51
|
Renard J, Rushlow WJ, Laviolette SR. Effects of Adolescent THC Exposure on the Prefrontal GABAergic System: Implications for Schizophrenia-Related Psychopathology. Front Psychiatry 2018; 9:281. [PMID: 30013490 PMCID: PMC6036125 DOI: 10.3389/fpsyt.2018.00281] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Marijuana is the most commonly used drug of abuse among adolescents. Considerable clinical evidence supports the hypothesis that adolescent neurodevelopmental exposure to high levels of the principal psychoactive component in marijuana, -delta-9-tetrahydrocanabinol (THC), is associated with a high risk of developing psychiatric diseases, such as schizophrenia later in life. This marijuana-associated risk is believed to be related to increasing levels of THC found within commonly used marijuana strains. Adolescence is a highly vulnerable period for the development of the brain, where the inhibitory GABAergic system plays a pivotal role in the maturation of regulatory control mechanisms in the central nervous system (CNS). Specifically, adolescent neurodevelopment represents a critical period wherein regulatory connectivity between higher-order cortical regions and sub-cortical emotional processing circuits such as the mesolimbic dopamine (DA) system is established. Emerging preclinical evidence demonstrates that adolescent exposure to THC selectively targets schizophrenia-related molecular and neuropharmacological signaling pathways in both cortical and sub-cortical regions, including the prefrontal cortex (PFC) and mesolimbic DA pathway, comprising the ventral tegmental area (VTA) and nucleus accumbens (NAc). Prefrontal cortical GABAergic hypofunction is a key feature of schizophrenia-like neuropsychopathology. This GABAergic hypofunction may lead to the loss of control of the PFC to regulate proper sub-cortical DA neurotransmission, thereby leading to schizophrenia-like symptoms. This review summarizes preclinical evidence demonstrating that reduced prefrontal cortical GABAergic neurotransmission has a critical role in the sub-cortical DAergic dysregulation and schizophrenia-like behaviors observed following adolescent THC exposure.
Collapse
Affiliation(s)
- Justine Renard
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
52
|
Reichelt AC, Rank MM. The impact of junk foods on the adolescent brain. Birth Defects Res 2017; 109:1649-1658. [DOI: 10.1002/bdr2.1173] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Amy C. Reichelt
- Discipline of Psychology, School of Health and Biomedical Sciences; RMIT University; Melbourne VIC 3083 Australia
| | - Michelle M. Rank
- Discipline of Psychology, School of Health and Biomedical Sciences; RMIT University; Melbourne VIC 3083 Australia
| |
Collapse
|
53
|
MACÚCHOVÁ E, ŠLAMBEROVÁ R. Does Prenatal Methamphetamine Exposure Induce Sensitization to Drugs in Adulthood? Physiol Res 2017; 66:S457-S467. [DOI: 10.33549/physiolres.933803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Behavioral sensitization is defined as augmented psychomotor activity, which can be observed after drug re-administration following withdrawal of repeated drug exposure. It has been shown that abuse of one drug can lead to increased sensitivity to certain other drugs. This effect of developed general drug sensitivity is called cross-sensitization and has been reported between drugs with similar as well as different mechanisms of action. There is growing evidence that exposure to drugs in utero not only causes birth defects and delays in infant development, but also impairs the neural reward pathways, in the brains of developing offspring, in such a way that it can increase the tendency for drug addiction later in life. This review summarizes the results of preclinical studies that focused on testing behavioral cross-sensitization, after prenatal methamphetamine exposure, to drugs administered in adulthood, with both similar and different mechanisms of action. Traditionally, behavioral sensitization has been examined using the Open field or the Laboras Test to record locomotor activity, and the Conditioned Place Preference and Self-administration test to examine drug-seeking behavior. However, it seems that prenatal drug exposure can sensitize animals not only to the locomotor-stimulating and conditioning effects of drugs, but may also be responsible for modified responses to various drug effects.
Collapse
Affiliation(s)
| | - R. ŠLAMBEROVÁ
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
54
|
Simone JJ, Baumbach JL, McCormick CM. Effects of CB1 receptor antagonism and stress exposures in adolescence on socioemotional behaviours, neuroendocrine stress responses, and expression of relevant proteins in the hippocampus and prefrontal cortex in rats. Neuropharmacology 2017; 128:433-447. [PMID: 29092785 DOI: 10.1016/j.neuropharm.2017.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023]
Abstract
Little is known about the consequences of altered endocannabinoid signalling in adolescence. We hypothesized that CB1 receptor antagonism (AM251, 1 mg/kg) and stress exposures (1 h confinement stress) in adolescence (daily, postnatal days 30-44) would interact to increase neuroendocrine stress responses and anxiety when investigated a minimum of 24 h after drug and stress treatments; these treatment effects were independent of each other. Changes in homecage behaviour and in weight gain confirmed that both males and females were sensitive to the treatments. Nevertheless, in males, repeated AM251 administration was without effect on any of the measures investigated in days post-treatment. Males had reduced corticosterone release to the repeated stress and had increased GAD67 expression in the ventral hippocampus under baseline conditions. In females, AM251 also reduced weight gain and increased stereotypic behaviours in the homecage; these same females showed increased sociality, reduced CB1 receptor expression in the dorsal hippocampus, and increased GAD67 expression in the prefrontal cortex. Further, females exposed to repeated stress had enhanced recovery to baseline corticosterone concentrations after stress. The inclusion of a non-injected comparison group also revealed stress of injection effects in both sexes that otherwise would have been masked. Together, the findings demonstrate effects of CB1 receptor antagonism and stress that were more evident in females than males, suggesting that females may be more vulnerable to the consequences of disrupted endocannabinoid signalling during adolescence.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada; Centre for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
55
|
mTOR inhibitor reverses autistic-like social deficit behaviours in adult rats with both Tsc2 haploinsufficiency and developmental status epilepticus. Eur Arch Psychiatry Clin Neurosci 2017; 267:455-463. [PMID: 27263037 DOI: 10.1007/s00406-016-0703-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022]
Abstract
Epilepsy is a major risk factor for autism spectrum disorder (ASD) and complicates clinical manifestations and management of ASD significantly. Tuberous sclerosis complex (TSC), caused by TSC1 or TSC2 mutations, is one of the medical conditions most commonly associated with ASD and has become an important model to examine molecular pathways associated with ASD. Previous research showed reversal of autism-like social deficits in Tsc1 +/- and Tsc2 +/- mouse models by mammalian target of rapamycin (mTOR) inhibitors. However, at least 70 % of individuals with TSC also have epilepsy, known to complicate the severity and treatment responsiveness of the behavioural phenotype. No previous study has examined the impact of seizures on neurocognitive reversal by mTOR inhibitors. Adult Tsc2 +/- (Eker)-rats express social deficits similar to Tsc2 +/- mice, with additive social deficits from developmental status epilepticus (DSE). DSE was induced by intraperitoneal injection with kainic acid at post-natal days P7 and P14 (n = 12). The experimental group that modelled TSC pathology carried the Tsc2 +/- (Eker)-mutation and was challenged with DSE. The wild-type controls had not received DSE (n = 10). Four-month-old animals were analysed for social behaviour (T1), then treated three times during 1 week with 1 mg/kg everolimus and finally retested in the post-treatment behavioural analysis (T2). In the experimental group, both social interaction and social cognition were impaired at T1. After treatment at T2, behaviour in the experimental group was indistinguishable from controls. The mTOR inhibitor, everolimus, reversed social deficit behaviours in the Tsc2 haploinsufficiency plus DSE animal model to control levels.
Collapse
|
56
|
Wei D, Allsop S, Tye K, Piomelli D. Endocannabinoid Signaling in the Control of Social Behavior. Trends Neurosci 2017; 40:385-396. [PMID: 28554687 DOI: 10.1016/j.tins.2017.04.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/16/2017] [Accepted: 04/21/2017] [Indexed: 11/25/2022]
Abstract
Many mammalian species, including humans, exhibit social behavior and form complex social groups. Mechanistic studies in animal models have revealed important roles for the endocannabinoid signaling system, comprising G protein-coupled cannabinoid receptors and their endogenous lipid-derived agonists, in the control of neural processes that underpin social anxiety and social reward, two key aspects of social behavior. An emergent insight from these studies is that endocannabinoid signaling in specific circuits of the brain is context dependent and selectively recruited. These insights open new vistas on the neural basis of social behavior and social impairment.
