51
|
Depuydt T, Vandepoele K. Multi-omics network-based functional annotation of unknown Arabidopsis genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1193-1212. [PMID: 34562334 DOI: 10.1111/tpj.15507] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Unraveling gene function is pivotal to understanding the signaling cascades that control plant development and stress responses. As experimental profiling is costly and labor intensive, there is a clear need for high-confidence computational annotation. In contrast to detailed gene-specific functional information, transcriptomics data are widely available for both model and crop species. Here, we describe a novel automated function prediction method, which leverages complementary information from multiple expression datasets by analyzing study-specific gene co-expression networks. First, we benchmarked the prediction performance on recently characterized Arabidopsis thaliana genes, and showed that our method outperforms state-of-the-art expression-based approaches. Next, we predicted biological process annotations for known (n = 15 790) and unknown (n = 11 865) genes in A. thaliana and validated our predictions using experimental protein-DNA and protein-protein interaction data (covering >220 000 interactions in total), obtaining a set of high-confidence functional annotations. Our method assigned at least one validated annotation to 5054 (42.6%) unknown genes, and at least one novel validated function to 3408 (53.0%) genes with computational annotations only. These omics-supported functional annotations shed light on a variety of developmental processes and molecular responses, such as flower and root development, defense responses to fungi and bacteria, and phytohormone signaling, and help fill the information gap on biological process annotations in Arabidopsis. An in-depth analysis of two context-specific networks, modeling seed development and response to water deprivation, shows how previously uncharacterized genes function within the respective networks. Moreover, our automated function prediction approach can be applied in future studies to facilitate gene discovery for crop improvement.
Collapse
Affiliation(s)
- Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
52
|
Tzipilevich E, Russ D, Dangl JL, Benfey PN. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 2021; 29:1507-1520.e4. [PMID: 34610294 DOI: 10.1016/j.chom.2021.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Although plant roots encounter a plethora of microorganisms in the surrounding soil, at the rhizosphere, plants exert selective forces on their bacterial colonizers. Unlike immune recognition of pathogenic bacteria, the mechanisms by which beneficial bacteria are selected and how they interact with the plant immune system are not well understood. To better understand this process, we studied the interaction of auxin-producing Bacillus velezensis FZB42 with Arabidopsis roots and found that activation of the plant immune system is necessary for efficient bacterial colonization and auxin secretion. A feedback loop is established in which bacterial colonization triggers an immune reaction and production of reactive oxygen species, which, in turn, stimulate auxin production by the bacteria. Auxin promotes bacterial survival and efficient root colonization, allowing the bacteria to inhibit fungal infection and promote plant health. Thus, a feedback loop between bacteria and the plant immune system promotes the fitness of both partners.
Collapse
Affiliation(s)
- Elhanan Tzipilevich
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute Duke University, Durham, NC 27708, USA
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute Duke University, Durham, NC 27708, USA.
| |
Collapse
|
53
|
The Same against Many: AtCML8, a Ca 2+ Sensor Acting as a Positive Regulator of Defense Responses against Several Plant Pathogens. Int J Mol Sci 2021; 22:ijms221910469. [PMID: 34638807 PMCID: PMC8508799 DOI: 10.3390/ijms221910469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Calcium signals are crucial for the activation and coordination of signaling cascades leading to the establishment of plant defense mechanisms. Here, we studied the contribution of CML8, an Arabidopsis calmodulin-like protein in response to Ralstonia solanacearum and to pathogens with different lifestyles, such as Xanthomonas campestris pv. campestris and Phytophtora capsici. We used pathogenic infection assays, gene expression, RNA-seq approaches, and comparative analysis of public data on CML8 knockdown and overexpressing Arabidopsis lines to demonstrate that CML8 contributes to defense mechanisms against pathogenic bacteria and oomycetes. CML8 gene expression is finely regulated at the root level and manipulated during infection with Ralstonia, and CML8 overexpression confers better plant tolerance. To understand the processes controlled by CML8, genes differentially expressed at the root level in the first hours of infection have been identified. Overexpression of CML8 also confers better tolerance against Xanthomonas and Phytophtora, and most of the genes differentially expressed in response to Ralstonia are differentially expressed in these different pathosystems. Collectively, CML8 acts as a positive regulator against Ralstonia solanaceraum and against other vascular or root pathogens, suggesting that CML8 is a multifunctional protein that regulates common downstream processes involved in the defense response of plants to several pathogens.
