. There is accumulating evidence that exogenous cannabis and related cannabinoids improve symptoms associated with inflammatory bowel disease [IBD], such as pain, loss of appetite, and diarrhoea. In vivo, exocannabinoids have been demonstrated to improve colitis, mainly in chemical models. Exocannabinoids signal through the endocannabinoid system, an increasingly understood network of endogenous lipid ligands and their receptors, together with a number of synthetic and degradative enzymes and the resulting products. Modulating the endocannabinoid system using pharmacological receptor agonists, genetic knockout models, or inhibition of degradative enzymes have largely shown improvements in colitis in vivo. Despite these promising experimental results, this has not translated into meaningful benefits for human IBD in the few clinical trials which have been conducted to date, the largest study being limited by poor medication tolerance due to the Δ9-tetrahydrocannabinol component. This review article synthesises the current literature surrounding the modulation of the endocannabinoid system and administration of exocannabinoids in experimental and human IBD. Findings of clinical surveys and studies of cannabis use in IBD are summarised. Discrepancies in the literature are highlighted together with identifying novel areas of interest.
Collapse
Affiliation(s)
- Tim Ambrose
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK,MRC Human Immunology Unit, John Radcliffe Hospital, Oxford, UK,Corresponding author: Dr Tim Ambrose, BSc (Hons), MBChB, MRCP (UK) (Gastroenterology), c/o Prof. Alison Simmons, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK. Tel.: 01865 222628;
| | - Alison Simmons
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK,MRC Human Immunology Unit, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
83
|
Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci 2019; 11:487. [PMID: 30697147 PMCID: PMC6340993 DOI: 10.3389/fnmol.2018.00487] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels are a group of membrane proteins involved in the transduction of a plethora of chemical and physical stimuli. These channels modulate ion entry, mediating a variety of neural signaling processes implicated in the sensation of temperature, pressure, and pH, as well as smell, taste, vision, and pain perception. Many diseases involve TRP channel dysfunction, including neuropathic pain, inflammation, and respiratory disorders. In the pursuit of new treatments for these disorders, it was discovered that cannabinoids can modulate a certain subset of TRP channels. The TRP vanilloid (TRPV), TRP ankyrin (TRPA), and TRP melastatin (TRPM) subfamilies were all found to contain channels that can be modulated by several endogenous, phytogenic, and synthetic cannabinoids. To date, six TRP channels from the three subfamilies mentioned above have been reported to mediate cannabinoid activity: TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8. The increasing data regarding cannabinoid interactions with these receptors has prompted some researchers to consider these TRP channels to be “ionotropic cannabinoid receptors.” Although CB1 and CB2 are considered to be the canonical cannabinoid receptors, there is significant overlap between cannabinoids and ligands of TRP receptors. The first endogenous agonist of TRPV1 to be discovered was the endocannabinoid, anandamide (AEA). Similarly, N-arachidonyl dopamine (NADA) and AEA were the first endogenous TRPM8 antagonists discovered. Additionally, Δ9-tetrahydrocannabinol (Δ9-THC), the most abundant psychotropic compound in cannabis, acts most potently at TRPV2, moderately modulates TRPV3, TRPV4, TRPA1, and TRPM8, though Δ9-THC is not reported to modulate TRPV1. Moreover, TRP receptors may modulate effects of synthetic cannabinoids used in research. One common research tool is WIN55,212-2, a CB1 agonist that also exerts analgesic effects by desensitizing TRPA1 and TRPV1. In this review article, we aim to provide an overview and classification of the cannabinoid ligands that have been reported to modulate TRP channels and their therapeutic potential.