Collapse
Affiliation(s)
- Don Wei
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; School of Medicine, University of California, Irvine, CA, USA
| | - Stephen Allsop
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Kay Tye
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
57
|
Mizrahi R, Watts JJ, Tseng KY. Mechanisms contributing to cognitive deficits in cannabis users. Neuropharmacology 2017; 124:84-88. [PMID: 28414051 DOI: 10.1016/j.neuropharm.2017.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Studies from preclinical animal models indicate that sustained activation of CB1 receptor signaling is a major contributing factor for the onset of cognitive deficits associated to chronic cannabis use, in particular within the working memory and decision-making domains. Yet, very few studies have been designed to directly assess the role of CB1 receptors in mediating the effects of cannabis on human brain function. This perspective review article provides an overview of current state of knowledge on possible neurobiological mechanisms accounting for the detrimental effects of chronic cannabis use on cognition and related changes in brain structure and functional connectivity. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Romina Mizrahi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology & Toxicology, University of Toronto, ON, Canada; Research Imaging Center, CAMH, PET Centre, Toronto, ON, Canada
| | - Jeremy J Watts
- Department of Pharmacology & Toxicology, University of Toronto, ON, Canada; Research Imaging Center, CAMH, PET Centre, Toronto, ON, Canada
| | - Kuei Y Tseng
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University, North Chicago, IL, USA.
| |
Collapse
|
58
|
Effects of Adolescent Cannabinoid Self-Administration in Rats on Addiction-Related Behaviors and Working Memory. Neuropsychopharmacology 2017; 42:989-1000. [PMID: 27582345 PMCID: PMC5506802 DOI: 10.1038/npp.2016.178] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/05/2016] [Accepted: 07/22/2016] [Indexed: 11/08/2022]
Abstract
Use of marijuana (Cannabis sativa) often begins in adolescence, and heavy adolescent marijuana use is often associated with impaired cognitive function in adulthood. However, clinical reports of long-lasting cognitive deficits, particularly in subjects who discontinue use in adulthood, are mixed. Moreover, dissociating innate differences in cognitive function from cannabis-induced deficits is challenging. Therefore, the current study sought to develop a rodent model of adolescent cannabinoid self-administration (SA), using the synthetic cannabinoid receptor agonist WIN55,212-2 (WIN), in order to assess measures of relapse/reinstatement of drug seeking and long-term effects on cognitive function assessed in a delay-match-to-sample working memory task and a spatial recognition task. Adolescent male rats readily self-administered WIN in 2-h or 6-h sessions/day, but did not demonstrate an escalation of intake with 6-h access. Rats exhibited significant cue-induced reinstatement of WIN seeking that increased with 21 days of abstinence (ie, 'incubation of craving'). Cognitive testing occurred in adulthood under drug-free conditions. Both 2-h and 6-h adolescent WIN SA groups exhibited significantly better working memory performance in adulthood relative to sucrose SA controls, and performance was associated with altered expression of proteins regulating GABAergic and glutamatergic signaling in the prefrontal cortex. Self-administered WIN did not produce either acute or chronic effects on short-term memory, but experimenter administration of WIN in adolescence, at doses previously reported in the literature, produced acute deficits in short-term memory that recovered with abstinence. Thus, SA of a rewarding cannabinoid in adolescence does not produce long-term cognitive dysfunction.
Collapse
|
59
|
O’Tuathaigh CMP, Fumagalli F, Desbonnet L, Perez-Branguli F, Moloney G, Loftus S, O’Leary C, Petit E, Cox R, Tighe O, Clarke G, Lai D, Harvey RP, Cryan JF, Mitchell KJ, Dinan TG, Riva MA, Waddington JL. Epistatic and Independent Effects on Schizophrenia-Related Phenotypes Following Co-disruption of the Risk Factors Neuregulin-1 × DISC1. Schizophr Bull 2017; 43:214-225. [PMID: 27613806 PMCID: PMC5216856 DOI: 10.1093/schbul/sbw120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Few studies have addressed likely gene × gene (ie, epistatic) interactions in mediating risk for schizophrenia. Using a preclinical genetic approach, we investigated whether simultaneous disruption of the risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) would produce a disease-relevant phenotypic profile different from that observed following disruption to either gene alone. NRG1 heterozygotes exhibited hyperactivity and disruption to prepulse inhibition, both reversed by antipsychotic treatment, and accompanied by reduced striatal dopamine D2 receptor protein expression, impaired social cognition, and altered glutamatergic synaptic protein expression in selected brain areas. Single gene DISC1 mutants demonstrated a disruption in social cognition and nest-building, altered brain 5-hydroxytryptamine levels and hippocampal ErbB4 expression, and decreased cortical expression of the schizophrenia-associated microRNA miR-29b. Co-disruption of DISC1 and NRG1, indicative of epistasis, evoked an impairment in sociability and enhanced self-grooming, accompanied by changes in hypothalamic oxytocin/vasopressin gene expression. The findings indicate specific behavioral correlates and underlying cellular pathways downstream of main effects of DNA variation in the schizophrenia-associated genes NRG1 and DISC1.
Collapse
Affiliation(s)
- Colm M. P. O’Tuathaigh
- School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland;,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland;,*To whom correspondence should be addressed; School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork T12 YN60, Ireland; tel: +353-(0)21-420-5303, fax: +353-(0)21-490-1594, e-mail:
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita` degli Studi di Milano, Milan,
Italy
| | - Lieve Desbonnet
- Neurogastroenterology Laboratory, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland
| | - Francesc Perez-Branguli
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland;,IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany
| | - Gerard Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Samim Loftus
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Claire O’Leary
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland
| | - Emilie Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland
| | - Gerard Clarke
- Neurogastroenterology Laboratory, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland;,Department of Psychiatry, University College Cork, Cork, Ireland
| | - Donna Lai
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - John F. Cryan
- Neurogastroenterology Laboratory, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland;,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Timothy G. Dinan
- Neurogastroenterology Laboratory, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland;,Department of Psychiatry, University College Cork, Cork, Ireland
| | - Marco A. Riva
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita` degli Studi di Milano, Milan,
Italy
| | - John L. Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland;,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
60
|
Endocannabinoid System: the Direct and Indirect Involvement in the Memory and Learning Processes-a Short Review. Mol Neurobiol 2016; 54:8332-8347. [PMID: 27924524 PMCID: PMC5684264 DOI: 10.1007/s12035-016-0313-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
The endocannabinoid system via cannabinoid (CB: CB1 and CB2) receptors and their endogenous ligands is directly and indirectly involved in many physiological functions, especially in memory and learning processes. Extensive studies reported that this system strictly modulates cognition-related processes evaluated in various animal models. However, the effects of cannabinoids on the cognition have been contradictory. The cannabinoid compounds were able to both impair or improve different phases of memory processes through direct (receptor related) or indirect (non-receptor related) mechanism. The memory-related effects induced by the cannabinoids can be depended on the kind of cannabinoid compound used, dosage, and route of administration as well as on the memory task chosen. Therefore, the objectives of this paper are to review and summarize the results describing the role of endocannabinoid system in cognition, including various stages of memory.
Collapse
|
61
|
Mokrysz C, Freeman TP, Korkki S, Griffiths K, Curran HV. Are adolescents more vulnerable to the harmful effects of cannabis than adults? A placebo-controlled study in human males. Transl Psychiatry 2016; 6:e961. [PMID: 27898071 PMCID: PMC5290352 DOI: 10.1038/tp.2016.225] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
Preclinical research demonstrates that cannabinoids have differing effects in adolescent and adult animals. Whether these findings translate to humans has not yet been investigated. Here we believe we conducted the first study to compare the acute effects of cannabis in human adolescent (n=20; 16-17 years old) and adult (n=20; 24-28 years old) male cannabis users, in a placebo-controlled, double-blind cross-over design. After inhaling vaporized active or placebo cannabis, participants completed tasks assessing spatial working memory, episodic memory and response inhibition, alongside measures of blood pressure and heart rate, psychotomimetic symptoms and subjective drug effects (for example, 'stoned', 'want to have cannabis'). Results showed that on active cannabis, adolescents felt less stoned and reported fewer psychotomimetic symptoms than adults. Further, adults but not adolescents were more anxious and less alert during the active cannabis session (both pre- and post-drug administration). Following cannabis, cognitive impairment (reaction time on spatial working memory and prose recall following a delay) was greater in adults than adolescents. By contrast, cannabis impaired response inhibition accuracy in adolescents but not in adults. Moreover, following drug administration, the adolescents did not show satiety; instead they wanted more cannabis regardless of whether they had taken active or placebo cannabis, while the opposite was seen for adults. These contrasting profiles of adolescent resilience (blunted subjective, memory, physiological and psychotomimetic effects) and vulnerability (lack of satiety, impaired inhibitory processes) show some degree of translation from preclinical findings, and may contribute to escalated cannabis use by human adolescents.
Collapse
Affiliation(s)
- C Mokrysz
- Clinical Psychopharmacology Unit, Clinical Educational and Health Psychology, University College London, London, UK
| | - T P Freeman
- Clinical Psychopharmacology Unit, Clinical Educational and Health Psychology, University College London, London, UK
| | - S Korkki
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - K Griffiths
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - H V Curran
- Clinical Psychopharmacology Unit, Clinical Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
62
|
Goepfrich AA, Friemel CM, Pauen S, Schneider M. Ontogeny of sensorimotor gating and short-term memory processing throughout the adolescent period in rats. Dev Cogn Neurosci 2016; 25:167-175. [PMID: 27908562 PMCID: PMC6987840 DOI: 10.1016/j.dcn.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
Adolescence and puberty are highly susceptible developmental periods during which the neuronal organization and maturation of the brain is completed. The endocannabinoid (eCB) system, which is well known to modulate cognitive processing, undergoes profound and transient developmental changes during adolescence. With the present study we were aiming to examine the ontogeny of cognitive skills throughout adolescence in male rats and clarify the potential modulatory role of CB1 receptor signalling. Cognitive skills were assessed repeatedly every 10th day in rats throughout adolescence. All animals were tested for object recognition memory and prepulse inhibition of the acoustic startle reflex. Although cognitive performance in short-term memory as well as sensorimotor gating abilities were decreased during puberty compared to adulthood, both tasks were found to show different developmental trajectories throughout adolescence. A low dose of the CB1 receptor antagonist/inverse agonist SR141716 was found to improve recognition memory specifically in pubertal animals while not affecting behavioral performance at other ages tested. The present findings demonstrate that the developmental trajectory of cognitive abilities does not occur linearly for all cognitive processes and is strongly influenced by pubertal maturation. Developmental alterations within the eCB system at puberty onset may be involved in these changes in cognitive processing.
