51
|
Zhang J, Abdel-Rahman AA. Inhibition of nischarin expression attenuates rilmenidine-evoked hypotension and phosphorylated extracellular signal-regulated kinase 1/2 production in the rostral ventrolateral medulla of rats. J Pharmacol Exp Ther 2008; 324:72-8. [PMID: 17940198 PMCID: PMC2704025 DOI: 10.1124/jpet.107.129049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imidazoline (I(1))-evoked hypotension is linked to enhanced phosphorylated extracellular signal-regulated kinase (pERK)1/2 production in the rostral ventrolateral medulla (RVLM). Recent cell culture findings suggest that nischarin is a candidate for the I(1) receptor. In the present study, nischarin antisense oligodeoxynucleotide (ODN) (AS1 or AS2), designed according to nischarin cDNA sequence, was administered intracisternally (i.c., 2 nmol/rat for 2 days) to knockdown central nischarin expression; control rats received the corresponding mismatched ODN (MM1 or MM2) or artificial cerebrospinal fluid (aCSF). We investigated the effects of AS1 or AS2 on nischarin expression in the RVLM, and on the hypotension and RVLM pERK1/2 production elicited by the I(1)-selective agonist rilmenidine (25 mug/rat i.c.). Compared with aCSF, the mismatched ODN (MM1 or MM2) had no significant effect on RVLM nischarin expression or the cardiovascular and cellular (RVLM pERK1/2) responses elicited by rilmenidine. However, either antisense ODN substantially (>80%) reduced nischarin expression in the RVLM (AS1/MM1, 3 +/- 1 versus 32 +/- 2 positive cells; AS2/MM2, 4 +/- 1 versus 31 +/- 2 positive cells) and abrogated rilmenidine (I(1))-evoked hypotension (AS1/MM1, -4.1 +/- 0.9 versus -10.8 +/- 1.9 mm Hg; AS2/MM2, -2.1 +/- 1.1 versus -15.3 +/- 2.5 mm Hg) and ERK1/2 activation in the RVLM (AS1/MM1, 10 +/- 1 versus 15 +/- 2 positive cells; AS2/MM2, 9 +/- 1 versus 18 +/- 2 positive cells). Finally, pERK1/2 generated by central I(1) receptor activation is colocalized with nischarin in the RVLM neurons. This is the first evidence in vivo that nischarin plays a critical role in I(1) receptor-mediated pERK1/2 production in the RVLM and the subsequent hypotension.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|
52
|
Piletz J, Baker R, Halaris A. Platelet imidazoline receptors as state marker of depressive symptomatology. J Psychiatr Res 2008; 42:41-9. [PMID: 17166518 PMCID: PMC2358986 DOI: 10.1016/j.jpsychires.2006.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 10/26/2006] [Accepted: 10/26/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Previous studies have shown that imidazoline receptors (IR-1) are increased in platelets and frontal cortex of depressed patients, and this up-regulation is normalized (down-regulated) after antidepressant drug treatments. It has been hypothesized that IR-1 up-regulation during the depressive episode may be a state marker for depressive symptomatology. The goal of the present study was to address the state versus trait question. METHOD Twelve healthy subjects (six males and six females) met stringent inclusion and exclusion criteria for physical and mental health. They received desipramine for 6 weeks in order to simulate the length of time and dosing used previously to obtain an IR-1 down-regulation and a therapeutic response in depressed patients. Outcome and safety measures included clinical, psychological, and cardiovascular assessments obtained throughout the study. Plasma concentrations of desipramine were measured throughout the 6 weeks of treatment and again after 2 weeks following tapered discontinuation of desipramine. Platelet receptors were assessed by Western blotting and radioligand binding assays. RESULTS Healthy subjects taking desipramine experienced mild dysphoric effects but there were no adverse events. The binding of 8 nM p-[(125)I]clonidine to IR-1 and alpha(2)-adrenoceptors in healthy subjects did not change during desipramine treatment. The immunodensity of the 33 kDa band associated with IR-1 gradually increased to a maximum, by week-6, of 26% higher than baseline (p < 0.01 compared to baseline). Two weeks after desipramine discontinuation, there was a decline in alpha(2)-adrenoceptor binding and 33 kDa band's immunodensity (p = 0.04). CONCLUSIONS The findings support the hypothesis that platelet IR-1 binding sites are a marker of mood state rather than of antidepressant-induced pharmacological regulation. By comparison, platelet alpha(2)-adrenoceptors appear to be regulated by desipramine as a pharmacological effect independent of mood state.
Collapse
Affiliation(s)
- John Piletz
- Department of Psychiatry and Behavioral Neuroscience, Loyola University Medical Center, Maywood, IL 60153, United States
| | | | | |
Collapse
|
53
|
Li F, Wu N, Su RB, Zheng JQ, Xu B, Lu XQ, Cong B, Li J. Involvement of phosphatidylcholine-selective phospholipase C in activation of mitogen-activated protein kinase pathways in imidazoline receptor antisera-selected protein. J Cell Biochem 2006; 98:1615-28. [PMID: 16598778 DOI: 10.1002/jcb.20806] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imidazoline receptor antisera-selected protein (IRAS) is considered as a candidate for the I1-imidazoline receptor (I1R), but the signaling pathway mediated by IRAS remains unknown. In our study, the signal transduction pathways of IRAS were investigated in CHO cells stably expressing IRAS (CHO-IRAS), and compared to the native I1R signaling pathways. Rilmenidine or moxonidine (10 nM-100 microM), I1R agonists, failed to stimulate [35S]-GTPgammaS binding in CHO-IRAS cell membrane preparations, suggesting that G protein may not be involved in IRAS signaling pathway. However, incubation of CHO-IRAS with rilmenidine or moxonidine for 5 min could induce an upregulation of phosphatidylcholine-selective phospholipase C (PC-PLC) activity, and an increase in the accumulation of diacylglycerol (DAG), the hydrolysate of PC-PLC, in a concentration-dependent manner. The elevated activation of PC-PLC by rilmenidine or moxonidine (100 nM) could be blocked by efaroxan, a selective I1R antagonist. Cells treated with rilmenidine or moxonidine showed an increased level of extracellular signal-regulated kinase (ERK) phosphorylation in a concentration-dependent manner, which could be reversed by efaroxan or D609, a selective PC-PLC inhibitor. These results suggest that the signaling pathway of IRAS in response to I1R agonists coupled with the activation of PC-PLC and its downstream signal transduction molecule, ERK. These findings are similar to those in the signaling pathways of native I1R, providing some new evidence for the relationship between I1R and IRAS.
Collapse
Affiliation(s)
- Fei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Tanabe M, Kino Y, Honda M, Ono H. Presynaptic I1-imidazoline receptors reduce GABAergic synaptic transmission in striatal medium spiny neurons. J Neurosci 2006; 26:1795-802. [PMID: 16467528 PMCID: PMC6793622 DOI: 10.1523/jneurosci.4642-05.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Imidazoline receptors are expressed widely in the CNS. In the present study, whole-cell patch-clamp recordings were made from medium spiny neurons in dorsal striatum slices from the rat brain, and the roles of I1-imidazoline receptors in the modulation of synaptic transmission were studied. Moxonidine, an I1-imidazoline receptor agonist, decreased the GABAA receptor-mediated IPSCs in a concentration-dependent manner. However, glutamate-mediated EPSCs were hardly affected. The depression of IPSCs by moxonidine was antagonized by either idazoxan or efaroxan, which are both imidazoline receptor antagonists containing an imidazoline moiety. In contrast, yohimbine and SKF86466 (6-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benzazepine), which are alpha2-adrenergic receptor antagonists with no affinity for imidazoline receptors, did not affect the moxonidine-induced inhibition of IPSCs. Moxonidine increased the paired-pulse ratio and reduced the frequency of miniature IPSCs without affecting their amplitude, indicating that this agent inhibits IPSCs via presynaptic mechanisms. Moreover, the sulfhydryl alkylating agent N-ethylmaleimide (NEM) significantly reduced the moxonidine-induced inhibition of IPSCs. Thus, the activation of presynaptic I1-imidazoline receptors decreases GABA-mediated inhibition of medium spiny neurons in the striatum, in which NEM-sensitive proteins such as G(i/o)-type G-proteins play an essential role. The adenylate cyclase activator forskolin partly opposed IPSC inhibition elicited by subsequently applied moxonidine. Furthermore, the protein kinase C (PKC) activator phorbol 12,13-dibutyrate attenuated and the PKC inhibitor chelerythrine potentiated the moxonidine-induced inhibition of IPSCs. These results suggest that IPSC inhibition via presynaptic I1-imidazoline receptors involves intracellular adenylate cyclase activity and is influenced by static PKC activity in the striatum.
Collapse
Affiliation(s)
- Mitsuo Tanabe
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| | | | | | | |
Collapse
|
55
|
Krall CM, Andicochea CT, McDougall SA. Ultrasonic vocalization production of preweanling rats: effects of central and peripheral administration of alpha2-adrenoceptor agonists. Eur J Pharmacol 2005; 517:200-7. [PMID: 15985263 DOI: 10.1016/j.ejphar.2005.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
Stimulation of alpha2-adrenoceptors increases the ultrasonic vocalization production of preweanling rats, however it is not known whether these critical alpha2-adrenoceptors are located peripherally or centrally. In a series of three experiments, ultrasonic vocalizations were measured after 11-day-old rats had been administered clonidine or 2-[2,6-diethylphenylamino]-2-imidazole (ST-91) either systemically (i.p.) or into the third ventricle (i.c.v.). These particular alpha2-adrenoceptor agonists were chosen because clonidine is lipophilic and enters the central nervous system, while ST-91 is hydrophilic and does not readily cross the blood-brain barrier. In the third experiment, clonidine- (1 microg, i.c.v.) and ST-91-induced (15 microg, i.c.v.) ultrasonic vocalizations were measured after systemic injection of the alpha2-adrenoceptor antagonist yohimbine (0.5 or 1 mg/kg, i.p.). Results showed that central administration of both clonidine and ST-91 increased the ultrasonic vocalization production of 11-day-old rats, whereas peripheral administration of only clonidine, and not ST-91, increased ultrasonic vocalizations. These results indicate that the alpha2-adrenoceptors mediating ultrasonic vocalization production are located in the central nervous system. Yohimbine fully attenuated clonidine-induced ultrasonic vocalizations but only partially attenuated ST-91-induced vocalizations. This pattern of results may have been due to the differential selectivity of clonidine and ST-91 for alpha2-adrenoceptor subtypes (alpha2A, alpha2B, and alpha2C) or imidazoline receptors. When combined with past research, the present results are consistent with the hypothesis that centrally located alpha2-adrenoceptors are a component of a neural system that mediates ultrasonic vocalization production.