Collapse
Affiliation(s)
- Chanté Muller
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Paula Morales
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Patricia H Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
84
|
Usui-Kusumoto K, Iwanishi H, Ichikawa K, Okada Y, Sumioka T, Miyajima M, Liu CY, Reinach PS, Saika S. Suppression of neovascularization in corneal stroma in a TRPA1-null mouse. Exp Eye Res 2019; 181:90-97. [PMID: 30633924 DOI: 10.1016/j.exer.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
Corneal neovascularization and inflammatory fibrosis induced by severe injury or infection leads to tissue opacification and even blindness. Transient receptor potential (TRP) channel subtypes contribute to mediating these maladaptive responses through their interactions with other receptors. TRPV1 is one of the contributing channel isoforms inducing neovascularization in an alkali burn mouse wound healing model. VEGF-A upregulation contributes to neovascularization through interaction with its cognate receptors (VEGFR). Since the TRP isoform in this tissue, TRPA1, is also involved, we determined here if one of the pathways mediating neovascularization and immune cell infiltration involve an interaction between VEGFR and TRPA1 in a cauterization corneal mouse wound healing model. Localization of TRPA1 and endothelial cell (EC) CD31 immunostaining pattern intensity determined if TRPA1 expression was EC delimited during cauterization induced angiogenesis. Quantitative RT-PCR evaluated the effects of the absence of TRPA1 function on VEGF-A and TGF-β1 mRNA expression during this process. Macrophage infiltration increased based on rises in F4/80 antigen immunoreactivity. TRPA1 immunostaining was absent on CD31-immunostained EC cells undergoing neovascularization, but it was present on other cell type(s) adhering to EC in vivo. Absence of TRPA1 expression suppressed both stromal neovascularization and inhibited macrophage infiltration. Similarly, the increases occurring in both VEGF-A and TGF-β1 mRNA expression levels in WT tissue were blunted in the TRPA1-/- counterpart. On the other hand, in the macrophages their levels were invariant and their infiltration was inhibited. To determine if promotion by TRPA1 of angiogenesis was dependent on its expression on other unidentified cell types, the effects were compared of pharmacological manipulation of TRPA1 activity on EC proliferation tube formation and migration. In the presence and absence of a fibroblast containing feeder layer. Neither VEGF-induced increases in human vascular endothelial cell (HUVEC) proliferation nor migration were changed by a TRPA1 antagonist HC-030031 in the absence of a feeder layer. However, on a fibroblast feeder layer this antagonist suppressed HUVEC tube formation. In conclusion, during corneal wound healing transactivation by VEGFR of TRPA1 contributes to mediating neovascularization and macrophage infiltration. Such crosstalk is possible because of close proximity between VEGFR delimited expression on EC and TRPA1 expression restricted to cell types adhering to EC.
Collapse
Affiliation(s)
- Keiko Usui-Kusumoto
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Hiroki Iwanishi
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Kana Ichikawa
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | | | - Peter S Reinach
- Wenzhou Medical University School of Ophthalmology and Optometry, Wenzhou, PR China
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| |
Collapse
|
85
|
Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, Mastinu A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:300-315. [PMID: 30205181 DOI: 10.1016/j.jep.2018.09.004] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. (C. sativa) is an annual dioecious plant, which shares its origins with the inception of the first agricultural human societies in Asia. Over the course of time different parts of the plant have been utilized for therapeutic and recreational purposes, for instance, extraction of healing oils from seed, or the use of inflorescences for their psychoactive effects. The key psychoactive constituent in C. sativa is called Δ-9-tetrahydrocannabinol (D9-THC). The endocannabinoid system seems to be phylogenetically ancient, as it was present in the most primitive vertebrates with a neuronal network. N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are the main endocannabinoids ligands present in the animal kingdom, and the main endocannabinoid receptors are cannabinoid type-1 (CB1) receptor and cannabinoid type-2 (CB2) receptor. AIM OF THE STUDY The review aims to provide a critical and comprehensive evaluation, from the ancient times to our days, of the ethnological, botanical, chemical and pharmacological aspects of C. sativa, with a vision for promoting further pharmaceutical research to explore its complete potential as a therapeutic agent. MATERIALS AND METHODS This study was performed by reviewing in extensive details the studies on historical significance and ethnopharmacological applications of C. sativa by using international scientific databases, books, Master's and Ph.D. dissertations and government reports. In addition, we also try to gather relevant information from large regional as well as global unpublished resources. In addition, the plant taxonomy was validated using certified databases such as Medicinal Plant Names Services (MPNS) and The Plant List. RESULTS AND CONCLUSIONS A detailed comparative analysis of the available resources for C. sativa confirmed its origin and traditional spiritual, household and therapeutic uses and most importantly its popularity as a recreational drug. The result of several studies suggested a deeper involvement of phytocannabinoids (the key compounds in C. sativa) in several others central and peripheral pathophysiological mechanisms such as food intake, inflammation, pain, colitis, sleep disorders, neurological and psychiatric illness. However, despite their numerous medicinal benefits, they are still considered as a menace to the society and banned throughout the world, except for few countries. We believe that this review will help lay the foundation for promoting exhaustive pharmacological and pharmaceutical studies in order to better understand the clinical relevance and applications of non-psychoactive cannabinoids in the prevention and treatment of life-threatening diseases and help to improve the legal status of C. sativa.