Collapse
Affiliation(s)
- Anja A Goepfrich
- Research Group Developmental Neuropsychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chris M Friemel
- Research Group Developmental Neuropsychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sabina Pauen
- Department of Psychology, University of Heidelberg, Germany
| | | |
Collapse
|
63
|
Doremus-Fitzwater TL, Spear LP. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev 2016; 70:121-134. [PMID: 27524639 PMCID: PMC5612441 DOI: 10.1016/j.neubiorev.2016.08.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a "reward-centric" phenotype-an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a "reward deficiency" syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater "pleasure" from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA.
| | - Linda P Spear
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| |
Collapse
|
64
|
Schneider P, Bindila L, Schmahl C, Bohus M, Meyer-Lindenberg A, Lutz B, Spanagel R, Schneider M. Adverse Social Experiences in Adolescent Rats Result in Enduring Effects on Social Competence, Pain Sensitivity and Endocannabinoid Signaling. Front Behav Neurosci 2016; 10:203. [PMID: 27812328 PMCID: PMC5071316 DOI: 10.3389/fnbeh.2016.00203] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
Social affiliation is essential for many species and gains significant importance during adolescence. Disturbances in social affiliation, in particular social rejection experiences during adolescence, affect an individual’s well-being and are involved in the emergence of psychiatric disorders. The underlying mechanisms are still unknown, partly because of a lack of valid animal models. By using a novel animal model for social peer-rejection, which compromises adolescent rats in their ability to appropriately engage in playful activities, here we report on persistent impairments in social behavior and dysregulations in the endocannabinoid (eCB) system. From postnatal day (pd) 21 to pd 50 adolescent female Wistar rats were either reared with same-strain partners (control) or within a group of Fischer 344 rats (inadequate social rearing, ISR), previously shown to serve as inadequate play partners for the Wistar strain. Adult ISR animals showed pronounced deficits in social interaction, social memory, processing of socially transmitted information, and decreased pain sensitivity. Molecular analysis revealed increased CB1 receptor (CB1R) protein levels and CP55, 940 stimulated [35S]GTPγS binding activity specifically in the amygdala and thalamus in previously peer-rejected rats. Along with these changes, increased levels of the eCB anandamide (AEA) and a corresponding decrease of its degrading enzyme fatty acid amide hydrolase (FAAH) were seen in the amygdala. Our data indicate lasting consequences in social behavior and pain sensitivity following peer-rejection in adolescent female rats. These behavioral impairments are accompanied by persistent alterations in CB1R signaling. Finally, we provide a novel translational approach to characterize neurobiological processes underlying social peer-rejection in adolescence.
Collapse
Affiliation(s)
- Peggy Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Martin Bohus
- Institute for Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany; Faculty of Health, University of AntwerpAntwerp, Belgium
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Miriam Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| |
Collapse
|
65
|
Reichelt AC. Adolescent Maturational Transitions in the Prefrontal Cortex and Dopamine Signaling as a Risk Factor for the Development of Obesity and High Fat/High Sugar Diet Induced Cognitive Deficits. Front Behav Neurosci 2016; 10:189. [PMID: 27790098 PMCID: PMC5061823 DOI: 10.3389/fnbeh.2016.00189] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
Adolescence poses as both a transitional period in neurodevelopment and lifestyle practices. In particular, the developmental trajectory of the prefrontal cortex (PFC), a critical region for behavioral control and self-regulation, is enduring, not reaching functional maturity until the early 20 s in humans. Furthermore, the neurotransmitter dopamine is particularly abundant during adolescence, tuning the brain to rapidly learn about rewards and regulating aspects of neuroplasticity. Thus, adolescence is proposed to represent a period of vulnerability towards reward-driven behaviors such as the consumption of palatable high fat and high sugar diets. This is reflected in the increasing prevalence of obesity in children and adolescents as they are the greatest consumers of “junk foods”. Excessive consumption of diets laden in saturated fat and refined sugars not only leads to weight gain and the development of obesity, but experimental studies with rodents indicate they evoke cognitive deficits in learning and memory process by disrupting neuroplasticity and altering reward processing neurocircuitry. Consumption of these high fat and high sugar diets have been reported to have a particularly pronounced impact on cognition when consumed during adolescence, demonstrating a susceptibility of the adolescent brain to enduring cognitive deficits. The adolescent brain, with heightened reward sensitivity and diminished behavioral control compared to the mature adult brain, appears to be a risk for aberrant eating behaviors that may underpin the development of obesity. This review explores the neurodevelopmental changes in the PFC and mesocortical dopamine signaling that occur during adolescence, and how these potentially underpin the overconsumption of palatable food and development of obesogenic diet-induced cognitive deficits.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Health and Biomedical Sciences, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
66
|
Vanderschuren LJMJ, Achterberg EJM, Trezza V. The neurobiology of social play and its rewarding value in rats. Neurosci Biobehav Rev 2016; 70:86-105. [PMID: 27587003 DOI: 10.1016/j.neubiorev.2016.07.025] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
In the young of many mammalian species, including humans, a vigorous and highly rewarding social activity is abundantly expressed, known as social play behaviour. Social play is thought to be important for the development of social, cognitive and emotional processes and their neural underpinnings, and it is disrupted in pediatric psychiatric disorders. Here, we summarize recent progress in our understanding of the brain mechanisms of social play behaviour, with a focus on its rewarding properties. Opioid, endocannabinoid, dopamine and noradrenaline systems play a prominent role in the modulation of social play. Of these, dopamine is particularly important for the motivational properties of social play. The nucleus accumbens has been identified as a key site for opioid and dopamine modulation of social play. Endocannabinoid influences on social play rely on the basolateral amygdala, whereas noradrenaline modulates social play through the basolateral amygdala, habenula and prefrontal cortex. In sum, social play behaviour is the result of coordinated activity in a network of corticolimbic structures, and its monoamine, opioid and endocannabinoid innervation.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| |
Collapse
|
67
|
Spear LP. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models. Neurosci Biobehav Rev 2016; 70:228-243. [PMID: 27484868 DOI: 10.1016/j.neubiorev.2016.07.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects.
Collapse
Affiliation(s)
- Linda Patia Spear
- Department of Psychology, Developmental Exposure Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, United States.
| |
Collapse
|
68
|
Schneider P, Pätz M, Spanagel R, Schneider M. Adolescent social rejection alters pain processing in a CB1 receptor dependent manner. Eur Neuropsychopharmacol 2016; 26:1201-12. [PMID: 27157075 DOI: 10.1016/j.euroneuro.2016.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022]
Abstract
Experiences of social rejection represent a major source of distress and in particular peer rejection during adolescence has been implicated in various psychiatric disorders. Moreover, experimentally induced acute social rejection alters pain perception in humans, implicating overlapping neurocircuits for social and physical pains. We recently demonstrated that rearing of adolescent Wistar rats with inadequate, less playful play partners (Fischer 344) persistently decreases pain sensitivity, although the detailed mechanisms mediating the aversiveness during the social encounter remained unsettled. With the present study we examined the behavioral performance during acute interaction of female adolescent Wistar rats with either age-matched same-strain partners or rats from the Fischer 344 strain. We here identify the low responsiveness upon playful attacks, which appears to be characteristic for social play in the Fischer 344 strain, as one of the main aversive components for adolescent Wistar animals during cross-strain encounters, which subsequently diminishes thermal pain reactivity. A detailed behavioral analysis further revealed increased ultrasonic vocalization at 50kHz and an increased frequency of playful attacks for adolescent Wistar animals paired with a Fischer 344 rat compared to same-strain control pairs. Finally, an acute injection of a subthreshold dose of the cannabinoid type 1 receptor inverse agonist/antagonist SR141716 before the social encounter abolished enhanced play-soliciting behavior in Wistar/Fischer 344 pairs as well as the behavioral consequences of the rejection experience in adolescent Wistar rats, further emphasizing an important modulatory role of the endocannabinoid system in mediating the effects of social behavior and social pain.
Collapse
Affiliation(s)
- Peggy Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Monique Pätz
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Miriam Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
69
|
Renard J, Rushlow WJ, Laviolette SR. What Can Rats Tell Us about Adolescent Cannabis Exposure? Insights from Preclinical Research. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:328-34. [PMID: 27254841 PMCID: PMC4872245 DOI: 10.1177/0706743716645288] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Marijuana is the most widely used drug of abuse among adolescents. Adolescence is a vulnerable period for brain development, during which time various neurotransmitter systems such as the glutamatergic, GABAergic, dopaminergic, and endocannabinoid systems undergo extensive reorganization to support the maturation of the central nervous system (CNS). ▵-9-tetrahydrocannabinol (THC), the psychoactive component of marijuana, acts as a partial agonist of CB1 cannabinoid receptors (CB1Rs). CB1Rs are abundant in the CNS and are central components of the neurodevelopmental changes that occur during adolescence. Thus, overactivation of CB1Rs by cannabinoid exposure during adolescence has the ability to dramatically alter brain maturation, leading to persistent and enduring changes in adult cerebral function. Increasing preclinical evidence lends support to clinical evidence suggesting that chronic adolescent marijuana exposure may be associated with a higher risk for neuropsychiatric diseases, including schizophrenia. In this review, we present a broad overview of current neurobiological evidence regarding the long-term consequences of adolescent cannabinoid exposure on adult neuropsychiatric-like disorders.
