51
|
Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. FRONTIERS IN PLANT SCIENCE 2014; 5:73. [PMID: 24653729 PMCID: PMC3947992 DOI: 10.3389/fpls.2014.00073] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/12/2014] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana. Genetic analyses and characterization of A. thaliana mutants possessing a disorganized ER morphology or lacking ER bodies have provided insights into the highly organized mechanisms responsible for the formation of these unique ER structures. The accumulation of proteins specific for the ER body within the ER plays an important role in the formation of ER bodies. However, a mutant that exhibits morphological defects of both the ER and ER bodies has not been identified. This suggests that plants in the Brassicales order have evolved novel mechanisms for the development of this unique organelle, which are distinct from those used to maintain generic ER structures. In A. thaliana, ER bodies are ubiquitous in seedlings and roots, but rare in rosette leaves. Wounding of rosette leaves induces de novo formation of ER bodies, suggesting that these structures are associated with resistance against pathogens and/or herbivores. ER bodies accumulate a large amount of β-glucosidases, which can produce substances that potentially protect against invading pests. Biochemical studies have determined that the enzymatic activities of these β-glucosidases are enhanced during cell collapse. These results suggest that ER bodies are involved in plant immunity, although there is no direct evidence of this. In this review, we provide recent perspectives of ER and ER body formation in A. thaliana, and discuss clues for the functions of ER bodies. We highlight defense strategies against biotic stress that are unique for the Brassicales order, and discuss how ER structures could contribute to these strategies.
Collapse
Affiliation(s)
- Ryohei T. Nakano
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznañ, Poland
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic BiologyOkazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (Sokendai)Okazaki, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto UniversityKyoto, Japan
- *Correspondence: Ikuko Hara-Nishimura, Laboratory of Plant Molecular and Cell Biology, Department of Botany, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo-ku, 606-8502 Kyoto, Japan e-mail:
| |
Collapse
|
52
|
Takahashi S, Yanai H, Oka-Takayama Y, Zanma-Sohtome A, Fujiyama K, Uchida A, Nakayama K, Satoh H. Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble chlorophyll-binding protein (WSCP) from Virginia pepperweed (Lepidium virginicum), a unique WSCP that preferentially binds chlorophyll b in vitro. PLANTA 2013; 238:1065-1080. [PMID: 23995835 DOI: 10.1007/s00425-013-1952-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
Various plants possess non-photosynthetic, hydrophilic chlorophyll (Chl) proteins called water-soluble Chl-binding proteins (WSCPs). WSCPs are categorized into two classes; Class I (photoconvertible type) and Class II (non-photoconvertible type). Among Class II WSCPs, only Lepidium virginicum WSCP (LvWSCP) exhibits a low Chl a/b ratio compared with that found in the leaf. Although the physicochemical properties of LvWSCP have been characterized, its molecular properties have not yet been documented. Here, we report the characteristics of the LvWSCP gene, the biochemical properties of a recombinant LvWSCP, and the intracellular localization of LvWSCP. The cloned LvWSCP gene possesses a 669-bp open reading frame. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis revealed that the precursor of LvWSCP contains both N- and C-terminal extension peptides. RT-PCR analysis revealed that LvWSCP was transcribed in various tissues, with the levels being higher in developing tissues. A recombinant LvWSCP and hexa-histidine fusion protein (LvWSCP-His) could remove Chls from the thylakoid in aqueous solution and showed an absorption spectrum identical to that of native LvWSCP. Although LvWSCP-His could bind both Chl a and Chl b, it bound almost exclusively to Chl b when reconstituted in 40 % methanol. To clarify the intracellular targeting functions of the N- and C-terminal extension peptides, we constructed transgenic Arabidopsis thaliana lines expressing the Venus protein fused with the LvWSCP N- and/or C-terminal peptides, as well as Venus fused at the C-terminus of LvWSCP. The results showed that the N-terminal peptide functioned in ER body targeting, while the C-terminal sequence did not act as a trailer peptide.
Collapse
Affiliation(s)
- Shigekazu Takahashi
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Haruna Yanai
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yuko Oka-Takayama
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Aya Zanma-Sohtome
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Kosaku Fujiyama
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Akira Uchida
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Katsumi Nakayama
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Hiroyuki Satoh
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
53
|
Vahabi K, Camehl I, Sherameti I, Oelmüller R. Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots. PLANT SIGNALING & BEHAVIOR 2013; 8:e26301. [PMID: 24047645 PMCID: PMC4091356 DOI: 10.4161/psb.26301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+ -dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.
Collapse
|
54
|
Watanabe S, Shimada TL, Hiruma K, Takano Y. Pathogen infection trial increases the secretion of proteins localized in the endoplasmic reticulum body of Arabidopsis. PLANT PHYSIOLOGY 2013; 163:659-64. [PMID: 23918901 PMCID: PMC3793047 DOI: 10.1104/pp.113.217364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Endoplasmic reticulum structures facilitate the increased secretion of proteins during the plant immune response.
Collapse
|
55
|
Hakenjos JP, Bejai S, Ranftl Q, Behringer C, Vlot AC, Absmanner B, Hammes U, Heinzlmeir S, Kuster B, Schwechheimer C. ML3 is a NEDD8- and ubiquitin-modified protein. PLANT PHYSIOLOGY 2013; 163:135-49. [PMID: 23903439 PMCID: PMC3762636 DOI: 10.1104/pp.113.221341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/30/2013] [Indexed: 05/23/2023]
Abstract
NEDD8 (NEURAL PRECURSOR CELL-EXPRESSED, DEVELOPMENTALLY DOWN-REGULATED PROTEIN8) is an evolutionarily conserved 8-kD protein that is closely related to ubiquitin and that can be conjugated like ubiquitin to specific lysine residues of target proteins in eukaryotes. In contrast to ubiquitin, for which a broad range of substrate proteins are known, only a very limited number of NEDD8 target proteins have been identified to date. Best understood, and also evolutionarily conserved, is the NEDD8 modification (neddylation) of cullins, core subunits of the cullin-RING-type E3 ubiquitin ligases that promote the polyubiquitylation of degradation targets in eukaryotes. Here, we show that Myeloid differentiation factor-2-related lipid-recognition domain protein ML3 is an NEDD8- as well as ubiquitin-modified protein in Arabidopsis (Arabidopsis thaliana) and examine the functional role of ML3 in the plant cell. Our analysis indicates that ML3 resides in the vacuole as well as in endoplasmic reticulum (ER) bodies. ER bodies are Brassicales-specific ER-derived organelles and, similar to other ER body proteins, ML3 orthologs can only be identified in this order of flowering plants. ML3 gene expression is promoted by wounding as well as by the phytohormone jasmonic acid and repressed by ethylene, signals that are known to induce and repress ER body formation, respectively. Furthermore, ML3 protein abundance is dependent on NAI1, a master regulator of ER body formation in Arabidopsis. The regulation of ML3 expression and the localization of ML3 in ER bodies and the vacuole is in agreement with a demonstrated importance of ML3 in the defense to herbivore attack. Here, we extend the spectrum of ML3 biological functions by demonstrating a role in the response to microbial pathogens.