Collapse
Affiliation(s)
- Sara Anna Bonini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Amit Kumar
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
| |
Collapse
|
86
|
Witkamp RF, van Norren K. Let thy food be thy medicine….when possible. Eur J Pharmacol 2018; 836:102-114. [DOI: 10.1016/j.ejphar.2018.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 02/09/2023]
|
87
|
Hiraishi K, Kurahara LH, Sumiyoshi M, Hu YP, Koga K, Onitsuka M, Kojima D, Yue L, Takedatsu H, Jian YW, Inoue R. Daikenchuto (Da-Jian-Zhong-Tang) ameliorates intestinal fibrosis by activating myofibroblast transient receptor potential ankyrin 1 channel. World J Gastroenterol 2018; 24:4036-4053. [PMID: 30254408 PMCID: PMC6148431 DOI: 10.3748/wjg.v24.i35.4036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/06/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anti-fibrotic effects of the traditional oriental herbal medicine Daikenchuto (DKT) associated with transient receptor potential ankyrin 1 (TRPA1) channels in intestinal myofibroblasts.
METHODS Inflammatory and fibrotic changes were detected in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) chronic colitis model of wild-type and TRPA1-knockout (TRPA1-KO) mice via pathological staining and immunoblotting analysis. Ca2+ imaging experiments examined the effects of DKT and its components/ingredients on intestinal myofibroblast (InMyoFib) cell TRPA1 channel function. Pro-fibrotic factors and transforming growth factor (TGF)-β1-associated signaling were tested in an InMyoFib cell line by qPCR and immunoblotting experiments. Samples from non-stenotic and stenotic regions of the intestines of patients with Crohn’s disease (CD) were used for pathological analysis.
RESULTS Chronic treatment with TNBS caused more severe inflammation and fibrotic changes in TRPA1-KO than in wild-type mice. A one-week enema administration of DKT reduced fibrotic lesions in wild-type but not in TRPA1-KO mice. The active ingredients of DKT, i.e., hydroxy α-sanshool and 6-shogaol, induced Ca2+ influxes in InMyoFib, and this was antagonized by co-treatment with a selective TRPA1 channel blocker, HC-030031. DKT counteracted TGF-β1-induced expression of Type I collagen and α-smooth muscle actin (α-SMA), which were accompanied by a reduction in the phosphorylation of Smad-2 and p38-mitogen-activated protein kinase (p38-MAPK) and the expression of myocardin. Importantly, 24-h incubation with a DKT active component Japanese Pepper increased the mRNA and protein expression levels of TRPA1 in InMyoFibs, which in turn negatively regulated collagen synthesis. In the stenotic regions of the intestines of CD patients, TRPA1 expression was significantly enhanced.
CONCLUSION The effects of DKT on the expression and activation of the TRPA1 channel could be advantageous for suppressing intestinal fibrosis, and benefit inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Lin-Hai Kurahara
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Miho Sumiyoshi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Yao-Peng Hu
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Miki Onitsuka
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Daibo Kojima
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, United States
| | - Hidetoshi Takedatsu
- Department of Gastroenterology and Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 8140180, Japan
| | - Yu-Wen Jian
- College of Letters and Science, University of California, Davis, CA 95616, United States
| | - Ryuji Inoue
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 8140180, Japan
| |
Collapse
|
88
|
Pollastro F, Caprioglio D, Del Prete D, Rogati F, Minassi A, Taglialatela-Scafati O, Munoz E, Appendino G. Cannabichromene. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cannabinochromene (CBC, 1a) is the archetypal member of a class of more than twenty isoprenylated 5-hydroxy-7-alkyl(aralky)benzo[2 H]pyranes first reported from Cannabis sativa L. but also occurring in unrelated plants ( Rhododendron species) as well as liverworts and fungi. The chemistry, synthesis, and bioactivity of CBC (1a) is reviewed, highlighting its underexploited pharmacological potential and rich chemistry.
Collapse
Affiliation(s)
| | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100, Novara
| | - Danilo Del Prete
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100, Novara
| | - Federica Rogati
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100, Novara
| | - Alberto Minassi
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100, Novara
| | | | - Eduardo Munoz
- VivaCell Biotechnology España, Parque Científico Tecnológico de Córdoba. 14014 Córdoba, Spain
| | | |
Collapse
|
89
|
Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativaL. J Biotechnol 2018; 284:17-26. [PMID: 30053500 DOI: 10.1016/j.jbiotec.2018.07.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
Cannabinoids are secondary natural products from the plant Cannabis sativaL. Therapeutic indications of cannabinoids currently comprise a significant area of medicinal research. We have expressed the Δ9-tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) recombinantly in Komagataella phaffii and could detect eight different products with a cannabinoid scaffold after conversion of the precursor cannabigerolic acid (CBGA). Besides five products remaining to be identified, both enzymes were forming three major cannabinoids of C. sativa - Δ9-tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA). In pursuit of improved enzyme properties for a biotechnological cannabinoid production, we performed site-directed mutagenesis to investigate the glycosylation pattern, the C-terminal berberine-bridge-enzyme (BBE) domain, the active site and the product specificity of both enzymes. The THCAS variant T_N89Q+N499Q (lacking two glycosylation sites) exerted about two-fold increased activity compared to wild-type enzyme. Variant T_H494C+R532C (additional disulfide bridge) exerted about 1.7-fold increased activity compared to wild-type enzyme and a shifted temperature optimum from 52 °C to 57 °C. We generated two CBDAS variants, C_S116A and C_A414V, with 2.8 and 3.3-fold increased catalytic activities for CBDA production. C_A414V additionally showed a broadened pH spectrum and a 19-fold increased catalytic activity for THCA production. These studies lay the groundwork for further research as well as biotechnological cannabinoid production.