Collapse
Affiliation(s)
- Justine Renard
- Addiction Research Group, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario
| | - Walter J Rushlow
- Addiction Research Group, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Psychiatry, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario
| | - Steven R Laviolette
- Addiction Research Group, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Psychiatry, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario
| |
Collapse
|
70
|
Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 2016; 70:4-12. [PMID: 27235076 DOI: 10.1016/j.neubiorev.2016.05.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
Adolescence is defined as a transitional period between childhood and adulthood characterized by changes in social interaction and acquisition of mature cognitive abilities. These changes have been associated with the maturation of brain regions involved in the control of motivation, emotion, and cognition. Among these regions, the protracted development of the human prefrontal cortex during adolescence has been proposed to underlie the maturation of cognitive functions and the regulation of affective responses. Studies in animal models allow us to test the causal contribution of specific neural processes in the development of the prefrontal cortex and the acquisition of adult behavior. This review summarizes the cellular and synaptic mechanisms occurring in the rodent prefrontal cortex during adolescence as a model for understanding the changes underlying human prefrontal development.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Rachel Granberg
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Kuei Y Tseng
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA.
| |
Collapse
|
71
|
Kruk-Slomka M, Biala G. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice. Behav Brain Res 2016; 301:84-95. [DOI: 10.1016/j.bbr.2015.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
72
|
Enhanced Functional Activity of the Cannabinoid Type-1 Receptor Mediates Adolescent Behavior. J Neurosci 2016; 35:13975-88. [PMID: 26468198 DOI: 10.1523/jneurosci.1937-15.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown. Here, we hypothesize that the cannabinoid type-1 receptor (CB1R) may play a critical role in mediating adolescent behavior because enhanced endocannabinoid (eCB) signaling has been suggested to occur transiently during adolescence. To study enhanced CB1R signaling, we introduced a missense mutation (F238L) into the rat Cnr1 gene that encodes for the CB1R. According to our hypothesis, rats with the F238L mutation (Cnr1(F238L)) should sustain features of adolescent behavior into adulthood. Gain of function of the mutated receptor was demonstrated by in silico modeling and was verified functionally in a series of biochemical and electrophysiological experiments. Mutant rats exhibit an adolescent-like phenotype during adulthood compared with wild-type littermates, with typical high risk/novelty seeking, increased peer interaction, enhanced impulsivity, and augmented reward sensitivity for drug and nondrug reward. Partial inhibition of CB1R activity in Cnr1(F238L) mutant rats normalized behavior and led to a wild-type phenotype. We conclude that the activity state and functionality of the CB1R is critical for mediating adolescent behavior. These findings implicate the eCB system as an important research target for the neuropathology of adolescent-onset mental health disorders. SIGNIFICANCE STATEMENT We present the first rodent model with a gain-of-function mutation in the cannabinoid type-1 receptor (CB1R). Adult mutant rats exhibit an adolescent-like phenotype with typical high risk seeking, impulsivity, and augmented drug and nondrug reward sensitivity. Adolescence is a critical period for suboptimal behavioral choices and the emergence of neuropsychiatric disorders. Understanding the basis of these disorders therefore requires a comprehensive knowledge of how adolescent neurodevelopment triggers behavioral reactions. Our behavioral observations in adult mutant rats, together with reports on enhanced adolescent CB1R signaling, suggest a pivotal role for the CB1R in an adolescent brain as an important molecular mediator of adolescent behavior. These findings implicate the endocannabinoid system as a notable research target for adolescent-onset mental health disorders.
Collapse
|
73
|
Correlations between the Memory-Related Behavior and the Level of Oxidative Stress Biomarkers in the Mice Brain, Provoked by an Acute Administration of CB Receptor Ligands. Neural Plast 2015; 2016:9815092. [PMID: 26839719 PMCID: PMC4709727 DOI: 10.1155/2016/9815092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/19/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022] Open
Abstract
The endocannabinoid system, through cannabinoid (CB) receptors, is involved in memory-related responses, as well as in processes that may affect cognition, like oxidative stress processes. The purpose of the experiments was to investigate the impact of CB1 and CB2 receptor ligands on the long-term memory stages in male Swiss mice, using the passive avoidance (PA) test, as well as the influence of these compounds on the level of oxidative stress biomarkers in the mice brain. A single injection of a selective CB1 receptor antagonist, AM 251, improved long-term memory acquisition and consolidation in the PA test in mice, while a mixed CB1/CB2 receptor agonist WIN 55,212-2 impaired both stages of cognition. Additionally, JWH 133, a selective CB2 receptor agonist, and AM 630, a competitive CB2 receptor antagonist, significantly improved memory. Additionally, an acute administration of the highest used doses of JWH 133, WIN 55,212-2, and AM 630, but not AM 251, increased total antioxidant capacity (TAC) in the brain. In turn, the processes of lipids peroxidation, expressed as the concentration of malondialdehyde (MDA), were more advanced in case of AM 251. Thus, some changes in the PA performance may be connected with the level of oxidative stress in the brain.
Collapse
|
74
|
Lee TTY, Gorzalka BB. Evidence for a Role of Adolescent Endocannabinoid Signaling in Regulating HPA Axis Stress Responsivity and Emotional Behavior Development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:49-84. [PMID: 26638764 DOI: 10.1016/bs.irn.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adolescence is a period characterized by many distinct physical, behavioral, and neural changes during the transition from child- to adulthood. In particular, adolescent neural changes often confer greater plasticity and flexibility, yet with this comes the potential for heightened vulnerability to external perturbations such as stress exposure or recreational drug use. There is substantial evidence to suggest that factors such as adolescent stress exposure have longer lasting and sometimes more deleterious effects on an organism than stress exposure during adulthood. Moreover, the adolescent neuroendocrine response to stress exposure is different from that of adults, suggesting that further maturation of the adolescent hypothalamic-pituitary-adrenal (HPA) axis is required. The endocannabinoid (eCB) system is a potential candidate underlying these age-dependent differences given that it is an important regulator of the adult HPA axis and neuronal development. Therefore, this review will focus on (1) the functionality of the adolescent HPA axis, (2) eCB regulation of the adult HPA axis, (3) dynamic changes in eCB signaling during the adolescent period, (4) the effects of adolescent stress exposure on the eCB system, and (5) modulation of HPA axis activity and emotional behavior by adolescent cannabinoid treatment. Collectively, the emerging picture suggests that the eCB system mediates interactions between HPA axis stress responsivity, emotionality, and maturational stage. These findings may be particularly relevant to our understanding of the development of affective disorders and the risks of adolescent cannabis consumption on emotional health and stress responsivity.
Collapse
Affiliation(s)
- Tiffany T-Y Lee
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris B Gorzalka
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
75
|
Becker MP, Collins PF, Lim KO, Muetzel RL, Luciana M. Longitudinal changes in white matter microstructure after heavy cannabis use. Dev Cogn Neurosci 2015; 16:23-35. [PMID: 26602958 PMCID: PMC4691379 DOI: 10.1016/j.dcn.2015.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022] Open
Abstract
Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment.
Collapse
Affiliation(s)
- Mary P Becker
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States.
| | - Paul F Collins
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue South, Minneapolis, MN 55454, United States
| | - R L Muetzel
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States
| | - M Luciana
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| |
Collapse
|
76
|
Heitzeg MM, Cope LM, Martz ME, Hardee JE, Zucker RA. Brain activation to negative stimuli mediates a relationship between adolescent marijuana use and later emotional functioning. Dev Cogn Neurosci 2015; 16:71-83. [PMID: 26403581 PMCID: PMC4691419 DOI: 10.1016/j.dcn.2015.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 01/30/2023] Open
Abstract
This work investigated the impact of heavy marijuana use during adolescence on emotional functioning, as well as the brain functional mediators of this effect. Participants (n=40) were recruited from the Michigan Longitudinal Study (MLS). Data on marijuana use were collected prospectively beginning in childhood as part of the MLS. Participants were classified as heavy marijuana users (n=20) or controls with minimal marijuana use. Two facets of emotional functioning-negative emotionality and resiliency (a self-regulatory mechanism)-were assessed as part of the MLS at three time points: mean age 13.4, mean age 19.6, and mean age 23.1. Functional neuroimaging data during an emotion-arousal word task were collected at mean age 20.2. Negative emotionality decreased and resiliency increased across the three time points in controls but not heavy marijuana users. Compared with controls, heavy marijuana users had less activation to negative words in temporal, prefrontal, and occipital cortices, insula, and amygdala. Activation of dorsolateral prefrontal cortex to negative words mediated an association between marijuana group and later negative emotionality. Activation of the cuneus/lingual gyrus mediated an association between marijuana group and later resiliency. Results support growing evidence that heavy marijuana use during adolescence affects later emotional outcomes.