Collapse
Affiliation(s)
- Catherine M Krall
- Department of Psychology, California State University, San Bernardino, CA 92407, USA
| | | | | |
Collapse
|
56
|
Zhang J, Abdel-Rahman AA. Mitogen-activated protein kinase phosphorylation in the rostral ventrolateral medulla plays a key role in imidazoline (i1)-receptor-mediated hypotension. J Pharmacol Exp Ther 2005; 314:945-52. [PMID: 15901801 DOI: 10.1124/jpet.105.087510] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous study showed that rilmenidine, a selective I(1)-imidazoline receptor agonist, enhanced the phosphorylation of mitogen-activated protein kinase (MAPK)(p42/44), via the phosphatidylcholine-specific phospholipase C pathway in the pheochromocytoma cell line (PC12). In the present study, we tested the hypothesis that enhancement of MAPK phosphorylation in the rostral ventrolateral medulla (RVLM) contributes to the hypotensive response elicited by I(1)-receptor activation in vivo. Systemic rilmenidine (600 microg/kg i.v.) elicited hypotension and bradycardia along with significant elevation in MAPK(p42/44), detected by immunohistochemistry, in RVLM neurons. To obtain conclusive evidence that the latter response was I(1)-receptor-mediated, similar hypotensive responses were elicited by intracisternal (i.c.) rilmenidine (25 microg/rat) or the highly selective alpha(2)-agonist alpha-methylnorepinephrine (4 microg/rat). An increase in RVLM MAPK(p42/44) occurred only after rilmenidine. Furthermore, pretreatment with efaroxan (0.15 microg/rat i.c.), a selective I(1)-imidazoline receptor antagonist, or with PD98059 (2'-amino-3'-methoxyflavone) (5 microg/rat i.c.), a selective extracellular signal-regulated kinase 1/2 inhibitor, significantly attenuated the hypotensive response and the elevation in RVLM MAPK(p42/44) elicited by i.c. rilmenidine. The findings suggest that MAPK phosphorylation in the RVLM contributes to the hypotensive response induced by I(1)-receptor activation and presents in vivo evidence that distinguishes the neuronal responses triggered by the I(1)-receptor from those triggered by the alpha(2)-adrenergic receptor.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|
57
|
Zhao D, Ren LM. Non-adrenergic inhibition at prejunctional sites by agmatine of purinergic vasoconstriction in rabbit saphenous artery. Neuropharmacology 2005; 48:597-606. [PMID: 15755487 DOI: 10.1016/j.neuropharm.2004.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2004] [Revised: 11/09/2004] [Accepted: 12/10/2004] [Indexed: 01/08/2023]
Abstract
We investigated the effects of agmatine, clonidine, xylazine and moxonidine on the purinergic vasoconstriction induced by electrical stimulation in the rabbit isolated saphenous artery without endothelium. Transmural electrical stimulations induced reproducible responses in the arterial preparations, which were abolished by tetrodotoxin at 0.1 microM or pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid tetrasodium salt (PPADS, 30 microM), but were not affected by 1 microM prazosin. Clonidine, xylazine and moxonidine induced transient and concentration-independent vasoconstriction, with threshold concentrations of 1, 3 and 30 microM, respectively. Agmatine, in contrast, did not produce any vascular response even at 1 mM. Lower concentrations of clonidine, xylazine and moxonidine (0.01-0.3 microM) concentration-dependently decreased vasoconstrictor responses to electrical stimulation, whereas agmatine (0.1-1 mM) induced an inhibitory followed by a facilitatory effect on electrically evoked responses. Agmatine, clonidine and moxonidine but not xylazine significantly enhanced the vasoconstriction elicited by 1 mM ATP. The concentration-response curve for NA was shifted to the left slightly by 1 mM agmatine, but not affected by 0.3 microM of other three agonists. Phenoxybenzamine did not affect the vasoconstrictive responses to 1mM ATP and to electrical stimulations, but abolished those to NA. Agmatine at 1mM evoked only an inhibitory effect on electrical stimulation-induced vasoconstriction in the preparation pretreated with phenoxybenzamine, and the inhibitory action was enhanced to 38.6% from the control value (without treatment with phenoxybenzamine) of 22.5%. The non-imidazoline compound xylazine at 0.3 microM lost its inhibitory effect on the neurogenic vasoconstriction in the presence of phenoxybenzamine. In conclusion, agmatine produces a biphasic effect on the purinergic vasoconstriction induced by sympathetic nerve stimulation in the rabbit isolated saphenous artery. The monophasic inhibition of agmatine in the artery treated with phenoxybenzamine is due to an alpha-adrenoceptor-independent mechanism at prejunctional sites, and the potentiation effect of agmatine is mainly dependent on its enhancement of vasoconstriction at postjunctional sites.
Collapse
Affiliation(s)
- Ding Zhao
- School of Pharmacy, Hebei Medical University, 361 East Zhong-shan Road, Shijiazhuang 050017, Hebei, PR China
| | | |
Collapse
|
58
|
Lê AD, Harding S, Juzytsch W, Funk D, Shaham Y. Role of alpha-2 adrenoceptors in stress-induced reinstatement of alcohol seeking and alcohol self-administration in rats. Psychopharmacology (Berl) 2005; 179:366-73. [PMID: 15551068 DOI: 10.1007/s00213-004-2036-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE AND OBJECTIVES Alpha-2 adrenoceptors are known to be involved in stress-induced reinstatement of heroin and cocaine seeking in laboratory animals. Here, we studied the involvement of these receptors in stress-induced reinstatement of alcohol seeking by using an agonist (lofexidine) and an antagonist (yohimbine) of these receptors, which inhibit and activate, respectively, noradrenaline transmission. We also tested the effect of lofexidine and yohimbine on alcohol self-administration. Lofexidine is used clinically for treating opiate withdrawal symptoms and yohimbine induces stress-like responses in humans and non-humans. METHODS Rats were trained to self-administer alcohol (12% w/v, 1 h/day) and after extinction of the alcohol-reinforced behavior, they were tested for the effect of lofexidine (0, 0.05 and 0.1 mg/kg, IP) on reinstatement of alcohol seeking induced by intermittent footshock stress (10 min, 0.8 mA) or for the effect of yohimbine (0, 1.25 and 2.5 mg/kg, IP) on reinstatement of alcohol seeking. Other rats were trained to self-administer alcohol, and after stable responding, the effects of lofexidine and yohimbine on alcohol self-administration were determined. RESULTS Pretreatment with lofexidine (0.05 mg/kg and 0.1 mg/kg) attenuated stress-induced reinstatement of alcohol seeking and also decreased alcohol self-administration. In contrast, yohimbine pretreatment potently reinstated alcohol seeking after extinction and also induced a profound increase in alcohol self-administration. CONCLUSIONS Results indicate that activation of alpha-2 adrencoceptors is involved in both stress-induced reinstatement of alcohol seeking and alcohol self-administration. To the degree that the present results are relevant to human alcoholism, alpha-2 adrencoceptor agonists should be considered in the treatment of alcohol dependence.
Collapse
Affiliation(s)
- A D Lê
- Department of Neuroscience, Center for Addiction and Mental Health, 33 Russell Street, Toronto, ON, Canada, M5S 2S1.
| | | | | | | | | |
Collapse
|
59
|
Dahlström M, Lindgren F, Berntsson K, Sjögren M, Mårtensson LGE, Jonsson PR, Elwing H. Evidence for different pharmacological targets for imidazoline compounds inhibiting settlement of the barnacleBalanus improvisus. ACTA ACUST UNITED AC 2005; 303:551-62. [PMID: 15945078 DOI: 10.1002/jez.a.163] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe the effect of eight different imidazoline/guanidinium compounds on the settlement and metamorphosis of larvae of the barnacle Balanus improvisus. These agents were chosen on the basis of their similar pharmacological classification in vertebrates and their chemical similarity to medetomidine and clonidine, previously described as highly potent settlement inhibitors (nanomolar range). Seven of the tested compounds were found to inhibit settlement in a dose-dependent manner in concentrations ranging from 100 nM to 10 microM without any significant lethal effects. In vertebrate systems these substances have overlapping functions and interact with both alpha-adrenoceptors as well as imidazoline binding sites. Antagonizing experiments using the highly specific alpha(2)-antagonist methoxy-idazoxan or agmatine (the putative endogenous ligand at imidazoline receptors) were performed to discriminate between putative pharmacological mechanisms involved in the inhibition of cyprid settlement. Agmatine was not able to reverse the effect of any of the tested compounds. However, methoxy-idazoxan almost completely abolished the settlement inhibition mediated by guanabenz (alpha(2)-agonist, I(2) ligand), moxonidine (alpha(2)-agonist, I(1) ligand) and tetrahydrozoline (alpha-agonist, I(2) ligand). The actions of cirazoline (alpha(1)-agonist, I(2) ligand) BU 224 (I(2) ligand) and metrazoline (I(2) ligand) were not reversed by treatment with methoxy-idazoxan. These results suggest that the settlement inhibition evoked by the I(2) ligands and alpha(2)-agonists used in this study of the neurologically simple but well-organized barnacle larva is mediated through different physiological targets important in the overall settlement process.
Collapse
Affiliation(s)
- Mia Dahlström
- Laboratory of Interface Biophysics, Department of Cell and Molecular Biology, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
60
|
Kino Y, Tanabe M, Honda M, Ono H. Involvement of Supraspinal Imidazoline Receptors and Descending Monoaminergic Pathways in Tizanidine-Induced Inhibition of Rat Spinal Reflexes. J Pharmacol Sci 2005; 99:52-60. [PMID: 16127244 DOI: 10.1254/jphs.fp0050520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The neuronal pathways involved in the muscle relaxant effect of tizanidine were examined by measurement of spinal reflexes in rats. Tizanidine (i.v. and intra-4th ventricular injection) decreased the mono- and disynaptic (the fastest polysynaptic) reflexes (MSR and DSR, respectively) in non-spinalized rats. Depletion of central noradrenaline by 6-hydroxydopamine abolished the depressant effect of tizanidine on the MSR almost completely and attenuated the effect on the DSR. Co-depletion of serotonin by 5,6-dihydroxytryptamine and noradrenaline resulted in more prominent attenuation of tizanidine-induced inhibition of the DSR. Supraspinal receptors were then studied using yohimbine- and some imidazoline-receptor ligands containing an imidazoline moiety. Idazoxan (I1, I2, I3, and alpha2), efaroxan (I1, I3, and alpha2), and RX821002 (I3 and alpha2), but not yohimbine, an alpha2-adrenergic receptor antagonist with no affinity for I receptors, antagonized the inhibitory effects of tizanidine. Thus, supraspinal I receptors (most likely I3) and descending monoaminergic influences are necessary for tizanidine-induced inhibition of spinal segmental reflexes.
Collapse
Affiliation(s)
- Yurika Kino
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | |
Collapse
|
61
|
Abellán J, Leal M, Hernández-Menárguez F, García-Galbis JA, Martínez-Pastor A, de Vinuesa SG, Luño J. Efficacy of moxonidine in the treatment of hypertension in obese, noncontrolled hypertensive patients. Kidney Int 2005:S20-4. [PMID: 15613062 DOI: 10.1111/j.1523-1755.2005.09305.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Obesity has become an epidemic problem, contributing to metabolic syndrome, type 2 diabetes, hypertension, and cardiovascular disease. An adequate blood pressure control in this population of obese individuals is extremely difficult to achieve, and in most cases, therapeutic combinations are required. Pharmacologic treatment with moxonidine, a central I(1) imidazole receptor agonist, is a very interesting option because it acts upon the mechanisms implicated in the development of arterial hypertension in these patients. In addition, the drug improves the peripheral insulin resistance often found in obese patents, which contributes to maintain high blood pressure. METHODS An interventional study has been designed, adding moxonidine to noncontrolled hypertensive, obese subjects in whom a hypocaloric diet was previously recommended. A total of 25 primary care centers participated in the study, with a total of 135 patients recruited. RESULTS One hundred twelve patients were included in the study; 25 of them had type 2 diabetes. The mean reduction in systolic and diastolic blood pressure after 6 months treatment with moxonidine was 23.0 and 12.9 mm Hg, respectively. The mean systolic and diastolic pressures were 158.5 +/- 10.6 and 95.1 +/- 9 mm Hg, respectively, at baseline, versus 135.5 +/- 11.6 and 82.2 +/- 5.8 mm Hg at the end of the study. Creatinine clearance was significantly decreased in hyperfiltrating obese patients (143.6 +/- 31 vs. 128.2 +/- 27.9, P < 0.0001), without any significant change in patients with normal or slightly decreased renal function (81.9 +/- 18.9 vs. 80.9 +/- 17.5). Only 8 mild adverse reactions in 7 patients were recorded during the study. CONCLUSION Moxonidine is useful and safe for controlling arterial hypertension in obese patients.
