51
|
Kotla NG, Isa ILM, Rasala S, Demir S, Singh R, Baby BV, Swamy SK, Dockery P, Jala VR, Rochev Y, Pandit A. Modulation of Gut Barrier Functions in Ulcerative Colitis by Hyaluronic Acid System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103189. [PMID: 34761543 PMCID: PMC8811821 DOI: 10.1002/advs.202103189] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 05/10/2023]
Abstract
The active stages of intestinal inflammation and the pathogenesis of ulcerative colitis are associated with superficial mucosal damage and intermittent wounding that leads to epithelial barrier defects and increased permeability. The standard therapeutic interventions for colitis have focused mainly on maintaining the remission levels of the disease. Nonetheless, such treatment strategies (using anti-inflammatory, immunomodulatory agents) do not address colitis' root cause, especially the mucosal damage and dysregulated intestinal barrier functions. Restoration of barrier functionality by mucosal healing or physical barrier protecting strategies shall be considered as an initial event in the disease suppression and progression. Herein, a biphasic hyaluronan (HA) enema suspension, naïve-HA systems that protect the dysregulated gut epithelium by decreasing the inflammation, permeability, and helping in maintaining the epithelial barrier integrity in the dextran sodium sulfate-induced colitis mice model is reported. Furthermore, HA-based system modulates intestinal epithelial junctional proteins and regulatory signaling pathways, resulting in attenuation of inflammation and mucosal protection. The results suggest that HA-based system can be delivered as an enema to act as a barrier protecting system for managing distal colonic inflammatory diseases, including colitis.
Collapse
Affiliation(s)
- Niranjan G. Kotla
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Isma Liza Mohd Isa
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
- Present address:
Department of AnatomyFaculty of MedicineUniversiti KebangsaanMalaysia
| | - Swetha Rasala
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Secil Demir
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Rajbir Singh
- Department of Microbiology and ImmunologyJames Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Becca V. Baby
- Department of Microbiology and ImmunologyJames Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Samantha K. Swamy
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Peter Dockery
- Department of AnatomyNational University of IrelandGalwayH91 TK33Ireland
| | - Venkatakrishna R. Jala
- Department of Microbiology and ImmunologyJames Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| |
Collapse
|
52
|
Kocot AM, Wróblewska B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Li Y, Tao Y, Xu J, He Y, Zhang W, Jiang Z, He Y, Liu H, Chen M, Zhang W, Xing Z. Hyperoxia Provokes Time- and Dose-Dependent Gut Injury and Endotoxemia and Alters Gut Microbiome and Transcriptome in Mice. Front Med (Lausanne) 2021; 8:732039. [PMID: 34869425 PMCID: PMC8635731 DOI: 10.3389/fmed.2021.732039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Oxygen therapy usually exposes patients to hyperoxia, which induces injuries in the lung, the heart, and the brain. The gut and its microbiome play key roles in critical illnesses, but the impact of hyperoxia on the gut and its microbiome remains not very clear. We clarified the time- and dose-dependent effects of hyperoxia on the gut and investigated oxygen-induced gut dysbiosis and explored the underlying mechanism of gut injury by transcriptome analysis. Methods: The C57BL/6 mice were randomly divided into the control group and nine different oxygen groups exposed to hyperoxia with an inspired O2 fraction (FiO2) of 40, 60, and 80% for 24, 72, and 168 h (7 days), respectively. Intestinal histopathological and biochemical analyses were performed to explore the oxygen-induced gut injury and inflammatory response. Another experiment was performed to explore the impact of hyperoxia on the gut microbiome by exposing the mice to hyperoxia (FiO2 80%) for 7 days, with the 16S rRNA sequencing method. We prolonged the exposure (up to 14 days) of the mice to hyperoxia (FiO2 80%), and gut transcriptome analysis and western blotting were carried out to obtain differentially expressed genes (DEGs) and signaling pathways related to innate immunity and cell death. Results: Inhaled oxygen induced time- and dose-dependent gut histopathological impairment characterized by mucosal atrophy (e.g., villus shortening: 80% of FiO2 for 24 h: P = 0.008) and enterocyte death (e.g., apoptosis: 40% of FiO2 for 7 days: P = 0.01). Administered time- and dose-dependent oxygen led to intestinal barrier dysfunction (e.g., endotoxemia: 80% of FiO2 for 72 h: P = 0.002) and potentiated gut inflammation by increasing proinflammatory cytokines [e.g., tumor necrosis factor alpha (TNF-α): 40% of FiO2 for 24 h: P = 0.003)] and reducing anti-inflammatory cytokines [Interleukin 10 (IL-10): 80% of FiO2 for 72 h: P < 0.0001]. Hyperoxia induced gut dysbiosis with an expansion of oxygen-tolerant bacteria (e.g., Enterobacteriaceae). Gut transcriptome analysis identified 1,747 DEGs and 171 signaling pathways and immunoblotting verified TLR-4, NOD-like receptor, and apoptosis signaling pathways were activated in oxygen-induced gut injury. Conclusions: Acute hyperoxia rapidly provokes gut injury in a time- and dose-dependent manner and induces gut dysbiosis, and an innate immune response is involved in an oxygen-induced gut injury.
Collapse
Affiliation(s)
- Yunhang Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanfa Tao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wen Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhigang Jiang
- Department of Statistics, Zunyi Medical University, Zunyi, China
| | - Ying He
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Houmei Liu
- Department of Endodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhouxiong Xing
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
54
|
Criss ZK, Bhasin N, Di Rienzi SC, Rajan A, Deans-Fielder K, Swaminathan G, Kamyabi N, Zeng XL, Doddapaneni H, Menon VK, Chakravarti D, Estrella C, Yu X, Patil K, Petrosino JF, Fleet JC, Verzi MP, Christakos S, Helmrath MA, Arimura S, DePinho RA, Britton RA, Maresso AW, Grande-Allen KJ, Blutt SE, Crawford SE, Estes MK, Ramani S, Shroyer NF. Drivers of transcriptional variance in human intestinal epithelial organoids. Physiol Genomics 2021; 53:486-508. [PMID: 34612061 DOI: 10.1152/physiolgenomics.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.
Collapse
Affiliation(s)
- Zachary K Criss
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nobel Bhasin
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sara C Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kali Deans-Fielder
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Vipin K Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clarissa Estrella
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaomin Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - James C Fleet
- Department of Nutrition Sciences, The University of Texas, Austin, Texas
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sumimasa Arimura
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
55
|
Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Int J Mol Sci 2021; 22:11365. [PMID: 34768795 PMCID: PMC8584103 DOI: 10.3390/ijms222111365] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn's disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.
Collapse
Affiliation(s)
- Jelena Popov
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Valentina Caputi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nandini Nandeesha
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | | | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
56
|
Parsons MJ, Tammela T, Dow LE. WNT as a Driver and Dependency in Cancer. Cancer Discov 2021; 11:2413-2429. [PMID: 34518209 DOI: 10.1158/2159-8290.cd-21-0190] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
The WNT signaling pathway is a critical regulator of development and adult tissue homeostasis and becomes dysregulated in many cancer types. Although hyperactivation of WNT signaling is common, the type and frequency of genetic WNT pathway alterations can vary dramatically between different cancers, highlighting possible cancer-specific mechanisms for WNT-driven disease. In this review, we discuss how WNT pathway disruption contributes to tumorigenesis in different organs and how WNT affects the tumor cell and immune microenvironment. Finally, we describe recent and ongoing efforts to target oncogenic WNT signaling as a therapeutic strategy. SIGNIFICANCE: WNT signaling is a fundamental regulator of tissue homeostasis and oncogenic driver in many cancer types. In this review, we highlight recent advances in our understanding of WNT signaling in cancer, particularly the complexities of WNT activation in distinct cancer types, its role in immune evasion, and the challenge of targeting the WNT pathway as a therapeutic strategy.
Collapse
Affiliation(s)
- Marie J Parsons
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York. .,Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
57
|
Kim JT, Napier DL, Kim J, Li C, Lee EY, Weiss HL, Wang Q, Evers BM. Ketogenesis alleviates TNFα-induced apoptosis and inflammatory responses in intestinal cells. Free Radic Biol Med 2021; 172:90-100. [PMID: 34087430 PMCID: PMC8355065 DOI: 10.1016/j.freeradbiomed.2021.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
The disturbance of strictly regulated self-regeneration in mammalian intestinal epithelium is associated with various intestinal disorders, particularly inflammatory bowel diseases (IBDs). TNFα, which plays a critical role in the pathogenesis of IBDs, has been reported to inhibit production of ketone bodies such as β-hydroxybutyrate (βHB). However, the role of ketogenesis in the TNFα-mediated pathological process is not entirely known. Here, we showed the regulation and role of HMGCS2, the rate-limiting enzyme of ketogenesis, in TNFα-induced apoptotic and inflammatory responses in intestinal epithelial cells. Treatment with TNFα dose-dependently decreased protein and mRNA expression of HMGCS2 and its product, βHB production in human colon cancer cell lines HT29 and Caco2 cells and mouse small intestinal organoids. Moreover, the repressed level of HMGCS2 protein was found in intestinal epithelium of IBD patients with Crohn's disease and ulcerative colitis as compared with normal tissues. Furthermore, knockdown of HMGCS2 enhanced and in contrast, HMGCS2 overexpression attenuated, the TNFα-induced apoptosis and expression of pro-inflammatory chemokines (CXCL1-3) in HT29, Caco2 cells and DLD1 cells, respectively. Treatment with βHB or rosiglitazone, an agonist of PPARγ, which increases ketogenesis, attenuated TNFα-induced apoptosis in the intestinal epithelial cells. Finally, HMGCS2 knockdown enhanced TNFα-induced reactive oxygen species (ROS) generation. In addition, hydrogen peroxide, the major ROS contributing to intestine injury, decreased HMGCS2 expression and βHB production in the intestinal cells and mouse organoids. Our findings demonstrate that increased ketogenesis attenuates TNFα-induced apoptosis and inflammation in intestinal cells, suggesting a protective role for ketogenesis in TNFα-induced intestinal pathologies.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | | | - Jinhwan Kim
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Chang Li
- Markey Cancer Center, Lexington, KY, 40536, USA
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery, Lexington, KY, 40536, USA
| | | | - Qingding Wang
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, 40536, USA; Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
58
|
Azizian-Farsani F, Osuchowski M, Abedpoor N, Forootan FS, Derakhshan M, Nasr-Esfahani MH, Sheikhha MH, Ghaedi K. Anti-inflammatory and -apoptotic effects of a long-term herbal extract treatment on DSS-induced colitis in mice fed with high AGEs-fat diet. Nutr Metab (Lond) 2021; 18:77. [PMID: 34380504 PMCID: PMC8359107 DOI: 10.1186/s12986-021-00603-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023] Open
Abstract
Background Obesity is associated with many comorbidities including inflammatory bowel disease (IBD). We investigated prophylactic effects of an herbal extract (HE) on the DSS-induced colitis mice challenged with high AGEs-fat diet 60% (HFD). Methods Six-week-old C57BL/6 male mice were fed with either HFD (8 groups, 6 mice in each group), or normal diet (ND) (8 groups, 6 mice in each group). After 6 weeks, animals received HE (combination of turmeric, ginger, boswellia and cat’s claw extract) for 7 weeks in three doses (high dose (0.6 mg/g); low dose (0.15 mg/g) and mid dose (0.3 mg/g)). Next, mice were subjected to 2.5% DSS in drinking water. Control mice received ND and instead of HE and DSS they received distilled water. Obesity index markers were determined, H&E staining and TUNEL assay evaluated apoptosis. Colonic expressions of IL-6, RAGE, AGER1, Sirt1, Bax, Bcl2, ZO-1 and P53 were determined.