Collapse
|
54
|
Belt K, Foley RC, O'Sullivan CA, Roper MM, Singh KB, Thatcher LF. A Plant Stress-Responsive Bioreporter Coupled With Transcriptomic Analysis Allows Rapid Screening for Biocontrols of Necrotrophic Fungal Pathogens. Front Mol Biosci 2021; 8:708530. [PMID: 34540894 PMCID: PMC8446517 DOI: 10.3389/fmolb.2021.708530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Streptomyces are soil-borne Actinobacteria known to produce a wide range of enzymes, phytohormones, and metabolites including antifungal compounds, making these microbes fitting for use as biocontrol agents in agriculture. In this study, a plant reporter gene construct comprising the biotic stress-responsive glutathione S-transferase promoter GSTF7 linked to a luciferase output (GSTF7:luc) was used to screen a collection of Actinobacteria candidates for manipulation of plant biotic stress responses and their potential as biocontrol agents. We identified a Streptomyces isolate (KB001) as a strong candidate and demonstrated successful protection against two necrotrophic fungal pathogens, Sclerotinia sclerotiorum and Rhizoctonia solani, but not against a bacterial pathogen (Pseudomonas syringe). Treatment of Arabidopsis plants with either KB001 microbial culture or its secreted compounds induced a range of stress and defense response-related genes like pathogenesis-related (PR) and hormone signaling pathways. Global transcriptomic analysis showed that both treatments shared highly induced expression of reactive oxygen species and auxin signaling pathways at 6 and 24 h posttreatment, while some other responses were treatment specific. This study demonstrates that GSTF7 is a suitable marker for the rapid and preliminary screening of beneficial bacteria and selection of candidates with potential for application as biocontrols in agriculture, including the Streptomyces KB001 that was characterized here, and could provide protection against necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Katharina Belt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Rhonda C Foley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Cathryn A O'Sullivan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, St Lucia, QLD, Australia
| | - Margaret M Roper
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Karam B Singh
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
| |
Collapse
|
55
|
Lu H, Wei T, Lou H, Shu X, Chen Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J Fungi (Basel) 2021; 7:719. [PMID: 34575757 PMCID: PMC8466524 DOI: 10.3390/jof7090719] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Endophytic fungi infect plant tissues by evading the immune response, potentially stimulating stress-tolerant plant growth. The plant selectively allows microbial colonization to carve endophyte structures through phenotypic genes and metabolic signals. Correspondingly, fungi develop various adaptations through symbiotic signal transduction to thrive in mycorrhiza. Over the past decade, the regulatory mechanism of plant-endophyte interaction has been uncovered. Currently, great progress has been made on plant endosphere, especially in endophytic fungi. Here, we systematically summarize the current understanding of endophytic fungi colonization, molecular recognition signal pathways, and immune evasion mechanisms to clarify the transboundary communication that allows endophytic fungi colonization and homeostatic phytobiome. In this work, we focus on immune signaling and recognition mechanisms, summarizing current research progress in plant-endophyte communication that converge to improve our understanding of endophytic fungi.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Xiaoli Shu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| |
Collapse
|
56
|
Root-Associated Microbiomes, Growth and Health of Ornamental Geophytes Treated with Commercial Plant Growth-Promoting Products. Microorganisms 2021; 9:microorganisms9081785. [PMID: 34442864 PMCID: PMC8401597 DOI: 10.3390/microorganisms9081785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
The microbial community inhabiting a plant's root zone plays a crucial role in plant health and protection. To assess the ability of commercial plant growth-promoting products to enhance the positive effects of this environment, two products containing beneficial soil bacteria and a product containing plant extracts were tested on Zantedeschia aethiopica and Ornithogalum dubium. The products were tested in two different growing media: a soil and a soilless medium. The effects of these products on Pectobacterium brasiliense, the causal agent of soft rot disease, were also evaluated in vitro, and on naturally occurring infections in the greenhouse. The growing medium was found to have the strongest effect on the microbial diversity of the root-associated microbiome, with the next-strongest effect due to plant type. These results demonstrate that either a single bacterial strain or a product will scarcely reach the level that is required to influence soil microbial communities. In addition, the microbes cultured from these products, could not directly inhibit Pectobacterium growth in vitro. We suggest density-based and functional analyses in the future, to study the specific interactions between plants, soil type, soil microbiota and relevant pathogens. This should increase the effectiveness of bio-supplements and soil disinfestation with natural products, leading to more sustainable, environmentally friendly solutions for the control of bacterial plant diseases.