Collapse
Affiliation(s)
- Mary M Heitzeg
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Lora M Cope
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Meghan E Martz
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Psychology, University of Michigan, 2044 East Hall, 530 Church Street, Ann Arbor, MI 48108, USA.
| | - Jillian E Hardee
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Robert A Zucker
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Psychology, University of Michigan, 2044 East Hall, 530 Church Street, Ann Arbor, MI 48108, USA.
| |
Collapse
|
77
|
Blanco-Gandía MC, Mateos-García A, García-Pardo MP, Montagud-Romero S, Rodríguez-Arias M, Miñarro J, Aguilar MA. Effect of drugs of abuse on social behaviour. Behav Pharmacol 2015. [DOI: 10.1097/fbp.0000000000000162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
78
|
Winsauer PJ, Filipeanu CM, Weed PF, Sutton JL. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning in female rats. Front Pharmacol 2015; 6:133. [PMID: 26191005 PMCID: PMC4488627 DOI: 10.3389/fphar.2015.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/15/2015] [Indexed: 12/28/2022] Open
Abstract
The effects of hormone status and age on the development of tolerance to Δ(9)-THC were assessed in sham-operated (intact) or ovariectomized (OVX) female rats that received either intraperitoneal saline or 5.6 mg/kg of Δ(9)-THC daily from postnatal day (PD) 75-180 (early adulthood onward) or PD 35-140 (adolescence onward). During this time, the four groups for each age (i.e., intact/saline, intact/THC, OVX/saline, and OVX/THC) were trained in a learning and performance procedure and dose-effect curves were established for Δ(9)-THC (0.56-56 mg/kg) and the cannabinoid type-1 receptor (CB1R) antagonist rimonabant (0.32-10 mg/kg). Despite the persistence of small rate-decreasing and error-increasing effects in intact and OVX females from both ages during chronic Δ(9)-THC, all of the Δ(9)-THC groups developed tolerance. However, the magnitude of tolerance, as well as the effect of hormone status, varied with the age at which chronic Δ(9)-THC was initiated. There was no evidence of dependence in any of the groups. Hippocampal protein expression of CB1R, AHA1 (a co-chaperone of CB1R) and HSP90β (a molecular chaperone modulated by AHA-1) was affected more by OVX than chronic Δ(9)-THC; striatal protein expression was not consistently affected by either manipulation. Hippocampal brain-derived neurotrophic factor expression varied with age, hormone status, and chronic treatment. Thus, hormonal status differentially affects the development of tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning and performance behavior in adolescent, but not adult, female rats. These factors and their interactions also differentially affect cannabinoid signaling proteins in the hippocampus and striatum, and ultimately, neural plasticity.
Collapse
Affiliation(s)
- Peter J. Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| | - Catalin M. Filipeanu
- Department of Pharmacology, Howard University College of MedicineWashington, DC, USA
| | - Peter F. Weed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| | - Jessie L. Sutton
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| |
Collapse
|
79
|
Abstract
Since its inception cannabis has been observed to be associated with various psycho-pathology. In this paper, the authors have reviewed the advancement made in this area over the last decade. The association between cannabis and schizophrenia has been researched more intensively. The controversy regarding the reliability, clinical utility, and the existence of a cannabis withdrawal syndrome has also been settled. Recent studies also buttressed the possibility of acute and chronic effect of cannabis on various cognitive functions. There has been a plethora of research regarding the treatment for cannabis use disorders. But the new and most interesting area of research is concentrated on the endocannabinoid system and its contribution in various psychiatric disorders.
Collapse
Affiliation(s)
- Abhishek Ghosh
- Department of Psychiatry, Drug De-addiction and Treatment Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Debasish Basu
- Department of Psychiatry, Drug De-addiction and Treatment Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
80
|
Effects of URB597 as an inhibitor of fatty acid amide hydrolase on WIN55, 212-2-induced learning and memory deficits in rats. Pharmacol Biochem Behav 2015; 131:130-5. [DOI: 10.1016/j.pbb.2015.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/18/2022]
|
81
|
Gomes FV, Guimarães FS, Grace AA. Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol 2015; 18:pyu018. [PMID: 25522381 PMCID: PMC4368886 DOI: 10.1093/ijnp/pyu018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Adolescent exposure to cannabinoids in vulnerable individuals is proposed to be a risk factor for psychiatric conditions later in life, particularly schizophrenia. Evidence from studies in animals has indicated that a combination of repeated pubertal cannabinoid administration with either neonatal prefrontocortical lesion, isolation rearing, or chronic NMDA receptor antagonism administration induces enhanced schizophrenia-like behavioral disruptions. The effects of adolescent exposure to CB1 receptor agonists, however, have not been tested in a developmental disruption model of schizophrenia. METHODS This was tested in the methylazoxymethanol (MAM) model, in which repeated treatment with the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 1.2mg/kg) was extended over 25 days throughout puberty (postnatal days 40-65) in control and MAM rats. The rats received 20 injections, which were delivered irregularly to mimic the human condition. Adult rats were tested for attentional set-shifting task and locomotor response to amphetamine, which was compared with in vivo recording from ventral tegmental area (VTA) dopamine (DA) neurons. RESULTS MAM-treated rats showed impairment in the attentional set-shifting task, augmented locomotor response to amphetamine administration, and an increased number of spontaneously active DA neurons in the VTA. Interestingly, pubertal WIN treatment in normal animals induced similar changes at adulthood as those observed in MAM-treated rats, supporting the notion that adolescence exposure to cannabinoids may represent a risk factor for developing schizophrenia-like signs at adulthood. However, contrary to expectations, pubertal WIN administration did not exacerbate the behavioral and electrophysiological changes in MAM-treated rats beyond that observed in WIN-treated saline rats (Sal). Indeed, WIN treatment actually attenuated the locomotor response to amphetamine in MAM rats without impacting DA neuron activity states. CONCLUSIONS Taken together, the present results indicate that the impact of cannabinoids during puberty/adolescence on schizophrenia models is more complex than may be predicted.
Collapse
Affiliation(s)
- Felipe V Gomes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil (Drs Gomes and Guimarães); Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Gomes and Guimarães); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260 (Dr Grace).
| | - Francisco S Guimarães
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil (Drs Gomes and Guimarães); Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Gomes and Guimarães); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260 (Dr Grace)
| | - Anthony A Grace
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Brazil (Drs Gomes and Guimarães); Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Gomes and Guimarães); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260 (Dr Grace)
| |
Collapse
|
82
|
Schuster RM, Crane NA, Mermelstein R, Gonzalez R. Tobacco may mask poorer episodic memory among young adult cannabis users. Neuropsychology 2015; 29:759-66. [PMID: 25558879 DOI: 10.1037/neu0000173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Co-occurring cannabis and tobacco use has become increasingly prevalent among young adults, but it is not clear how tobacco use may alter the neurocognitive profile typically observed among cannabis users. Although there is substantial evidence citing cannabis and tobacco's individual effect on episodic memory and related brain structures, few studies have examined the effect of combined cannabis and tobacco use on memory. METHOD This investigation examined relationships between amount of past year cannabis and tobacco use on 4 different indices of episodic memory among a sample of young adults who identified cannabis as their drug of choice. RESULTS Results indicated that more cannabis use was linked with poorer initial acquisition, total learning, and delayed recall on the Hopkins Verbal Learning Test-Revised, but only among cannabis users who sporadically smoked cigarettes in the past year. Conversely, the amount of past year cannabis use was not associated with episodic memory performance among individuals who more consistently smoked cigarettes in the past year. These differences could not be explained by several relevant potential confounds. CONCLUSIONS These findings provide important insight into a potential mechanism (i.e., attenuation of cognitive decrements) that might reinforce use of both substances and hamper cessation attempts among cannabis users who also smoke cigarettes. Ongoing and future research will help to better understand how co-use of cannabis and tobacco affects memory during acute intoxication and abstinence and the stability of these associations over time.
Collapse
Affiliation(s)
- Randi M Schuster
- Department of Psychiatry, Center for Addiction Medicine, Massachusetts General Hospital
| | - Natania A Crane
- Department of Psychology and Institute for Health Research and Policy, University of Illinois at Chicago
| | - Robin Mermelstein
- Department of Psychology and Institute for Health Research and Policy, University of Illinois at Chicago
| | - Raul Gonzalez
- Department of Psychology, Florida International University
| |
Collapse
|
83
|
Sagheddu C, Muntoni AL, Pistis M, Melis M. Endocannabinoid Signaling in Motivation, Reward, and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:257-302. [DOI: 10.1016/bs.irn.2015.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
84
|
Lubman DI, Cheetham A, Yücel M. Cannabis and adolescent brain development. Pharmacol Ther 2014; 148:1-16. [PMID: 25460036 DOI: 10.1016/j.pharmthera.2014.11.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
Collapse
Affiliation(s)
- Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia.
| | - Ali Cheetham
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Monash Clinical & Imaging Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
85
|
Renard J, Krebs MO, Le Pen G, Jay TM. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci 2014; 8:361. [PMID: 25426017 PMCID: PMC4226229 DOI: 10.3389/fnins.2014.00361] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/21/2014] [Indexed: 01/10/2023] Open
Abstract
Marijuana is the most widely used illicit drug among adolescents and young adults. Unique cognitive, emotional, and social changes occur during this critical period of development from childhood into adulthood. The adolescent brain is in a state of transition and differs from the adult brain with respect to both anatomy (e.g., neuronal connections and morphology) and neurochemistry (e.g., dopamine, GABA, and glutamate). These changes are thought to support the emergence of adult cerebral processes and behaviors. The endocannabinoid system plays an important role in development by acting on synaptic plasticity, neuronal cell proliferation, migration, and differentiation. Delta-9-tetrahydrocanabinol (THC), the principal psychoactive component in marijuana, acts as a partial agonist of the cannabinoid type 1 receptor (CB1R). Thus, over-activation of the endocannabinoid system by chronic exposure to CB1R agonists (e.g., THC, CP-55,940, and WIN55,212-2) during adolescence can dramatically alter brain maturation and cause long-lasting neurobiological changes that ultimately affect the function and behavior of the adult brain. Indeed, emerging evidence from both human and animal studies demonstrates that early-onset marijuana use has long-lasting consequences on cognition; moreover, in humans, this use is associated with a two-fold increase in the risk of developing a psychotic disorder. Here, we review the relationship between cannabinoid exposure during adolescence and the increased risk of neuropsychiatric disorders, focusing on both clinical and animal studies.