Collapse
|
56
|
Venus Y, Oelmüller R. Arabidopsis ROP1 and ROP6 influence germination time, root morphology, the formation of F-actin bundles, and symbiotic fungal interactions. MOLECULAR PLANT 2013; 6:872-86. [PMID: 23118477 DOI: 10.1093/mp/sss101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The RHO-related GTPases ROP1 and ROP6 and the ROP1-interacting protein RIC4 in Arabidopsis are involved in various processes of F-actin dynamics, cell growth, and plant/microbe interactions. The knockout rop1 and rop1 rop6 seeds germinate earlier and are impaired in root hair development. Also root hair branching is strongly affected by manipulation of the RHO-related GTPase (ROP) levels. Furthermore, in the double knockout line rop1 rop6, no actin bundle formation can be detected. We demonstrate that these proteins are required for establishing a mutualistic interaction between the root-colonizing endophytic fungus Piriformospora indica and Arabidopsis. The fungus promotes growth of wild-type plants. rop1, rop6, rop1 rop6, ric4, 35S::ROP1, and 35S::ROP6 seedlings are impaired in the response to the fungus. Since the different root architectures have no effect on root colonization, the impaired response to P. indica should be caused by ROP-mediated events in the root cells. In wild-type roots, P. indica stimulates the formation of F-actin bundles and this does not occur in the rop1 rop6 knockout line. Furthermore, the fungus stimulates the expression of the calmodulin-binding protein gene Cbp60g, and this response is severely reduced in the rop mutants. We propose that ROP1 and ROP6 are required for F-actin bundle formation in the roots, which is required for P. indica-mediated growth promotion in Arabidopsis.
Collapse
Affiliation(s)
- Yvonne Venus
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Straβe 159, D-07743 Jena, Germany
| | | |
Collapse
|
57
|
Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biol 2013; 117:250-60. [DOI: 10.1016/j.funbio.2013.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 01/18/2013] [Accepted: 02/01/2013] [Indexed: 11/20/2022]
|
58
|
Nongbri PL, Vahabi K, Mrozinska A, Seebald E, Sun C, Sherameti I, Johnson JM, Oelmüller R. Balancing defense and growth—Analyses of the beneficial symbiosis between Piriformospora indica and Arabidopsis thaliana. Symbiosis 2013. [DOI: 10.1007/s13199-012-0209-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
59
|
Varma A, Fekete A, Srivastava A, Saxena AK, Frommberger M, Li D, Gschwendter S, Sherameti I, Oelmueller R, Schmitt-Kopplin P, Tripathi S, Hartmann A. Inhibitory Interactions of Rhizobacteria with the Symbiotic Fungus Piriformospora indica. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-33802-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
60
|
Rodríguez-Celma J, Pan IC, Li W, Lan P, Buckhout TJ, Schmidt W. The transcriptional response of Arabidopsis leaves to Fe deficiency. FRONTIERS IN PLANT SCIENCE 2013; 4:276. [PMID: 23888164 PMCID: PMC3719017 DOI: 10.3389/fpls.2013.00276] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/04/2013] [Indexed: 05/20/2023]
Abstract
Due to its ease to donate or accept electrons, iron (Fe) plays a crucial role in respiration and metabolism, including tetrapyrrole synthesis, in virtually all organisms. In plants, Fe is a component of the photosystems and thus essential for photosynthesis. Fe deficiency compromises chlorophyll (Chl) synthesis, leading to interveinal chlorosis in developing leaves and decreased photosynthetic activity. To gain insights into the responses of photosynthetically active cells to Fe deficiency, we conducted transcriptional profiling experiments on leaves from Fe-sufficient and Fe-deficient plants using the RNA-seq technology. As anticipated, genes associated with photosynthesis and tetrapyrrole metabolism were dramatically down-regulated by Fe deficiency. A sophisticated response comprising the down-regulation of HEMA1 and NYC1, which catalyze the first committed step in tetrapyrrole biosynthesis and the conversion of Chl b to Chl a at the commencement of Chl breakdown, respectively, and the up-regulation of CGLD27, which is conserved in plastid-containing organisms and putatively involved in xanthophyll biosynthesis, indicates a carefully orchestrated balance of potentially toxic tetrapyrrole intermediates and functional end products to avoid photo-oxidative damage. Comparing the responses to Fe deficiency in leaves to that in roots confirmed subgroup 1b bHLH transcription factors and POPEYE/BRUTUS as important regulators of Fe homeostasis in both leaf and root cells, and indicated six novel players with putative roles in Fe homeostasis that were highly expressed in leaves and roots and greatly induced by Fe deficiency. The data further revealed down-regulation of organ-specific subsets of genes encoding ribosomal proteins, which may be indicative of a change in ribosomal composition that could bias translation. It is concluded that Fe deficiency causes a massive reorganization of plastid activity, which is adjusting leaf function to the availability of Fe.