Collapse
|
57
|
Song S, Liu Y, Wang NR, Haney CH. Mechanisms in plant-microbiome interactions: lessons from model systems. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102003. [PMID: 33545444 DOI: 10.1016/j.pbi.2021.102003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 05/25/2023]
Abstract
The use of genetically tractable plant-microbe pairs has driven research in plant immunity and mutualistic symbiosis. Clear functional readouts for the outcomes of symbiosis or immunity have facilitated forward genetic screening and identification of signals, molecules and mechanisms that determine the outcome of these interactions. Plants also associate with beneficial microbial communities that form the microbiome. However, the complexity of the microbiome, combined with relatively subtle effects on plant growth and immunity, has impeded forward genetic screening to identify plant and bacterial genes that shape the microbiome. As a result, microbiome research has relied largely on reverse genetics approaches, based on what is known about plant nutrient uptake and immunity, to identify mechanisms in plant-microbiome research. Here we revisit the features of reductionist model systems that have made them so powerful for studying plant-microbe interactions, and how modeling microbiome research after these systems can propel discovery of novel mechanisms.
Collapse
Affiliation(s)
- Siyu Song
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nicole R Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
58
|
Variation in Gene Expression between Two Sorghum bicolor Lines Differing in Innate Immunity Response. PLANTS 2021; 10:plants10081536. [PMID: 34451580 PMCID: PMC8399927 DOI: 10.3390/plants10081536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
Microbe associated molecular pattern (MAMPs) triggered immunity (MTI) is a key component of the plant innate immunity response to microbial recognition. However, most of our current knowledge of MTI comes from model plants (i.e., Arabidopsis thaliana) with comparatively less work done using crop plants. In this work, we studied the MAMP triggered oxidative burst (ROS) and the transcriptional response in two Sorghum bicolor genotypes, BTx623 and SC155-14E. SC155-14E is a line that shows high anthracnose resistance and the line BTx623 is susceptible to anthracnose. Our results revealed a clear variation in gene expression and ROS in response to either flagellin (flg22) or chitin elicitation between the two lines. While the transcriptional response to each MAMP and in each line was unique there was a considerable degree of overlap, and we were able to define a core set of genes associated with the sorghum MAMP transcriptional response. The GO term and KEGG pathway enrichment analysis discovered more immunity and pathogen resistance related DEGs in MAMP treated SC155-14E samples than in BTx623 with the same treatment. The results provide a baseline for future studies to investigate innate immunity pathways in sorghum, including efforts to enhance disease resistance.
Collapse
|
59
|
Cosme M, Fernández I, Declerck S, van der Heijden MGA, Pieterse CMJ. A coumarin exudation pathway mitigates arbuscular mycorrhizal incompatibility in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2021; 106:319-334. [PMID: 33825084 DOI: 10.1007/s11103-021-01143-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Overexpression of genes involved in coumarin production and secretion can mitigate mycorrhizal incompatibility in nonhost Arabidopsis plants. The coumarin scopoletin, in particular, stimulates pre-penetration development and metabolism in mycorrhizal fungi. Although most plants can benefit from mutualistic associations with arbuscular mycorrhizal (AM) fungi, nonhost plant species such as the model Arabidopsis thaliana have acquired incompatibility. The transcriptional response of Arabidopsis to colonization by host-supported AM fungi switches from initial AM recognition to defense activation and plant growth antagonism. However, detailed functional information on incompatibility in nonhost-AM fungus interactions is largely missing. We studied interactions between host-sustained AM fungal networks of Rhizophagus irregularis and 18 Arabidopsis genotypes affected in nonhost penetration resistance, coumarin production and secretion, and defense (salicylic acid, jasmonic acid, and ethylene) and growth hormones (auxin, brassinosteroid, cytokinin, and gibberellin). We demonstrated that root-secreted coumarins can mitigate incompatibility by stimulating fungal metabolism and promoting initial steps of AM colonization. Moreover, we provide evidence that major molecular defenses in Arabidopsis do not operate as primary mechanisms of AM incompatibility nor of growth antagonism. Our study reveals that, although incompatible, nonhost plants can harbor hidden tools that promote initial steps of AM colonization. Moreover, it uncovered the coumarin scopoletin as a novel signal in the pre-penetration dialogue, with possible implications for the chemical communication in plant-mycorrhizal fungi associations.