Collapse
|
90
|
Maurya N, Velmurugan BK. Therapeutic applications of cannabinoids. Chem Biol Interact 2018; 293:77-88. [PMID: 30040916 DOI: 10.1016/j.cbi.2018.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
The psychoactive property of cannabinoids is well known and there has been a continuous controversy regarding the usage of these compounds for therapeutic purposes all over the world. Their use for medical and research purposes are restricted in various countries. However, their utility as medications should not be overshadowed by its negative physiological activities. This review article is focused on the therapeutic potential and applications of phytocannabinoids and endocannabinoids. We further highlights their mode of action, overall effects on physiology, various in vitro and in vivo studies that have been done so far and the extent to which these compounds can be useful in different disease conditions such as cancer, Alzheimer's disease, multiple sclerosis, pain, inflammation, glaucoma and many others. Thus, this work is an attempt to make the readers understand the positive implications of these compounds and indicates the significant developments of utilizing cannabinoids as therapeutic agents.
Collapse
Affiliation(s)
- Nancy Maurya
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| | | |
Collapse
|
91
|
The Use of Complementary and Alternative Medicine in Patients With Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y) 2018. [PMID: 30166957 DOI: 10.1007/978-94-011-4002-7_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complementary and alternative medicine (CAM) includes products or medical practices that encompass herbal and dietary supplements, probiotics, traditional Chinese medicines, and a variety of mind-body techniques. The use of CAM in patients with inflammatory bowel disease (IBD) is increasing as patients seek ways beyond conventional therapy to treat their chronic illnesses. The literature behind CAM therapies and their application, efficacy, and safety is limited when compared to studies of conventional, allopathic therapies. Thus, gastroenterologists are often ill equipped to engage with their patients in informed and meaningful discussions about the role of CAM in IBD. The aims of this article are to provide a comprehensive summary and discussion of various CAM modalities and to appraise the evidence for their use.
Collapse
|
92
|
Grill M, Hasenoehrl C, Storr M, Schicho R. Medical Cannabis and Cannabinoids: An Option for the Treatment of Inflammatory Bowel Disease and Cancer of the Colon? Med Cannabis Cannabinoids 2018; 1:28-35. [PMID: 34676319 DOI: 10.1159/000489036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
In the past few years, we have witnessed a surge of new reports dealing with the role of cannabinoids, synthetic as well as herbal, in the mechanisms of inflammation and carcinogenesis. However, despite the wealth of in vitro data and anecdotal reports, evidence that cannabinoids could act as beneficial drugs in inflammatory bowel disease (IBD) or in neoplastic development of the human gastrointestinal tract is lacking. Some insight into the effects of medical Cannabis (usually meaning dried flowers) and cannabinoids in IBD has been gained through questionnaires and small pilot studies. As to colorectal cancer, only preclinical data are available. Currently, Δ9-tetrahydrocannabinol (THC) and its synthetic forms, dronabinol and nabilone, are used as an add-on treatment to alleviate chronic pain and spasticity in multiple sclerosis patients as well as chemotherapy-induced nausea. The use of medical Cannabis is authorized only in a limited number of countries. None of the mentioned substances are currently indicated for IBD. This review is an update of our knowledge on the role of cannabinoids in intestinal inflammation and carcinogenesis and a discussion on their potential therapeutic use.