Collapse
Affiliation(s)
| | - I Chun Pan
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | - Wenfeng Li
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | - Ping Lan
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
| | | | - Wolfgang Schmidt
- Academia Sinica, Institute of Plant and Microbial BiologyTaipei, Taiwan
- Biotechnology Center, National Chung-Hsing UniversityTaichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan UniversityTaipei, Taiwan
- *Correspondence: Wolfgang Schmidt, Academia Sinica, Institute of Plant and Microbial Biology, Academia Road 128, Taipei 11529, Taiwan e-mail:
| |
Collapse
|
61
|
Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M. Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. PLANT PHYSIOLOGY 2013; 161:108-20. [PMID: 23166355 PMCID: PMC3532245 DOI: 10.1104/pp.112.207654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/15/2012] [Indexed: 05/05/2023]
Abstract
The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | | | - Momoko Nishina
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Ikuko Hara-Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| |
Collapse
|
62
|
Iven T, König S, Singh S, Braus-Stromeyer SA, Bischoff M, Tietze LF, Braus GH, Lipka V, Feussner I, Dröge-Laser W. Transcriptional activation and production of tryptophan-derived secondary metabolites in arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. MOLECULAR PLANT 2012; 5:1389-402. [PMID: 22522512 DOI: 10.1093/mp/sss044] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The soil-borne fungal pathogen Verticillium longisporum causes vascular disease on Brassicaceae host plants such as oilseed rape. The fungus colonizes the root xylem and moves upwards to the foliage where disease symptoms become visible. Using Arabidopsis as a model for early gene induction, we performed root transcriptome analyses in response to hyphal growth immediately after spore germination and during penetration of the root cortex, respectively. Infected roots showed a rapid reprogramming of gene expression such as activation of transcription factors, stress-, and defense-related genes. Here, we focused on the highly coordinated gene induction resulting in the production of tryptophan-derived secondary metabolites. Previous studies in leaves showed that enzymes encoded by CYP81F2 and PEN2 (PENETRATION2) execute the formation of antifungal indole glucosinolate (IGS) metabolites. In Verticillium-infected roots, we found transcriptional activation of CYP81F2 and the PEN2 homolog PEL1 (PEN2-LIKE1), but no increase in antifungal IGS breakdown products. In contrast, indole-3-carboxylic acid (I3CA) and the phytoalexin camalexin accumulated in infected roots but only camalexin inhibited Verticillium growth in vitro. Whereas genetic disruption of the individual metabolic pathways leading to either camalexin or CYP81F2-dependent IGS metabolites did not alter Verticillium-induced disease symptoms, a cyp79b2 cyp79b3 mutant impaired in both branches resulted in significantly enhanced susceptibility. Hence, our data provide an insight into root-specific early defenses and suggest tryptophan-derived metabolites as active antifungal compounds against a vascular pathogen.
Collapse
Affiliation(s)
- Tim Iven
- Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA, Oelmüller R. Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1186-97. [PMID: 22852809 DOI: 10.1094/mpmi-03-12-0071-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The growth-promoting and root-colonizing endophyte Piriformospora indica induces camalexin and the expression of CYP79B2, CYP79B3, CYP71A13, PAD3, and WRKY33 required for the synthesis of indole-3-acetaldoxime (IAOx)-derived compounds in the roots of Arabidopsis seedlings. Upregulation of the mRNA levels by P. indica requires cytoplasmic calcium elevation and mitogen-activated protein kinase 3 but not root-hair-deficient 2, radical oxygen production, or the 3-phosphoinositide-dependent kinase 1/oxidative signal-inducible 1 pathway. Because P. indica-mediated growth promotion is impaired in cyp79B2 cyp79B3 seedlings, while pad3 seedlings-which do not accumulate camalexin-still respond to the fungus, IAOx-derived compounds other than camalexin (e.g., indole glucosinolates) are required during early phases of the beneficial interaction. The roots of cyp79B2 cyp79B3 seedlings are more colonized than wild-type roots, and upregulation of the defense genes pathogenesis-related (PR)-1, PR-3, PDF1.2, phenylalanine ammonia lyase, and germin indicates that the mutant responds to the lack of IAOx-derived compounds by activating other defense processes. After 6 weeks on soil, defense genes are no longer upregulated in wild-type, cyp79B2 cyp79B3, and pad3 roots. This results in uncontrolled fungal growth in the mutant roots and reduced performance of the mutants. We propose that a long-term harmony between the two symbionts requires restriction of root colonization by IAOx-derived compounds.
Collapse
|
64
|
Otulak K, Garbaczewska G. Cytopathological potato virus Y structures during Solanaceous plants infection. Micron 2012; 43:839-50. [PMID: 22410276 DOI: 10.1016/j.micron.2012.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
The ultrastructural analysis of tobacco, potato and pepper tissues during infection with necrotic strains and the ordinary Potato virus Y strain of revealed the presence of virus inclusions not only in the epidermis and mesophyll but also in the vascular tissues. For the first time cytoplasmic inclusions were documented in companion cells and phloem parenchyma as well as in xylem tracheary elements. The ultrastructural features studied in this work consisted of mostly laminated inclusions (in the traverse and longitudinal section), which were frequently connected with enlarged cisternae of endoplasmic reticulum (ER) located in the direct vicinity of the cell wall attached to virus particles opposite to plasmodesmata. It was noticed that ER participates in synthesis and condensation of the PVY inclusions. During compatible interaction of tobacco and potato plants with PVY, amorphous and nuclear inclusions were observed. Such forms were not found in pepper tissues and potato revealing the hypersensitivity reaction to the infection with PVY necrotic strains. It was stated that the forms of cytoplasmic inclusions cannot serve as a cytological criterion to distinguish the potato virus Y strains and do not depend on host resistance level. Only in compatible interaction in Solanaceous plants tissues cytoplasmic inclusions were observed from the moment the morphological symptoms appeared. In the reaction of hypersensitivity, the inclusions were found on the 24th day following the infection with the PVY necrotic strains, whereas the symptoms were observed 3 days after the PVY infection.
Collapse
Affiliation(s)
- Katarzyna Otulak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | |
Collapse
|
65
|
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2012; 3:108. [PMID: 22661981 PMCID: PMC3362084 DOI: 10.3389/fpls.2012.00108] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/07/2012] [Indexed: 05/04/2023]
Abstract
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
Collapse
Affiliation(s)
- Janick Mathys
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | | | - Bart Lievens
- Scientia Terrae Research InstituteSint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven AssociationSint-Katelijne-Waver, Belgium
| | - Mieke Vanhaecke
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| |
Collapse
|
66
|
Ibl V, Stoger E. The formation, function and fate of protein storage compartments in seeds. PROTOPLASMA 2012; 249:379-92. [PMID: 21614590 DOI: 10.1007/s00709-011-0288-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/12/2011] [Indexed: 05/07/2023]
Abstract
Seed storage proteins (SSPs) have been studied for more than 250 years because of their nutritional value and their impact on the use of grain in food processing. More recently, the use of seeds for the production of recombinant proteins has rekindled interest in the behavior of SSPs and the question how they are able to accumulate as stable storage reserves. Seed cells produce vast amounts of SSPs with different subcellular destinations creating an enormous logistic challenge for the endomembrane system. Seed cells contain several different storage organelles including the complex and dynamic protein storage vacuoles (PSVs) and other protein bodies (PBs) derived from the endoplasmic reticulum (ER). Storage proteins destined for the PSV may pass through or bypass the Golgi, using different vesicles that follow different routes through the cell. In addition, trafficking may depend on the plant species, tissue and developmental stage, showing that the endomembrane system is capable of massive reorganization. Some SSPs contain sorting signals or interact with membranes or with other proteins en route in order to reach their destination. The ability of SSPs to form aggregates is particularly important in the formation or ER-derived PBs, a mechanism that occurs naturally in response to overloading with proteins that cannot be transported and that can be used to induce artificial storage bodies in vegetative tissues. In this review, we summarize recent findings that provide insight into the formation, function, and fate of storage organelles and describe tools that can be used to study them.