Collapse
Affiliation(s)
- Marco Cosme
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands.
- Mycology, Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Croix du sud 2, bte L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| | - Iván Fernández
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Stéphane Declerck
- Mycology, Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain, Croix du sud 2, bte L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Marcel G A van der Heijden
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope Reckenholz, Reckenholzstrasse 191, 8046, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8057, Zurich, Switzerland
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| |
Collapse
|
60
|
Alexander A, Singh VK, Mishra A. Overexpression of differentially expressed AhCytb6 gene during plant-microbe interaction improves tolerance to N 2 deficit and salt stress in transgenic tobacco. Sci Rep 2021; 11:13435. [PMID: 34183701 PMCID: PMC8239016 DOI: 10.1038/s41598-021-92424-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Stenotrophomonas maltophilia has plant growth-promoting potential, and interaction with Arachis hypogaea changes host-plant physiology, biochemistry, and metabolomics, which provides tolerance under the N2 starvation conditions. About 226 suppression subtractive hybridization clones were obtained from plant-microbe interaction, of which, about 62% of gene sequences were uncharacterized, whereas 23% of sequences were involved in photosynthesis. An uncharacterized SSH clone, SM409 (full-length sequence showed resemblance with Cytb6), showed about 4-fold upregulation during the interaction was transformed to tobacco for functional validation. Overexpression of the AhCytb6 gene enhanced the seed germination efficiency and plant growth under N2 deficit and salt stress conditions compared to wild-type and vector control plants. Results confirmed that transgenic lines maintained high photosynthesis and protected plants from reactive oxygen species buildup during stress conditions. Microarray-based whole-transcript expression of host plants showed that out of 272,410 genes, 8704 and 24,409 genes were significantly (p < 0.05) differentially expressed (> 2 up or down-regulated) under N2 starvation and salt stress conditions, respectively. The differentially expressed genes belonged to different regulatory pathways. Overall, results suggested that overexpression of AhCytb6 regulates the expression of various genes to enhance plant growth under N2 deficit and abiotic stress conditions by modulating plant physiology.
Collapse
Affiliation(s)
- Ankita Alexander
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Vijay K Singh
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India.
| |
Collapse
|
61
|
Ma KW, Niu Y, Jia Y, Ordon J, Copeland C, Emonet A, Geldner N, Guan R, Stolze SC, Nakagami H, Garrido-Oter R, Schulze-Lefert P. Coordination of microbe-host homeostasis by crosstalk with plant innate immunity. NATURE PLANTS 2021; 7:814-825. [PMID: 34031541 PMCID: PMC8208891 DOI: 10.1038/s41477-021-00920-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/15/2021] [Indexed: 05/05/2023]
Abstract
Plants grown in natural soil are colonized by phylogenetically structured communities of microbes known as the microbiota. Individual microbes can activate microbe-associated molecular pattern (MAMP)-triggered immunity (MTI), which limits pathogen proliferation but curtails plant growth, a phenomenon known as the growth-defence trade-off. Here, we report that, in monoassociations, 41% (62 out of 151) of taxonomically diverse root bacterial commensals suppress Arabidopsis thaliana root growth inhibition (RGI) triggered by immune-stimulating MAMPs or damage-associated molecular patterns. Amplicon sequencing of bacterial 16S rRNA genes reveals that immune activation alters the profile of synthetic communities (SynComs) comprising RGI-non-suppressive strains, whereas the presence of RGI-suppressive strains attenuates this effect. Root colonization by SynComs with different complexities and RGI-suppressive activities alters the expression of 174 core host genes, with functions related to root development and nutrient transport. Furthermore, RGI-suppressive SynComs specifically downregulate a subset of immune-related genes. Precolonization of plants with RGI-suppressive SynComs, or mutation of one commensal-downregulated transcription factor, MYB15, renders the plants more susceptible to opportunistic Pseudomonas pathogens. Our results suggest that RGI-non-suppressive and RGI-suppressive root commensals modulate host susceptibility to pathogens by either eliciting or dampening MTI responses, respectively. This interplay buffers the plant immune system against pathogen perturbation and defence-associated growth inhibition, ultimately leading to commensal-host homeostasis.