Collapse
Affiliation(s)
- Magdalena Grill
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
| | - Carina Hasenoehrl
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
| | - Martin Storr
- Department of Medicine 2, Ludwig-Maximilians University, Munich, Germany.,Zentrum für Endoskopie, Starnberg, Germany
| | - Rudolf Schicho
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
93
|
Mohammadi M, Oehler B, Kloka J, Martin C, Brack A, Blum R, Rittner HL. Antinociception by the anti-oxidized phospholipid antibody E06. Br J Pharmacol 2018; 175:2940-2955. [PMID: 29679953 DOI: 10.1111/bph.14340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Milad Mohammadi
- Department of Anaesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Beatrice Oehler
- Department of Anaesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Jan Kloka
- Department of Anaesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Corinna Martin
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Alexander Brack
- Department of Anaesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Heike L Rittner
- Department of Anaesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
94
|
Couch DG, Maudslay H, Doleman B, Lund JN, O'Sullivan SE. The Use of Cannabinoids in Colitis: A Systematic Review and Meta-Analysis. Inflamm Bowel Dis 2018; 24:680-697. [PMID: 29562280 DOI: 10.1093/ibd/izy014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical trials investigating the use of cannabinoid drugs for the treatment of intestinal inflammation are anticipated secondary to preclinical literature demonstrating efficacy in reducing inflammation. METHODS We systematically reviewed publications on the benefit of drugs targeting the endo-cannabinoid system in intestinal inflammation. We collated studies examining outcomes for meta-analysis from EMBASE, MEDLINE and Pubmed until March 2017. Quality was assessed according to mSTAIR and SRYCLE score. RESULTS From 2008 papers, 51 publications examining the effect of cannabinoid compounds on murine colitis and 2 clinical studies were identified. Twenty-four compounds were assessed across 71 endpoints. Cannabidiol, a phytocannabinoid, was the most investigated drug. Macroscopic colitis severity (disease activity index [DAI]) and myeloperoxidase activity (MPO) were assessed throughout publications and were meta-analyzed using random effects models. Cannabinoids reduced DAI in comparison with the vehicle (standard mean difference [SMD] -1.36; 95% CI, -1.62 to-1.09; I2 = 61%). FAAH inhibitor URB597 had the largest effect size (SMD -4.43; 95% CI, -6.32 to -2.55), followed by the synthetic drug AM1241 (SMD -3.11; 95% CI, -5.01 to -1.22) and the endocannabinoid anandamide (SMD -3.03; 95% CI, -4.89 to -1.17; I2 not assessed). Cannabinoids reduced MPO in rodents compared to the vehicle; SMD -1.26; 95% CI, -1.54 to -0.97; I2 = 48.1%. Cannabigerol had the largest effect size (SMD -6.20; 95% CI, -9.90 to -2.50), followed by the synthetic CB1 agonist ACEA (SMD -3.15; 95% CI, -4.75 to -1.55) and synthetic CB1/2 agonist WIN55,212-2 (SMD -1.74; 95% CI, -2.81 to -0.67; I2 = 57%). We found no evidence of reporting bias. No significant difference was found between the prophylactic and therapeutic use of cannabinoid drugs. CONCLUSIONS There is abundant preclinical literature demonstrating the anti-inflammatory effects of cannabinoid drugs in inflammation of the gut. Larger randomised controlled-trials are warranted.
Collapse
Affiliation(s)
- Daniel G Couch
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Henry Maudslay
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Brett Doleman
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Jonathan N Lund
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
95
|
Khalil M, Alliger K, Weidinger C, Yerinde C, Wirtz S, Becker C, Engel MA. Functional Role of Transient Receptor Potential Channels in Immune Cells and Epithelia. Front Immunol 2018; 9:174. [PMID: 29467763 PMCID: PMC5808302 DOI: 10.3389/fimmu.2018.00174] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) ion channels are widely expressed in several tissues throughout the mammalian organism. Originally, TRP channel physiology was focusing on its fundamental meaning in sensory neuronal function. Today, it is known that activation of several TRP ion channels in peptidergic neurons does not only result in neuropeptide release and consecutive neurogenic inflammation. Growing evidence demonstrates functional extra-neuronal TRP channel expression in immune and epithelial cells with important implications for mucosal immunology. TRP channels maintain intracellular calcium homeostasis to regulate various functions in the respective cells such as nociception, production and release of inflammatory mediators, phagocytosis, and cell migration. In this review, we provide an overview about TRP-mediated effects in immune and epithelial cells with an emphasis on mucosal immunology of the gut. Crosstalk between neurons, epithelial cells, and immune cells induced by activation of TRP channels orchestrates the immunologic response. Understanding of its molecular mechanisms paves the way to novel clinical approaches for the treatment of various inflammatory disorders including IBD.