Collapse
Affiliation(s)
- Justine Renard
- Laboratoire de Physiopathologie des maladies Psychiatriques, UMR_S894 Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et Neurosciences Paris, France ; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| | - Marie-Odile Krebs
- Laboratoire de Physiopathologie des maladies Psychiatriques, UMR_S894 Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et Neurosciences Paris, France ; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| | - Gwenaëlle Le Pen
- Laboratoire de Physiopathologie des maladies Psychiatriques, UMR_S894 Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et Neurosciences Paris, France ; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| | - Thérèse M Jay
- Laboratoire de Physiopathologie des maladies Psychiatriques, UMR_S894 Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et Neurosciences Paris, France ; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| |
Collapse
|
86
|
Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 2014; 144:12-41. [PMID: 25220897 PMCID: PMC4253059 DOI: 10.1016/j.drugalcdep.2014.08.005] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SC) are a heterogeneous group of compounds developed to probe the endogenous cannabinoid system or as potential therapeutics. Clandestine laboratories subsequently utilized published data to develop SC variations marketed as abusable designer drugs. In the early 2000s, SC became popular as "legal highs" under brand names such as Spice and K2, in part due to their ability to escape detection by standard cannabinoid screening tests. The majority of SC detected in herbal products have greater binding affinity to the cannabinoid CB1 receptor than does Δ(9)-tetrahydrocannabinol (THC), the primary psychoactive compound in the cannabis plant, and greater affinity at the CB1 than the CB2 receptor. In vitro and animal in vivo studies show SC pharmacological effects 2-100 times more potent than THC, including analgesic, anti-seizure, weight-loss, anti-inflammatory, and anti-cancer growth effects. SC produce physiological and psychoactive effects similar to THC, but with greater intensity, resulting in medical and psychiatric emergencies. Human adverse effects include nausea and vomiting, shortness of breath or depressed breathing, hypertension, tachycardia, chest pain, muscle twitches, acute renal failure, anxiety, agitation, psychosis, suicidal ideation, and cognitive impairment. Long-term or residual effects are unknown. Due to these public health consequences, many SC are classified as controlled substances. However, frequent structural modification by clandestine laboratories results in a stream of novel SC that may not be legally controlled or detectable by routine laboratory tests. METHODS We present here a comprehensive review, based on a systematic electronic literature search, of SC epidemiology and pharmacology and their clinical implications.
Collapse
Affiliation(s)
- Marisol S Castaneto
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - David A Gorelick
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nathalie A Desrosiers
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Rebecca L Hartman
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States; Program in Toxicology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Sandrine Pirard
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, United States.
| |
Collapse
|
87
|
Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats. Brain Struct Funct 2014; 221:407-19. [PMID: 25348266 DOI: 10.1007/s00429-014-0914-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/10/2014] [Indexed: 12/13/2022]
Abstract
Recent studies demonstrate a differential trajectory for cannabinoid receptor expression in cortical and sub-cortical brain areas across postnatal development. In the present study, we sought to investigate whether chronic systemic exposure to a synthetic cannabinoid receptor agonist causes morphological changes in the structure of dendrites and dendritic spines in adolescent and adult pyramidal neurons in the medial prefrontal cortex (mPFC) and medium spiny neurons (MSN) in the nucleus accumbens (Acb). Following systemic administration of WIN 55,212-2 in adolescent (PN 37-40) and adult (P55-60) male rats, the neuronal architecture of pyramidal neurons and MSN was assessed using Golgi-Cox staining. While no structural changes were observed in WIN 55,212-2-treated adolescent subjects compared to control, exposure to WIN 55,212-2 significantly increased dendritic length, spine density and the number of dendritic branches in pyramidal neurons in the mPFC of adult subjects when compared to control and adolescent subjects. In the Acb, WIN 55,212-2 exposure significantly decreased dendritic length and number of branches in adult rat subjects while no changes were observed in the adolescent groups. In contrast, spine density was significantly decreased in both the adult and adolescent groups in the Acb. To determine whether regional developmental morphological changes translated into behavioral differences, WIN 55,212-2-induced aversion was evaluated in both groups using a conditioned place preference paradigm. In adult rats, WIN 55,212-2 administration readily induced conditioned place aversion as previously described. In contrast, adolescent rats did not exhibit aversion following WIN 55,212-2 exposure in the behavioral paradigm. The present results show that synthetic cannabinoid administration differentially impacts cortical and sub-cortical neuronal morphology in adult compared to adolescent subjects. Such differences may underlie the disparate development effects of cannabinoids on behavior.
Collapse
|
88
|
WIN55,212-2 impairs non-associative recognition and spatial memory in rats via CB1 receptor stimulation. Pharmacol Biochem Behav 2014; 124:58-66. [DOI: 10.1016/j.pbb.2014.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/19/2014] [Accepted: 05/17/2014] [Indexed: 11/18/2022]
|
89
|
Heavy alcohol use, marijuana use, and concomitant use by adolescents are associated with unique and shared cognitive decrements. J Int Neuropsychol Soc 2014; 20:784-95. [PMID: 25241623 PMCID: PMC5792651 DOI: 10.1017/s1355617714000666] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To assess recovery of cognitive effects, we investigated neuropsychological performance after 1 month of monitored abstinence in teens with histories of heavy episodic drinking, protracted marijuana use, or concomitant use of alcohol and marijuana. Adolescents (ages 16-18 years) with histories of heavy episodic drinking (HED; n=24), marijuana use (MJ; n=20), both heavy alcohol and marijuana use (HED+MJ; n=29), and socio-demographically similar control teens (CON; n=55) completed a neuropsychological battery following 4 weeks of monitored abstinence. Groups were similar on 5th grade standardized test scores, suggesting comparable academic functioning before onset of substance use. Relative to CON, HED showed poorer cognitive flexibility (p=.006), verbal recall (p=.024), semantic clustering (p=.011), and reading skills (p=.018). MJ performed worse than CON on inhibition task accuracy (p=.015), cued verbal memory (p=.031), and psychomotor speed (p=.027). Similar to HED youth, HED+MJ showed differences relative to CON on cognitive flexibility (p=.024) and verbal recall (p=.049). As with MJ teens, HED+MJ showed poorer task accuracy (p=.020). Unique to the HED+MJ group was poorer working memory (p=.012) relative to CON. For all substance using participants, worse performance across domains correlated with more lifetime use of alcohol and of marijuana, more withdrawal symptoms from alcohol, and earlier age of onset of marijuana use (ps<.05). Heavy alcohol use, marijuana use, and concomitant use of both substances during adolescence appear to be associated with decrements in cognitive functioning, and each substance (or combination of substances) may be linked to poorer performance in specific cognitive domains.
Collapse
|
90
|
Jacobus J, Squeglia LM, Infante MA, Bava S, Tapert SF. White matter integrity pre- and post marijuana and alcohol initiation in adolescence. Brain Sci 2014; 3:396-414. [PMID: 23914300 PMCID: PMC3728679 DOI: 10.3390/brainsci3010396] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Characterizing the effects of alcohol and marijuana use on adolescent brain development is important for understanding potential alterations in neurodevelopment. Several cross sectional studies have identified group differences in white matter integrity after initiation of heavy alcohol and marijuana use, however none have explored white matter trajectories in adolescents pre- and post initiation of use, particularly for marijuana users. This study followed 16 adolescents with minimal alcohol and marijuana use at ages 16–18 over three years. At follow-up, teens were 19–22 years old; half of the participants initiated heavy alcohol use and half initiated heavy alcohol and marijuana use. Repeated-measures ANOVA revealed 20 clusters in association and projection fibers tracts (p < 0.01) in which a group by time interaction was found. Most consistently, white matter integrity (i.e., fractional anisotropy) decreased for those who initiated both heavy alcohol and marijuana use over the follow-up interval. No effect of time or change in white matter integrity was seen for those who initiated alcohol use only in the majority of clusters. In most regions, at the baseline time point, teens who would later initiate both alcohol and marijuana use demonstrated white matter integrity greater than or equal to teens that initiated alcohol use only. Findings suggest poorer tissue integrity associated with combined initiation of heavy alcohol and marijuana use in late adolescence. While pre-existing differences may also be related to likelihood of substance use, the present data suggest an effect on tissue integrity for these teens transitioning to combined alcohol and marijuana use in later adolescence.