Collapse
Affiliation(s)
- José Abellán
- Cátedra de Riesgo Cardiovascular, Universidad Católica de Murcia, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
62
|
Barroso Hernández S, Robles Pérez-Monteoliva N, Cancho Castellanos B, Martín Hidalgo-Barquero V, Sánchez Casado E. Moxonidina en hipertensión arterial resistente a politerapia antihipertensiva. HIPERTENSION Y RIESGO VASCULAR 2005. [DOI: 10.1016/s1889-1837(05)71567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Dardonville C, Rozas I. Imidazoline binding sites and their ligands: an overview of the different chemical structures. Med Res Rev 2004; 24:639-61. [PMID: 15224384 DOI: 10.1002/med.20007] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since Bousquet et al. discovered the imidazoline binding sites (IBS) two decades ago, when they realized that the antihypertensive drug clonidine interacts not only with the alpha2-adrenenoceptors (alpha2-AR) but also with a distinct imidazoline preferring binding site, these receptors have been paid a great deal of attention. At least two subtypes, I1 and I2, have been characterised based on their binding affinity for different radioligands, but their structures still remain unknown. The pharmacological profile of these IBSs has been the objective of several and very thorough reviews. However, a medicinal chemistry overview of the different IBS ligands prepared to date has never been attempted. In this study, we attempt to compile all the different chemical structures reported to date as IBS ligands and classify them in function of their chemical structure and binding affinity for the different IBS subtypes. Thus, we comment on the different endogenous IBS ligands known as well as the drugs described to interact with the I1-IBS which have found application as antihypertensive drugs. Then, we review those compounds described in the literature to interact with the I2-IBS, classifying them by their chemical families (imidazolines, guanidines, 2-aminoimidazolines, beta-carbolines). Finally, some conclusions are drawn.
Collapse
|
64
|
Pinthong D, Songsermsakul P, Rattanachamnong P, Kendall DA. The effects of imidazoline agents on the aggregation of human platelets. J Pharm Pharmacol 2004; 56:213-20. [PMID: 15005880 DOI: 10.1211/0022357022593] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Clonidine (2-[(2,6-dichlorophenyl)amino]-2-imidazoline), an imidazoline alpha(2)-adrenoceptor agonist, is known to exert complex effects on human platelet aggregation distinct from those of the catecholamines, which are non-imidazoline alpha-adrenoceptor agonists. This study has investigated the aggregatory/anti-aggregatory effects of various imidazolines on human platelets. Blood samples were taken from normal volunteers and platelet aggregation was assessed by a turbidimetric method using a Chronolog aggregometer. Noradrenaline (2 microM) and adenosine diphosphate (1 microM) were used as aggregating agents. The results showed that, with the exception of moxonidine, all of the imidazoline agents used (with or without alpha(2)-adrenoceptor activity) were able to inhibit noradrenaline-induced platelet aggregation. Compared with the non-imidazoline alpha(2)-adrenergic antagonist, yohimbine, the rank order of potency was: efaroxan (IC50 = 3.07 x 10(-8) M) > idazoxan (IC50 = 1.74 x 10(-7) M) > tolazoline (IC50 = 3.90 x 10(-7) M) > clonidine (IC50 = 1.49 x 10(-6) M) congruent with antazoline (IC50 = 1.77 x 10(-6) M) > yohimbine (IC50 = 3.19 x 10(-6) M) > rilmenidine (IC50 = 1.27 x 10(-5) M) > moxonidine (IC50 > 10(-4) M). Clonidine-displacing substance (CDS), a putative endogenous ligand at imidazoline receptors, was found to inhibit noradrenaline-induced platelet aggregation. Harmane, norharmane and agmatine, putative candidates for the active principle of CDS, had no effect on noradrenaline-induced platelet aggregation. In contrast to noradrenaline-induced aggregation, ADP-induced platelet aggregation was neither potentiated nor inhibited by the imidazoline agents, with the exceptions of clonidine and moxonidine. In conclusion, most imidazoline agents effectively inhibit noradrenaline-induced human platelet aggregation. The lack of effect of moxonidine and the proposed endogenous ligands suggested this effect was mediated by an 'atypical' non-adrenoceptor imidazoline-binding site. The results indicated an anti-aggregatory role of imidazoline compounds on noradrenaline-induced human platelet aggregation. In addition, CDS might be an endogenous modulator that prevented platelet hyper-reactivity to catecholamine stimulation.
Collapse
Affiliation(s)
- Darawan Pinthong
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Rajthevee, Bangkok 10400, Thailand.
| | | | | | | |
Collapse
|
65
|
Velliquette RA, Ernsberger P. Contrasting metabolic effects of antihypertensive agents. J Pharmacol Exp Ther 2003; 307:1104-11. [PMID: 14557373 DOI: 10.1124/jpet.103.054221] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertension often coexists with hyperlipidemia, insulin resistance, and glucose intolerance, a comorbidity known as metabolic syndrome X. Different antihypertensives have mixed effects on these associated abnormalities. We compared three antihypertensives in the spontaneously hypertensive obese rat model of syndrome X. Moxonidine (4 mg/kg), an imidazoline and alpha2-adrenergic agonist, alpha-methyldopa (200 mg/kg), an alpha2-adrenergic agonist, or the vasodilator hydralazine (10 mg/kg) was given orally for 15 d. All three agents lowered blood pressure equally. Moxonidine significantly reduced fasting plasma insulin, glucagon, cholesterol, triglycerides, and free fatty acids (FFA) compared with untreated controls. In contrast, syndrome X markers were not affected by alpha-methyldopa treatment, and hydralazine reduced only glucagon and FFA. Relative to untreated controls, moxonidine improved glucose tolerance as shown by reduced glucose area under the curve (AUC) (13.6 +/- 2.4 versus 42.5 +/- 9.9 g x min/dl). Insulin AUC was increased (7.4 +/- 0.9 versus 3.9 +/- 1.8 microg x min/ml) as was the plasma C-peptide response to the glucose load. In contrast, alpha-methyldopa and hydralazine worsened glucose tolerance (68 +/- 26 and 110 +/- 21 g x min/ml, respectively) and significantly reduced insulin AUC (2.5 +/- 0.8 and -2.3 +/- 1.0 microg x min/ml, respectively) compared with controls. Moxonidine reduced but alpha-methyldopa and hydralazine elevated glucagon levels after the glucose load. Contrary to the "hemodynamic hypothesis" for the metabolic actions of antihypertensives, which predicts roughly equal benefits, only moxonidine had a positive impact on comorbidities. This unique action suggests a role for direct stimulation of imidazoline receptors.
Collapse
Affiliation(s)
- Rodney A Velliquette
- Department of Nutrition, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4906, USA
| | | |
Collapse
|
66
|
Piletz JE, Ordway GA, Rajkowska G, Zhu H, Klimek V, Swilley S, Duncan BJ, May W, Halaris AE. Differential expression of alpha2-adrenoceptor vs. imidazoline binding sites in postmortem orbitofrontal cortex and amygdala of depressed subjects. J Psychiatr Res 2003; 37:399-409. [PMID: 12849932 DOI: 10.1016/s0022-3956(03)00046-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clonidine is a well established antihypertensive agent that is also used effectively to treat a variety of psychiatric disorders. Clonidine is a prototypic imidazoline compound that acts as an alpha(2)-adrenergic agonist but possesses nearly equivalent affinity for non-adrenergic imidazoline binding sites (I-sites). Receptor autoradiography of [(3)H]-clonidine binding presented herein compares densities of alpha(2)-adrenoceptors and I-sites (under a noradrenergic-mask) in Brodmann's area 47 of the left orbitofrontal cortex (OFC) and in six amygdaloid nuclei of subjects with major depression (n=12) vs. controls with no psychiatric history (n=11). Postmortem diagnoses were made from psychiatric interviews with next-of-kin. [(3)H]-Clonidine binding to alpha(2)-adrenoceptors in each of six OFC layers was lower, although not reaching statistical significance in any one layer by multivariate analysis, in depressives vs. control subjects. Binding to I-sites was conversely higher in depressives compared to control OFC layers, but did not reach statistical significance alone. However, the ratios of alpha(2)-adrenoceptor : I-sites in all six layers of OFC of depressed subjects were nearly half that of control subjects (P<0.008). In amygdalas from a different group of depressed patients there were no changes in alpha(2)-adrenoceptors or I-sites, or their ratios, compared with controls. The results support previous western blot data indicating a cortex-selective shift away from alpha(2)AR towards I-site preponderance in depressed patients.
Collapse
Affiliation(s)
- John E Piletz
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Edwards L, Ernsberger P. The I(1)-imidazoline receptor in PC12 pheochromocytoma cells reverses NGF-induced ERK activation and induces MKP-2 phosphatase. Brain Res 2003; 980:71-9. [PMID: 12865160 DOI: 10.1016/s0006-8993(03)02893-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We sought to further elucidate signal transduction pathways for the I(1)-imidazoline receptor in PC12 cells and their interaction with the well-characterized signaling events triggered by nerve growth factor (NGF) in these cells. Stimulation of the I(1)-imidazoline receptor with moxonidine, a centrally acting antihypertensive, increased by greater than two-fold the proportion of ERK-1 and ERK-2 in the phosphorylated active form. Similarly, NGF elicited a five-fold increase in activated ERKs. Surprisingly, treatment of NGF-treated cells with moxonidine completely reversed activation of ERK. Moxonidine-induced inhibition of ERK activation in NGF-treated cells was dose-dependent, followed a limited time course and could be blocked by the I(1)-antagonist efaroxan. These data suggested possible deactivation of ERK by specific phosphatases. Therefore, we assayed levels of MKP-2, a dual specificity phosphatase whose substrates include ERK. Moxonidine and NGF both increased levels of MKP-2 by three-fold. These effects were additive, as both agents together increased MKP-2 by a total of six-fold. Moxonidine-induced induction of MKP-2 was time- and dose-dependent and could be blocked by the I(1)-antagonist efaroxan or by D609, an inhibitor of phosphatidylcholine-selective phospholipase C known to block downstream signaling events coupled to I(1)-receptors. Thus, I(1)-receptors can abrogate the primary signaling cascade activated by NGF, most likely by increasing levels of a specific phosphatase to return dually phosphorylated ERK to its unphosphorylated state.