Collapse
Affiliation(s)
- Mohammad Khalil
- Universitätsklinikum Erlangen, Medizinische Klinik 1, Erlangen, Germany
| | - Korina Alliger
- Universitätsklinikum Erlangen, Medizinische Klinik 1, Erlangen, Germany
| | - Carl Weidinger
- Charité Universitätsmedizin Berlin, Campus Benjamin Franklin Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
| | - Cansu Yerinde
- Charité Universitätsmedizin Berlin, Campus Benjamin Franklin Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
| | - Stefan Wirtz
- Universitätsklinikum Erlangen, Medizinische Klinik 1, Erlangen, Germany
| | - Christoph Becker
- Universitätsklinikum Erlangen, Medizinische Klinik 1, Erlangen, Germany
| | | |
Collapse
|
96
|
Kurahara LH, Hiraishi K, Hu Y, Koga K, Onitsuka M, Doi M, Aoyagi K, Takedatsu H, Kojima D, Fujihara Y, Jian Y, Inoue R. Activation of Myofibroblast TRPA1 by Steroids and Pirfenidone Ameliorates Fibrosis in Experimental Crohn's Disease. Cell Mol Gastroenterol Hepatol 2017; 5:299-318. [PMID: 29552620 PMCID: PMC5852292 DOI: 10.1016/j.jcmgh.2017.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The transient receptor potential ankyrin 1 (TRPA1) channel is highly expressed in the intestinal lamina propria, but its contribution to gut physiology/pathophysiology is unclear. Here, we evaluated the function of myofibroblast TRPA1 channels in intestinal remodeling. METHODS An intestinal myofibroblast cell line (InMyoFibs) was stimulated by transforming growth factor-β1 to induce in vitro fibrosis. Trpa1 knockout mice were generated using the Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. A murine chronic colitis model was established by weekly intrarectal trinitrobenzene sulfonic acid (TNBS) administration. Samples from the intestines of Crohn's disease (CD) patients were used for pathologic staining and quantitative analyses. RESULTS In InMyoFibs, TRPA1 showed the highest expression among TRP family members. In TNBS chronic colitis model mice, the extents of inflammation and fibrotic changes were more prominent in TRPA1-/- knockout than in wild-type mice. One-week enema administration of prednisolone suppressed fibrotic lesions in wild-type mice, but not in TRPA1 knockout mice. Steroids and pirfenidone induced Ca2+ influx in InMyoFibs, which was antagonized by the selective TRPA1 channel blocker HC-030031. Steroids and pirfenidone counteracted transforming growth factor-β1-induced expression of heat shock protein 47, type 1 collagen, and α-smooth muscle actin, and reduced Smad-2 phosphorylation and myocardin expression in InMyoFibs. In stenotic intestinal regions of CD patients, TRPA1 expression was increased significantly. TRPA1/heat shock protein 47 double-positive cells accumulated in the stenotic intestinal regions of both CD patients and TNBS-treated mice. CONCLUSIONS TRPA1, in addition to its anti-inflammatory actions, may protect against intestinal fibrosis, thus being a novel therapeutic target for highly incurable inflammatory/fibrotic disorders.
Collapse
Key Words
- AITC, allyl isothiocyanate
- CD, Crohn’s disease
- Crohn’s Disease
- EGTA, ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
- HSP47, heat shock protein 47
- InMyoFib, intestinal myofibroblast cell line
- Intestinal Fibrosis
- KO, knockout
- MT, Masson trichrome
- Myofibroblast
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- RT-PCR, reverse-transcription polymerase chain reaction
- TGF, transforming growth factor
- TNBS, trinitrobenzene sulfonic acid
- TNF, tumor necrosis factor
- TRP, transient receptor potential
- TRPA1, transient receptor potential ankyrin 1
- TRPC, transient receptor potential canonical
- Transient Receptor Potential Ankyrin 1
- WT, wild-type
- mRNA, messenger RNA
- sgRNA, single-guide RNA
- siRNA, small interfering RNA
- α-SMA, α smooth muscle actin
Collapse
Affiliation(s)
- Lin Hai Kurahara
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan,Correspondence Address correspondence to: Lin Hai Kurahara, PhD, Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan. fax: (81) 92-865-6032.Department of PhysiologyFaculty of MedicineFukuoka UniversityFukuoka814-0180Japan
| | - Keizo Hiraishi
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yaopeng Hu
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Miki Onitsuka
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Mayumi Doi
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan,Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Oita, Japan
| | - Kunihiko Aoyagi