Results HE ameliorated colitis in HFD mice by reducing colonic myeloperoxidase activity (by 2.3-fold), macrophage accumulation (by 2.6-fold) and mRNA expression of IL-6 (by 2.3-fold) in HFD mice. Moreover, HE restored ZO-1 (by 2.7-fold), prevented apoptosis and maintained immune homeostasis. HE reduced activation of NF-κB protein (by 1.3-fold) through decreasing RAGE (by 1.93-fold) and up-regulation of Sirt1 (by 7.71-fold) and prevented down-regulation of DDOST (by 6.6-fold) in HFD mice. Conclusions HE ameliorated colitis in prophylactic in HFD mice and it was, at least partly, due to the restoration of the gut integrity, suppression of inflammation and apoptosis via modulation of colonic Sirt1, RAGE and DDOST signaling. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00603-x.
Collapse
Affiliation(s)
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology in AUVA Research Center, Vienna, Austria.
| | - Navid Abedpoor
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Royan, Salman Streets, 816513-1378, Isfahan, Iran
| | - Farzad Seyed Forootan
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Royan, Salman Streets, 816513-1378, Isfahan, Iran.,Legal Medicine research Center, Legal Medicine Organization, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Royan, Salman Streets, 816513-1378, Isfahan, Iran.
| | - Mohammad Hasan Sheikhha
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441, Isfahan, Iran.
| |
Collapse
|
59
|
Zhang Y, Jiang D, Jin Y, Jia H, Yang Y, Kim IH, Dai Z, Zhang J, Ren F, Wu Z. Glycine Attenuates Citrobacter rodentium-Induced Colitis by Regulating ATF6-Mediated Endoplasmic Reticulum Stress in Mice. Mol Nutr Food Res 2021; 65:e2001065. [PMID: 34075695 DOI: 10.1002/mnfr.202001065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/17/2021] [Indexed: 12/20/2022]
Abstract
SCOPE Inflammatory bowel disease (IBD) is an inflammatory gastrointestinal disorder in which endoplasmic reticulum (ER) stress and dysbiosis of the intestinal microbiota are implicated. Glycine supplementation is reported to reduce inflammatory responses in experimental colitis. However, the underlying mechanisms responsible for the beneficial effects remain unclear. METHODS AND RESULTS Female C57BL/6 mice are orally administered with glycine (3.5 or 5.2 g kg-1 body weight) for 14 continuous days. On day 8 post-glycine supplementation, the mice are orally inoculated with 2 × 109 CFU Citrobacter rodentium (C. rodentium). The results show that glycine alleviates C. rodentium-induced body weight loss, increased disease activity index and spleen weight, colon length shortening, and colonic hyperplasia. Glycine suppresses the activation and infiltration of inflammatory cells, and secretion of pro-inflammatory cytokines in the colon tissues. The apoptosis of colon epithelial cells is also abrogated by glycine, which is associated with the inactivation of activating transcription factor 6α (ATF6α)-C/EBP homologous protein (CHOP) signaling. In addition, glycine administration increases α diversity, restores β diversity, and abolishes the reduction in Lactobacillus, Bifidobacterium, Alistipes, Turicibacter, and Alloprevotella in the colon. CONCLUSIONS Glycine supplementation is a nutritional strategy that may ameliorate C. rodentium-induced colitis by regulating ATF6α-CHOP-mediated ER stress and enhancing the abundance of Lactobacillus.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Da Jiang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, 330-714, South Korea
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
60
|
Valon L, Davidović A, Levillayer F, Villars A, Chouly M, Cerqueira-Campos F, Levayer R. Robustness of epithelial sealing is an emerging property of local ERK feedback driven by cell elimination. Dev Cell 2021; 56:1700-1711.e8. [PMID: 34081909 PMCID: PMC8221813 DOI: 10.1016/j.devcel.2021.05.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/05/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022]
Abstract
What regulates the spatiotemporal distribution of cell elimination in tissues remains largely unknown. This is particularly relevant for epithelia with high rates of cell elimination where simultaneous death of neighboring cells could impair epithelial sealing. Here, using the Drosophila pupal notum (a single-layer epithelium) and a new optogenetic tool to trigger caspase activation and cell extrusion, we first showed that death of clusters of at least three cells impaired epithelial sealing; yet, such clusters were almost never observed in vivo. Accordingly, statistical analysis and simulations of cell death distribution highlighted a transient and local protective phase occurring near every cell death. This protection is driven by a transient activation of ERK in cells neighboring extruding cells, which inhibits caspase activation and prevents elimination of cells in clusters. This suggests that the robustness of epithelia with high rates of cell elimination is an emerging property of local ERK feedback.
Collapse
Affiliation(s)
- Léo Valon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| | - Anđela Davidović
- Department of Computational Biology, Institut Pasteur, CNRS USR 3756, 28 rue du Dr. Roux, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| | - Alexis Villars
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France; Sorbonne Université, Collège Doctoral, F75005 Paris, France
| | - Mathilde Chouly
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| | - Fabiana Cerqueira-Campos
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
61
|
Levine M, Lohinai ZM. Resolving the Contradictory Functions of Lysine Decarboxylase and Butyrate in Periodontal and Intestinal Diseases. J Clin Med 2021; 10:jcm10112360. [PMID: 34072136 PMCID: PMC8198195 DOI: 10.3390/jcm10112360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease is a common, bacterially mediated health problem worldwide. Mastication (chewing) repeatedly traumatizes the gingiva and periodontium, causing traces of inflammatory exudate, gingival crevicular fluid (GCF), to appear in crevices between the teeth and gingiva. Inadequate tooth cleaning causes a dentally adherent microbial biofilm composed of commensal salivary bacteria to appear around these crevices where many bacteria grow better on GCF than in saliva. We reported that lysine decarboxylase (Ldc) from Eikenella corrodens depletes the GCF of lysine by converting it to cadaverine and carbon dioxide. Lysine is an amino acid essential for the integrity and continuous renewal of dentally attached epithelium acting as a barrier to microbial products. Unless removed regularly by oral hygiene, bacterial products invade the lysine-deprived dental attachment where they stimulate inflammation that enhances GCF exudation. Cadaverine increases and supports the development of a butyrate-producing microbiome that utilizes the increased GCF substrates to slowly destroy the periodontium (dysbiosis). A long-standing paradox is that acid-induced Ldc and butyrate production support a commensal (probiotic) microbiome in the intestine. Here, we describe how the different physiologies of the respective tissues explain how the different Ldc and butyrate functions impact the progression and control of these two chronic diseases.
Collapse
Affiliation(s)
- Martin Levine
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| | - Zsolt M. Lohinai
- Department of Conservative Dentistry, Semmelweis University, H-1088 Budapest, Hungary;
| |
Collapse
|
62
|
Pinocembrin alleviates ulcerative colitis in mice via regulating gut microbiota, suppressing TLR4/MD2/NF-κB pathway and promoting intestinal barrier. Biosci Rep 2021; 40:225839. [PMID: 32687156 PMCID: PMC7391130 DOI: 10.1042/bsr20200986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Pinocembrin, a plant-derived flavonoid, has a variety of pharmacological activities, including anti-infection, anti-cancer, anti-inflammation, cardiovascular protection, etc. However, the mechanism of pinocembrin on the anti-colitis efficacy remains elusive and needs further investigation. Here, we reported that pinocembrin eased the severity of dextran sulfate sodium (DSS)-induced colitis in mice by suppressing the abnormal activation of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signal pathway in vivo. In addition, the gut microbiota was disordered in DSS colitis mice, which was associated with a significant decrease in microbiota diversity and a great shift in bacteria profiles; however, pinocembrin treatment improved the imbalance of gut microbiota and made it similar to that in normal mice. On the other hand, in vitro, pinocembrin down-regulated the TLR4/NF-κB signaling cascades in lipopolysaccharide (LPS)-stimulated macrophages. At the upstream level, pinocembrin competitively inhibited the binding of LPS to myeloid differentiation protein 2 (MD2), thereby blocking the formation of receptor multimer TLR4/MD2·LPS. Furthermore, pinocembrin dose-dependently promoted the expression of tight junction proteins (ZO-1, Claudin-1, Occludin and JAM-A) in Caco-2 cells. In conclusion, our work presented evidence that pinocembrin attenuated DSS-induced colitis in mouse, at least in part, via regulating intestinal microbiota, inhibiting the over-activation of TLR4/MD2/NF-κB signaling pathway, and improving the barriers of intestine.
Collapse
|
63
|
Adverse Effects of Heat Stress on the Intestinal Integrity and Function of Pigs and the Mitigation Capacity of Dietary Antioxidants: A Review. Animals (Basel) 2021; 11:ani11041135. [PMID: 33921090 PMCID: PMC8071411 DOI: 10.3390/ani11041135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) significantly affects the performance of pigs by its induced stressors such as inflammation, hypoxia and oxidative stress (OS), which mightily strain the intestinal integrity and function of pigs. As heat stress progresses, several mechanisms in the intestinal epithelium involved in the absorption of nutrients and its protective functions are altered. Changes in these mechanisms are mainly driven by cellular oxidative stress, which promotes disruption of intestinal homeostasis, leading to intestinal permeability, emphasizing intestinal histology and morphology with little possibility of recovering even after exposure to HS. Identification and understanding of these altered mechanisms are crucial for providing appropriate intervention strategies. Therefore, it is this papers' objective to review the important components for intestinal integrity that are negatively affected by HS and its induced stressors. With due consideration to the amelioration of such effects through nutritional intervention, this work will also look into the capability of dietary antioxidants in mitigating such adverse effects and maintaining the intestine's integrity and function upon the pigs' exposure to high environmental temperature.