Collapse
Affiliation(s)
- Ka-Wai Ma
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yulong Niu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jana Ordon
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Charles Copeland
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Aurélia Emonet
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Rui Guan
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
62
|
Bjornson M, Pimprikar P, Nürnberger T, Zipfel C. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. NATURE PLANTS 2021; 7:579-586. [PMID: 33723429 PMCID: PMC7610817 DOI: 10.1038/s41477-021-00874-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Plants tailor their metabolism to environmental conditions, in part through the recognition of a wide array of self and non-self molecules. In particular, the perception of microbial or plant-derived molecular patterns by cell-surface-localized pattern recognition receptors (PRRs) induces pattern-triggered immunity, which includes massive transcriptional reprogramming1. An increasing number of plant PRRs and corresponding ligands are known, but whether plants tune their immune outputs to patterns of different biological origins or of different biochemical natures remains mostly unclear. Here, we performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana. This revealed that the transcriptional responses to diverse patterns (independent of their origin, biochemical nature or type of PRR) are remarkably congruent. Moreover, many of the genes most rapidly and commonly upregulated by patterns are also induced by abiotic stresses, suggesting that the early transcriptional response to patterns is part of the plant general stress response (GSR). As such, plant cells' response is in the first instance mostly to danger. Notably, the genetic impairment of the GSR reduces pattern-induced antibacterial immunity, confirming the biological relevance of this initial danger response. Importantly, the definition of a small subset of 'core immunity response' genes common and specific to pattern response revealed the function of previously uncharacterized GLUTAMATE RECEPTOR-LIKE (GLR) calcium-permeable channels in immunity. This study thus illustrates general and unique properties of early immune transcriptional reprogramming and uncovers important components of plant immunity.
Collapse
Affiliation(s)
- Marta Bjornson
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Priya Pimprikar
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, Tübingen, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
63
|
Stringlis IA, Pieterse CMJ. Evolutionary "hide and seek" between bacterial flagellin and the plant immune system. Cell Host Microbe 2021; 29:548-550. [PMID: 33857418 DOI: 10.1016/j.chom.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial flagellin is a potent host immune activator. Parys et al. (2021) and Colaianni et al. (2021) dissected effects of flagellin epitope variants on host immune detection and bacterial motility. They report in this issue of Cell Host & Microbe that Arabidopsis-associated bacterial microbiota differentially evolved flg22 variants that allow tunability between motility and defense activation.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
64
|
Teixeira PJPL, Colaianni NR, Law TF, Conway JM, Gilbert S, Li H, Salas-González I, Panda D, Del Risco NM, Finkel OM, Castrillo G, Mieczkowski P, Jones CD, Dangl JL. Specific modulation of the root immune system by a community of commensal bacteria. Proc Natl Acad Sci U S A 2021; 118:e2100678118. [PMID: 33879573 PMCID: PMC8072228 DOI: 10.1073/pnas.2100678118] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of the Arabidopsis immune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota.