Collapse
Affiliation(s)
- Verena Ibl
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | | |
Collapse
|
67
|
Yamada K, Hara-Nishimura I, Nishimura M. Unique defense strategy by the endoplasmic reticulum body in plants. PLANT & CELL PHYSIOLOGY 2011; 52:2039-49. [PMID: 22102697 DOI: 10.1093/pcp/pcr156] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the β-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other β-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Nishigo-naka 38, Okazaki 444-8585, Aichi, Japan
| | | | | |
Collapse
|
68
|
Imani J, Li L, Schäfer P, Kogel KH. STARTS--a stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:726-735. [PMID: 21518054 DOI: 10.1111/j.1365-313x.2011.04620.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Large data sets are generated from plants by the various 'omics platforms. Currently, a limiting step in data analysis is the assessment of protein function and its translation into a biological context. The lack of robust high-throughput transformation systems for monocotyledonous plants, to which the vast majority of crop plants belong, is a major restriction and impedes exploitation of novel traits in agriculture. Here we present a stable root transformation system for barley, termed STARTS, that allows assessment of gene function in root tissues within 6 weeks. The system is based on the finding that a callus, produced on root induction medium from the scutellum of the immature embryo, is able to regenerate roots from single transformed cells by concomitant suppression of shoot development. Using Agrobacterium tumefaciens-mediated transfer of genes involved in root development and pathogenesis, we show that those calli regenerate large amounts of uniformly transformed roots for in situ functional analysis of newly expressed proteins.
Collapse
Affiliation(s)
- Jafargholi Imani
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University, Institute of Phytopathology and Applied Zoology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
69
|
Hirt H, Garcia AV, Oelmüller R. AGC kinases in plant development and defense. PLANT SIGNALING & BEHAVIOR 2011; 6:1030-3. [PMID: 22005000 PMCID: PMC3257787 DOI: 10.4161/psb.6.7.15580] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
More than 100,000 publications demonstrate that AGC kinases are important regulators of growth, metabolism, proliferation, cell divison, survival and apoptosis in mammalian systems. Mutation and/or dysregulation of these kinases contribute to the pathogenesis of many human diseases, including cancer and diabetes. Although AGC kinases are also present in plants, little is known about their functions. We demonstrated that the AGC kinase OXIDATIVE SIGNAL-INDUCIBLE 1 (OXI1/AGC2-1) regulate important developmental processes and defense responses in plants. The summary of recent progress also demonstrates that we are only beginning to understand the role of this kinase pathway in plants.
Collapse
Affiliation(s)
- Heribert Hirt
- URGV Plant Genomics; INRA-CNRS-University of Evry; Evry, France
| | - Ana V Garcia
- URGV Plant Genomics; INRA-CNRS-University of Evry; Evry, France
| | - Ralf Oelmüller
- Friedrich-Schiller-Universität Jena; Institut für Allgemeine Botanik und Pflanzenphysiologie; Jena, Germany
| |
Collapse
|
70
|
Kidd BN, Kadoo NY, Dombrecht B, Tekeoglu M, Gardiner DM, Thatcher LF, Aitken EAB, Schenk PM, Manners JM, Kazan K. Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:733-48. [PMID: 21281113 DOI: 10.1094/mpmi-08-10-0194] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed.
Collapse
Affiliation(s)
- Brendan N Kidd
- Commonwealth Scientific and Industrial Research Organization Plant Industy, Queensland Bioscience Precint, St Lucia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog 2011; 7:e1002051. [PMID: 21625539 PMCID: PMC3098243 DOI: 10.1371/journal.ppat.1002051] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/20/2011] [Indexed: 11/28/2022] Open
Abstract
Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1) gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA) and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H2O2 formation is even reduced by the fungus. Importantly, phospholipase D (PLD)α1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade. Like many root-colonizing microbes, the primitive Basidiomycete fungus Piriformospora indica colonizes the roots of many plant species and promotes their growth. The lack of host specificity suggests that the plant response to this endopyhte is based on general signalling processes. In a genetic screen for Arabidopsis plants, which do not show a P. indica-induced growth response, we isolated a mutant in the OXI1 (Oxidative Signal Inducible1) gene. Previously, this protein kinase has been shown to play a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that deletion of PDK1 also abolishes the growth response to P. indica. PDK1 is activated by phosphatidic acid (PA). P. indica triggers PA synthesis and mutants impaired in PA synthesis do not show growth promotion in response to fungal infection. Since defense processes are repressed by P. indica, we propose that a pathway consisting of the PLD-PDK1-OXI1 cascade mediates the P. indica-induced growth response.
Collapse
|
72
|
Vercruyssen L, Gonzalez N, Werner T, Schmülling T, Inzé D. Combining enhanced root and shoot growth reveals cross talk between pathways that control plant organ size in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1339-52. [PMID: 21205622 PMCID: PMC3046590 DOI: 10.1104/pp.110.167049] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/31/2010] [Indexed: 05/19/2023]
Abstract
Functionally distinct Arabidopsis (Arabidopsis thaliana) genes that positively affect root or shoot growth when ectopically expressed were combined to explore the feasibility of enhanced biomass production. Enhanced root growth resulting from cytokinin deficiency was obtained by overexpressing CYTOKININ OXIDASE/DEHYDROGENASE3 (CKX3) under the control of the root-specific PYK10 promoter. Plants harboring the PYK10-CKX3 construct were crossed with four different transgenic lines showing enhanced leaf growth. For all combinations, the phenotypic traits of the individual lines could be combined, resulting in an overall growth increase. Unexpectedly, three out of four combinations had more than additive effects. Both leaf and root growth were synergistically enhanced in plants ectopically expressing CKX3 and BRASSINOSTEROID INSENSITIVE1, indicating cross talk between cytokinins and brassinosteroids. In agreement, treatment of PYK10-CKX3 plants with brassinolide resulted in a dramatic increase in lateral root growth that could not be observed in wild-type plants. Coexpression of CKX3 and the GROWTH-REGULATING FACTOR5 (GRF5) antagonized the effects of GRF5 overexpression, revealing an interplay between cytokinins and GRF5 during leaf cell proliferation. The combined overexpression of CKX3 and GIBBERELLIN 20-OXIDASE1 led to a synergistic increase in leaf growth, suggesting an antagonistic growth control by cytokinins and gibberellins. Only additive effects on root and shoot growth were visible in plants ectopically expressing both CKX3 and ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1, hinting at an independent action mode. Our results show new interactions and contribute to the molecular and physiological understanding of biomass production at the whole plant level.