Collapse
|
64
|
Tantengco OAG, Richardson LS, Medina PMB, Han A, Menon R. Organ-on-chip of the cervical epithelial layer: A platform to study normal and pathological cellular remodeling of the cervix. FASEB J 2021; 35:e21463. [PMID: 33689188 PMCID: PMC8193817 DOI: 10.1096/fj.202002590rrr] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/06/2023]
Abstract
Damage to the cervical epithelial layer due to infection and inflammation is associated with preterm birth. However, the individual and/or collective roles of cervical epithelial layers in maintaining cervical integrity remain unclear during infection/inflammation. To determine the intercellular interactions, we developed an organ-on-chip of the cervical epithelial layer (CE-OOC) composed of two co-culture chambers connected by microchannels, recapitulating the ectocervical and endocervical epithelial layers. Further, we tested the interactions between cells from each distinct region and their contributions in maintaining cervical integrity in response to LPS and TNFα stimulations. The co-culture of ectocervical and endocervical cells facilitated cellular migration of both epithelial cells inside the microchannels. Compared to untreated controls, both LPS and TNFα increased apoptosis, necrosis, and senescence as well as increased pro-inflammatory cytokine productions by cervical epithelial cells. In summary, the CE-OOC established an in vitro model that can recapitulate the ectocervical and the endocervical epithelial regions of the cervix. The established CE-OOC may become a powerful tool in obstetrics and gynecology research such as in studying cervical remodeling during pregnancy and parturition and the dynamics of cervical epithelial cells in benign and malignant pathology in the cervix.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S. Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Paul Mark B. Medina
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
65
|
Kopiasz Ł, Dziendzikowska K, Gajewska M, Oczkowski M, Majchrzak-Kuligowska K, Królikowski T, Gromadzka-Ostrowska J. Effects of Dietary Oat Beta-Glucans on Colon Apoptosis and Autophagy through TLRs and Dectin-1 Signaling Pathways-Crohn's Disease Model Study. Nutrients 2021; 13:nu13020321. [PMID: 33499397 PMCID: PMC7911679 DOI: 10.3390/nu13020321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Crohn’s disease (CD) is characterized by chronic inflammation of the gastrointestinal tract with alternating periods of exacerbation and remission. The aim of this study was to determine the time-dependent effects of dietary oat beta-glucans on colon apoptosis and autophagy in the CD rat model. Methods: A total of 150 Sprague–Dawley rats were divided into two main groups: healthy control (H) and a TNBS (2,4,6-trinitrobenzosulfonic acid)-induced colitis (C) group, both including subgroups fed with feed without beta-glucans (βG−) or feed supplemented with low- (βGl) or high-molar-mass oat beta-glucans (βGh) for 3, 7, or 21 days. The expression of autophagy (LC3B) and apoptosis (Caspase-3) markers, as well as Toll-like (TLRs) and Dectin-1 receptors, in the colon epithelial cells, was determined using immunohistochemistry and Western blot. Results: The results showed that in rats with colitis, after 3 days of induction of inflammation, the expression of Caspase-3 and LC3B in intestinal epithelial cells did not change, while that of TLR 4 and Dectin-1 decreased. Beta-glucan supplementation caused an increase in the expression of TLR 5 and Dectin-1 with no changes in the expression of Caspase-3 and LC3B. After 7 days, a high expression of Caspase-3 was observed in the colitis-induced animals without any changes in the expression of LC3B and TLRs, and simultaneously, a decrease in Dectin-1 expression was observed. The consumption of feed with βGl or βGh resulted in a decrease in Caspase-3 expression and an increase in TLR 5 expression in the CβGl group, with no change in the expression of LC3B and TLR 4. After 21 days, the expression of Caspase-3 and TLRs was not changed by colitis, while that of LC3B and Dectin-1 was decreased. Feed supplementation with βGh resulted in an increase in the expression of both Caspase-3 and LC3B, while the consumption of feed with βGh and βGl increased Dectin-1 expression. However, regardless of the type of nutritional intervention, the expression of TLRs did not change after 21 days. Conclusions: Dietary intake of βGl and βGh significantly reduced colitis by time-dependent modification of autophagy and apoptosis, with βGI exhibiting a stronger effect on apoptosis and βGh on autophagy. The mechanism of this action may be based on the activation of TLRs and Dectin-1 receptor and depends on the period of exacerbation or remission of CD.
Collapse
Affiliation(s)
- Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (Ł.K.); (M.O.); (T.K.); (J.G.-O.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (Ł.K.); (M.O.); (T.K.); (J.G.-O.)
- Correspondence: ; Tel.: +48-2259-37-033
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.G.); (K.M.-K.)
| | - Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (Ł.K.); (M.O.); (T.K.); (J.G.-O.)
| | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.G.); (K.M.-K.)
| | - Tomasz Królikowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (Ł.K.); (M.O.); (T.K.); (J.G.-O.)
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland; (Ł.K.); (M.O.); (T.K.); (J.G.-O.)
| |
Collapse
|
66
|
Iablokov SN, Klimenko NS, Efimova DA, Shashkova T, Novichkov PS, Rodionov DA, Tyakht AV. Metabolic Phenotypes as Potential Biomarkers for Linking Gut Microbiome With Inflammatory Bowel Diseases. Front Mol Biosci 2021; 7:603740. [PMID: 33537340 PMCID: PMC7848230 DOI: 10.3389/fmolb.2020.603740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome is of utmost importance to human health. While a healthy microbiome can be represented by a variety of structures, its functional capacity appears to be more important. Gene content of the community can be assessed by “shotgun” metagenomics, but this approach is still too expensive. High-throughput amplicon-based surveys are a method of choice for large-scale surveys of links between microbiome, diseases, and diet, but the algorithms for predicting functional composition need to be improved to achieve good precision. Here we show how feature engineering based on microbial phenotypes, an advanced method for functional prediction from 16S rRNA sequencing data, improves identification of alterations of the gut microbiome linked to the disease. We processed a large collection of published gut microbial datasets of inflammatory bowel disease (IBD) patients to derive their community phenotype indices (CPI)—high-precision semiquantitative profiles aggregating metabolic potential of the community members based on genome-wide metabolic reconstructions. The list of selected metabolic functions included metabolism of short-chain fatty acids, vitamins, and carbohydrates. The machine-learning approach based on microbial phenotypes allows us to distinguish the microbiome profiles of healthy controls from patients with Crohn's disease and from ones with ulcerative colitis. The classifiers were comparable in quality to conventional taxonomy-based classifiers but provided new findings giving insights into possible mechanisms of pathogenesis. Feature-wise partial dependence plot (PDP) analysis of contribution to the classification result revealed a diversity of patterns. These observations suggest a constructive basis for defining functional homeostasis of the healthy human gut microbiome. The developed features are promising interpretable candidate biomarkers for assessing microbiome contribution to disease risk for the purposes of personalized medicine and clinical trials.
Collapse
Affiliation(s)
- Stanislav N Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
| | - Natalia S Klimenko
- Atlas Biomed Group-Knomics LLC, London, United Kingdom.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Tatiana Shashkova
- Atlas Biomed Group-Knomics LLC, London, United Kingdom.,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Pavel S Novichkov
- PhenoBiome Inc., San Francisco, CA, United States.,Lawrence Berkeley National Lab, Berkeley, CA, United States
| | - Dmitry A Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alexander V Tyakht
- Atlas Biomed Group-Knomics LLC, London, United Kingdom.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
67
|
Her JY, Lee Y, Kim SJ, Heo G, Choo J, Kim Y, Howe C, Rhee SH, Yu HS, Chung HY, Pothoulakis C, Im E. Blockage of protease-activated receptor 2 exacerbates inflammation in high-fat environment partly through autophagy inhibition. Am J Physiol Gastrointest Liver Physiol 2021; 320:G30-G42. [PMID: 33146548 DOI: 10.1152/ajpgi.00203.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protease-activated receptor 2 (PAR2) regulates inflammatory responses and lipid metabolism. However, its precise role in colitis remains unclear. In this study, we aimed to investigate the function of PAR2 in high-fat diet-fed mice with colitis and its potential role in autophagy. PAR2+/+ and PAR2-/- mice were fed a high-fat diet (HFD) for 7 days before colitis induction with dextran sodium sulfate. Deletion of PAR2 and an HFD significantly exacerbated colitis, as shown by increased mortality, body weight loss, diarrhea or bloody stools, colon length shortening, and mucosal damage. Proinflammatory cytokine levels were elevated in HFD-fed PAR2-/- mice and in cells treated with the PAR2 antagonist GB83, palmitic acid (PA), and a cytokine cocktail (CC). Damaging effects of PAR2 blockage were associated with autophagy regulation by reducing the levels of YAP1, SIRT1, PGC-1α, Atg5, and LC3A/B-I/II. In addition, mitochondrial dysfunction was demonstrated only in cells treated with GB83, PA, and CC. Reduced cell viability and greater induction of apoptosis, as shown by increased levels of cleaved caspase-9, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP), were observed in cells treated with GB83, PA, and CC but not in those treated with only PA and CC. Collectively, protective effects of PAR2 were elucidated during inflammation accompanied by a high-fat environment by promoting autophagy and inhibiting apoptosis, suggesting PAR2 as a therapeutic target for inflammatory bowel disease co-occurring with metabolic syndrome.NEW & NOTEWORTHY Deletion of PAR2 with high-fat diet feeding exacerbates colitis in a murine colitis model. Proinflammatory effects of PAR2 blockage in a high-fat environment were associated with an altered balance between autophagy and apoptosis. Increased colonic levels of PAR2 represent as a therapeutic strategy for IBD co-occurring with metabolic syndrome.
Collapse
Affiliation(s)
- Ji Yun Her
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunna Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Su Jin Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jieun Choo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yuju Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Cody Howe
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
68
|
Liu H, Li T, Zhong S, Yu M, Huang W. Intestinal epithelial cells related lncRNA and mRNA expression profiles in dextran sulphate sodium-induced colitis. J Cell Mol Med 2021; 25:1060-1073. [PMID: 33300279 PMCID: PMC7812259 DOI: 10.1111/jcmm.16174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
Intestinal epithelial barrier damage caused by intestinal epithelial cells (IECs) dysfunction plays a crucial role in the pathogenesis and development of inflammatory bowel disease (IBD). Recently, some studies have suggested the emerging role of long non-coding RNAs (lncRNAs) in IBD. The aim of this study was to reveal lncRNAs and mRNA expression profiles in IECs from a mouse model of colitis and to expand our understanding in the intestinal epithelial barrier regulation. IECs from the colons of wild-type mice and dextran sulphate sodium (DSS)-induced mice were isolated for high-throughput RNA-sequencing. A total of 254 up-regulated and 1013 down-regulated mRNAs and 542 up-regulated and 766 down-regulated lncRNAs were detected in the DSS group compared with the Control group. Four mRNAs and six lncRNAs were validated by real-time quantitative PCR. Function analysis showed that dysregulated mRNAs participated in TLR7 signalling pathway, IL-1 receptor activity, BMP receptor binding and IL-17 signalling pathway. Furthermore, the possibility of indirect interactions between differentially expressed mRNAs and lncRNAs was illustrated by the competing endogenous RNA (ceRNA) network. LncRNA ENSMUST00000128026 was predicted to bind to mmu-miR-6899-3p, regulating Dnmbp expression. LncRNA NONMMUT143162.1 was predicted to competitively bind to mmu-miR-6899-3p, regulating Tnip3 expression. Finally, the protein-protein interaction (PPI) network analysis was constructed with 311 nodes and 563 edges. And the highest connectivity degrees were Mmp9, Fpr2 and Ccl3. These results provide novel insights into the functions of lncRNAs and mRNAs involved in the regulation of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Huan Liu
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Teming Li
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shizhen Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Min Yu
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Wenhua Huang
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Pathological Diagnosis and Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
69
|
Beauséjour M, Boutin A, Vachon PH. Anoikis and the Human Gut Epithelium in Health and Disease. ANOIKIS 2021:95-126. [DOI: 10.1007/978-3-030-73856-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
70
|
Fritsch SD, Weichhart T. Metabolic and immunologic control of intestinal cell function by mTOR. Int Immunol 2020; 32:455-465. [PMID: 32140726 DOI: 10.1093/intimm/dxaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium is one of the most quickly dividing tissues in our body, combining the absorptive advantages of a single layer with the protection of a constantly renewing barrier. It is continuously exposed to nutrients and commensal bacteria as well as microbial and host-derived metabolites, but also to hazards such as pathogenic bacteria and toxins. These environmental cues are sensed by the mucosa and a vast repertory of immune cells, especially macrophages. A disruption of intestinal homeostasis in terms of barrier interruption can lead to inflammatory bowel diseases and colorectal cancer, and macrophages have an important role in restoring epithelial function following injury. The mammalian/mechanistic target of rapamycin (mTOR) signalling pathway senses environmental cues and integrates metabolic responses. It has emerged as an important regulator of intestinal functions in homeostasis and disease. In this review, we are going to discuss intestinal mTOR signalling and metabolic regulation in different intestinal cell populations with a special focus on immune cells and their actions on intestinal function.