Collapse
Affiliation(s)
- Joanna Jacobus
- VA San Diego Healthcare System Psychology Service (116B), 3350 La Jolla Village Drive, San Diego, CA 92126, USA; E-Mails: (J.J.); (S.B.)
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
| | - Lindsay M. Squeglia
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
| | - M. Alejandra Infante
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, 6363 Alvarado Court, Suite 103, San Diego, CA 92120, USA
| | - Sunita Bava
- VA San Diego Healthcare System Psychology Service (116B), 3350 La Jolla Village Drive, San Diego, CA 92126, USA; E-Mails: (J.J.); (S.B.)
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
| | - Susan F. Tapert
- VA San Diego Healthcare System Psychology Service (116B), 3350 La Jolla Village Drive, San Diego, CA 92126, USA; E-Mails: (J.J.); (S.B.)
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-858-552-7563; Fax: +1-858-642-6340
| |
Collapse
|
91
|
Bortolato M, Bini V, Frau R, Devoto P, Pardu A, Fan Y, Solbrig MV. Juvenile cannabinoid treatment induces frontostriatal gliogenesis in Lewis rats. Eur Neuropsychopharmacol 2014; 24:974-85. [PMID: 24630433 DOI: 10.1016/j.euroneuro.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/20/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Cannabis abuse in adolescence is associated with a broad array of phenotypical consequences, including a higher risk for schizophrenia and other mental disturbances related to dopamine (DA) imbalances. The great variability of these sequelae likely depends on the key influence of diverse genetic vulnerability factors. Inbred rodent strains afford a highly informative tool to study the contribution of genetic determinants to the long-term effects of juvenile cannabinoid exposure. In this study, we analyzed the phenotypical impact of the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 2mg/kg/day from postnatal day 35-48) in adolescent Lewis rats, an inbred strain exhibiting resistance to psychotomimetic effects of environmental manipulations. At the end of this treatment, WIN-injected animals displayed increased survival of new cells (mainly oligodendroglia precursors) in the striatum and prefrontal cortex (PFC), two key terminal fields of DAergic pathways. To test whether these changes may be associated with enduring behavioral alterations, we examined the consequences of adolescent WIN treatment in adulthood (postnatal days 60-70), with respect to DA levels and metabolism as well as multiple behavioral paradigms. Rats injected with WIN exhibited increased turnover, but not levels, of striatal DA. In addition, cannabinoid-treated animals displayed increases in acoustic startle latency and novel-object exploration; however, WIN treatment failed to induce overt deficits of sensorimotor gating and social interaction. These results indicate that, in Lewis rats, juvenile cannabinoid exposure leads to alterations in frontostriatal gliogenesis, as well as select behavioral alterations time-locked to high DAergic metabolism, but not overt schizophrenia-related deficits.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr, Malott Hall, Room 5040, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence (KS), USA.
| | - Valentina Bini
- "Guy Everett" Laboratory, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Roberto Frau
- "Guy Everett" Laboratory, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Paola Devoto
- "Guy Everett" Laboratory, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Alessandra Pardu
- "Guy Everett" Laboratory, Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Yijun Fan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Marylou V Solbrig
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada; Department of Medicine (Neurology), University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
92
|
Cass DK, Flores-Barrera E, Thomases DR, Vital WF, Caballero A, Tseng KY. CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex. Mol Psychiatry 2014; 19:536-43. [PMID: 24589887 PMCID: PMC3999247 DOI: 10.1038/mp.2014.14] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/18/2022]
Abstract
Converging epidemiological studies indicate that cannabis abuse during adolescence increases the risk of developing psychosis and prefrontal cortex (PFC)-dependent cognitive impairments later in life. However, the mechanisms underlying the adolescent susceptibility to chronic cannabis exposure are poorly understood. Given that the psychoactive constituent of cannabis binds to the CB1 cannabinoid receptor, the present study was designed to determine the impact of a CB1 receptor agonist (WIN) during specific windows of adolescence on the functional maturation of the rat PFC. By means of local field potential recordings and ventral hippocampal stimulation in vivo, we found that a history of WIN exposure during early (postnatal days - P35-40) or mid-(P40-45) adolescence, but not in late adolescence (P50-55) or adulthood (P75-80), is sufficient to yield a state of frequency-dependent prefrontal disinhibition in adulthood comparable to that seen in the juvenile PFC. Remarkably, this prefrontal disinhibition could be normalized following a single acute local infusion of the GABA-Aα1 positive allosteric modulator Indiplon, suggesting that adolescent exposure to WIN causes a functional downregulation of GABAergic transmission in the PFC. Accordingly, in vitro recordings from adult rats exposed to WIN during adolescence demonstrate that local prefrontal GABAergic transmission onto layer V pyramidal neurons is markedly reduced to the level seen in the P30-35 PFC. Together, these results indicate that early and mid-adolescence constitute a critical period during which repeated CB1 receptor stimulation is sufficient to elicit an enduring state of PFC network disinhibition resulting from a developmental impairment of local prefrontal GABAergic transmission.
Collapse
Affiliation(s)
| | | | | | | | | | - Kuei Y. Tseng
- Corresponding Author: Kuei Y. Tseng, MD, PhD, Department of Cellular and Molecular Pharmacology, The Chicago Medical School at RFUMS, 3333 Green Bay Rd, North Chicago, IL 60064, USA,
| |
Collapse
|
93
|
Wilkinson ST, Radhakrishnan R, D'Souza DC. Impact of Cannabis Use on the Development of Psychotic Disorders. CURRENT ADDICTION REPORTS 2014; 1:115-128. [PMID: 25767748 DOI: 10.1007/s40429-014-0018-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The link between cannabis use and psychosis comprises three distinct relationships: acute psychosis associated with cannabis intoxication, acute psychosis that lasts beyond the period of acute intoxication, and persistent psychosis not time-locked to exposure. Experimental studies reveal that cannabis, tetrahydrocannabinol (THC) and synthetic cannabinoids reliably produce transient positive, negative, and cognitive symptoms in healthy volunteers. Case-studies indicate that cannabinoids can induce acute psychosis which lasts beyond the period of acute intoxication but resolves within a month. Exposure to cannabis in adolescence is associated with a risk for later psychotic disorder in adulthood; this association is consistent, temporally related, shows a dose-response, and is biologically plausible. However, cannabis is neither necessary nor sufficient to cause a persistent psychotic disorder. More likely it is a component cause that interacts with other factors to result in psychosis. The link between cannabis and psychosis is moderated by age at onset of cannabis use, childhood abuse and genetic vulnerability. While more research is needed to better characterize the relationship between cannabinoid use and the onset and persistence of psychosis, clinicians should be mindful of the potential risk of psychosis especially in vulnerable populations, including adolescents and those with a psychosis diathesis.
Collapse
Affiliation(s)
- Samuel T Wilkinson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA ; Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
94
|
Almeida V, Peres FF, Levin R, Suiama MA, Calzavara MB, Zuardi AW, Hallak JE, Crippa JA, Abílio VC. Effects of cannabinoid and vanilloid drugs on positive and negative-like symptoms on an animal model of schizophrenia: the SHR strain. Schizophr Res 2014; 153:150-9. [PMID: 24556469 DOI: 10.1016/j.schres.2014.01.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 02/06/2023]
Abstract
Studies have suggested that the endocannabinoid system is implicated in the pathophysiology of schizophrenia. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs display hyperlocomotion - reverted by atypical and typical antipsychotics. These results suggest that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia and the effects of potential drugs with an antipsychotic profile. The aim of this study was to investigate the effects of WIN55-212,2 (CB1/CB2 agonist), ACEA (CB1 agonist), rimonabant (CB1 inverse agonist), AM404 (anandamide uptake/metabolism inhibitor), capsaicin (agonist TRPV1) and capsazepine (antagonist TRPV1) on the social interaction and locomotion of control animals (Wistar rats) and SHRs. The treatment with rimonabant was not able to alter either the social interaction or the locomotion presented by Wistar rats (WR) and SHR at any dose tested. The treatment with WIN55-212,2 decreased locomotion (1mg/kg) and social interaction (0.1 and 0.3mg/kg) of WR, while the dose of 1mg/kg increased social interaction of SHR. The treatment with ACEA increased (0.3mg/kg) and decreased (1mg/kg) locomotion of both strain. The administration of AM404 increased social interaction and decreased locomotion of SHR (5mg/kg), and decreased social interaction and increased locomotion in WR (1mg/kg). The treatment with capsaicin (2.5mg/kg) increased social interaction of both strain and decreased locomotion of SHR (2.5mg/kg) and WR (0.5mg/kg and 2.5mg/kg). In addition, capsazepine (5mg/kg) decreased locomotion of both strains and increased (5mg/kg) and decreased (10mg/kg) social interaction of WR. Our results indicate that the schizophrenia-like behaviors displayed by SHR are differently altered by cannabinoid and vanilloid drugs when compared to control animals and suggest the endocannabinoid and the vanilloid systems as a potential target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Valéria Almeida
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Fernanda F Peres
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Raquel Levin
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mayra A Suiama
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mariana B Calzavara
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Antônio W Zuardi
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil.