Collapse
|
73
|
Pfalz M, Mikkelsen MD, Bednarek P, Olsen CE, Halkier BA, Kroymann J. Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. THE PLANT CELL 2011; 23:716-29. [PMID: 21317374 PMCID: PMC3077789 DOI: 10.1105/tpc.110.081711] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/04/2011] [Accepted: 01/23/2011] [Indexed: 05/18/2023]
Abstract
Indole glucosinolates, derived from the amino acid Trp, are plant secondary metabolites that mediate numerous biological interactions between cruciferous plants and their natural enemies, such as herbivorous insects, pathogens, and other pests. While the genes and enzymes involved in the Arabidopsis thaliana core biosynthetic pathway, leading to indol-3-yl-methyl glucosinolate (I3M), have been identified and characterized, the genes and gene products responsible for modification reactions of the indole ring are largely unknown. Here, we combine the analysis of Arabidopsis mutant lines with a bioengineering approach to clarify which genes are involved in the remaining biosynthetic steps in indole glucosinolate modification. We engineered the indole glucosinolate biosynthesis pathway into Nicotiana benthamiana, showing that it is possible to produce indole glucosinolates in a noncruciferous plant. Building upon this setup, we demonstrate that all members of a small gene subfamily of cytochrome P450 monooxygenases, CYP81Fs, are capable of carrying out hydroxylation reactions of the glucosinolate indole ring, leading from I3M to 4-hydroxy-indol-3-yl-methyl and/or 1-hydroxy-indol-3-yl-methyl glucosinolate intermediates, and that these hydroxy intermediates are converted to 4-methoxy-indol-3-yl-methyl and 1-methoxy-indol-3-yl-methyl glucosinolates by either of two family 2 O-methyltransferases, termed indole glucosinolate methyltransferase 1 (IGMT1) and IGMT2.
Collapse
Affiliation(s)
- Marina Pfalz
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Laboratoire d’Ecologie, Systématique et Evolution, Université Paris-Sud/Centre National de la Recherche Scientifique, F-91405 Orsay, France
| | - Michael Dalgaard Mikkelsen
- University of Copenhagen, Faculty of Life Sciences, Department of Plant Biology, VKR Research Centre for Pro-Active Plants, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Paweł Bednarek
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Carl Erik Olsen
- University of Copenhagen, Faculty of Life Sciences, Department of Basic Sciences and Environment/Bioorganic Chemistry, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Barbara Ann Halkier
- University of Copenhagen, Faculty of Life Sciences, Department of Plant Biology, VKR Research Centre for Pro-Active Plants, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Juergen Kroymann
- Laboratoire d’Ecologie, Systématique et Evolution, Université Paris-Sud/Centre National de la Recherche Scientifique, F-91405 Orsay, France
| |
Collapse
|
74
|
Ketudat Cairns JR, Esen A. β-Glucosidases. Cell Mol Life Sci 2010; 67:3389-405. [PMID: 20490603 PMCID: PMC11115901 DOI: 10.1007/s00018-010-0399-2] [Citation(s) in RCA: 365] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/13/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
β-Glucosidases (3.2.1.21) are found in all domains of living organisms, where they play essential roles in the removal of nonreducing terminal glucosyl residues from saccharides and glycosides. β-Glucosidases function in glycolipid and exogenous glycoside metabolism in animals, defense, cell wall lignification, cell wall β-glucan turnover, phytohormone activation, and release of aromatic compounds in plants, and biomass conversion in microorganisms. These functions lead to many agricultural and industrial applications. β-Glucosidases have been classified into glycoside hydrolase (GH) families GH1, GH3, GH5, GH9, and GH30, based on their amino acid sequences, while other β-glucosidases remain to be classified. The GH1, GH5, and GH30 β-glucosidases fall in GH Clan A, which consists of proteins with (β/α)(8)-barrel structures. In contrast, the active site of GH3 enzymes comprises two domains, while GH9 enzymes have (α/α)(6) barrel structures. The mechanism by which GH1 enzymes recognize and hydrolyze substrates with different specificities remains an area of intense study.
Collapse
Affiliation(s)
- James R Ketudat Cairns
- Schools of Biochemistry and Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, Thailand.
| | | |
Collapse
|
75
|
Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1009-17. [PMID: 20471134 DOI: 10.1016/j.jplph.2010.02.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 05/05/2023]
Abstract
Piriformospora indica, a root-colonizing endophytic fungus of Sebacinales, promotes plant growth and confers resistance against biotic and abiotic stress. The fungus strongly colonizes the roots of Chinese cabbage, promotes root and shoot growth, and promotes lateral root formation. When colonized plants were exposed to polyethylene glycol to mimic drought stress, the activities of peroxidases, catalases and superoxide dismutases in the leaves were upregulated within 24h. The fungus retarded the drought-induced decline in the photosynthetic efficiency and the degradation of chlorophylls and thylakoid proteins. The expression levels of the drought-related genes DREB2A, CBL1, ANAC072 and RD29A were upregulated in the drought-stressed leaves of colonized plants. Furthermore, the CAS mRNA level for the thylakoid membrane associated Ca(2+)-sensing regulator and the amount of the CAS protein increased. We conclude that antioxidant enzyme activities, drought-related genes and CAS are three crucial targets of P. indica in Chinese cabbage leaves during the establishment of drought tolerance. P. indica-colonized Chinese cabbage provides a good model system to study root-to-shoot communication.
Collapse
Affiliation(s)
- Chao Sun
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | | | | | | |
Collapse
|
76
|
Camehl I, Oelmüller R. Do ethylene response factorS9 and -14 repress PR gene expression in the interaction between Piriformospora indica and Arabidopsis? PLANT SIGNALING & BEHAVIOR 2010; 5:932-6. [PMID: 20505369 PMCID: PMC3115165 DOI: 10.4161/psb.5.8.12036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The plant hormone ethylene (ET) plays a crucial role in the signalling network when plants have to respond to biotic stresses. We investigate the beneficial interaction between the model plant Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Recently, we showed that ET signalling and ETHYLENE RESPONSE FACTOR (ERF)1 are important to balance beneficial and nonbeneficial traits in this symbiosis. 147 ERF genes in Arabidopsis encode transcriptional regulators with a variety of functions involved in development, physiological processes as well as plant/microbe interactions. In the beneficial symbiosis between Arabidopsis and P. indica, overexpression of ERF1 activates defence responses, strongly reduces root colonization and thus abolishes the benefits for the plants. Here we show that additional transcription factors of the ERF family, the ERF DOMAIN PROTEIN9 (ERF9) and the ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR14 (ERF14) are involved in the interaction between the two symbionts and are required for growth promotion of the host plant. Expression of these genes is upregulated in colonized wild-type roots. Insertional inactivation of ERF9 and ERF14 diminishes the P. indica-induced growth promotion and activates the expression of the PATHOGENESIS-RELATED (PR)-1 and PR-2 genes. We propose that ERF9 and ERF14 repress PR gene expression in colonized Arabidopsis roots and thus contribute to the establishment of a beneficial interaction.