Collapse
Affiliation(s)
- Stephanie D Fritsch
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Straße, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Straße, Vienna, Austria
| |
Collapse
|
71
|
Khayati K, Bhatt V, Hu ZS, Fahumy S, Luo X, Guo JY. Autophagy compensates for Lkb1 loss to maintain adult mice homeostasis and survival. eLife 2020; 9:62377. [PMID: 33236987 PMCID: PMC7714393 DOI: 10.7554/elife.62377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11) is the major energy sensor for cells to respond to metabolic stress. Autophagy degrades and recycles proteins, macromolecules, and organelles for cells to survive starvation. To assess the role and cross-talk between autophagy and Lkb1 in normal tissue homeostasis, we generated genetically engineered mouse models where we can conditionally delete Stk11 and autophagy essential gene, Atg7, respectively or simultaneously, throughout the adult mice. We found that Lkb1 was essential for the survival of adult mice, and autophagy activation could temporarily compensate for the acute loss of Lkb1 and extend mouse life span. We further found that acute deletion of Lkb1 in adult mice led to impaired intestinal barrier function, hypoglycemia, and abnormal serum metabolism, which was partly rescued by the Lkb1 loss-induced autophagy upregulation via inhibiting p53 induction. Taken together, we demonstrated that autophagy and Lkb1 work synergistically to maintain adult mouse homeostasis and survival.
Collapse
Affiliation(s)
- Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, New Brunswick, United States
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, United States
| | | | - Sajid Fahumy
- Rutgers Cancer Institute of New Jersey, New Brunswick, United States
| | - Xuefei Luo
- Rutgers Cancer Institute of New Jersey, New Brunswick, United States
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, United States.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, United States.,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, United States
| |
Collapse
|
72
|
Hunt A, Jugan MC. Anemia, iron deficiency, and cobalamin deficiency in cats with chronic gastrointestinal disease. J Vet Intern Med 2020; 35:172-178. [PMID: 33226151 PMCID: PMC7848310 DOI: 10.1111/jvim.15962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Iron deficiency and cobalamin deficiency, as sequelae to chronic gastrointestinal (GI) disease, could result in anemia and increased morbidity in cats with chronic enteropathies. OBJECTIVE To evaluate iron deficiency in cats with chronic GI disease and its relationship with hypocobalaminemia, anemia, and disease severity. ANIMALS Twenty client-owned cats with primary GI disease. METHODS Prospective, cross-sectional study. Cats were enrolled at the time of evaluation for chronic GI disease, after exclusion of comorbidities. CBC with reticulocyte indices, iron metabolism (serum iron and ferritin concentrations, total iron binding capacity [TIBC]), serum methylmalonic acid (MMA), cobalamin, and folate concentrations, pancreatic lipase and trypsin-like immunoreactivity, and disease severity were evaluated. RESULTS Anemia (hematocrit <30%), iron deficiency, and cobalamin deficiency were diagnosed in 4/20, 7/20, and 8/20 cats, respectively. Hematocrit (rs = -.45; P < .05) and body condition score (rs = -.60; P < .01) negatively correlated with MMA. Median TIBC was lower in cats with increased vs normal MMA (218 μg/mL; range, 120-466 μg/mL vs 288 μg/mL; range, 195-369 μg/mL; P = .02). Hematocrit (rs = .51; P = .02), reticulocyte MCV (rs = .52; P = .02), reticulocyte hemoglobin content (rs = .71; P < .001), and percent transferrin saturation (rs = .79; P < .0001) positively correlated with serum iron concentration. CONCLUSIONS AND CLINICAL IMPORTANCE Functional iron deficiency was common in cats with chronic GI disease. Associations between hypocobalaminemia, iron parameters, and hematologic parameters warrant further investigation on the impact of iron deficiency on chronic GI disease morbidity in cats.
Collapse
Affiliation(s)
- Adam Hunt
- Department of Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee, USA
| | - Maria C Jugan
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
73
|
Roca J, Camacho H, Aguilera A, Guillen I, Delgado Y, Bermudez Y, Bacardí D, Suarez Alba J, Palenzuela D.. mRNA level of genes related to apoptosis in a colitis model in rats treated with epidermal growth factor. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.04.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The deregulation of cell death pathways in intestinal epithelial cells could involve the pathogenesis of Inflammatory Bowel Diseases. An increase in apoptosis has been observed in patients who have Ulcerative Colitis. Previous experiments have demonstrated the efficacy of EGF in the healing of ulcerative Colitis and other gastrointestinal mucosa lesions. However, there are not many reports on the molecular characterization of EGF's positive effect on the gastrointestinal mucosa. This work aims to deepen the transcriptional changes induced by EGF in the intestinal epithelium in a colitis model in rats. Samples from the distal colon of an EGF-treated colitis model were collect, followed by an analysis by quantitative PCR of the mRNA of 23 genes related to apoptosis. 57% of the genes analyzed presented statistically significant changes in their mRNA level. Of these, two anti-apoptotic genes increased their mRNA level, while the genes that decreased their mRNA level were pro-apoptotic genes and genes related to the TNFα signal transmission path. Changes in the transcription profile of the genes analyzed could suggest a reduction of apoptosis, which could favor the integrity of the Intestinal Epithelium
Collapse
Affiliation(s)
- Juan Roca
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Hanlet Camacho
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Ana Aguilera
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Isabel Guillen
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Yuneisy Delgado
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Yiliam Bermudez
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | - Dania Bacardí
- Center for Genetic Engineering and Biotechnology Havana, CUBA
| | | | | |
Collapse
|
74
|
Cao X, Sun L, Lechuga S, Naydenov NG, Feygin A, Ivanov AI. A Novel Pharmacological Approach to Enhance the Integrity and Accelerate Restitution of the Intestinal Epithelial Barrier. Inflamm Bowel Dis 2020; 26:1340-1352. [PMID: 32266946 PMCID: PMC7441106 DOI: 10.1093/ibd/izaa063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disruption of the gut barrier is an essential mechanism of inflammatory bowel diseases (IBDs) contributing to the development of mucosal inflammation. A hallmark of barrier disruption is the disassembly of epithelial adherens junctions (AJs) driven by decreased expression of a major AJ protein, E-cadherin. A group of isoxazole compounds, such as E-cadherin-upregulator (ECU) and ML327, were previously shown to stimulate E-cadherin expression in poorly differentiated human cancer cells. This study was designed to examine whether these isoxazole compounds can enhance and protect model intestinal epithelial barriers in vitro. METHODS The study was conducted using T84, SK-CO15, and HT-29 human colonic epithelial cell monolayers. Disruption of the epithelial barrier was induced by pro-inflammatory cytokines, tumor necrosis factor-α, and interferon-γ. Barrier integrity and epithelial junction assembly was examined using different permeability assays, immunofluorescence labeling, and confocal microscopy. Epithelial restitution was analyzed using a scratch wound healing assay. RESULTS E-cadherin-upregulator and ML327 treatment of intestinal epithelial cell monolayers resulted in several barrier-protective effects, including reduced steady-state epithelial permeability, inhibition of cytokine-induced barrier disruption and junction disassembly, and acceleration of epithelial wound healing. Surprisingly, these effects were not due to upregulation of E-cadherin expression but were mediated by multiple mechanisms including inhibition of junction protein endocytosis, attenuation of cytokine-induced apoptosis, and activation of promigratory Src and AKT signaling. CONCLUSIONS Our data highlight ECU and ML327 as promising compounds for developing new therapeutic strategies to protect the integrity and accelerate the restitution of the intestinal epithelial barrier in IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Xuelei Cao
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Lei Sun
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University, Richmond, VA
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH,Address correspondence to: Andrei I. Ivanov, PhD, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC22, Cleveland, OH 44195, USA. E-mail:
| |
Collapse
|
75
|
Iversen R, Amundsen SF, Kleppa L, du Pré MF, Stamnaes J, Sollid LM. Evidence That Pathogenic Transglutaminase 2 in Celiac Disease Derives From Enterocytes. Gastroenterology 2020; 159:788-790. [PMID: 32302613 DOI: 10.1053/j.gastro.2020.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Rasmus Iversen
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sunniva F Amundsen
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Liv Kleppa
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - M Fleur du Pré
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jorunn Stamnaes
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ludvig M Sollid
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
76
|
Buttó LF, Pelletier A, More SK, Zhao N, Osme A, Hager CL, Ghannoum MA, Sekaly RP, Cominelli F, Dave M. Intestinal Stem Cell Niche Defects Result in Impaired 3D Organoid Formation in Mouse Models of Crohn's Disease-like Ileitis. Stem Cell Reports 2020; 15:389-407. [PMID: 32679063 PMCID: PMC7419719 DOI: 10.1016/j.stemcr.2020.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023] Open
Abstract
Intestinal epithelial barrier dysfunction is a risk factor in the pathogenesis of Crohn’s disease (CD); however, no corrective FDA-approved therapies exist. We used an enteroid (EnO)-based system in two murine models of experimental CD, SAMP1/YitFc (SAMP) and TNFΔARE/+ (TNF). While severely inflamed SAMP mice do not generate EnOs, “inflammation-free” SAMP mice form EnO structures with impaired morphology and reduced intestinal stem cell (ISC) and Paneth cell viability. We validated these findings in TNF mice concluding that inflammation in intestinal tissues impedes EnO generation and suppressing inflammation by steroid administration partially rescues impaired formation in SAMP mice. We generated the first high-resolution transcriptional profile of the SAMP ISC niche demonstrating that alterations in multiple key pathways contribute to niche defect and targeting them may partially rescue the phenotype. Furthermore, we correlated the defects in formation and the rescue of EnO formation to reduced viability of ISCs and Paneth cells. Enteroid (EnO) formation is impaired in inflammation-free SAMP mice SAMP EnOs maintain impaired functions ex vivo recapitulating epithelial CD defect Inflammation impedes EnO formation, which is partially restored by steroid treatment Reduced number of viable intestinal stem and Paneth cells correlate with EnO defect
Collapse
Affiliation(s)
- Ludovica F Buttó
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106-5066, USA; Department of Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Adam Pelletier
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shyam K More
- Division of Gastroenterology & Hepatology University of California Davis, School of Medicine, Institute for Regenerative Cures, 2921 Stockton Boulevard, Suite 1615, Sacramento, CA 95817, USA
| | - Nan Zhao
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106-5066, USA
| | - Abdullah Osme
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106-5066, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Christopher L Hager
- Center for Medical Mycology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mahmoud A Ghannoum
- Center for Medical Mycology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106-5066, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Maneesh Dave
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106-5066, USA; Department of Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Division of Gastroenterology & Hepatology University of California Davis, School of Medicine, Institute for Regenerative Cures, 2921 Stockton Boulevard, Suite 1615, Sacramento, CA 95817, USA.
| |
Collapse
|
77
|
Teixeira FCOB, Götte M. Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:97-135. [PMID: 32274708 DOI: 10.1007/978-3-030-34521-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-β-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
78
|
A novel apidaecin Api-PR19 synergizes with the gut microbial community to maintain intestinal health and promote growth performance of broilers. J Anim Sci Biotechnol 2020; 11:61. [PMID: 32551109 PMCID: PMC7298829 DOI: 10.1186/s40104-020-00462-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Antibiotic growth promoters (AGPs) have been used as growth promoters to maintain animal intestinal health and improve feed efficiency in broilers by inhibiting pathogen proliferation. In view of the growing emergence of antibiotic-resistant pathogen strains and drug residue issues, novel treatments are increasingly required. This study aimed to compare two antimicrobial approaches for managing pathogen infection and maintaining animal intestinal health in broilers by supplying Apidaecin Api-PR19 and AGPs over 42 d of a feeding trial. Results Compared with the broilers that were only fed a corn-soybean basal diet (CON group), supplementation with Api-PR19 and AGP (respectively named the ABP and AGP groups) both increased the feed conversion efficiency. When compared with the AGP group, Api-PR19 supplementation could significantly increase the organ index of the bursa of fabricius and subtype H9 antibody level in broiler chickens. Moreover, when compared with the CON group, the intestinal villus height, intestinal nutrient transport, and intestinal sIgA content were all increased in the Api-PR19 group, while AGP supplementation was harmful to the intestinal villus height and intestinal nutrient transport. By assessing the antibacterial effect of Api-PR19 and antibiotics in vitro and in vivo, we found that Api-PR19 and antibiotics both inhibited the growth of pathogens, including Escherichia coli and Campylobacter jejuni. Furthermore, by using 16S rRNA gene sequencing, the beneficial bacteria and microbiota in broilers were not disturbed but improved by apidaecin Api-PR19, including the genera of Eubacterium and Christensenella and the species of uncultured_Eubacterium_sp, Clostridium_asparagiforme, and uncultured_Christensenella_sp, which were positively related to improved intestinal development, absorption, and immune function. Conclusion Apidaecin Api-PR19 treatment could combat pathogen infection and had little negative impact on beneficial bacteria in the gut compared to antibiotic treatment, subsequently improving intestinal development, absorption, and immune function.