| |
Collapse
|
95
|
Schneider P, Hannusch C, Schmahl C, Bohus M, Spanagel R, Schneider M. Adolescent peer-rejection persistently alters pain perception and CB1 receptor expression in female rats. Eur Neuropsychopharmacol 2014; 24:290-301. [PMID: 23669059 DOI: 10.1016/j.euroneuro.2013.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 01/10/2023]
Abstract
Peer-interactions are particularly important during adolescence and teenagers display enhanced sensitivity toward rejection by peers. Social rejection has been shown to induce alterations in pain perception in humans. However, the neurobiological consequences of adolescent social rejection have yet to be extensively characterized, and no appropriate animal model is available. Here, we propose inadequate playful interactions in adolescent rats as a novel animal model for social peer-rejection and examine potential long-term consequences into adulthood. Acute social pairing of female adolescent Wistar rats with an age-matched rat from the less playful Fischer344 strain was found to alter social play and decrease pain reactivity, indicating Fischer rats as inadequate social partners for Wistar animals. Therefore, in a second experiment, adolescent female Wistar rats were either reared with another Wistar rat (adequate social rearing; control) or with a Fischer rat (inadequate social rearing; play-deprived). Beginning on day 50, all Wistar rats were group housed with same-strain partners and tested for behavioral, neurobiological and endocrine differences in adulthood. Playful peer-interactions were decreased during adolescence in play-deprived animals, without affecting social contact behavior. Consequently, adult play-deprived rats showed decreased pain sensitivity and increased startle reactivity compared to controls, but did not differ in activity, anxiety-related behavior or social interaction. Both groups also differed in their endocrine stress-response, and expression levels of the cannabinoid CB1 receptor were increased in the thalamus, whereas FAAH levels were decreased in the amygdala. The present animal model therefore represents a novel approach to assess the long-term consequences of peer-rejection during adolescence.
Collapse
Affiliation(s)
- Peggy Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christin Hannusch
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Bohus
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Miriam Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
96
|
Abstract
BACKGROUND Marijuana is the most commonly used illicit substance in the United States and worldwide. Marijuana use is a problem of increasing magnitude among adolescents. Use typically begins in adolescence and is associated with a variety of adverse outcomes. METHOD This article will present an overview of trends in marijuana use, and will review the endocannabinoid system and marijuana. It will discuss recent policy developments in US and their implications, especially for adolescents. Existing treatments will be reviewed, including findings from a recent randomized double-blind trial of N-acetylcysteine, a compound that reverses the dysregulation of the glutamate system that occurs in substance dependence. CONCLUSIONS The core treatment approaches include psychosocial interventions, sometimes in combination with each other. While a reduction in days of use is often achieved with most of these approaches, abstinence is a much more elusive goal. The evidence base for effective treatments remains inadequate especially with regard to adolescents, and there is an urgent need for more research in this area. Promising new treatments include N-acetylcysteine in conjunction with contingency management.
Collapse
|
97
|
van Winkel R, Kuepper R. Epidemiological, neurobiological, and genetic clues to the mechanisms linking cannabis use to risk for nonaffective psychosis. Annu Rev Clin Psychol 2014; 10:767-91. [PMID: 24471373 DOI: 10.1146/annurev-clinpsy-032813-153631] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidemiological studies have shown that the association between cannabis and psychosis is robust and consistent across different samples, with compelling evidence for a dose-response relationship. Because longitudinal work indicates that cannabis use precedes psychotic symptoms, it seems reasonable to assume a causal relationship. However, more work is needed to address the possibility of gene-environment correlation (for example, genetic risk for psychosis causing onset of cannabis use). Moreover, knowledge about underlying biological mechanisms linking cannabis use and psychosis is still relatively limited. In order to understand how cannabis use may lead to an increased risk for psychosis, in the present article we (a) review the epidemiological, neurobiological, and genetic evidence linking cannabinoids and psychosis, (b) assess the quality of the evidence, and finally (c) try to integrate the most robust findings into a neurodevelopmental model of cannabis-induced psychosis and identify the gaps in knowledge that are in need of further investigation.
Collapse
Affiliation(s)
- Ruud van Winkel
- Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), South Limburg Mental Health Research and Teaching Network (SEARCH), Maastricht University Medical Center, Maastricht, The Netherlands;
| | | |
Collapse
|
98
|
Radhakrishnan R, Wilkinson ST, D'Souza DC. Gone to Pot - A Review of the Association between Cannabis and Psychosis. Front Psychiatry 2014; 5:54. [PMID: 24904437 PMCID: PMC4033190 DOI: 10.3389/fpsyt.2014.00054] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/02/2014] [Indexed: 01/01/2023] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide, with ~5 million daily users worldwide. Emerging evidence supports a number of associations between cannabis and psychosis/psychotic disorders, including schizophrenia. These associations-based on case-studies, surveys, epidemiological studies, and experimental studies indicate that cannabinoids can produce acute, transient effects; acute, persistent effects; and delayed, persistent effects that recapitulate the psychopathology and psychophysiology seen in schizophrenia. Acute exposure to both cannabis and synthetic cannabinoids (Spice/K2) can produce a full range of transient psychotomimetic symptoms, cognitive deficits, and psychophysiological abnormalities that bear a striking resemblance to symptoms of schizophrenia. In individuals with an established psychotic disorder, cannabinoids can exacerbate symptoms, trigger relapse, and have negative consequences on the course of the illness. Several factors appear to moderate these associations, including family history, genetic factors, history of childhood abuse, and the age at onset of cannabis use. Exposure to cannabinoids in adolescence confers a higher risk for psychosis outcomes in later life and the risk is dose-related. Individuals with polymorphisms of COMT and AKT1 genes may be at increased risk for psychotic disorders in association with cannabinoids, as are individuals with a family history of psychotic disorders or a history of childhood trauma. The relationship between cannabis and schizophrenia fulfills many but not all of the standard criteria for causality, including temporality, biological gradient, biological plausibility, experimental evidence, consistency, and coherence. At the present time, the evidence indicates that cannabis may be a component cause in the emergence of psychosis, and this warrants serious consideration from the point of view of public health policy.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA ; Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System , West Haven, CT , USA
| |
Collapse
|
99
|
The endocannabinoid system: an emotional buffer in the modulation of memory function. Neurobiol Learn Mem 2013; 112:30-43. [PMID: 24382324 DOI: 10.1016/j.nlm.2013.12.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 01/12/2023]
Abstract
Extensive evidence indicates that endocannabinoids modulate cognitive processes in animal models and human subjects. However, the results of endocannabinoid system manipulations on cognition have been contradictory. As for anxiety behavior, a duality has indeed emerged with regard to cannabinoid effects on memory for emotional experiences. Here we summarize findings describing cannabinoid effects on memory acquisition, consolidation, retrieval and extinction. Additionally, we review findings showing how the endocannabinoid system modulates memory function differentially, depending on the level of stress and arousal associated with the experimental context. Based on the evidence reviewed here, we propose that the endocannabinoid system is an emotional buffer that moderates the effects of environmental context and stress on cognitive processes.
Collapse
|
100
|
Llorente-Berzal A, Puighermanal E, Burokas A, Ozaita A, Maldonado R, Marco EM, Viveros MP. Sex-dependent psychoneuroendocrine effects of THC and MDMA in an animal model of adolescent drug consumption. PLoS One 2013; 8:e78386. [PMID: 24223797 PMCID: PMC3817254 DOI: 10.1371/journal.pone.0078386] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/18/2013] [Indexed: 01/05/2023] Open
Abstract
Ecstasy is a drug that is usually consumed by young people at the weekends and frequently, in combination with cannabis. In the present study we have investigated the long-term effects of administering increasing doses of delta-9-tetrahydrocannabinol [THC; 2.5, 5, 10 mg/kg; i.p.] from postnatal day (pnd) 28 to 45, alone and/or in conjunction with 3,4-methylenedioxymethamphetamine [MDMA; two daily doses of 10 mg/kg every 5 days; s.c.] from pnd 30 to 45, in both male and female Wistar rats. When tested one day after the end of the pharmacological treatment (pnd 46), MDMA administration induced a reduction in directed exploration in the holeboard test and an increase in open-arm exploration in an elevated plus maze. In the long-term, cognitive functions in the novel object test were seen to be disrupted by THC administration to female but not male rats. In the prepulse inhibition test, MDMA-treated animals showed a decrease in prepulse inhibition at the most intense prepulse studied (80 dB), whereas in combination with THC it induced a similar decrease at 75 dB. THC decreased hippocampal Arc expression in both sexes, while in the frontal cortex this reduction was only evident in females. MDMA induced a reduction in ERK1/2 immunoreactivity in the frontal cortex of male but not female animals, and THC decreased prepro-orexin mRNA levels in the hypothalamus of males, although this effect was prevented when the animals also received MDMA. The results presented indicate that adolescent exposure to THC and/or MDMA induces long-term, sex-dependent psychophysiological alterations and they reveal functional interactions between the two drugs.
Collapse
Affiliation(s)
- Alvaro Llorente-Berzal
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Emma Puighermanal
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aurelijus Burokas
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrés Ozaita
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (RM); (MPV)
| | - Eva M. Marco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Maria-Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
- * E-mail: (RM); (MPV)
| |
Collapse
|