Collapse
Affiliation(s)
- Iris Camehl
- Institute for Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | |
Collapse
|
77
|
Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, Oelmüller R. Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 185:1062-73. [PMID: 20085621 DOI: 10.1111/j.1469-8137.2009.03149.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
*The endophytic fungus Piriformospora indica colonizes the roots of the model plant Arabidopsis thaliana and promotes its growth and seed production. The fungus can be cultivated in axenic culture without a host, and therefore this is an excellent system to investigate plant-fungus symbiosis. *The growth of etr1, ein2 and ein3/eil1 mutant plants was not promoted or even inhibited by the fungus; the plants produced less seeds and the roots were more colonized compared with the wild-type. This correlates with a mild activation of defence responses. The overexpression of ETHYLENE RESPONSE FACTOR1 constitutively activated defence responses, strongly reduced root colonization and abolished the benefits for the plants. *Piriformospora indica-mediated stimulation of growth and seed yield was not affected by jasmonic acid, and jasmonic acid-responsive promoter beta-glucuronidase gene constructs did not respond to the fungus in Arabidopsis roots. *We propose that ethylene signalling components and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis. The results show that the restriction of fungal growth by ethylene signalling components is required for the beneficial interaction between the two symbionts.
Collapse
Affiliation(s)
- Iris Camehl
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
78
|
Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. MYCORRHIZA 2010; 20:191-200. [PMID: 19789897 DOI: 10.1007/s00572-009-0279-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/11/2009] [Indexed: 05/21/2023]
Abstract
Piriformospora indica is a root endophytic fungus with plant-promoting properties in numerous plant species and induces resistance against root and shoot pathogens in barley, wheat, and Arabidopsis. A study over several years showed that the endophyte P. indica colonised the roots of the most consumed vegetable crop tomato. P. indica improved the growth of tomato resulting in increased biomass of leaves by up to 20%. Limitation of disease severity caused by Verticillium dahliae by more than 30% was observed on tomato plants colonised by the endophyte. Further experiments were carried out in hydroponic cultures which are commonly used for the indoor production of tomatoes in central Europe. After adaptation of inoculation techniques (inoculum density, plant stage), it was shown that P. indica influences the concentration of Pepino mosaic virus in tomato shoots. The outcome of the interaction seems to be affected by light intensity. Most importantly, the endophyte increases tomato fruit biomass in hydroponic culture concerning fresh weight (up to 100%) and dry matter content (up to 20%). Hence, P. indica represents a suitable growth promoting endophyte for tomato which can be applied in production systems of this important vegetable plant not only in soil, but also in hydroponic cultures.
Collapse
Affiliation(s)
- Ahmad Fakhro
- Leibniz-Institute for Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg, Grossbeeren, Germany
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Wittstock U, Burow M. Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. THE ARABIDOPSIS BOOK 2010; 8:e0134. [PMID: 22303260 PMCID: PMC3244901 DOI: 10.1199/tab.0134] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glucosinolates are a group of thioglucosides in plants of the Brassicales order. Together with their hydrolytic enzymes, the myrosinases, they constitute the 'mustard oil bomb' involved in plant defense. Here we summarize recent studies in Arabidopsis that have provided molecular evidence that the glucosinolate-myrosinase system is much more than a 'two-component defense system,' and started to unravel the roles of different glucosinolate breakdown pathways in the context of plant responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ute Wittstock
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig
- Address for correspondence:
| | - Meike Burow
- Department of Plant Biology and Biotechnology, VKR Research Centre Pro-Active Plants
| |
Collapse
|
80
|
Ahn YO, Shimizu BI, Sakata K, Gantulga D, Zhou C, Bevan DR, Esen A. Scopolin-hydrolyzing beta-glucosidases in roots of Arabidopsis. PLANT & CELL PHYSIOLOGY 2010; 51:132-43. [PMID: 19965874 DOI: 10.1093/pcp/pcp174] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three beta-glucosidases (At1g66270-BGLU21, At1g66280-BGLU22, and At3g09260-BGLU23) were purified from the roots of Arabidopsis and their cDNAs were expressed in insect cells. In addition, two beta-glucosidase binding protein cDNAs (At3g16420; PBPI and At3g16430; PBPII) were expressed in Escherichia coli and their protein products purified. These binding proteins interact with beta-glucosidases and activate them. BGLU21, 22 and 23 hydrolyzed the natural substrate scopolin specifically and also hydrolyzed to some extent substrates whose aglycone moiety is similar to scopolin (e.g. esculin and 4-MU-glucoside). In contrast, they hydrolyzed poorly DIMBOA-glucoside and did not hydrolyze pNP- and oNP-glucosides. We determined the physicochemical properties of native and recombinant BGLUs, and found no differences between them. They were stable in a narrow pH range (5-7.5) and had temperature and pH optima for activity at 35 degrees C and pH 5.5, respectively. As for thermostability, >95% of their activity was retained at 40 degrees C but dramatically decreased at >50 degrees C. The apparent K(m) of native and recombinant enzymes for scopolin was 0.73 and 0.81 mM, respectively, and it was 5.8 and 9.7 mM, respectively, for esculin. Western blot analysis showed that all three enzymes were exclusively expressed in roots of seedlings but not in any other plant part or organ under normal conditions. Furthermore, spatial expression patterns of all eight genes belonging to subfamily 3 were investigated at the transcription level by RT-PCR.