Collapse
|
79
|
Abstract
Apoptosis is a form of programmed cell death that is essential for tissue homeostasis. De-regulation of the balance between proliferation and apoptosis contributes to tumor initiation. Particularly in the colon where apoptosis is a crucial process in intestinal turnover, inhibition of apoptosis facilitates transformation and tumor progression. The BCL-2 family of proteins are key regulators of apoptosis and have been implicated in colorectal cancer (CRC) initiation, progression and resistance to therapy. In this review we outline the current knowledge on the BCL-2 family-regulated intrinsic apoptosis pathway and mechanisms by which it is de-regulated in CRC. We further review BH3 mimetics as a therapeutic opportunity to target this pathway and evaluate their potential for CRC treatment.
Collapse
Affiliation(s)
- Prashanthi Ramesh
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
80
|
Andrighetti T, Bohar B, Lemke N, Sudhakar P, Korcsmaros T. MicrobioLink: An Integrated Computational Pipeline to Infer Functional Effects of Microbiome-Host Interactions. Cells 2020; 9:cells9051278. [PMID: 32455748 PMCID: PMC7291277 DOI: 10.3390/cells9051278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Microbiome–host interactions play significant roles in health and in various diseases including autoimmune disorders. Uncovering these inter-kingdom cross-talks propels our understanding of disease pathogenesis and provides useful leads on potential therapeutic targets. Despite the biological significance of microbe–host interactions, there is a big gap in understanding the downstream effects of these interactions on host processes. Computational methods are expected to fill this gap by generating, integrating, and prioritizing predictions—as experimental detection remains challenging due to feasibility issues. Here, we present MicrobioLink, a computational pipeline to integrate predicted interactions between microbial and host proteins together with host molecular networks. Using the concept of network diffusion, MicrobioLink can analyse how microbial proteins in a certain context are influencing cellular processes by modulating gene or protein expression. We demonstrated the applicability of the pipeline using a case study. We used gut metaproteomic data from Crohn’s disease patients and healthy controls to uncover the mechanisms by which the microbial proteins can modulate host genes which belong to biological processes implicated in disease pathogenesis. MicrobioLink, which is agnostic of the microbial protein sources (bacterial, viral, etc.), is freely available on GitHub.
Collapse
Affiliation(s)
- Tahila Andrighetti
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Institute of Biosciences, São Paulo University (UNESP), Botucatu 18618-689, SP, Brazil;
| | - Balazs Bohar
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Department of Genetics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Ney Lemke
- Institute of Biosciences, São Paulo University (UNESP), Botucatu 18618-689, SP, Brazil;
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven BE-3000, Leuven, Belgium
- Correspondence: (T.K.); (P.S.)
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; (T.A.); (B.B.)
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Correspondence: (T.K.); (P.S.)
| |
Collapse
|
81
|
Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020; 21:398-414. [PMID: 32251387 DOI: 10.1038/s41580-020-0232-1] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Multiple modes of cell death have been identified, each with a unique function and each induced in a setting-dependent manner. As billions of cells die during mammalian embryogenesis and daily in adult organisms, clearing dead cells and associated cellular debris is important in physiology. In this Review, we present an overview of the phagocytosis of dead and dying cells, a process known as efferocytosis. Efferocytosis is performed by macrophages and to a lesser extent by other 'professional' phagocytes (such as monocytes and dendritic cells) and 'non-professional' phagocytes, such as epithelial cells. Recent discoveries have shed light on this process and how it functions to maintain tissue homeostasis, tissue repair and organismal health. Here, we outline the mechanisms of efferocytosis, from the recognition of dying cells through to phagocytic engulfment and homeostatic resolution, and highlight the pathophysiological consequences that can arise when this process is abrogated.
Collapse
Affiliation(s)
- Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute for Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
82
|
Stankovic B, Dragasevic S, Klaassen K, Kotur N, Srzentic Drazilov S, Zukic B, Sokic Milutinovic A, Milovanovic T, Lukic S, Popovic D, Pavlovic S, Nikcevic G. Exploring inflammatory and apoptotic signatures in distinct Crohn's disease phenotypes: Way towards molecular stratification of patients and targeted therapy. Pathol Res Pract 2020; 216:152945. [PMID: 32279918 DOI: 10.1016/j.prp.2020.152945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Crohn's disease (CD) is chronic inflammatory bowel disease with different phenotypic characteristics influencing disease prognosis and therapeutic strategies. The aim of this pilot study was to analyze selected inflammatory and apoptotic markers in non-inflamed and inflamed samples of ileal mucosa of non-stricturing/non-penetrating (NS/NP) and stricturing (S) CD mucosal phenotypes in order to characterize their distinct profiles. METHODS From twenty CD patients (9 NS/NP, 11 S) paired non-inflamed and inflamed ileal biopsies were collected and used for analysis of cytokine (TNF and IL6) and apoptotic (Bcl2, Bax, Fas and FasL) genes' expression levels by real-time PCR, while NFκB transcriptional potency was assessed by electromobility gel shift assay. RESULTS Our results demonstrated significant upregulation of TNF and IL6 in inflamed area of both NS/NP (p = 0.03, p = 0.01) and S phenotypes (p = 0.04, p = 0.04), respectively. However, TNF increase was more prominent in NS/NP compared to S inflamed mucosa (p = 0.02). Also, level of proapoptotic Bax was significantly higher in NS/NP compared to S inflamed mucosa (p = 0.01). Opposing transcription potency of NFκB has been detected between two phenotypes: being decreased in NS/NP (p = 0.07) and increased in S (p = 0.1) inflamed compared to non-inflamed mucosa, demonstrating trend towards statistical significance. CONCLUSIONS We found that two distinct CD phenotypes have specific molecular signatures. Obtained results could direct improvement of current and development of new therapeutic strategies based on more specific molecular stratification of CD patients.
Collapse
Affiliation(s)
- Biljana Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Sanja Dragasevic
- Clinic for Gastroenterology and Hepatology, Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia; School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia.
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Nikola Kotur
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Sanja Srzentic Drazilov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Branka Zukic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Aleksandra Sokic Milutinovic
- Clinic for Gastroenterology and Hepatology, Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia; School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia.
| | - Tamara Milovanovic
- Clinic for Gastroenterology and Hepatology, Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia; School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia.
| | - Snezana Lukic
- Clinic for Gastroenterology and Hepatology, Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia; School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia.
| | - Dragan Popovic
- Clinic for Gastroenterology and Hepatology, Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia; School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia.
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Gordana Nikcevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| |
Collapse
|
83
|
Zhang A, Lacy-Hulbert A, Anderton S, Haslett C, Savill J. Apoptotic Cell-Directed Resolution of Lung Inflammation Requires Myeloid αv Integrin-Mediated Induction of Regulatory T Lymphocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1224-1235. [PMID: 32201264 PMCID: PMC7254048 DOI: 10.1016/j.ajpath.2020.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/29/2020] [Accepted: 02/26/2020] [Indexed: 01/12/2023]
Abstract
Intratracheal instillation of apoptotic cells enhances resolution of experimental lung inflammation by incompletely understood mechanisms. We report that this intervention induces functional regulatory T lymphocytes (Tregs) in mouse lung experimentally inflamed by intratracheal administration of lipopolysaccharide. Selective depletion demonstrated that Tregs were necessary for maximal apoptotic cell–directed enhancement of resolution, and adoptive transfer of additional Tregs was sufficient to promote resolution without administering apoptotic cells. After intratracheal instillation, labeled apoptotic cells were observed in most CD11c+CD103+ myeloid dendritic cells migrating to mediastinal draining lymph nodes and bearing migratory and immunoregulatory markers, including increased CCR7 and β8 integrin (ITGB8) expression. In mice deleted for αv integrin in the myeloid line to reduce phagocytosis of dying cells by CD103+ dendritic cells, exogenous apoptotic cells failed to induce transforming growth factor-β1 expression or Treg accumulation and failed to enhance resolution of lipopolysaccharide-induced lung inflammation. We conclude that in murine lung, myeloid phagocytes encountering apoptotic cells can deploy αv integrin–mediated mechanisms to induce Tregs and enhance resolution of acute inflammation.
Collapse
Affiliation(s)
- Ailiang Zhang
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | | | - Stephen Anderton
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Christopher Haslett
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - John Savill
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
84
|
Lackey AI, Chen T, Zhou YX, Bottasso Arias NM, Doran JM, Zacharisen SM, Gajda AM, Jonsson WO, Córsico B, Anthony TG, Joseph LB, Storch J. Mechanisms underlying reduced weight gain in intestinal fatty acid-binding protein (IFABP) null mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G518-G530. [PMID: 31905021 PMCID: PMC7099495 DOI: 10.1152/ajpgi.00120.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
Intestinal-fatty acid binding protein (IFABP; FABP2) is a 15-kDa intracellular protein abundantly present in the cytosol of the small intestinal (SI) enterocyte. High-fat (HF) feeding of IFABP-/- mice resulted in reduced weight gain and fat mass relative to wild-type (WT) mice. Here, we examined intestinal properties that may underlie the observed lean phenotype of high fat-fed IFABP-/- mice. No alterations in fecal lipid content were found, suggesting that the IFABP-/- mice are not malabsorbing dietary fat. However, the total excreted fecal mass, normalized to food intake, was increased for the IFABP-/- mice relative to WT mice. Moreover, intestinal transit time was more rapid in the IFABP-/- mice. IFABP-/- mice displayed a shortened average villus length, a thinner muscularis layer, reduced goblet cell density, and reduced Paneth cell abundance. The number of proliferating cells in the crypts of IFABP-/- mice did not differ from that of WT mice, suggesting that the blunt villi phenotype is not due to alterations in proliferation. IFABP-/- mice were observed to have altered expression of genes and proteins related to intestinal structure, while immunohistochemical analyses revealed increased staining for markers of inflammation. Taken together, these studies indicate that the ablation of IFABP, coupled with high-fat feeding, leads to changes in gut motility and morphology, which likely contribute to the relatively leaner phenotype occurring at the whole-body level. Thus, IFABP is likely involved in dietary lipid sensing and signaling, influencing intestinal motility, intestinal structure, and nutrient absorption, thereby impacting systemic energy metabolism.NEW & NOTEWORTHY Intestinal fatty acid binding protein (IFABP) is thought to be essential for the efficient uptake and trafficking of dietary fatty acids. In this study, we demonstrate that high-fat-fed IFABP-/- mice have an increased fecal output and are likely malabsorbing other nutrients in addition to lipid. Furthermore, we observe that the ablation of IFABP leads to marked alterations in intestinal morphology and secretory cell abundance.