Collapse
Affiliation(s)
- Lincoln Edwards
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4906, USA
| | | |
Collapse
|
68
|
Wang WZ, Yuan WJ, Ren AJ, Pan YX, Tang CS, Su DF. Role of I1-imidazoline receptors within the caudal ventrolateral medulla in cardiovascular responses to clonidine in rats. J Cardiovasc Pharmacol 2003; 42:1-9. [PMID: 12827019 DOI: 10.1097/00005344-200307000-00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although it is recognized that imidazoline receptors play an important role in the central regulation of cardiovascular activities, little is known about their role in the caudal ventrolateral medulla. In male Sprague-Dawley rats anesthetized with urethane, we used antagonists of I1-imidazoline receptor or alpha2-adrenoceptor to assess the function of these receptors in the caudal ventrolateral medulla in controlling the cardiovascular effects of clonidine. Unilateral microinjection of clonidine (6 nmol/50 nl) into the caudal ventrolateral medulla significantly (P<0.01) increased blood pressure and the discharge of the rostral ventrolateral medulla presympathetic neurons, while heart rate remained unchanged. Microinjection of yohimbine (a selective alpha2-adrenoceptor antagonist, 500 pmol/50 nl) into the caudal ventrolateral medulla did not modify blood pressure, heart rate, or the discharge of the rostral ventrolateral medulla presympathetic neurons, and failed to attenuate the local caudal ventrolateral medulla clonidine-induced blood pressure elevation. However, unilateral microinjection of idazoxan (a mixed antagonist of imidazoline receptor and alpha2-adrenoceptor, 2 nmol/50 nl) into the caudal ventrolateral medulla significantly (P<0.01) decreased mean arterial pressure, heart rate, and the discharge of the rostral ventrolateral medulla presympathetic neurons, and completely abolished the pressor effect of clonidine. In addition, bilateral microinjection of idazoxan (4 nmol in 100 nl for each side) into the caudal ventrolateral medulla effectively (P<0.01) blocked the depressor effects of clonidine administered intravenously (5 and 50 microg/kg). These results confirm that I1-imidazoline receptors within the caudal ventrolateral medulla are involved in maintaining the tonic cardiovascular activities and in the pressor effect of clonidine in the caudal ventrolateral medulla. In addition, it seems that the caudal ventrolateral medulla plays an important role in the antihypertensive effects of systemically administered clonidine in rats.
Collapse
Affiliation(s)
- Wei-Zhong Wang
- Department of Physiology, Basic Medical College, Second Military Medical University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
69
|
Santos WC, Smaili SS, Jurkiewicz A, Piçarro I, Garcez-do-Carmo L. Dual effect of agmatine in the bisected rat vas deferens. J Pharm Pharmacol 2003; 55:373-80. [PMID: 12724044 DOI: 10.1211/002235702720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The functional effects of the amine agmatine, the putative endogenous ligand for alpha(2)-adrenoceptors and imidazoline receptors, in rat vas deferens were investigated by using the epididymal and prostatic portions. Tissues were contracted by electrical stimulation or by exogenous drugs. In electrically stimulated portions, agmatine caused a dual effect on contractions. In the epididymal portion an inhibition on twitch contractions was observed, which was partially antagonised by idazoxan and yohimbine, indicating the involvement of at least a presynaptic alpha(2)-adrenoceptor-mediated mechanism, without the interference of imidazoline receptors. In the prostatic portion, agmatine enhanced the amplitude of twitches. In contractions induced by exogenous drugs, agmatine potentiated, only in the prostatic segment, the effects of noradrenaline (norepinephrine) or ATP; it also enhanced the effect of low concentrations of KCl and blocked the maximum effect of the higher concentrations. Effects induced by agmatine on the exogenous ATP in the prostatic portion were blocked by cromakalim, suggesting a blocking action on the postsynaptic K(+) channels, which explains, in part, the potentiation of the twitch amplitude. It was concluded that agmatine interferes with sympathetic neurotransmission, but the physiological relevance of this needs to be better understood because of the high doses employed to induce its effects.
Collapse
Affiliation(s)
- Wilson C Santos
- Departamento de Farmácia e Administração Farmacêutica, UFF, Faculdade de Farmácia, 24241-000, Niterói, RJ, Brasil.
| | | | | | | | | |
Collapse
|
70
|
Raasch W, Jungbluth B, Schäfer U, Häuser W, Dominiak P. Modification of noradrenaline release in pithed spontaneously hypertensive rats by I1-binding sites in addition to alpha2-adrenoceptors. J Pharmacol Exp Ther 2003; 304:1063-71. [PMID: 12604683 DOI: 10.1124/jpet.102.044966] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is known that moxonidine acts as an agonist at presynaptic alpha(2)-adrenoceptors of the postganglionic sympathetic nerve terminals and leads to a reduction in noradrenaline release. In addition, it is conceivable that I(1)-binding sites located in other regions of the pre- and postganglionic sympathetic neurons are involved in this effect. Our aim was to investigate whether and to what extent activation of the I(1)-binding sites contributes to the moxonidine-induced inhibition of noradrenaline release. Noradrenaline release was induced in pithed spontaneously hypertensive rats (pretreated with phenoxybenzamine/desipramine at 10/0.5 mg/kg) by stimulation of sympathetic overflow from the spinal cord. Noradrenaline overflow was reduced using moxonidine (0.18, 0.6, and 1.8 mg/kg) by 39.4, 70.4, or 78.7%, respectively, even when all alpha(1)-/alpha(2)-adrenoceptors were blocked effectively by phenoxybenzamine. In contrast, the I(1)-antagonist efaroxan (0.1, 1, and 3 mg/kg) increased noradrenaline overflow from 453 (control) to 1710, 1999, or 2754 pg/ml, suggesting an autoreceptor-like function of I(1)-binding sites. In consequence, moxonidine (0.18, 0.6, and 1.8 mg/kg) reduced the increase in noradrenaline overflow in efaroxan-treated animals (1 mg/kg) by 22.7, 41.7, and 50.5%, respectively. Agmatine (6 and 60 mg/kg), an endogenous agonist at I(1)-binding sites, reduced noradrenaline overflow (-36 or 53%), even under alpha(2)-adrenoceptor blockade. When 2-endo-amino-3-exo-isopropylbicyclo[2.2.1]heptane (AGN192403) (10 mg/kg) was injected, a selective blocker of I(1)-binding sites, noradrenaline overflow was not influenced by agmatine. It is concluded that moxonidine reduces noradrenaline overflow by acting at I(1)-binding sites in addition to its agonistic property at alpha(2)-adrenoceptors. The exact location of the I(1)-binding sites on the pre- or postsynaptic sympathetic neurons is unknown, but the location in the pre- or postsynaptic membrane of the sympathetic ganglion is the most plausible explanation.
Collapse
Affiliation(s)
- Walter Raasch
- Institute of Experimental and Clinical Pharmacology, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
71
|
Wang WZ, Yuan WJ, Yang J, Wang JW, Tang CS, Su DF. Involvement of I(1)-imidazoline receptors in baroreceptor reflex in the caudal ventrolateral medulla of rats. Brain Res 2003; 960:16-24. [PMID: 12505653 DOI: 10.1016/s0006-8993(02)03732-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is ample evidence to show the existence of center I(1)-imidazoline receptors that are involved in the regulation of cardiovascular activities. The purpose of this study was to examine the possible role of I(1)-imidazoline receptors and alpha(2)-adrenoceptors within the caudal ventrolateral medulla (CVLM) in mediating the baroreceptor reflex in anesthetized rats. Unilateral microinjection of idazoxan (2 nmol in 50 nl), a mixed antagonist of I(1)-imidazoline receptors and alpha(2)-adrenoceptors, into the CVLM significantly (P<0.01) decreased blood pressure (BP), heart rate (HR), and the firing rate of presympathetic neurons in the rostral ventrolateral medulla (RVLM) by 21+/-6 mmHg, 25+/-5 beats per min and 3.5+/-0.9 spikes/s, respectively. Moreover, unilateral injection of idazoxan into the CVLM significantly (P<0.01) reduced the inhibitory responses of the ipsilateral RVLM presympathetic neurons evoked by stimulation of aortic nerve and elevation of BP, and partially inhibited the neuronal cardiac cycle-related rhythm. Depressor responses evoked by aortic nerve stimulation were significantly (P<0.01) attenuated 10 and 20 min after bilateral microinjection of idazoxan (2 nmol in 50 nl for each side) into the CVLM (-20+/-4 and -30+/-4 vs. -40+/-1 mmHg). However, injection of yohimbine (500 pmol in 50 nl), a selective alpha(2)-adrenoceptor antagonist, into the CVLM did not affect the resting cardiovascular activities and baroreceptor reflex. It is concluded that the CVLM I(1)-imidazoline receptors are involved in maintenance of tonic cardiovascular activities and transmission of the baroreceptor reflex.
Collapse
Affiliation(s)
- Wei-Zhong Wang
- Department of Physiology, Second Military Medical University, 800 Xiang-Yin Road, Shanghai 200433, China.
| | | | | | | | | | | |
Collapse
|
72
|
Farsang C, Lengyel M, Borbás S, Zorándi A, Dienes BS. Value of rilmenidine therapy and its combination with perindopril on blood pressure and left ventricular hypertrophy in patients with essential hypertension (VERITAS). Curr Med Res Opin 2003; 19:205-17. [PMID: 12803735 DOI: 10.1185/030079903125001659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The primary objective was to assess the effects of rilmenidine monotherapy and in combination with perindopril on blood pressure (BP) in patients assessed with grade 1 or 2 essential hypertension. The study also examined the effects of 2-year rilmenidine monotherapy on left ventricular hypertrophy (LVH) and on diastolic function of the left ventricle, along with the effects of rilmenidine on left ventricular mass index in hypertensive patients with no LVH, and the relationship between BP reduction and any change in LVH. RESEARCH DESIGN AND METHODS Mild-to-moderate hypertensive patients (n = 500) were enrolled in a multicentre 2-year open study and treated with rilmenidine (1-2 mg per day) monotherapy or rilmenidine plus perindopril (2, 4 or 8 mg per day) if control of hypertension was not achieved with rilmenidine monotherapy within 12 weeks. Blood pressure was recorded at regular intervals by the investigators and LVH measured by centralised single-blind echocardiographic reading. RESULTS Rilmenidine monotherapy (average dose 1.42 mg) produced a significant decrease in BP from the baseline of 163 +/- 10/100 +/- 5 mmHg to 134 +/- 10/86 +/- 7 mmHg at 1 year and to 136 +/- 10/84 +/- 7 mmHg at 2 years (p < 0.001 for both). In 188 patients with LVH, the left ventricular mass index was significantly reduced from 161.4 +/- 30.5 to 131.3 +/- 26.5 at 1 year and to 134.1 +/- 26.0 g/m(2) at 2 years (p < 0.001 for both). Addition of perindopril to those patients whose BP was not normalised by rilmenidine monotherapy after 12 weeks further decreased BP significantly from 150 +/- 13/93 +/- 8 mmHg to 142 +/- 14/89 +/- 7 mmHg at the end of the 2nd year. CONCLUSIONS Long-term rilmenidine monotherapy was shown to be efficient in controlling BP and in reducing LVH. The addition of perindopril to rilmenidine monotherapy proved to be effective and well tolerated in those patients who did not respond to rilmenidine alone.