Collapse
Affiliation(s)
- Young Ock Ahn
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Proteomics of Arabidopsis redox proteins in response to methyl jasmonate. J Proteomics 2009; 73:30-40. [DOI: 10.1016/j.jprot.2009.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 11/24/2022]
|
82
|
Vadassery J, Oelmüller R. Calcium signaling in pathogenic and beneficial plant microbe interactions: what can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2009; 4:1024-7. [PMID: 19829075 PMCID: PMC2819509 DOI: 10.4161/psb.4.11.9800] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 08/12/2009] [Indexed: 05/19/2023]
Abstract
Elevation of intracellular calcium levels in a plant cell is an early signaling event in many mutualistic and pathogenic plant/microbe interactions. In pathogenic plant/fungus interactions, receptor-mediated cytoplasmic calcium elevations induce defense genes via the activation of ion fluxes at the plasma membrane, an oxidative burst and MAPK activation. Mycorrhizal and beneficial endophytic plant/fungus interactions result in a better plant performance through sequencial cytoplasmic and nuclear calcium elevations. The specificity of the calcium responses depends on the calcium signature, its amplitude, duration, frequency and location, a selective activation of calcium channels in the diverse cellular membranes and the stimulation of calcium-dependent signaling components. Arabidopsis contains more than 100 genes for calcium-binding proteins and channels and the response to pathogens and beneficial fungi relies on a highly specific activation of individual members of these protein families. Genetic tools are required to understand this complex response patterns and the cross talks between the individual calcium-dependent signaling pathways. The beneficial interaction of Arabidopsis with the growth-promoting endophyte Piriformospora indica provides a nice model system to unravel signaling events leading to mutualistic or pathogenic plant/fungus interactions.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Institut für Allgemeine Botanik und Pflanzenphysiologie; Jena, Germany
| |
Collapse
|
83
|
Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 2009. [DOI: 10.1007/s13199-009-0009-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
84
|
Yamada K, Nagano AJ, Ogasawara K, Hara-Nishimura I, Nishimura M. The ER body, a new organelle in Arabidopsis thaliana, requires NAI2 for its formation and accumulates specific beta-glucosidases. PLANT SIGNALING & BEHAVIOR 2009; 4:849-52. [PMID: 19847124 PMCID: PMC2802796 DOI: 10.4161/psb.4.9.9377] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants develop various ER-derived structures with specific functions. The ER body found in Arabidopsis thaliana is a spindle-shaped structure. ER bodies accumulate in epidermal cells in seedlings or are induced by wounding. The molecular mechanisms underlying the formation of the ER body remained obscure. We isolated an ER body-deficient mutant in Arabidopsis seedlings, which we termed nai2. The NAI2 gene encodes a member of a unique protein family. NAI2 localizes to the ER body and the downregulation of NAI2 elongates ER bodies and reduces their number. ER bodies specifically accumulate high levels of PYK10/BGLU23, which is a beta-glucosidase that bears an ER retention signal. Additionally, in the nai2 mutant, PYK10 protein is diffuse throughout the ER and the PYK10 protein level is reduced. These observations indicate that NAI2 is a key factor for the formation of ER bodies and for the accumulation of PYK10 in the ER bodies of Arabidopsis. We also found that BGLU18, which encodes another beta-glucosidase with an ER retention signal, is induced at the site of wounding. Immunocytochemical analysis revealed that the BGLU18 protein is exclusively localized in ER bodies formed directly at the wounding site of cotyledons. These results suggest that BGLU18 is a component of the ER body in wounded leaves of Arabidopsis.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology; National Institute for Basic Biology; Okazaki, Aichi Japan
- School of Life Science; Graduate University for Advanced Studies (Sokendai); Okazaki, Aichi Japan
| | - Atsushi J Nagano
- Department of Botany; Graduate School of Science; Kyoto University; Sakyo, Kyoto Japan
| | - Kimi Ogasawara
- Department of Cell Biology; National Institute for Basic Biology; Okazaki, Aichi Japan
- School of Life Science; Graduate University for Advanced Studies (Sokendai); Okazaki, Aichi Japan
| | - Ikuko Hara-Nishimura
- Department of Botany; Graduate School of Science; Kyoto University; Sakyo, Kyoto Japan
| | - Mikio Nishimura
- Department of Cell Biology; National Institute for Basic Biology; Okazaki, Aichi Japan
- School of Life Science; Graduate University for Advanced Studies (Sokendai); Okazaki, Aichi Japan
| |
Collapse
|
85
|
Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1263-1274. [PMID: 19386380 DOI: 10.1016/j.jplph.2008.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 05/04/2023]
Abstract
Ascorbate is a major antioxidant and radical scavenger in plants. Monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) are two enzymes of the ascorbate-glutathione cycle that maintain ascorbate in its reduced state. MDAR2 (At3g09940) and DHAR5 (At1g19570) expression was upregulated in the roots and shoots of Arabidopsis seedlings co-cultivated with the root-colonizing endophytic fungus Piriformospora indica, or that were exposed to a cell wall extract or a culture filtrate from the fungus. Growth and seed production were not promoted by Piriformospora indica in mdar2 (SALK_0776335C) and dhar5 (SALK_029966C) T-DNA insertion lines, while colonized wild-type plants were larger and produced more seeds compared to the uncolonized controls. After 3 weeks of drought stress, growth and seed production were reduced in Piriformospora indica-colonized plants compared to the uncolonized control, and the roots of the drought-stressed insertion lines were colonized more heavily by the fungus than were wild-type plants. Upregulation of the message for the antimicrobial PDF1.2 protein in drought-stressed insertion lines indicated that MDAR2 and DHAR5 are crucial for producing sufficient ascorbate to maintain the interaction between Piriformospora indica and Arabidopsis in a mutualistic state.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, 07743 Jena, Germany
| | - Swati Tripathi
- Amity Institute of Herbal and Microbial Studies, Sector 125, Noida 201303, UP, India
| | - Ram Prasad
- Amity Institute of Herbal and Microbial Studies, Sector 125, Noida 201303, UP, India
| | - Ajit Varma
- Amity Institute of Herbal and Microbial Studies, Sector 125, Noida 201303, UP, India
| | - Ralf Oelmüller
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, 07743 Jena, Germany.