- Department of Gastroenterology, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Hidetoshi Takedatsu
- Department of Gastroenterology and Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Daibo Kojima
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuwen Jian
- College of Letters and Science, University of California—Davis, Davis, California
| | - Ryuji Inoue
- Department of Physiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
97
|
de Santana Souza MT, Teixeira DF, de Oliveira JP, Oliveira AS, Quintans-Júnior LJ, Correa CB, Camargo EA. Protective effect of carvacrol on acetic acid-induced colitis. Biomed Pharmacother 2017; 96:313-319. [PMID: 29017143 DOI: 10.1016/j.biopha.2017.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 02/09/2023] Open
Abstract
The pharmacological therapy for inflammatory bowel diseases continues to be problematic, and requires new alternative options. In this study, we tested the hypothesis that carvacrol (CAR), a phenolic monoterpene with anti-inflammatory and antioxidant activities, can treat experimental colitis in mice. C57BL/6 mice (n=8/group) were subjected to intrarectal administration of acetic acid (5%) to induce colitis. Mice were pretreated with CAR (25, 50 or 100mg/kg, p.o.) every 12h for three days prior to the induction. Abdominal hyperalgesia, macroscopic and microscopic colon damage, myeloperoxidase (MPO) activity, tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels, oxidative stress markers, and antioxidant enzyme activities were evaluated. Pretreatment with all doses of CAR significantly decreased abdominal hyperalgesia and colon MPO activity and TNF-α and IL-1β levels. A reduction in macroscopic and microscopic damage (p<0.05) was observed at doses of 50 and 100mg/kg CAR. Pretreatment with CAR significantly reduced lipid peroxidation (for all doses) and increased sulfhydryl groups (at 100mg/kg). This effect was accompanied by a significant increase in catalase, superoxide dismutase, and glutathione peroxidase activities. These findings indicate that CAR protected mice from acetic acid-induced colitis by reducing inflammatory, nociceptive, and oxidative damages.
Collapse
Affiliation(s)
| | - Daiane Franco Teixeira
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Alan Santos Oliveira
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Cristiane Bani Correa
- Department of Morphology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | |
Collapse
|
98
|
Leinwand KL, Jones AA, Huang RH, Jedlicka P, Kao DJ, de Zoeten EF, Ghosh S, Moaddel R, Wehkamp J, Ostaff MJ, Bader J, Aherne CM, Collins CB. Cannabinoid Receptor-2 Ameliorates Inflammation in Murine Model of Crohn's Disease. J Crohns Colitis 2017; 11:1369-1380. [PMID: 28981653 PMCID: PMC5881726 DOI: 10.1093/ecco-jcc/jjx096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Cannabinoid receptor stimulation may have positive symptomatic effects on inflammatory bowel disease [IBD] patients through analgesic and anti-inflammatory effects. The cannabinoid 2 receptor [CB2R] is expressed primarily on immune cells, including CD4+ T cells, and is induced by active inflammation in both humans and mice. We therefore investigated the effect of targeting CB2R in a preclinical IBD model. METHODS Employing a chronic ileitis model [TNFΔARE/+ mice], we assessed expression of the CB2R receptor in ileal tissue and on CD4+ T cells and evaluated the effect of stimulation with CB2R-selective ligand GP-1a both in vitro and in vivo. Additionally, we compared cannabinoid receptor expression in the ilea and colons of healthy human controls with that of Crohn's disease patients. RESULTS Ileal expression of CB2R and the endocannabinoid anandamide [AEA] was increased in actively inflamed TNF∆ARE/+ mice compared with controls. CB2R mRNA was preferentially induced on regulatory T cells [Tregs] compared with T effector cells, approximately 2.4-fold in wild-type [WT] and 11-fold in TNF∆ARE/+ mice. Furthermore, GP-1a enhanced Treg suppressive function with a concomitant increase in IL-10 secretion. GP-1a attenuated murine ileitis, as demonstrated by improved histological scoring and decreased inflammatory cytokine expression. Lastly, CB2R is downregulated in both chronically inflamed TNF∆ARE/+ mice and in IBD patients. CONCLUSIONS In summary, the endocannabinoid system is induced in murine ileitis but is downregulated in chronic murine and human intestinal inflammation, and CB2R activation attenuates murine ileitis, establishing an anti-inflammatory role of the endocannabinoid system.