Collapse
Affiliation(s)
- Csaba Farsang
- First Department of Internal Medicine, St. Imre Teaching Hospital, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
73
|
Robles Pérez-Monteoliva N. Tratamiento de la hipertensión arterial con agentes centrales. HIPERTENSION Y RIESGO VASCULAR 2003. [DOI: 10.1016/s1889-1837(03)71339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
74
|
Schäfer U, Burgdorf C, Engelhardt A, Kurz T, Richardt G. Presynaptic effects of moxonidine in isolated buffer perfused rat hearts: role of imidazoline-1 receptors and alpha2-adrenoceptors. J Pharmacol Exp Ther 2002; 303:1163-70. [PMID: 12438540 DOI: 10.1124/jpet.102.041657] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous studies support the concept that centrally acting antihypertensive drugs, such as imidazolines, mediate sympathoinhibition not only via activation of central nervous alpha2-adrenoceptors (alpha2-AR) but also via imidazoline-1 receptors (I1-R). An additional presynaptic involvement in sympathetic neurotransmission of imidazolines, via I1-R independent of alpha2-AR, is still controversial and remains to be clarified in the heart. Concentration response curves on endogenous norepinephrine (NE) overflow evoked by stimulation of epicardial postganglionic sympathetic nerves in isolated buffer-perfused rat hearts were performed for brimonidine, moxonidine, rauwolscine, 2-endo-amino-3-exo-isopropylbicyclo[2.2.1]heptane (AGN192403), and efaroxan. To unmask an I1-R-mediated effect of moxonidine, hearts were pre-exposed in additional experiments with brimonidine or rauwolscine with or without AGN192403 or efaroxan, respectively. Moxonidine reduced stimulated NE overflow (log EC50: -6.15 +/- 0.14). AGN192403, a selective ligand at I1-R, had no influence on the dose-response curve of moxonidine (log EC50: -6.01 +/- 0.25). After pre-exposure to brimonidine [ stimulation 1 (S1) + stimulation 2 (S2); 10(-5) M], the inhibitory action of moxonidine was potentiated compared with control (32.0 +/- 2.8 versus 73.13 +/- 3.0%) and completely abolished with AGN192403 or efaroxan. This effect was also totally inhibited by pre-exposure with indomethacin (10(-7) M) and tricyclodecan-9-yl-xanthogenate (D-609), an inhibitor of phosphatidylcholine-selective phospholipase C (PC-PLC; 10(-7) M). Conversely, moxonidine was without modulating efficacy under alpha2-AR-blockade by rauwolscine. In summary, we demonstrate that moxonidine reduces NE release independently of I1-R, demonstrating the prominent effect of alpha2-AR in cardiac tissue under basal conditions. We also demonstrate that I1-R are involved in NE release under conditions of alpha2-AR-stimulation involving both a pathway of prostaglandins and PC-PLC.
Collapse
Affiliation(s)
- Ulrich Schäfer
- Medizinische Klinik II, Medizinische Universität zu Lübeck, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
75
|
Granata AR, Cohen MI. Rhythmic properties of neurons in the rostral ventrolateral medulla of the rat in vitro: effects of clonidine. J Neurophysiol 2002; 88:2262-79. [PMID: 12424268 DOI: 10.1152/jn.00085.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rostral ventrolateral medulla (RVLM) is thought to be the main central site for generation of tonic sympathetic activity. In the rat in vitro slice preparation, we used intracellular recordings to identify different populations of neurons in the RVLM: 43 spontaneously active neurons with regular (R) or irregular (I) patterns of spike firing and 10 silent neurons. The degree of regularity was quantified by the coefficient of variation (CV = SD/mean) of interspike interval durations, as well as by the rhythmic properties of the spike autospectrum and autocorrelation. The distribution of CVs was clustered: R and I neurons were defined as those with CVs </=12% (n = 21) or >12% (n = 22), respectively. The R-type and I-type neurons resemble the type II and type I neurons, respectively, which were previously characterized in the RVLM in vivo as barosensitive and bulbospinal. Both types may be important in generation of sympathetic tone. Clonidine (1-100 microM) was applied to 10 R-type neurons and 16 I-type neurons. The firing of 21/26 was depressed to the point of silence. However, 18/26 neurons were excited earlier in the perfusion. The later depression of firing occurred in both I and R neurons and in different cases was associated with either hyperpolarization or depolarization.
Collapse
|
76
|
Okpalaugo EO, Garcez-do-Carmo L, Jurkiewicz NH, Jurkiewicz A. Contractile responses of the rat vas deferens after epithelium removal. Life Sci 2002; 70:2943-51. [PMID: 12269404 DOI: 10.1016/s0024-3205(02)01545-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of the present investigation was to verify the role of the epithelium in the functional response of the rat vas deferens. Our results showed that the contractile effect of cumulative doses of clonidine (3.10(-5)-3.10(-3)) was increased after the removal of the epithelium. The effect of clonidine in epithelium-free vas deferens returned to normal values when an isolated epithelium from another vas deferens was added to the organ bath, showing that the epithelium is responsible for this increase of maximum effect for clonidine. Drugs functionally or structurally related to clonidine, such as oxymetazoline, alpha-methylnorepinephrine and moxonidine, did not have their dose-response curves altered. The curves for other contractile agents, such as noradrenaline, acetylcholine, ATP, 5HT, bradykinin and histamine, or the relaxation induced by isoprenaline and forskolin were also not modified. Electrically-induced contractions at frequencies from 0.1 to 20 Hz and the mechanism of negative feed-back, brought about by clonidine (10(-10)-10(-8) M) through pre-synaptic alpha2-adrenoceptors, were not changed after the removal of epithelium. In conclusion, a significant function of the epithelium in the contractility of the rat vas deferens was demonstrated for clonidine, but not for other agonists.
Collapse
Affiliation(s)
- Edwin O Okpalaugo
- Department of Pharmacology, Universidade Federal de São Paulo Rua Botucatu 862, Brazil
| | | | | | | |
Collapse
|
77
|
El-Ayoubi R, Gutkowska J, Regunathan S, Mukaddam-Daher S. Imidazoline receptors in the heart: characterization, distribution, and regulation. J Cardiovasc Pharmacol 2002; 39:875-83. [PMID: 12021582 DOI: 10.1097/00005344-200206000-00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Imidazoline receptors were identified in cardiac tissues of various species. Imidazoline receptors were immunolocalized in the rat heart. Membrane binding and autoradiography on frozen heart sections using 0.5 nM para-iodoclonidine (125I-PIC) revealed that binding was equally and concentration-dependently inhibited by epinephrine and imidazole-4-acetic acid (IAA), implying 125I-PIC binding to cardiac alpha2-adrenergic and I1-receptors, respectively. After irreversible blockade of alpha2-adrenergic receptors, binding was inhibited by the selective I1-agonist, moxonidine, and the I1-antagonist, efaroxan, in a concentration-dependent (10-12 to 10-5 M) manner. Calculation of kinetic parameters revealed that in canine left and right atria, I1-receptor Bmax was 13.4 +/- 1.7 and 20.1 +/- 3.0 fmol/mg protein, respectively. Compared to age-matched normotensive Wistar Kyoto rats, I1-receptors were increased in 12-week-old hypertensive rat (SHR) right (22.6 +/- 0.3 to 43.7 +/- 4.4 fmol/unit area, p < 0.01) and left atria (13.3 +/- 0.6 to 30.2 +/- 4.1 fmol/unit area, p < 0.01). Also, compared to corresponding normal controls, Bmax was increased in hearts of hamsters with advanced cardiomyopathy (13.9 +/- 0.4 to. 26.0 +/- 2.3 fmol/unit area, p < 0.01) and in human ventricles with heart failure (12.6 +/- 1.3 to 35.5 +/- 2.9 fmol/mg protein, p < 0.003). These studies demonstrate that the heart possesses imidazoline I1-receptors that are up-regulated in the presence of hypertension or heart failure, which would suggest their involvement in cardiovascular regulation.
Collapse
Affiliation(s)
- Rouwayda El-Ayoubi
- Laboratory of Cardiovascular Biochemistry, Center Hospitalier de L'Université de Montréal Research Center, Campus Hotel-Dieu, Quebec, Canada
| | | | | | | |
Collapse
|
78
|
Choi SH, Choi DH, Lee JJ, Park MS, Chun BG. Imidazoline drugs stabilize lysosomes and inhibit oxidative cytotoxicity in astrocytes. Free Radic Biol Med 2002; 32:394-405. [PMID: 11864779 DOI: 10.1016/s0891-5849(01)00819-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Oxidative stress is a primary pathogenesis in the brain, which is particularly vulnerable to oxidative stress. Maintenance of astrocyte functions under oxidative stress is essential to prevent neuronal injuries and to recover neuronal functions in various pathologic conditions. Imidazoline drugs have affinities for imidazoline receptors, which are highly distributed in the brain, and have been shown to be neuroprotective. This study presented the protective effects of several imidazoline drugs against oxidative cytotoxicity, in primary cultures of astrocytes. Imidazoline drugs, such as idazoxan, guanabenz, guanfacine, BU224, and RS-45041-190, showed protective effects against naphthazarin-induced oxidative cytotoxicity, as evidenced by LDH release and Hoechst 33342/propidium iodide staining. The imidazoline drugs stabilized lysosomes and inhibited naphthazarin-induced lysosomal destabilization, as evidenced by acridine orange relocation. Guanabenz inhibited, the leakage of lysosomal cathepsin D to cytosol, the decreased mitochondrial potential, and the release of mitochondrial cytochrome c, which were induced by naphthazarin. The lysosomal destabilization by oxidative stress and other apoptotic signals and subsequent cathepsin D leakage to the cytosol can induce apoptotic changes of mitochondria and eventually cell death. Therefore, lysosomal stabilization by imidazoline drugs may be ascribed to their protective effects against oxidative cytotoxicity.
Collapse
Affiliation(s)
- Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
79
|
Raasch W, Schäfer U, Qadri F, Dominiak P. Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction. Br J Pharmacol 2002; 135:663-72. [PMID: 11834614 PMCID: PMC1573177 DOI: 10.1038/sj.bjp.0704513] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Since agmatine has been identified as a clonidine displacing substance (CDS), the aim of this study was to investigate whether agmatine can mimic CDS-induced cardiovascular reactions in organ bath experiments, pithed spontaneously hypertensive rats (SHR) and anaesthetized SHR. Intravenously-administered agmatine significantly reduced the blood pressure and heart rate of anaesthetized SHR at doses higher than 1 and 3 mg kg(-1), respectively. These effects are probably mediated via central mechanisms, since there was an approximate 8 fold rightward shift of the dose-response curve in the pithed SHR (indicating a weakened cardiovascular effect). Moreover, in organ bath experiments, agmatine failed to alter the contractility of intact or endothelium-denuded aortal rings. When agmatine was administered i.c.v. to anaesthetized SHR, blood pressure was increased without any alteration of heart rate, whereas blood pressure was unchanged and heart rate was increased after injection into the 4th brain ventricle. This suggests that haemodynamic reaction patterns after central application are related to distinct influences on central cardiovascular mechanisms. Agmatine reduces noradrenaline release in pithed SHR while alpha(2)-adrenoceptors are irreversibly blocked with phenoxybenzamine, but not while I(1)-binding sites are selectively blocked with AGN192403. This suggests that agmatine may modulate noradrenaline release in the same way that clonidine does, i.e. via imidazoline binding sites; this involves a reduction in sympathetic tone which in turn reduces blood pressure and heart rate. Finally, CDS-like cardiovascular activity appears not to be due to agmatine, since (i) blood pressure in anaesthetized SHR is decreased by agmatine and clonidine, and (ii) agmatine did not antagonize the blood pressure reaction to clonidine in pithed or anaesthetized SHR.