Collapse
Affiliation(s)
- Paulo J P L Teixeira
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicholas R Colaianni
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Theresa F Law
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jonathan M Conway
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Sarah Gilbert
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Haofan Li
- Department of Biology, Kenyon College, Gambier, OH 43022
| | - Isai Salas-González
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Darshana Panda
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicole M Del Risco
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Omri M Finkel
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gabriel Castrillo
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Piotr Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jeffery L Dangl
- HHMI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
65
|
Khanna K, Kohli SK, Ohri P, Bhardwaj R. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiol Res 2021; 248:126755. [PMID: 33845302 DOI: 10.1016/j.micres.2021.126755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
Plants interact with enormous biotic and abiotic components within ecosystem. For instance, microbes, insects, herbivores, animals, nematodes etc. In general, these interactions are studied independently with plants, that condenses only specific information about the interaction. However, the limitation to study the cross-interactions masks the collaborative role of organisms within ecosystem. Beneficial microbes are most prominent organisms that are needed to be studied due to their bidirectional nature towards plants. Fascinatingly, Plant-Parasitic Nematodes (PPNs) have been profoundly observed to cause mass destruction of agricultural crops worldwide. The huge demand for agriculture for present-day population requires optimization of production potential by curbing the damage caused by PPNs. Chemical nematicides combats their proliferation, but their extended usage has abruptly affected flora, fauna and human populations. Because of consistent pressing issues in regard to environment, the use of biocontrol agents are most favourable alternatives for managing agriculture. However, this association is somehow, tug of war, and understanding of plant-nematode-microbial relation would enable the agriculturists to monitor the overall development of plants along with limiting the use of agrochemicals. Soil microbes are contemporary bio-nematicides emerging in the market, that stimulates the plant growth and impedes PPNs populations. They form natural enemies and trap nematodes, henceforth, it is crucial to understand these interactions for ecological and biotechnological perspectives for commercial use. Moreover, acquiring the diversity of their relationship and molecular-based mechanisms, outlines their cascade of signaling events to serve as biotechnological ecosystem engineers. The omics based mechanisms encompassing hormone gene regulatory pathways and elicitors released by microbes are able to modulate pathogenesis-related (PR) genes within plants. This is achieved via Induced Systemic Resistance (ISR) or acquired systemic channels. Taking into account all these validations, the present review mainly advocates the relationship among microbes and nematodes in plants. It is believed that this review will boost zest and zeal within researchers to effectively understand the plant-nematodes-microbes relations and their ecological perspectives.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
66
|
Sharifi R, Ryu C. Social networking in crop plants: Wired and wireless cross-plant communications. PLANT, CELL & ENVIRONMENT 2021; 44:1095-1110. [PMID: 33274469 PMCID: PMC8049059 DOI: 10.1111/pce.13966] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 05/03/2023]
Abstract
The plant-associated microbial community (microbiome) has an important role in plant-plant communications. Plants decipher their complex habitat situations by sensing the environmental stimuli and molecular patterns and associated with microbes, herbivores and dangers. Perception of these cues generates inter/intracellular signals that induce modifications of plant metabolism and physiology. Signals can also be transferred between plants via different mechanisms, which we classify as wired- and wireless communications. Wired communications involve direct signal transfers between plants mediated by mycorrhizal hyphae and parasitic plant stems. Wireless communications involve plant volatile emissions and root exudates elicited by microbes/insects, which enable inter-plant signalling without physical contact. These producer-plant signals induce microbiome adaptation in receiver plants via facilitative or competitive mechanisms. Receiver plants eavesdrop to anticipate responses to improve fitness against stresses. An emerging body of information in plant-plant communication can be leveraged to improve integrated crop management under field conditions.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant ProtectionCollege of Agriculture and Natural Resources, Razi UniversityKermanshahIran
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
- Biosystem and Bioengineering ProgramUniversity of Science and Technology (UST)DaejeonSouth Korea
| |
Collapse
|
67
|
Trapet PL, Verbon EH, Bosma RR, Voordendag K, Van Pelt JA, Pieterse CMJ. Mechanisms underlying iron deficiency-induced resistance against pathogens with different lifestyles. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2231-2241. [PMID: 33188427 DOI: 10.1093/jxb/eraa535] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/10/2020] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is a poorly available mineral nutrient which affects the outcome of many cross-kingdom interactions. In Arabidopsis thaliana, Fe starvation limits infection by necrotrophic pathogens. Here, we report that Fe deficiency also reduces disease caused by the hemi-biotrophic bacterium Pseudomonas syringae and the biotrophic oomycete Hyaloperonospora arabidopsidis, indicating that Fe deficiency-induced resistance is effective against pathogens with different lifestyles. Furthermore, we show that Fe deficiency-induced resistance is not caused by withholding Fe from the pathogen but is a plant-mediated defense response that requires activity of ethylene and salicylic acid. Because rhizobacteria-induced systemic resistance (ISR) is associated with a transient up-regulation of the Fe deficiency response, we tested whether Fe deficiency-induced resistance and ISR are similarly regulated. However, Fe deficiency-induced resistance functions independently of the ISR regulators MYB72 and BGLU42, indicating that both types of induced resistance are regulated in a different manner. Mutants opt3 and frd1, which display misregulated Fe homeostasis under Fe-sufficient conditions, show disease resistance levels comparable with those of Fe-starved wild-type plants. Our results suggest that disturbance of Fe homeostasis, through Fe starvation stress or other non-homeostatic conditions, is sufficient to prime the plant immune system for enhanced defense.