Collapse
Affiliation(s)
- Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Tina Chen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Yin X Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Natalia M Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Justine M Doran
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Sophia M Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Angela M Gajda
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Laurie B Joseph
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| |
Collapse
|
85
|
Krndija D, El Marjou F, Guirao B, Richon S, Leroy O, Bellaiche Y, Hannezo E, Matic Vignjevic D. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 2020; 365:705-710. [PMID: 31416964 DOI: 10.1126/science.aau3429] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Steady-state turnover is a hallmark of epithelial tissues throughout adult life. Intestinal epithelial turnover is marked by continuous cell migration, which is assumed to be driven by mitotic pressure from the crypts. However, the balance of forces in renewal remains ill-defined. Combining biophysical modeling and quantitative three-dimensional tissue imaging with genetic and physical manipulations, we revealed the existence of an actin-related protein 2/3 complex-dependent active migratory force, which explains quantitatively the profiles of cell speed, density, and tissue tension along the villi. Cells migrate collectively with minimal rearrangements while displaying dual-apicobasal and front-back-polarity characterized by actin-rich basal protrusions oriented in the direction of migration. We propose that active migration is a critical component of gut epithelial turnover.
Collapse
Affiliation(s)
- Denis Krndija
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | - Fatima El Marjou
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | - Boris Guirao
- Institut Curie, PSL Research University, U934/UMR3215, F-75005 Paris, France
| | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | - Olivier Leroy
- Institut Curie, PSL Research University, U934/UMR3215, F-75005 Paris, France
| | - Yohanns Bellaiche
- Institut Curie, PSL Research University, U934/UMR3215, F-75005 Paris, France
| | - Edouard Hannezo
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | | |
Collapse
|
86
|
Dong N, Li X, Xue C, Zhang L, Wang C, Xu X, Shan A. Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-κB/MAPK signaling pathway. J Cell Physiol 2020; 235:5525-5540. [PMID: 32037545 DOI: 10.1002/jcp.29452] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Early weaning usually causes intestinal disorders, enteritis, and diarrhea in young animals and human infants. Astragalus polysaccharides (APS) possesses anti-inflammatory activity. To study the anti-inflammatory mechanisms of APS and its potential effects on intestinal health, we performed an RNA sequencing (RNA-seq) study in lipopolysaccharide (LPS)-stimulated porcine intestinal epithelial cells (IPEC-J2) in vitro. In addition, LPS-stimulated BALB/c mice were used to study the effects of APS on intestinal inflammation in vivo. The results from the RNA-seq analysis show that there were 107, 756, and 5 differentially expressed genes in the control versus LPS, LPS versus LPS+APS, and control versus LPS+APS comparison groups, respectively. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways play significant roles in the regulation of inflammatory factors and chemokine expression by APS. Further verification of the above two pathways by using western blot and immunofluorescence analysis revealed that the gene expression levels of the phosphorylated p38 MAPK, ERK1/2, and NF-κB p65 were inhibited by APS, while the expression of IκB-α protein was significantly increased (p < .05), indicating that APS inhibits the production of inflammatory factors and chemokines by the inhibition of activation of the MAPK and NF-κB inflammatory pathways induced by LPS stimulation. Animal experiments further demonstrated that prefeeding APS in BALB/c mice can alleviate the expression of the jejunal inflammatory factors interleukin 6 (IL-6), IL-Iβ, and tumor necrosis factor-α induced by LPS stimulation and improve jejunal villus morphology.
Collapse
Affiliation(s)
- Na Dong
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Xinran Li
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Lei Zhang
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Chensi Wang
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyao Xu
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
87
|
Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol 2020; 22:e13152. [PMID: 31872937 DOI: 10.1111/cmi.13152] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, and optical transparency during early life stages, it is a particularly useful model to address questions about the cellular microbiology of host-microbe interactions. Although its use as a model for systemic infections, as well as infections localised to the hindbrain and swimbladder having been thoroughly reviewed, studies focusing on host-microbe interactions in the zebrafish gastrointestinal tract have been neglected. Here, we summarise recent findings regarding the developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, and more generally, for studies of host-microbe interactions in the gut.
Collapse
Affiliation(s)
- Erika M Flores
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Anh T Nguyen
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - George T Eisenhoffer
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
88
|
Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 2020; 16:38-51. [PMID: 31286804 PMCID: PMC6984609 DOI: 10.1080/15548627.2019.1635384] [Citation(s) in RCA: 475] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
One of the most significant challenges of inflammatory bowel disease (IBD) research is to understand how alterations in the symbiotic relationship between the genetic composition of the host and the intestinal microbiota, under impact of specific environmental factors, lead to chronic intestinal inflammation. Genome-wide association studies, followed by functional studies, have identified a role for numerous autophagy genes in IBD, especially in Crohn disease. Studies using in vitro and in vivo models, in addition to human clinical studies have revealed that autophagy is pivotal for intestinal homeostasis maintenance, gut ecology regulation, appropriate intestinal immune responses and anti-microbial protection. This review describes the latest researches on the mechanisms by which dysfunctional autophagy leads to disrupted intestinal epithelial function, gut dysbiosis, defect in anti-microbial peptide secretion by Paneth cells, endoplasmic reticulum stress response and aberrant immune responses to pathogenic bacteria. A better understanding of the role of autophagy in IBD pathogenesis may provide better sub-classification of IBD phenotypes and novel approaches for disease management.Abbreviations: AIEC: adherent-invasive Escherichia coli; AMPK: AMP-activated protein kinase; ATF6: activating transcription factor 6; ATG: autophagy related; Atg16l1[ΔIEC] mice: mice with Atg16l1 depletion specifically in intestinal epithelial cells; Atg16l1[HM] mice: mice hypomorphic for Atg16l1 expression; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; CALCOCO2: calcium binding and coiled-coil domain 2; CASP: caspase; CD: Crohn disease; CGAS: cyclic GMP-AMP synthase; CHUK/IKKA: conserved helix-loop-helix ubiquitous kinase; CLDN2: claudin 2; DAPK1: death associated protein kinase 1; DCs: dendritic cells; DSS: dextran sulfate sodium; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK: eukaryotic translation initiation factor 2 alpha kinase; ER: endoplasmic reticulum; ERBIN: Erbb2 interacting protein; ERN1/IRE1A: ER to nucleus signaling 1; FNBP1L: formin binding protein 1-like; FOXP3: forkhead box P3; GPR65: G-protein coupled receptor 65; GSK3B: glycogen synthase kinase 3 beta; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IFN: interferon; IL: interleukin; IL10R: interleukin 10 receptor; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LAMP1: lysosomal-associated membrane protein 1; LAP: LC3-associated phagocytosis; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; LRRK2: leucine-rich repeat kinase 2; MAPK: mitogen-activated protein kinase; MHC: major histocompatibility complex; MIF: macrophage migration inhibitory factor; MIR/miRNA: microRNA; MTMR3: myotubularin related protein 3; MTOR: mechanistic target of rapamycin kinase; MYD88: myeloid differentiation primary response gene 88; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NPC: Niemann-Pick disease type C; NPC1: NPC intracellular cholesterol transporter 1; OMVs: outer membrane vesicles; OPTN: optineurin; PI3K: phosphoinositide 3-kinase; PRR: pattern-recognition receptor; PTPN2: protein tyrosine phosphatase, non-receptor type 2; PTPN22: protein tyrosine phosphatase, non-receptor type 22 (lymphoid); PYCARD/ASC: PYD and CARD domain containing; RAB2A: RAB2A, member RAS oncogene family; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RIPK2: receptor (TNFRSF)-interacting serine-threonine kinase 2; ROS: reactive oxygen species; SNPs: single nucleotide polymorphisms; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; Th: T helper 1; TIRAP/TRIF: toll-interleukin 1 receptor (TIR) domain-containing adaptor protein; TLR: toll-like receptor; TMEM173/STING: transmembrane protein 173; TMEM59: transmembrane protein 59; TNF/TNFA: tumor necrosis factor; Treg: regulatory T; TREM1: triggering receptor expressed on myeloid cells 1; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type; XBP1: X-box binding protein 1; XIAP: X-linked inhibitor of apoptosis.
Collapse
Affiliation(s)
- Anaïs Larabi
- M2iSH, UMR 1071 Inserm, INRA USC 2018, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, INRA USC 2018, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- M2iSH, UMR 1071 Inserm, INRA USC 2018, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
89
|
Rubio MG, Amo-Mensah K, Gray JM, Nguyen VQ, Nakat S, Grider D, Love K, Boone JH, Sorrentino D. Fecal lactoferrin accurately reflects mucosal inflammation in inflammatory bowel disease. World J Gastrointest Pathophysiol 2019; 10:54-63. [PMID: 31911845 PMCID: PMC6940564 DOI: 10.4291/wjgp.v10.i5.54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies have demonstrated a potential role for fecal biomarkers such as fecal calprotectin (FC) and fecal lactoferrin (FL) in monitoring inflammatory bowel diseases (IBD) - Crohn’s disease (CD) and ulcerative colitis (UC). However, their correlation to endoscopic scores, disease severity and affected intestinal surface has not been extensively investigated.
AIM To correlate FL, and for comparison white blood cell (WBC) and C-reactive protein (CRP), with endoscopic scores, disease extent and location in CD and UC.
METHODS Retrospective analysis in 188 patients who had FL, CRP and WBC determined within 30 d of endoscopy. Disease location, disease extent (number of intestinal segments involved), disease severity (determined by endoscopic scores), timing of FL testing in relation to colonoscopy, as well as the use of effective fast acting medications (steroids and biologics) between colonoscopy and FL measurement, were recorded.
RESULTS In 131 CD and 57 UC patients, both CRP and FL - but not WBC - distinguished disease severity (inactive, mild, moderate, severe). In patients receiving fast-acting (steroids or biologics) treatment in between FL and colonoscopy, FL showed a higher correlation to endoscopic scores when tested before vs after the procedure (r = 0.596, P < 0.001, vs r = 0.285, P = 0.15 for the Simple Endoscopic Score for CD; and r = 0.402, P = 0.01 vs r = 0.054 P = 0.84 for Disease Activity Index). Finally, FL was significantly correlated with the diseased mucosal surface (colon-ileocolon > small bowel) and the number of inflamed colon segments.