Collapse
Affiliation(s)
- Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology Medical University of Lübeck, Germany.
| | | | | | | |
Collapse
|
80
|
Wirth DD, He MM, Czeskis BA, Zimmerman KM, Roettig U, Stenzel W, Steinberg MI. Identification, synthesis and pharmacological activity of moxonidine metabolites. Eur J Med Chem 2002; 37:23-34. [PMID: 11841872 DOI: 10.1016/s0223-5234(01)01293-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The metabolism of moxonidine, 4-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-2-methyl-5-pyrimidinamine, LY326869, in rats, mice, dogs, and humans has been examined. At least 17 metabolites were identified or tentatively identified in the different species by HPLC, LC/MS and LC/MS/MS. The identities of seven of the major metabolites have been verified by independent synthesis. The metabolites are generally derived from oxidation and conjugation pathways. Oxidation occurred at the imidazolidine ring as well as the methyl at the 2 position of the pyrimidine ring. All seven metabolites were examined in the spontaneously hypertensive rats (3 mg kg(-1), i.v.) for pressure and heart rate. Only one, 2-hydroxymethyl-4-chloro-5-(imidazolidin-2-ylidenimino)-6-methoxypyrimidine, exerted a short-lasting decrease in blood pressure, albeit attenuated in magnitude compared to moxonidine.
Collapse
Affiliation(s)
- David D Wirth
- Lilly Research Laboratories, Eli Lilly and Co., Lafayette, IN 47905, USA.
| | | | | | | | | | | | | |
Collapse
|
81
|
Clarke RW, Harris J. RX 821002 as a tool for physiological investigation of alpha(2)-adrenoceptors. CNS DRUG REVIEWS 2002; 8:177-92. [PMID: 12177687 PMCID: PMC6741674 DOI: 10.1111/j.1527-3458.2002.tb00222.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RX 821002 is the 2-methoxy congener of idazoxan. In binding and tissue studies it behaves as a selective antagonist of alpha(2)-adrenoceptors, with at least 5 times greater affinity for these receptors than any other binding site. It does not select between the different types of alpha(2)-receptor. Although this drug probably has no future as a therapeutic agent, it remains a good probe for physiological activity at alpha(2)-adrenoceptors in animal experiments. A particularly useful feature of this compound is its lack of binding at I(1) and I(2) imidazoline receptors. However, it has relatively high affinity for 5-HT(1A) receptors (at which it acts as an antagonist) and a tendency to behave as an inverse agonist at alpha(2A)-adrenoceptors in some cell culture systems. These potential drawbacks may be overcome by careful design of experiments, and the greater selectivity of RX 821002 renders it much superior to yohimbine or idazoxan as a tool for probing physiological actions at alpha(2)-receptors. It can be compared favorably with other selective antagonists such as atipamezole. In physiological studies, RX 821002 augments norepinephrine release in the frontal cortex and increases drinking behavior in rat. In rabbit, intrathecal administration of this drug enhances somatic and autonomic motor outflows, showing that tonic adrenergic descending inhibition of withdrawal reflexes and sympathetic pre-ganglionic neurons is strong in this species. The potentiation of reflexes may be considered a pro-nociceptive action. In the same model, RX 821002 antagonizes the inhibitory effects of the mu opioid fentanyl, indicating that exogenous opioids synergize with endogenously released norepinephrine in the spinal cord. Thus, the careful use of RX 821002 has revealed several aspects of the physiological activity of alpha(2)-adrenoceptors in rabbit spinal cord and rat brain. We recommend that RX 821002 and/or compounds with similar selectivity for alpha(2)-adrenoceptors (atipamezole, MK-912, RS-79948) should be used in preference to yohimbine or idazoxan in all future studies of this type.
Collapse
Affiliation(s)
- R W Clarke
- Division of Animal Physiology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK.
| | | |
Collapse
|
82
|
Edwards L, Fishman D, Horowitz P, Bourbon N, Kester M, Ernsberger P. The I1-imidazoline receptor in PC12 pheochromocytoma cells activates protein kinases C, extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK). J Neurochem 2001; 79:931-40. [PMID: 11739604 DOI: 10.1046/j.1471-4159.2001.00632.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We sought to further elucidate signal transduction pathways for the I1-imidazoline receptor in PC12 cells by testing involvement of protein kinase C (PKC) isoforms (betaII, epsilon, zeta), and the mitogen-activated protein kinases (MAPK) ERK and JNK. Stimulation of I1-imidazoline receptor with moxonidine increased enzymatic activity of the classical betaII isoform in membranes by about 75% and redistributed the atypical isoform into membranes (40% increase in membrane-bound activity), but the novel isoform of PKC was unaffected. Moxonidine and clonidine also increased by greater than two-fold the proportion of ERK-1 and ERK-2 in the phosphorylated active form. In addition, JNK enzymatic activity was increased by exposure to moxonidine. Activation of ERK and JNK followed similar time courses with peaks at 90 min. The action of moxonidine on ERK activation was blocked by the I1-receptor antagonist efaroxan and by D609, an inhibitor of phosphatidylcholine-selective phospholipase C (PC-PLC), previously implicated as the initial event in I1-receptor signaling. Inhibition or depletion of PKC blocked activation of ERK by moxonidine. Two-day treatment of PC12 cells with the I1/alpha2-agonist clonidine increased cell number by up to 50% in a dose related manner. These data suggest that ERK and JNK, along with PKC, are signaling components of the I1-receptor pathway, and that this receptor may play a role in cell growth.
Collapse
Affiliation(s)
- L Edwards
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4906, USA
| | | | | | | | | | | |
Collapse
|
83
|
Chung S, Kwon S, Kim Y, Ahn D, Lee Y, Nam T. Inhibition by clonidine of the carbachol-induced tension development and nonselective cationic current in guinea pig ileal myocytes. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 87:125-33. [PMID: 11700011 DOI: 10.1254/jjp.87.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of clonidine, an imidazoline derivative as well as alpha2-adrenoceptor agonist, on carbachol (CCh)-evoked contraction in guinea pig ileal smooth muscle were studied using isometric tension recording. To investigate the cellular mechanisms of the inhibitory effect of clonidine, its effects on CCh-evoked nonselective cationic current (I(CCh)), voltage-dependent Ca2+ current (I(Ca)) and voltage-dependent K+ current (I(K)) was also studied using patch-clamp recording techniques in single ileal cells. Clonidine inhibited the contraction evoked by CCh (1 microM) in a concentration-dependent manner with an IC50 valve of 61.7 +/- 2.5 microM. High K+ (40 mM)-evoked contraction was only slightly inhibited even when clonidine was used at 300 microM. Externally applied clonidine inhibited I(CCh) dose-dependently with an IC50 of 42.0 +/- 2.6 microM. When applied internally via patch pipettes, clonidine was without effect. An I(CCh)-like current induced by GTPgammaS was also inhibited by bath application of clonidine. None of KU14R and BU224, both imidazoline receptor blockers, and yohimbine, an alpha2-adrenergic blocker, significantly affects the inhibitory effect of clonidine on I(CCh). Clonidine (300 microM) only slightly decreased membrane currents flowing through voltage-gated Ca2+ channels or K+ channels. These data indicate that clonidine relaxes smooth muscle contraction produced by muscarinic receptor activation and suggest that the effect of clonidine seems due mainly to inhibition of I(CCh) via acting directly on the involved cationic channel.
Collapse
Affiliation(s)
- S Chung
- Department of Physiology, College of Medicine, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
84
|
Sugawara AM, Miguel TT, Pereira DT, Menani JV, De Luca LA. Effects of central imidazolinergic and alpha2-adrenergic activation on water intake. Braz J Med Biol Res 2001; 34:1185-90. [PMID: 11514843 DOI: 10.1590/s0100-879x2001000900012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-adrenergic ligands that bind to imidazoline receptors (I-R), a selective ligand that binds to alpha2-adrenoceptors (alpha2-AR) and mixed ligands that bind to both receptors were tested for their action on water intake behavior of 24-h water-deprived rats. All drugs were injected into the third cerebral ventricle. Except for agmatine (80 nmol), mixed ligands binding to I-R/alpha2-AR such as guanabenz (40 nmol) and UK 14304 (20 nmol) inhibited water intake by 65% and up to 95%, respectively. The selective non-imidazoline alpha2-AR agonist, alpha-methylnoradrenaline, produced inhibition of water intake similar to that obtained with guanabenz, but at higher doses (80 nmol). The non-adrenergic I-R ligands histamine (160 nmol, mixed histaminergic and imidazoline ligand) and imidazole-4-acetic acid (80 nmol, imidazoline ligand) did not alter water intake. The results show that selective, non-imidazoline alpha2-AR activation suppresses water intake, and suggest that the action on imidazoline sites by non-adrenergic ligands is not sufficient to inhibit water intake.
Collapse
Affiliation(s)
- A M Sugawara
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | | | | | | | | |
Collapse
|
85
|
Raasch W, Schäfer U, Chun J, Dominiak P. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br J Pharmacol 2001; 133:755-80. [PMID: 11454649 PMCID: PMC1572857 DOI: 10.1038/sj.bjp.0704153] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- W Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | | | | | |
Collapse
|
86
|
Abstract
The I1-imidazoline receptor is a novel neurotransmitter receptor found mainly in the brainstem, adrenal medulla and kidney. The actions of moxonidine are described at the level of individual biomolecules, cells, tissues, organs and finally with integrative functions. The receptor functions at the cellular level works through arachidonic acid and phospholipid signaling cascades in neuronal cells with the net result of inhibiting sympathetic premotor neurons.
Collapse
Affiliation(s)
- P Ernsberger
- Department of Nutrition, Case Western University, School of Medicine Cleveland, Ohio 44106, USA
| |
Collapse
|
87
|
Zhang J, El-Mas MM, Abdel-Rahman AA. Imidazoline I(1) receptor-induced activation of phosphatidylcholine-specific phospholipase C elicits mitogen-activated protein kinase phosphorylation in PC12 cells. Eur J Pharmacol 2001; 415:117-25. [PMID: 11274989 DOI: 10.1016/s0014-2999(01)00834-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we tested the hypothesis that the activation of imidazoline I(1)-receptor, which is coupled to phosphatidylcholine-specific phospholipase C, results in downstream activation of mitogen-activated protein kinase (p42(mapk) and p44(mapk) isoforms) in PC12 cells. PC12 cells pretreated with nerve growth factor (50 ng/ml, 48 h) to initiate neuronal differentiation were incubated with [methyl-3H]choline and [3H]myristate. Activation of imidazoline I(1) receptor by rilmenidine (10 microM) caused time-dependent increases in diacylglycerol accumulation and phosphocholine release. The Western blotting analysis showed that rilmenidine (10 microM) produced a time-dependent activation of p42(mapk) and p44(mapk) that reached its maximum at 15 min and returned to control levels after 30 min. This finding was confirmed by immunofluorescence labeling of activated mitogen-activated protein kinase in the same model system. Efaroxan (imidazoline I(1)-receptor antagonist) or tricyclodecan-9-yl-xanthogenate (D609, phosphatidylcholine-specific phospholipase C inhibitor) attenuated the phosphorylation of p42(mapk) and p44(mapk) induced by rilmenidine. Nerve growth factor-induced phosphorylation of both mitogen-activated protein kinase isoforms was not affected by D609. These results support the hypothesis that the activation of the imidazoline I(1) receptor coupled phosphatidylcholine-specific phospholipase C results in the downstream activation of mitogen-activated protein kinase.