Collapse
Affiliation(s)
- Pauline L Trapet
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Renda R Bosma
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Kirsten Voordendag
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| |
Collapse
|
68
|
Yu K, Stringlis IA, van Bentum S, de Jonge R, Snoek BL, Pieterse CMJ, Bakker PAHM, Berendsen RL. Transcriptome Signatures in Pseudomonas simiae WCS417 Shed Light on Role of Root-Secreted Coumarins in Arabidopsis-Mutualist Communication. Microorganisms 2021; 9:microorganisms9030575. [PMID: 33799825 PMCID: PMC8000642 DOI: 10.3390/microorganisms9030575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas simiae WCS417 is a root-colonizing bacterium with well-established plant-beneficial effects. Upon colonization of Arabidopsis roots, WCS417 evades local root immune responses while triggering an induced systemic resistance (ISR) in the leaves. The early onset of ISR in roots shows similarities with the iron deficiency response, as both responses are associated with the production and secretion of coumarins. Coumarins can mobilize iron from the soil environment and have a selective antimicrobial activity that impacts microbiome assembly in the rhizosphere. Being highly coumarin-tolerant, WCS417 induces the secretion of these phenolic compounds, likely to improve its own niche establishment, while providing growth and immunity benefits for the host in return. To investigate the possible signaling function of coumarins in the mutualistic Arabidopsis-WCS417 interaction, we analyzed the transcriptome of WCS417 growing in root exudates of coumarin-producing Arabidopsis Col-0 and the coumarin-biosynthesis mutant f6′h1. We found that coumarins in F6′H1-dependent root exudates significantly affected the expression of 439 bacterial genes (8% of the bacterial genome). Of those, genes with functions related to transport and metabolism of carbohydrates, amino acids, and nucleotides were induced, whereas genes with functions related to cell motility, the bacterial mobilome, and energy production and conversion were repressed. Strikingly, most genes related to flagellar biosynthesis were down-regulated by F6′H1-dependent root exudates and we found that application of selected coumarins reduces bacterial motility. These findings suggest that coumarins’ function in the rhizosphere as semiochemicals in the communication between the roots and WCS417. Collectively, our results provide important novel leads for future functional analysis of molecular processes in the establishment of plant-mutualist interactions.
Collapse
Affiliation(s)
- Ke Yu
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China
| | - Ioannis A. Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Sietske van Bentum
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Basten L. Snoek
- Theoretical Biology & Bioinformatics, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
| | - Roeland L. Berendsen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (K.Y.); (I.A.S.); (S.v.B.); (R.d.J.); (C.M.J.P.); (P.A.H.M.B.)