CONCLUSION FL and CRP separated disease severity categories with FL showing lower discriminating P-values. FL showed a close correlation with the involved mucosal surface and with disease extent and was more closely correlated to endoscopy when determined before the procedure – this indicating that inflammatory activity changes associated with therapy might be rapidly reflected by FL levels. FL can accurately and timely characterize intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Marrieth G Rubio
- IBD Center - Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States
| | - Kofi Amo-Mensah
- IBD Center - Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States
| | - James M Gray
- IBD Center - Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States
| | - Vu Q Nguyen
- IBD Center - Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States
| | - Sam Nakat
- Department of Radiology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States
| | - Douglas Grider
- Department of Basic Science Education; Virginia Tech Carilion School of Medicine and Dominion Pathology Associates, Roanoke, VA 24016, United States
| | - Kim Love
- K. R. Love Quantitative Consulting and Collaboration, Athens, GA 30605, United States
| | - James H Boone
- Research and Development, TECHLAB Inc, Blacksburg, VA 24060, United States
| | - Dario Sorrentino
- IBD Center - Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States
- Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, Udine 33100, Italy
| |
Collapse
|
90
|
Li Y, Zhao W, Wang L, Chen Y, Zhang H, Wang T, Yang X, Xing F, Yan J, Fang X. Protective Effects of Fucoidan against Hydrogen Peroxide-Induced Oxidative Damage in Porcine Intestinal Epithelial Cells. Animals (Basel) 2019; 9:ani9121108. [PMID: 31835456 PMCID: PMC6940796 DOI: 10.3390/ani9121108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Simple Summary High levels of production in intensive farming systems make domestic animals like piglets particularly susceptible to oxidative stress, which is detrimental to intestinal homeostasis and function. It is of paramount importance to identify effective and reliable nutrients to counteract oxidative damage to the porcine intestinal epithelium, especially with the recent phasing out of the use of antibiotics in China. This study indicates that fucoidan could ameliorate hydrogen peroxide-induced oxidative stress in porcine intestinal epithelial cells, primarily owing to the action of fucoidan to facilitate nuclear factor-erythroid 2-related factor-2 signals and cellular antioxidant responses. These findings may provide useful implications for practical swine production. Abstract This study was conducted to evaluate the effectiveness of fucoidan in ameliorating hydrogen peroxide (H2O2)-induced oxidative stress to porcine intestinal epithelial cell line (IPEC-1). The cell viability test was initially performed to screen out appropriate concentrations of H2O2 and fucoidan. After that, cells were exposed to H2O2 in the presence or absence of pre-incubation with fucoidan. Hydrogen peroxide increased the apoptotic and necrotic rate, boosted reactive oxygen species (ROS) generation, and disturbed the transcriptional expression of genes associated with antioxidant defense and apoptosis in IPEC-1 cells. Pre-incubation with fucoidan inhibited the increases in necrosis and ROS accumulation induced by H2O2. Consistently, in the H2O2-treated IPEC-1 cells, fucoidan normalized the content of reduced glutathione as well as the mRNA abundance of NAD(P)H quinone dehydrogenase 1 and superoxide dismutase 1 while it prevented the overproduction of malondialdehyde. Moreover, H2O2 stimulated the translocation of nuclear factor-erythroid 2-related factor-2 to the nucleus of IPEC-1 cells, but this increase was further promoted by fucoidan pre-treatment. The results suggest that fucoidan is effective in protecting IPEC-1 cells against oxidative damage induced by H2O2, which may help in developing appropriate strategies for maintaining the intestinal health of young piglets.
Collapse
Affiliation(s)
- Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Weimin Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Li Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Yueping Chen
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (H.Z.); (T.W.)
| | - Hao Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (H.Z.); (T.W.)
| | - Tian Wang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (H.Z.); (T.W.)
| | - Xiaoyang Yang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Fei Xing
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Junshu Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
| | - Xiaomin Fang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (W.Z.); (L.W.); (X.Y.); (F.X.); (J.Y.)
- Correspondence: ; Tel.: +86-25-84391941
| |
Collapse
|
91
|
Tartakover Matalon S, Ringel Y, Konikoff F, Drucker L, Pery S, Naftali T. Cannabinoid receptor 2 agonist promotes parameters implicated in mucosal healing in patients with inflammatory bowel disease. United European Gastroenterol J 2019; 8:271-283. [PMID: 32213014 DOI: 10.1177/2050640619889773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cannabis benefits patients with inflammatory bowel disease (IBD). Cannabinoid receptors are expressed in gut immune cells and in epithelial cells of inflamed guts. Mucosal healing (MH) requires epithelial layer restoration. OBJECTIVE To analyze the effects of CB2 agonist on parameters implicated in gut inflammation and MH. METHODS Mucosal samples from areas of inflamed/uninflamed colon from 16 patients with IBD were cultured without/with cannabinoid receptor 2 (CB2) agonist (JWH-133, 10 µM, 6 hours (hr)), and analyzed for epithelial/stromal cell proliferation, apoptosis (secretome matrix metalloproteinase 9 (MMP9) activity, which impairs epithelial permeability) and interleukin-8 (IL-8) levels (n = 5-9). In addition, Caco-2 (colon carcinoma epithelial cells) were cultured with biopsy secretomes (48 hr), and analyzed for phenotype and protein markers of proliferation (proliferating cell nuclear antigen), autophagy (LC3IIB) and permeability (Zonula occludens-1) (n = 4-6). RESULTS Uninflamed tissue had higher epithelial proliferation (Ki67: 50%↑, p < 0.05), and reduced secretome MMP9 activity and IL-8 levels (>50%↓, p < 0.05) compared to inflamed tissue. Treatment with CB2 agonist had no effect on epithelial apoptosis, but increased epithelial Ki67 expression (25%), and reduced secretome MMP9 and IL-8 levels in inflamed biopsies. Secretomes of CB2-treated biopsies increased Caco-2 number, migration, proliferating cell nuclear antigen and LC3IIB expression (all, p < 0.05), but had no effect on ZO-1. CONCLUSION Using ex vivo and in vitro human models, we demonstrated that manipulating the cannabinoid system affects colon cells and secretome characteristics that facilitate MH in IBD.
Collapse
Affiliation(s)
- Shelly Tartakover Matalon
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehuda Ringel
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel.,Department of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel.,Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, 4107 Bioinformatics Building, 130 Mason Farm Road, Chapel Hill, NC, 27599-7080, USA
| | - Fred Konikoff
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | - Liat Drucker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Oncogenetics Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Shaul Pery
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Timna Naftali
- Gastroenterology Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
92
|
Roh TT, Chen Y, Paul HT, Guo C, Kaplan DL. 3D bioengineered tissue model of the large intestine to study inflammatory bowel disease. Biomaterials 2019; 225:119517. [PMID: 31580968 DOI: 10.1016/j.biomaterials.2019.119517] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022]
Abstract
An in vitro model of intestinal epithelium with an immune component was bioengineered to mimic immunologic responses seen in inflammatory bowel disease. While intestinal immune phenomena can be modeled in transwells and 2D culture systems, 3D tissue models improve physiological relevance by providing a 3D substrate which enable migration of macrophages towards the epithelium. An intestinal epithelial layer comprised of non-transformed human colon organoid cells and a subepithelial layer laden with monocyte-derived macrophages was bioengineered to mimic native intestinal mucosa cell organization using spongy biomaterial scaffolds. Confluent monolayers with microvilli, a mucus layer, and infiltration of macrophages to the basal side of the epithelium were observed. Inflammation, induced by E. coli O111:B4 lipopolysaccharide and interferon γ resulted in morphological changes to the epithelium, resulting in ball-like structures, decreased epithelial coverage, and increased migration of macrophages to the epithelium. Analysis of cytokines present in the inflamed tissue model demonstrated significantly upregulated secretion of pro-inflammatory cytokines that are often associated with active inflammatory bowel disease, including CXCL10, IL-1β, IL-6, MCP-2, and MIP-1β. The macrophage layer enhanced epithelial and biochemical responses to inflammatory insult, and this new tissue system may be useful to study and develop potential therapies for inflammatory bowel disease.
Collapse
Affiliation(s)
- Terrence T Roh
- Tufts University, Department of Biomedical Engineering, 4 Colby St. Medford, MA, 02155, USA
| | - Ying Chen
- Tufts University, Department of Biomedical Engineering, 4 Colby St. Medford, MA, 02155, USA
| | - Harry T Paul
- Tufts University, Department of Biomedical Engineering, 4 Colby St. Medford, MA, 02155, USA
| | - Chengchen Guo
- Tufts University, Department of Biomedical Engineering, 4 Colby St. Medford, MA, 02155, USA
| | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, 4 Colby St. Medford, MA, 02155, USA.
| |
Collapse
|
93
|
Arendt M, Elissa J, Schmidt N, Michael E, Potter N, Cook M, Knoll LJ. Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens. Vet Immunol Immunopathol 2019; 218:109934. [PMID: 31520870 DOI: 10.1016/j.vetimm.2019.109934] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/22/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Eimeria species are intestinal protozoan parasites that cause lack of production, malabsorption and mortality in floor raised chickens. Administering an oral antibody to interleukin 10 (aIL-10) reduces the symptoms of coccidiosis in broilers, indicating interleukin 10 (IL-10) is key to Eimeria pathology. IL-10 is an anti-inflammatory cytokine and acts as a stand down signal to reduce inflammation and host pathology during disease. Related protozoan parasites exploit IL-10 to reduce pathogen-damaging host inflammatory responses. We hypothesize that IL-10 is increased during Eimeria infection through an unknown host-pathogen interaction, and by feeding aIL-10 to neutralize excess IL-10 the bird is allowed to mount an effective immune response to Eimeria. To determine the effects of aIL-10 during the intestinal immune response, intestinal pathology and the relationship between IL-10, interferon gamma (IFNγ) and Eimeria infection were evaluated in this study. In both experiments, broilers were administered either a 10x dose of Advent® Eimeria vaccine or saline. Duodenum, jejunum and cecum samples were collected, processed, stained and examined under a microscope. Evaluation of intestinal histomorphology during aIL-10 administration showed minimal differences in birds fed aIL-10 during infection compared to animals fed a control antibody during Eimeria infection. To further evaluate aIL-10's positive effect during infection, immunofluorescent histochemistry was performed on chicken intestines days 3-7 post Eimeria infection for IL-10 and IFNγ presence in intestinal mucosa in control and infected birds, in regions with and without visible Eimeria burden. IL-10 and IFNγ had significant changes between days 4.5-7 post-infection in birds fed aIL-10 compared to animals fed a control antibody. Overall we found that the duodenum had increased IL-10 presence and increased IFNγ presence, and the jejunum and cecum had decreased IL-10 presence and decreased IFNγ presence. These differences in spatial regulation of IL-10 and IFNγ may indicate Eimeria species induce slightly different cytokine responses.
Collapse
Affiliation(s)
- Maria Arendt
- University of Wisconsin - Madison, Comparative Biomedical Sciences Department, United States.
| | - Jonathan Elissa
- University of Wisconsin - Madison, School of Veterinary Medicine, United States
| | - Natalie Schmidt
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Emily Michael
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Nicole Potter
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Mark Cook
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Laura J Knoll
- University of Wisconsin - Madison, Medical Microbiology & Immunology Department, United States
| |
Collapse
|
94
|
Yoo JH, Donowitz M. Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases. World J Gastroenterol 2019; 25:4125-4147. [PMID: 31435168 PMCID: PMC6700704 DOI: 10.3748/wjg.v25.i30.4125] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The introduction of biologics such as anti-tumor necrosis factor (TNF) monoclonal antibodies followed by anti-integrins has dramatically changed the therapeutic paradigm of inflammatory bowel diseases (IBD). Furthermore, a newly developed anti-p40 subunit of interleukin (IL)-12 and IL-23 (ustekinumab) has been recently approved in the United States for patients with moderate to severe Crohn’s disease who have failed treatment with anti-TNFs. However, these immunosuppressive therapeutics which focus on anti-inflammatory mechanisms or immune cells still fail to achieve long-term remission in a significant percentage of patients. This strongly underlines the need to identify novel treatment targets beyond immune suppression to treat IBD. Recent studies have revealed the critical role of intestinal epithelial cells (IECs) in the pathogenesis of IBD. Physical, biochemical and immunologic driven barrier dysfunctions of epithelial cells contribute to the development of IBD. In addition, the recent establishment of adult stem cell-derived intestinal enteroid/organoid culture technology has allowed an exciting opportunity to study human IECs comprising all normal epithelial cells. This long-term epithelial culture model can be generated from endoscopic biopsies or surgical resections and recapitulates the tissue of origin, representing a promising platform for novel drug discovery in IBD. This review describes the advantages of intestinal enteroids/organoids as a research tool for intestinal diseases, introduces studies with these models in IBD, and gives a description of the current status of therapeutic approaches in IBD. Finally, we provide an overview of the current endeavors to identify a novel drug target for IBD therapy based on studies with human enteroids/organoids and describe the challenges in using enteroids/organoids as an IBD model.