Collapse
Affiliation(s)
- J Zhang
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858-4353, USA
| | | | | |
Collapse
|
88
|
Fu CH, Reed LJ, Meyer JH, Kennedy S, Houle S, Eisfeld BS, Brown GM. Noradrenergic dysfunction in the prefrontal cortex in depression: an [15O] H2O PET study of the neuromodulatory effects of clonidine. Biol Psychiatry 2001; 49:317-25. [PMID: 11239902 DOI: 10.1016/s0006-3223(00)01050-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Noradrenergic dysfunction has been consistently implicated in depression. Much of the evidence, though, has been indirect, such as an attenuated growth hormone response to the alpha2-adrenoceptor agonist clonidine. To more directly examine central functioning of the noradrenergic system in depression, we have used [15O] H2O positron emission tomography (PET) to measure cerebral blood flow (rCBF) in combination with clonidine as a neuromodulatory probe. METHODS Subjects were six depressed and six healthy women, medication free and matched for age and phase of menstrual cycle. Two PET scans were acquired at baseline and two scans at 20 and 35 min following an intravenous clonidine infusion of 1.4 microg/kg while subjects performed a sustained attention task. RESULTS The growth hormone response did not show a significant difference between groups. However, PET results revealed a difference in the right superior prefrontal cortex that was resolved as an interaction from decreased rCBF in healthy control subjects but increased rCBF in the depressed group, which was not accounted for by differences in task performance. CONCLUSIONS This differential effect of clonidine in the right prefrontal cortex provides in vivo evidence of noradrenergic dysfunction in depression, which we postulate arises from functionally impaired presynaptic alpha2-adrenoceptors as well as regionally "supersensitive" postsynaptic cortical alpha2-adrenoceptors.
Collapse
Affiliation(s)
- C H Fu
- Centre for Addiction and Mental Health, Clarke Site, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
89
|
Halaris A, Piletz JE. Imidazoline receptors: possible involvement in the pathophysiology and treatment of depression. Hum Psychopharmacol 2001; 16:65-69. [PMID: 12404600 DOI: 10.1002/hup.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Imidazoline receptors (IR), a novel family of non-adrenergic receptors, are present in brain, especially the limbic system, and platelets among other organs. Their functions include central mediation of blood pressure control and possibly modulation of affective symptomatology. Studies of unipolar depressed patients have revealed consistent up-regulation of the I(1) subtype on the platelet. Treatment with cyclic antidepressants is accompanied by down-regulation in responders. Treatment with the non-cyclic bupropion produced similar findings. Studies of human post-mortem brain show changes in depressed subjects but the protein fragments assessed are of different molecular weights than in the platelet. Plasma agmatine is believed to be a putative endogenous ligand for I receptors. Thus, IR may be useful state markers of affective disorders. Copyright 2001 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Angelos Halaris
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | | |
Collapse
|
90
|
Piletz JE, Zhu H, Ordway G, Stockmeier C, Dilly G, Reis D, Halaris A. Imidazoline receptor proteins are decreased in the hippocampus of individuals with major depression. Biol Psychiatry 2000; 48:910-9. [PMID: 11074229 DOI: 10.1016/s0006-3223(00)00892-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND A downregulation of I(2)-imidazoline binding sites has been reported in frontal cortices of depressed suicide victims, according to I(2)-radioligand binding and confirmed by Western blotting. We now report Western blots of imidazoline receptor proteins in hippocampi of subjects with and without depression at the time of death. METHODS Postmortem diagnoses were obtained from 17 cases of Axis I major depressive disorder and 17 cases without Axis I psychopathology. No psychotropic compounds were found in body fluids. Hippocampi were removed, sectioned, and assessed histologically. Throughout the analysis, each major depressive disorder sample was paired with a sample from a psychiatrically healthy subject based on equivalent life spans and postmortem delays. The antiserum was identical to that used in previous studies that reported a downregulation of cortical 29/30-kd imidazoline receptor-binding proteins in depression. RESULTS A triad of imidazoline receptor-binding protein bands (40-50 kd) was detected in the human hippocampus. Subjects with major depressive disorder had significantly less intensity in each imidazoline receptor-binding proteins band compared with control subjects (p =. 01 for overall bands). CONCLUSIONS The present results can be aligned with previous reports of downregulation of I(2)-radioligand binding sites in both cortices and platelets of depressed patients.
Collapse
Affiliation(s)
- J E Piletz
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Piletz JE, Halbreich U. Imidazoline and alpha(2a)-adrenoceptor binding sites in postmenopausal women before and after estrogen replacement therapy. Biol Psychiatry 2000; 48:932-9. [PMID: 11074231 DOI: 10.1016/s0006-3223(00)00849-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Platelet alpha(2A)-adrenoceptors (alpha(2A)AR) and imidazoline binding sites (subtype I(1)) have been proposed as peripheral markers of brain stem receptors that mediate sympathetic outflow and are reported to be elevated in major depression. METHODS In our study, p[(125)I]-iodoclonidine was used to assess platelet alpha(2A)AR and I(1) binding sites in healthy postmenopausal women (n = 34) compared with healthy women of reproductive age (n = 26). Receptor determinations were repeated in 19 postmenopausal women following 59-60 days of estrogen replacement therapy (ERT; 0.1 mg estradiol transdermal patches). RESULTS I(1) binding sites were twofold higher in platelets of postmenopausal women compared with women of reproduction age but were down-regulated (normalized) after 59-60 days of ERT. All other binding parameters, including platelet alpha(2A)AR density, were not different between groups nor were they changed after ERT. Platelet I(1) densities after 59-60 days of ERT were positively correlated with plasma luteinizing hormone concentrations. CONCLUSIONS It is suggested that increased imidazoline binding sites might be associated with mood and behavioral changes in postmenopausal women.
Collapse
Affiliation(s)
- J E Piletz
- Department of Psychiatry and Human Behavior, and Departments of Pharmacology and Physiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | |
Collapse
|
92
|
Piletz JE, Ivanov TR, Sharp JD, Ernsberger P, Chang CH, Pickard RT, Gold G, Roth B, Zhu H, Jones JC, Baldwin J, Reis DJ. Imidazoline receptor antisera-selected (IRAS) cDNA: cloning and characterization. DNA Cell Biol 2000; 19:319-29. [PMID: 10882231 DOI: 10.1089/10445490050043290] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The imidazoline-1 receptor (IR1) is considered a novel target for drug discovery. Toward cloning an IR1, a truncated cDNA clone was isolated from a human hippocampal lambda gt11 cDNA expression library by relying on the selectivity of two antisera directed against candidate IR proteins. Amplification reactions were performed to extend the 5' and 3' ends of this cDNA, followed by end-to-end PCR and conventional cloning. The resultant 5131-basepair molecule, designated imidazoline receptor-antisera-selected (IRAS) cDNA, was shown to encode a 1504-amino acid protein (IRAS-1). No relation exists between the amino acid sequence of IRAS-1 and proteins known to bind imidazolines (e.g., it is not an alpha2-adrenoceptor or monoamine oxidase subtype). However, certain sequences within IRAS-1 are consistent with signaling motifs found in cytokine receptors, as previously suggested for an IR1. An acidic region in IRAS-1 having an amino acid sequence nearly identical to that of ryanodine receptors led to the demonstration that ruthenium red, a dye that binds the acidic region in ryanodine receptors, also stained IRAS-1 as a 167-kD band on SDS gels and inhibited radioligand binding of native I1 sites in untransfected PC-12 cells (a source of authentic I1 binding sites). Two epitope-selective antisera were also generated against IRAS-1, and both reacted with the same 167-kD band on Western blots. In a host-cell-specific manner, transfection of IRAS cDNA into Chinese hamster ovary cells led to high-affinity I1 binding sites by criteria of nanomolar affinity for moxonidine and rilmenidine. Thus, IRAS-1 is the first protein discovered with characteristics of an IR1.
Collapse
Affiliation(s)
- J E Piletz
- Department of Psychiatry, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Vandergriff J, Kallman MJ, Rasmussen K. Moxonidine, a selective imidazoline-1 receptor agonist, suppresses the effects of ethanol withdrawal on the acoustic startle response in rats. Biol Psychiatry 2000; 47:874-9. [PMID: 10807960 DOI: 10.1016/s0006-3223(00)00229-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND There is a need for improved treatments for ethanol withdrawal in humans. Previously, ethanol withdrawal has been shown to enhance the acoustic startle response in rats. Because many ethanol withdrawal symptoms are caused by autonomic hyperactivity, we examined the effects of two antihypertensives, the imidazoline(I)(1) agonist moxonidine and the alpha(2)-adrenergic partial agonist clonidine, on the ethanol-withdrawal-enhanced acoustic startle response in rats. d-amphetamine-enhanced startle served as a positive control. METHODS Male, Long-Evans rats were made ethanol-dependent through unlimited access to liquid diet containing 6.7% v/v ethanol for 10 days. The concentration of ethanol was reduced to 3.3% v/v on the 11th day. On the 12th day, the rats received control diet. The acoustic startle response was tested 24 hours following the withdrawal of ethanol. Control rats were maintained on control liquid diet throughout the experiment. RESULTS As has been shown previously, withdrawal from the chronic ingestion of ethanol significantly enhanced the acoustic startle response. Pretreatment with moxonidine (0.01, 0.1, and 1.0 mg/kg, subcutaneously), but not clonidine (0.3, 1.0, and 3.0 mg/kg, subcutaneously), significantly attenuated the ethanol withdrawal-induced elevation of the acoustic startle response. Moxonidine did not suppress the elevation in the startle response caused by d-amphetamine. CONCLUSIONS These results indicate that I(1) receptors can play an important role in ethanol withdrawal and that moxonidine may be useful for the treatment of ethanol withdrawal in humans.