| |
Collapse
|
86
|
Vadassery J, Ranf S, Drzewiecki C, Mithöfer A, Mazars C, Scheel D, Lee J, Oelmüller R. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:193-206. [PMID: 19392691 DOI: 10.1111/j.1365-313x.2009.03867.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium (Ca2+), as a second messenger, is crucial for signal transduction processes during many biotic interactions. We demonstrate that cellular [Ca2+] elevations are early events in the interaction between the plant growth-promoting fungus Piriformospora indica and Arabidopsis thaliana. A cell wall extract (CWE) from the fungus promotes the growth of wild-type seedlings but not of seedlings from P. indica-insensitive mutants. The extract and the fungus also induce a similar set of genes in Arabidopsis roots, among them genes with Ca2+ signalling-related functions. The CWE induces a transient cytosolic Ca2+ ([Ca2+](cyt)) elevation in the roots of Arabidopsis and tobacco (Nicotiana tabacum) plants, as well as in BY-2 suspension cultures expressing the Ca2+ bioluminescent indicator aequorin. Nuclear Ca2+ transients were also observed in tobacco BY-2 cells. The Ca2+ response was more pronounced in roots than in shoots and involved Ca2+ uptake from the extracellular space as revealed by inhibitor studies. Inhibition of the Ca2+ response by staurosporine and the refractory nature of the Ca2+ elevation suggest that a receptor may be involved. The CWE does not stimulate H2O2 production and the activation of defence gene expression, although it led to phosphorylation of mitogen-activated protein kinases (MAPKs) in a Ca2+-dependent manner. The involvement of MAPK6 in the mutualistic interaction was shown for an mpk6 line, which did not respond to P. indica. Thus, Ca2+ is likely to be an early signalling component in the mutualistic interaction between P. indica and Arabidopsis or tobacco.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Street 159, D-07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Ogasawara K, Yamada K, Christeller JT, Kondo M, Hatsugai N, Hara-Nishimura I, Nishimura M. Constitutive and Inducible ER Bodies of Arabidopsis thaliana Accumulate Distinct β-Glucosidases. ACTA ACUST UNITED AC 2009; 50:480-8. [DOI: 10.1093/pcp/pcp007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
88
|
Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 2008; 323:101-6. [PMID: 19095900 DOI: 10.1126/science.1163732] [Citation(s) in RCA: 650] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Selection pressure exerted by insects and microorganisms shapes the diversity of plant secondary metabolites. We identified a metabolic pathway for glucosinolates, known insect deterrents, that differs from the pathway activated by chewing insects. This pathway is active in living plant cells, may contribute to glucosinolate turnover, and has been recruited for broad-spectrum antifungal defense responses. The Arabidopsis CYP81F2 gene encodes a P450 monooxygenase that is essential for the pathogen-induced accumulation of 4-methoxyindol-3-ylmethylglucosinolate, which in turn is activated by the atypical PEN2 myrosinase (a type of beta-thioglucoside glucohydrolase) for antifungal defense. We propose that reiterated enzymatic cycles, controlling the generation of toxic molecules and their detoxification, enable the recruitment of glucosinolates in defense responses.
Collapse
Affiliation(s)
- Pawel Bednarek
- Department of Plant Microbe Interactions, Max Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M. NAI2 is an endoplasmic reticulum body component that enables ER body formation in Arabidopsis thaliana. THE PLANT CELL 2008; 20:2529-40. [PMID: 18780803 PMCID: PMC2570739 DOI: 10.1105/tpc.108.059345] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 08/03/2008] [Accepted: 08/20/2008] [Indexed: 05/22/2023]
Abstract
Plants develop various endoplasmic reticulum (ER)-derived structures, each of which has specific functions. The ER body found in Arabidopsis thaliana is a spindle-shaped structure that specifically accumulates high levels of PYK10/BGLU23, a beta-glucosidase that bears an ER-retention signal. The molecular mechanisms underlying the formation of the ER body remain obscure. We isolated an ER body-deficient mutant in Arabidopsis seedlings that we termed nai2. The NAI2 gene (At3g15950) encodes a member of a unique protein family that is only found in the Brassicaceae. NAI2 localizes to the ER body, and a reduction in NAI2 gene expression elongates ER bodies and reduces their numbers. NAI2 deficiency does not affect PYK10 mRNA levels but reduces the level of PYK10 protein, which becomes uniformly diffused throughout the ER. NAI1, a transcription factor responsible for ER body formation, regulates NAI2 gene expression. These observations indicate that NAI2 is a key factor that enables ER body formation and the accumulation of PYK10 in ER bodies of Arabidopsis. Interestingly, ER body-like structures are also restricted to the Brassicales, including the Brassicaceae. NAI2 homologs may have evolved specifically in Brassicales for the purpose of producing ER body-like structures.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Nishigo-naka 38, Okazaki 444-8585, Aichi, Japan
| | | | | | | | | |
Collapse
|
90
|
Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CMJ. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2008; 180:511-523. [PMID: 18657213 DOI: 10.1111/j.1469-8137.2008.02578.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Upon appropriate stimulation, plants can develop an enhanced capacity to express infection-induced cellular defense responses, a phenomenon known as the primed state. Colonization of the roots of Arabidopsis thaliana by the beneficial rhizobacterial strain Pseudomonas fluorescens WCS417r primes the leaf tissue for enhanced pathogen- and insect-induced expression of jasmonate (JA)-responsive genes, resulting in an induced systemic resistance (ISR) that is effective against different types of pathogens and insect herbivores. Here the molecular mechanism of this rhizobacteria-induced priming response was investigated using a whole-genome transcript profiling approach. Out of the 1879 putative methyl jasmonate (MeJA)-responsive genes, 442 genes displayed a primed expression pattern in ISR-expressing plants. Promoter analysis of ISR-primed, MeJA-responsive genes and ISR-primed, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000)-responsive genes revealed over-representation of the G-box-like motif 5'-CACATG-3'. This motif is a binding site for the transcription factor MYC2, which plays a central role in JA- and abscisic acid-regulated signaling. MYC2 expression was consistently up-regulated in ISR-expressing plants. Moreover, mutants impaired in the JASMONATE-INSENSITIVE1/MYC2 gene (jin1-1 and jin1-2) were unable to mount WCS417r-ISR against Pst DC3000 and the downy mildew pathogen Hyaloperonospora parasitica. Together, these results pinpoint MYC2 as a potential regulator in priming for enhanced JA-responsive gene expression during rhizobacteria-mediated ISR.
Collapse
Affiliation(s)
- Maria J Pozo
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Sjoerd Van Der Ent
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
- Center for Biosystems Genomics, PO Box 98, 6700 AB Wageningen, the Netherlands
| | - L C Van Loon
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Corné M J Pieterse
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
- Center for Biosystems Genomics, PO Box 98, 6700 AB Wageningen, the Netherlands
| |
Collapse
|
91
|
Varma A, Savita V, Sahay N, Butehorn B, Franken P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 1999. [PMID: 10347070 DOI: 10.1007/s40003-012-0019-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Piriformospora indica (Hymenomycetes, Basidiomycota) is a newly described cultivable endophyte that colonizes roots. Inoculation with the fungus and application of fungal culture filtrate promotes plant growth and biomass production. Due to its ease of culture, this fungus provides a model organism for the study of beneficial plant-microbe interactions and a new tool for improving plant production systems.
Collapse
Affiliation(s)
- A Varma
- Max-Planck-Institut fur terrestrische Mikrobiologie, Abteilung Biochemie and Laboratorium fur Mikrobiologie des Fachbereichs Biologie der Philipps-Universitat, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|