Collapse
Affiliation(s)
- Jun-Hwan Yoo
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam 13496, South Korea
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
95
|
Imbalance of Controlled Death in Peripheral Blood Lymphocytes in Crohn's Disease and Ulcerative Colitis. ACTA ACUST UNITED AC 2019; 55:medicina55060231. [PMID: 31159239 PMCID: PMC6632058 DOI: 10.3390/medicina55060231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Background and objectives: Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Both conditions are associated with an exacerbated intestinal immune response to harmless stimuli, leading to upregulation of pro-inflammatory mediators. Materials and Methods: The subjects of the study were 55 patients with IBD. The control group consisted of 35 healthy subjects. The researched material consisted of peripheral blood lymphocytes collected from the subjects. Expression of the genes BAX, BCL2, CASP3 and CASP9 was assessed at the mRNA level in the peripheral blood lymphocytes of patients with ulcerative colitis and Crohn's disease relative to the healthy subjects. The expression of the genes was determined by rtPCR using TaqMan probes specific for these genes. Results: The group of patients diagnosed with CD had statistically significantly higher expression of the genes BAX (p = 0.012), BCL2 (p = 0.022), CASP3 (p = 0.003) and CASP9 (p = 0.029) than healthy subjects. Expression of BAX, BCL2, CASP3 and CASP9 in UC patients in the active phase of the disease was significantly lower than in patients in remission: BAX (p = 0.001), BCL2 (p = 0.038) and CASP9 (p = 0.007). In patients with UC, the BAX/BCL2 ratio was significantly correlated (r = 0.473) with the duration of the disease. In the group of CD patients treated biologically, a significantly lower BAX/BCL2 ratio was demonstrated than in patients that were not biologically treated. Conclusions: Our research has shown a simultaneous increase in the expression of the anti-apoptotic BCL2 gene and the proapoptotic BAX gene, which suggests the dysregulation of apoptosis mechanisms in IBD. Significantly higher expression of BAX and BCL2 in UC patients in remission as compared to CD may suggest differences in these diseases in terms of prognosis and treatment. Our results may suggest that an underlying imbalance in factors controlling apoptosis in peripheral blood lymphocytes may be the response of the immune system to inflammation of the intestinal mucosa. Modulation of apoptosis may become an important therapeutic mechanism in IBD.
Collapse
|
96
|
Crohn's Disease: Potential Drugs for Modulation of Autophagy. ACTA ACUST UNITED AC 2019; 55:medicina55060224. [PMID: 31146413 PMCID: PMC6630681 DOI: 10.3390/medicina55060224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular process whereby cytoplasmic constituents are degraded within lysosomes. Autophagy functions to eliminate unwanted or damaged materials such as proteins and organelles as their accumulation would be harmful to the cellular system. Autophagy also acts as a defense mechanism against invading pathogens and plays an important role in innate and adaptive immunity. In physiological processes, autophagy is involved in the regulation of tissue development, differentiation and remodeling, which are essential for maintaining cellular homeostasis. Recent studies have demonstrated that autophagy is linked to various diseases and involved in pathophysiological roles, such as adaptation during starvation, anti-aging, antigen presentation, tumor suppression and cell death. The modulation of autophagy has shown greatest promise in Crohn’s disease as most of autophagy drugs involved in these diseases are currently under clinical trials and some has been approved by Food and Drug Administration. This review article discusses autophagy and potential drugs that are currently available for its modulation in Crohn’s disease.
Collapse
|
97
|
Zielinska D, Laparra-Llopis JM, Zielinski H, Szawara-Nowak D, Giménez-Bastida JA. Role of Apple Phytochemicals, Phloretin and Phloridzin, in Modulating Processes Related to Intestinal Inflammation. Nutrients 2019; 11:E1173. [PMID: 31130634 PMCID: PMC6566941 DOI: 10.3390/nu11051173] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Plant-derived food consumption has gained attention as potential intervention for the improvement of intestinal inflammatory diseases. Apple consumption has been shown to be effective at ameliorating intestinal inflammation symptoms. These beneficial effects have been related to (poly)phenols, including phloretin (Phlor) and its glycoside named phloridzin (Phldz). To deepen the modulatory effects of these molecules we studied: i) their influence on the synthesis of proinflammatory molecules (PGE2, IL-8, IL-6, MCP-1, and ICAM-1) in IL-1β-treated myofibroblasts of the colon CCD-18Co cell line, and ii) the inhibitory potential of the formation of advanced glycation end products (AGEs). The results showed that Phlor (10-50 μM) decreased the synthesis of PGE2 and IL-8 and the formation of AGEs by different mechanisms. It is concluded that Phlor and Phldz, compounds found exclusively in apples, are positively associated with potential beneficial effects of apple consumption.
Collapse
Affiliation(s)
- Danuta Zielinska
- Department of Chemistry, University of Warmia and Mazury, 10-727 Olsztyn, Poland.
| | - José Moisés Laparra-Llopis
- Group of Molecular Immunonutrition in Cancer, Madrid Institute for Advanced Studies in Food (IMDEA-Food), 28049 Madrid, Spain.
| | - Henryk Zielinski
- Institute of Animal Reproduction and Food Research, Department of Chemistry and Biodynamics of Food, Polish Academy of Science, 10-748 Olsztyn, Poland.
| | - Dorota Szawara-Nowak
- Institute of Animal Reproduction and Food Research, Department of Chemistry and Biodynamics of Food, Polish Academy of Science, 10-748 Olsztyn, Poland.
| | - Juan Antonio Giménez-Bastida
- Institute of Animal Reproduction and Food Research, Department of Chemistry and Biodynamics of Food, Polish Academy of Science, 10-748 Olsztyn, Poland.
- Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CSIC), 30100 Murcia, Spain.
| |
Collapse
|
98
|
Garcia-Carbonell R, Yao SJ, Das S, Guma M. Dysregulation of Intestinal Epithelial Cell RIPK Pathways Promotes Chronic Inflammation in the IBD Gut. Front Immunol 2019; 10:1094. [PMID: 31164887 PMCID: PMC6536010 DOI: 10.3389/fimmu.2019.01094] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are common intestinal bowel diseases (IBD) characterized by intestinal epithelial injury including extensive epithelial cell death, mucosal erosion, ulceration, and crypt abscess formation. Several factors including activated signaling pathways, microbial dysbiosis, and immune deregulation contribute to disease progression. Although most research efforts to date have focused on immune cells, it is becoming increasingly clear that intestinal epithelial cells (IEC) are important players in IBD pathogenesis. Aberrant or exacerbated responses to how IEC sense IBD-associated microbes, respond to TNF stimulation, and regenerate and heal the injured mucosa are critical to the integrity of the intestinal barrier. The role of several genes and pathways in which single nucleotide polymorphisms (SNP) showed strong association with IBD has recently been studied in the context of IEC. In patients with IBD, it has been shown that the expression of specific dysregulated genes in IECs plays an important role in TNF-induced cell death and microbial sensing. Among them, the NF-κB pathway and its target gene TNFAIP3 promote TNF-induced and receptor interacting protein kinase (RIPK1)-dependent intestinal epithelial cell death. On the other hand, RIPK2 functions as a key signaling protein in host defense responses induced by activation of the cytosolic microbial sensors nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1 and NOD2). The RIPK2-mediated signaling pathway leads to the activation of NF-κB and MAP kinases that induce autophagy following infection. This article will review these dysregulated RIPK pathways in IEC and their role in promoting chronic inflammation. It will also highlight future research directions and therapeutic approaches involving RIPKs in IBD.
Collapse
Affiliation(s)
| | - Shih-Jing Yao
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
99
|
Shi J, Sun S, Liao Y, Tang J, Xu X, Qin B, Qin C, Peng L, Luo M, Bai L, Xie F. Advanced oxidation protein products induce G1 phase arrest in intestinal epithelial cells via a RAGE/CD36-JNK-p27kip1 mediated pathway. Redox Biol 2019; 25:101196. [PMID: 31014575 PMCID: PMC6859530 DOI: 10.1016/j.redox.2019.101196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/28/2019] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Intestinal epithelial cell (IEC) cycle arrest has recently been found to be involved in the pathogenesis of Crohn's disease (CD). However, the mechanism underlying the regulation of this form of cell cycle arrest, remains unclear. Here, we investigated the roles that advanced oxidation protein products (AOPPs) may play in regulating IEC cycle arrest. Plasma AOPPs levels and IEC cycle distributions were evaluated in 12 patients with CD. Molecular changes in various cyclins, cyclin-dependent kinases (CDKs), and other regulatory molecules were examined in cultured immortalized rat intestinal epithelial (IEC-6) cells after treatment with AOPPs. The in vivo effects exerted by AOPPs were evaluated using a normal C57BL/6 mouse model with an acute AOPPs challenge. Interestingly, plasma AOPPs levels were elevated in active CD patients and correlated with IEC G1 phase arrest. In addition, IEC treatment with AOPPs markedly reduced the expression of cyclin E and CDK2, thus sensitizing epithelial cells to cell cycle arrest both in vitro and in vivo. Importantly, we found that AOPPs induced IEC G1 phase arrest by modulating two membrane receptors, RAGE and CD36. Furthermore, phosphorylation of c-jun N-terminal kinase (JNK) and the expression of p27kip1 in AOPPs-treated cells were subsequently increased and thus affected cell cycle progression. Our findings reveal that AOPPs influence IEC cycle progression by reducing cyclin E and CDK2 expression through RAGE/CD36-depedent JNK/p27kip1 signaling. Consequently, AOPPs may represent a potential therapeutic molecule. Targeting AOPPs may offer a novel approach to managing CD.
Collapse
Affiliation(s)
- Jie Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shibo Sun
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yan Liao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Biyan Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Caolitao Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lishan Peng
- Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mengshi Luo
- Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
100
|
King SJ, McCole DF. Epithelial-microbial diplomacy: escalating border tensions drive inflammation in inflammatory bowel disease. Intest Res 2019; 17:177-191. [PMID: 30836737 PMCID: PMC6505084 DOI: 10.5217/ir.2018.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic conditions of the gastrointestinal tract-the main site of host-microbial interaction in the body. Development of IBD is not due to a single event but rather is a multifactorial process where a patient’s genetic background, behavioral habits, and environmental exposures contribute to disease pathogenesis. IBD patients exhibit alterations to gut bacterial populations “dysbiosis” due to the inflammatory microenvironment, however whether this alteration of the gut microbiota precedes inflammation has not been confirmed. Emerging evidence has highlighted the important role of gut microbes in developing measured immune responses and modulating other host responses such as metabolism. Much of the work on the gut microbiota has been correlative and there is an increasing need to understand the intimate relationship between host and microbe. In this review, we highlight how commensal and pathogenic bacteria interact with host intestinal epithelial cells and explore how altered microenvironments impact these connections.
Collapse
Affiliation(s)
- Stephanie J King
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Declan F McCole
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|