Collapse
Affiliation(s)
- J Vandergriff
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
94
|
Polidori C, Gentili F, Pigini M, Quaglia W, Panocka I, Massi M. Hyperphagic effect of novel compounds with high affinity for imidazoline I(2) binding sites. Eur J Pharmacol 2000; 392:41-9. [PMID: 10748271 DOI: 10.1016/s0014-2999(00)00014-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies have suggested that imidazoline I(2) receptors play a role in feeding control in rats. The effect of subcutaneous (s.c.) injections of four novel imidazoline I(2) ligands, 2-naphthalen-2yl-4,5-dihydro-1H-imidazole hydrochloride (benazoline), 2-styryl-4,5-dihydro-1H-imidazole oxalate (tracizoline), o-nitro-tracizoline and o-methyl-tracizoline (metrazoline) on food intake during the light phase was now evaluated in freely feeding male Wistar rats. Their effect was compared to that of idazoxan, a high-affinity ligand at imidazoline I(2) binding sites, but also a potent alpha(2)-adrenoceptor antagonist. Compared to idazoxan, metrazoline exhibits a higher pK(i) for imidazoline I(2) binding sites in rat liver, while the other compounds have a slightly lower pK(i); on the other hand, the novel compounds have much lower affinity than idazoxan at alpha(2)-adrenoceptors. Idazoxan stimulated drinking at a dose as low as 1 mg/kg, and evoked feeding at a higher dose (30 mg/kg). The selective alpha(2)-adrenoceptor antagonist 2-methoxy-idazoxan (RX821002), with negligible affinity at imidazoline I(2) binding sites, significantly increased drinking but failed to stimulate feeding at doses of 10-50 mg/kg. Metrazoline induced hyperphagia and water drinking at doses of 50 mg/kg or higher. Its dipsogenic effect was secondary to the hyperphagic effect, since it was not observed in rats without access to food. Benazoline significantly increased feeding only in response to 30 mg/kg, but its effect was less pronounced than that of metrazoline. Tracizoline and o-nitro-tracizoline were inactive. Following injection into the lateral cerebroventricle at doses up to 100 microgram/rat, and into the third or fourth brain ventricle at doses up to 50 microgram/rat, neither idazoxan nor metrazoline induced hyperphagia. The present results support the idea that imidazoline I(2) ligands influence feeding in rats, and suggest that their site of action is not in the central nervous system. The finding that idazoxan elicits a more potent hyperphagic effect than metrazoline and benazoline, although its affinity for imidazoline I(2) binding sites is lower than that of metrazoline and similar to that of benazoline, raises the question whether its hyperphagic effect might also be due to interaction with other receptors.
Collapse
Affiliation(s)
- C Polidori
- Department of Pharmacological Sciences, University of Camerino, 62032, Camerino, Italy.
| | | | | | | | | | | |
Collapse
|
95
|
Abstract
The identification of new binding sites raises the problem of defining their role, if any. At times they are shown to be pharmacological receptors, in a strict sense, as they fulfill certain requirements, and a precise physiological role and function, and an endogenous ligand (neurotransmitter) are discovered. At other times, however, neither a clear physiological role nor an endogenous ligand are found, but the term "receptor" is still used, although it may not be a proper one in the conventional pharmacological sense. Furthermore, no clear intracellular signalling transduction pathway is defined and, as a consequence, it is not possible to determine whether drugs binding to these receptors act as agonists or antagonists. What their structure and biological function are and how they mediate the pharmacological effects of ligands may remain for a long time an enigma. The matter, in any case, is of great interest to researchers of different areas, especially to medicinal chemists who foresee novel potential targets for therapeutic interventions. In this meeting one section is dedicated to two examples of this kind of receptors: imidazoline (I) and sigma (sigma) receptors.
Collapse
Affiliation(s)
- L Brasili
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena, Italy
| |
Collapse
|
96
|
Shaham Y, Highfield D, Delfs J, Leung S, Stewart J. Clonidine blocks stress-induced reinstatement of heroin seeking in rats: an effect independent of locus coeruleus noradrenergic neurons. Eur J Neurosci 2000; 12:292-302. [PMID: 10651884 DOI: 10.1046/j.1460-9568.2000.00899.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a reinstatement procedure, it has been shown that intermittent footshock stress reliably reinstates extinguished drug-taking behaviour in rats. Here we studied the role of noradrenaline (NE), one of the main brain neurotransmitters involved in responses to stress, in reinstatement of heroin seeking. We first determined the effect of clonidine, an alpha-2 adrenergic receptor agonist that decreases NE cell firing and release, on stress-induced reinstatement of heroin seeking. Rats were trained to self-administer heroin (0.1 mg/kg per infusion, IV, three 3-h sessions per day) for 9-10 days. Extinction sessions were given for up to 11 days during which saline was substituted for the drug. Tests for reinstatement were then conducted after exposure to intermittent footshock (5, 15 and 30 min, 0.5 mA). During testing, clonidine was injected systemically (10-40 microgram/kg, i.p.) or directly into the lateral or fourth ventricles (1-3 microram). Clonidine (1-2 microgram per site) or its charged analogue, 2-[2, 6-diethylphenylamino]-2-imidazole (ST-91, 0.5-1 microgram per site), was also injected bilaterally into the locus coeruleus (LC), the main noradrenergic cell group in the brain. Clonidine blocked stress-induced reinstatement of drug seeking when injected systemically or into the cerebral ventricles. In contrast, neither clonidine nor ST-91 consistently altered stress-induced reinstatement when injected into the locus coeruleus. We therefore studied the effect of lesions of the lateral tegmental NE neurons on stress-induced reinstatement. 6-Hydroxydopamine (6-OHDA) lesions performed after training for heroin self-administration had no effect on extinction of heroin-taking behaviour, but significantly attenuated reinstatement induced by intermittent footshock. These data suggest that: (i) clonidine prevents stress-induced relapse to heroin seeking by its action on neurons other than those of the locus coeruleus; and (ii) activation of the lateral tegmental NE neurons contributes to stress-induced reinstatement of heroin seeking.
Collapse
Affiliation(s)
- Y Shaham
- Behavioural Neuroscience Branch, IRP/NIDA/NIH, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
97
|
Ernsberger P, Koletsky RJ, Friedman JE. Molecular pathology in the obese spontaneous hypertensive Koletsky rat: a model of syndrome X. Ann N Y Acad Sci 1999; 892:272-88. [PMID: 10842668 DOI: 10.1111/j.1749-6632.1999.tb07801.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The SHROB rat is a unique strain with genetic obesity, hypertriglyceridemia, hyperinsulinemia, renal disease with proteinuria, and genetically determined hypertension, characteristics paralleling human Syndrome X. The obese phenotype results from a single homozygous recessive trait, designated faK, and is allelic with the Zucker fatty trait (fa), but of distinct origin. The faK mutation is a premature stop codon in the extracellular domain of the leptin receptor, resulting in a natural receptor knockout. The SHROB are glucose intolerant compared to heterozygous or wild-type SHR, but retain fasting euglycemia even on a high sucrose diet, suggesting that diabetes requires polygenic interaction with additional modifier genes. Insulin-stimulated phosphorylation of tyrosine residues on the insulin receptor and on the associated docking protein IRS-1 are reduced in skeletal muscle and liver compared to SHR, due mainly to diminished expression of insulin receptor and IRS-1 proteins. Despite multiple metabolic derangements and severe insulin resistance, hypertension is not exacerbated in SHROB compared to SHR. Thus, insulin resistance and hypertension are independent in this model. Increased activity of the sympathetic nervous system may be a common factor leading by separate pathways to hypertension and to insulin resistance. We studied the chronic effects of sympathetic inhibition with moxonidine on glucose metabolism in SHROB. Moxonidine (8 mg/kg/day), a selective I1-imidazoline receptor agonist, not only reduced blood pressure but also ameliorated glucose intolerance. Moxonidine reduced fasting insulin by 47% and plasma free fatty acids by 30%. Moxonidine enhanced expression and insulin-stimulated phosphorylation of IRS-1 in skeletal muscle by 74 and 27%, respectively. Thus, central sympatholytic therapy not only counters hypertension but also insulin resistance, glucose tolerance, and hyperlipidemia in the SHROB model of Syndrome X.
Collapse
Affiliation(s)
- P Ernsberger
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | |
Collapse
|
98
|
Sugawara AM, Miguel TT, de Oliveira LB, Menani JV, De Luca Júnior LA. Noradrenaline and mixed alpha 2-adrenoceptor/imidazoline-receptor ligands: effects on sodium intake. Brain Res 1999; 839:227-34. [PMID: 10519045 DOI: 10.1016/s0006-8993(99)01695-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of noradrenaline, and mixed ligands to alpha 2-adrenoceptors (alpha 2-AR) and imidazoline receptors (IR), injected intracerebroventricularly (i.c.v.), on sodium intake of sodium depleted rats, was tested against idazoxan, a mixed antagonist ligand to alpha 2-AR and IR. The inhibition of sodium intake induced by noradrenaline (80 nmol) was completely reversed by idazoxan (160 and 320 nmol) injected i.c.v. The inhibition of sodium intake induced by mixed ligands to alpha 2-AR and IR, UK14,304, guanabenz and moxonidine, was antagonized from 50 to 60% by idazoxan i.c.v. The results demonstrate that noradrenaline, a non-ligand for IR, acts on alpha 2-AR inhibiting sodium intake. The possibility that either alpha 2-AR or IR mediate the effect of mixed agonists on sodium intake remains an open question.
Collapse
Affiliation(s)
- A M Sugawara
- Department of Physiological Sciences, School of Dentistry, Paulista State University, Araraquara, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
99
|
Benedict CR. Centrally acting antihypertensive drugs: re-emergence of sympathetic inhibition in the treatment of hypertension. Curr Hypertens Rep 1999; 1:305-12. [PMID: 10981082 DOI: 10.1007/s11906-999-0038-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Central regulation of the sympathetic nervous system plays an important role in the maintenance of blood pressure. In a subset of patients with essential hypertension, sympathetic activation may contribute to the development and maintenance of hypertension. Unlike the first generation of centrally active antihypertensive drugs, the second generation may be superior because of its selectivity to I1-imidazoline receptor and selective binding to the vasomotor center. Lack of a2 effects differentiates moxonidine from clonidine with respect to monoxidine"s superior side-effect profile (little or no sedation or dry mouth). Clinical trials show that moxonidine is as effective as angiotensin-converting enzyme inhibitors (eg, enalapril and captopril), b-blockers (e.g., atenolol), calcium-channel blockers (e.g., long-acting nifedipine), and diuretics (eg, hydrochlorothiazide) in lowering blood pressure and that it has superior tolerability. Thus, central modulation of the sympathetic nervous system has re-emerged as an exciting target for blood pressure reduction. Given the multiple adverse effects of sympathetic stimulation in various disease processes, including congestive heart failure, moxonidine may be the next therapeutic option for the management of hypertension and the prevention of target organ dysfunction.
Collapse
Affiliation(s)
- C R Benedict
- University of Texas Medical School, Division of Cardiology, 6431 Fannin Street, MSB 6.039, Houston, Texas 77030, USA
| |
Collapse
|
100
|
Farsang C, Kapocsi J. Imidazoline receptors: from discovery to antihypertensive therapy (facts and doubts). Brain Res Bull 1999; 49:317-31. [PMID: 10452352 DOI: 10.1016/s0361-9230(99)00057-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The hypothesis and indirect evidence of imidazoline receptors has been promoted since some 15 years ago and it gave a substantial impetus for research in this field, resulting in a better understanding of neuronal and cardiovascular regulatory processes. The nomenclature of the imidazoline receptors has been accepted by international forums but no direct proof for the existence of these receptors has been published. Authors summarise the most important available data, including facts and doubts as far as the discovery, characterisation, and function of imidazoline receptors and their subtypes, the differences between imidazoline receptors and alpha-2 adrenoceptors, and also on their participation in regulatory processes.
Collapse
Affiliation(s)
- C Farsang
- First Department of Internal Medicine, St. Imre Teaching Hospital, Budapest, Hungary
| | | |
Collapse
|