Collapse
Affiliation(s)
- Kristina L Leinwand
- Children’s Hospital Colorado, Digestive Health Institute, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashleigh A Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rick H Huang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paul Jedlicka
- Children’s Hospital Colorado, Department of Pathology, Aurora, CO, USA,Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel J Kao
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edwin F de Zoeten
- Children’s Hospital Colorado, Digestive Health Institute, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Soumita Ghosh
- National Institutes of Health, National Institute on Aging, Bethesda, MD, USA
| | - Ruin Moaddel
- National Institutes of Health, National Institute on Aging, Bethesda, MD, USA
| | - Jan Wehkamp
- Department of Internal Medicine I, Medical University of Tübingen, Tübingen, Germany
| | - Maureen J Ostaff
- Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jutta Bader
- Department of Internal Medicine I, Medical University of Tübingen, Tübingen, Germany
| | - Carol M Aherne
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Colm B Collins
- Children’s Hospital Colorado, Digestive Health Institute, Aurora, CO, USA,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA,Corresponding author: Colm B. Collins, PhD, 12700 E 19th Ave B146 Rm10440, Aurora, CO 80045, USA. Tel.: [303]724-7242; fax: [303] 724-7241;
| |
Collapse
|
99
|
Clapp PW, Pawlak EA, Lackey JT, Keating JE, Reeber SL, Glish GL, Jaspers I. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am J Physiol Lung Cell Mol Physiol 2017; 313:L278-L292. [PMID: 28495856 PMCID: PMC5582929 DOI: 10.1152/ajplung.00452.2016] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 05/04/2017] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
Innate immune cells of the respiratory tract are the first line of defense against pathogenic and environmental insults. Failure of these cells to perform their immune functions leaves the host susceptible to infection and may contribute to impaired resolution of inflammation. While combustible tobacco cigarettes have been shown to suppress respiratory immune cell function, the effects of flavored electronic cigarette liquids (e-liquids) and individual flavoring agents on respiratory immune cell responses are unknown. We investigated the effects of seven flavored nicotine-free e-liquids on primary human alveolar macrophages, neutrophils, and natural killer (NK) cells. Cells were challenged with a range of e-liquid dilutions and assayed for their functional responses to pathogenic stimuli. End points included phagocytic capacity (neutrophils and macrophages), neutrophil extracellular trap formation, proinflammatory cytokine production, and cell-mediated cytotoxic response (NK cells). E-liquids were then analyzed via mass spectrometry to identify individual flavoring components. Three cinnamaldehyde-containing e-liquids exhibited dose-dependent broadly immunosuppressive effects. Quantitative mass spectrometry was used to determine concentrations of cinnamaldehyde in each of the three e-liquids, and cells were subsequently challenged with a range of cinnamaldehyde concentrations. Cinnamaldehyde alone recapitulated the impaired function observed with e-liquid exposures, and cinnamaldehyde-induced suppression of macrophage phagocytosis was reversed by addition of the small-molecule reducing agent 1,4-dithiothreitol. We conclude that cinnamaldehyde has the potential to impair respiratory immune cell function, illustrating an immediate need for further toxicological evaluation of chemical flavoring agents to inform regulation governing their use in e-liquid formulations.
Collapse
Affiliation(s)
- Phillip W Clapp
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - Erica A Pawlak
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - Justin T Lackey
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - James E Keating
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Steven L Reeber
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Gary L Glish
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina;
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| |
Collapse
|
100
|
Lai NY, Mills K, Chiu IM. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J Intern Med 2017; 282:5-23. [PMID: 28155242 PMCID: PMC5474171 DOI: 10.1111/joim.12591] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sensory neurons in the gastrointestinal tract have multifaceted roles in maintaining homeostasis, detecting danger and initiating protective responses. The gastrointestinal tract is innervated by three types of sensory neurons: dorsal root ganglia, nodose/jugular ganglia and intrinsic primary afferent neurons. Here, we examine how these distinct sensory neurons and their signal transducers participate in regulating gastrointestinal inflammation and host defence. Sensory neurons are equipped with molecular sensors that enable neuronal detection of diverse environmental signals including thermal and mechanical stimuli, inflammatory mediators and tissue damage. Emerging evidence shows that sensory neurons participate in host-microbe interactions. Sensory neurons are able to detect pathogenic and commensal bacteria through specific metabolites, cell-wall components, and toxins. Here, we review recent work on the mechanisms of bacterial detection by distinct subtypes of gut-innervating sensory neurons. Upon activation, sensory neurons communicate to the immune system to modulate tissue inflammation through antidromic signalling and efferent neural circuits. We discuss how this neuro-immune regulation is orchestrated through transient receptor potential ion channels and sensory neuropeptides including substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Recent studies also highlight a role for sensory neurons in regulating host defence against enteric bacterial pathogens including Salmonella typhimurium, Citrobacter rodentium and enterotoxigenic Escherichia coli. Understanding how sensory neurons respond to gastrointestinal flora and communicate with immune cells to regulate host defence enhances our knowledge of host physiology and may form the basis for new approaches to treat gastrointestinal diseases.
Collapse
Affiliation(s)
- N Y Lai
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - K Mills
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - I M Chiu
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|