- Correspondence: ; Tel.: +31-3025-36860
| |
Collapse
|
69
|
Chen L, Ma Q, Liu H, Bian L, Wang X, Liu Y. Reduced Root Secretion of Valine in Rosa-Microbe Interaction Contributes to the Decreased Colonization of Pathogenic Agrobacterium tumefaciens. PLANT DISEASE 2021; 105:599-606. [PMID: 32840433 DOI: 10.1094/pdis-06-20-1179-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Root exudates play a critical role in root-microbe interactions. Agrobacterium tumefaciens causes crown gall disease in multiple plant species, but rose root exudate-mediated inhibition of Agrobacterium in the rhizosphere is poorly understood. In this study, the influence of preinoculation with beneficial bacteria or pathogens on root exudates and subsequent colonization by A. tumefaciens was investigated in a split-root system. We found that preinoculation of rose plants in a split-root system with Bacillus velezensis CLA178 or A. tumefaciens C58 inhibited subsequent colonization by C58. Root secretion of valine had positive effects on the chemotaxis, biofilm formation, colonization of C58, and crown gall disease severity, but valine secretion decreased significantly when Rosa multiflora plants were preinoculated with CLA178 or C58. These results indicated that rose plants reduced root secretion of valine in response to microbial colonization, thereby reducing the colonization of Agrobacterium colonization and disease severity. This study provides new insights into the root exudate-mediated interactions of rose plants, B. velezensis, and A. tumefaciens and proposes a potential way to control crown gall disease.
Collapse
Affiliation(s)
- Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Qinghua Ma
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Huihui Liu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Lusen Bian
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Xinghong Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, People's Republic of China
| | - Yunpeng Liu
- Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
70
|
Kuang J, Wu C, Guo Y, Walther D, Shan W, Chen J, Chen L, Lu W. Deciphering transcriptional regulators of banana fruit ripening by regulatory network analysis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:477-489. [PMID: 32920977 PMCID: PMC7955892 DOI: 10.1111/pbi.13477] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Fruit ripening is a critical phase in the production and marketing of fruits. Previous studies have indicated that fruit ripening is a highly coordinated process, mainly regulated at the transcriptional level, in which transcription factors play essential roles. Thus, identifying key transcription factors regulating fruit ripening as well as their associated regulatory networks promises to contribute to a better understanding of fruit ripening. In this study, temporal gene expression analyses were performed to investigate banana fruit ripening with the aim to discern the global architecture of gene regulatory networks underlying fruit ripening. Eight time points were profiled covering dynamic changes of phenotypes, the associated physiology and levels of known ripening marker genes. Combining results from a weighted gene co-expression network analysis (WGCNA) as well as cis-motif analysis and supported by EMSA, Y1H, tobacco-, banana-transactivation experimental results, the regulatory network of banana fruit ripening was constructed, from which 25 transcription factors were identified as prime candidates to regulate the ripening process by modulating different ripening-related pathways. Our study presents the first global view of the gene regulatory network involved in banana fruit ripening, which may provide the basis for a targeted manipulation of fruit ripening to attain higher banana and loss-reduced banana commercialization.
Collapse
Affiliation(s)
- Jian‐Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Chao‐Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Yu‐Fan Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Dirk Walther
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Lin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Wang‐Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and VegetablesCollege of HorticultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
71
|
Liu H, Li J, Carvalhais LC, Percy CD, Prakash Verma J, Schenk PM, Singh BK. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. THE NEW PHYTOLOGIST 2021; 229:2873-2885. [PMID: 33131088 DOI: 10.1111/nph.17057] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/27/2020] [Indexed: 05/27/2023]
Abstract
An emerging experimental framework suggests that plants under biotic stress may actively seek help from soil microbes, but empirical evidence underlying such a 'cry for help' strategy is limited. We used integrated microbial community profiling, pathogen and plant transcriptive gene quantification and culture-based methods to systematically investigate a three-way interaction between the wheat plant, wheat-associated microbiomes and Fusarium pseudograminearum (Fp). A clear enrichment of a dominant bacterium, Stenotrophomonas rhizophila (SR80), was observed in both the rhizosphere and root endosphere of Fp-infected wheat. SR80 reached 3.7 × 107 cells g-1 in the rhizosphere and accounted for up to 11.4% of the microbes in the root endosphere. Its abundance had a positive linear correlation with the pathogen load at base stems and expression of multiple defence genes in top leaves. Upon re-introduction in soils, SR80 enhanced plant growth, both the below-ground and above-ground, and induced strong disease resistance by boosting plant defence in the above-ground plant parts, but only when the pathogen was present. Together, the bacterium SR80 seems to have acted as an early warning system for plant defence. This work provides novel evidence for the potential protection of plants against pathogens by an enriched beneficial microbe via modulation of the plant immune system.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Qld, 4072, Australia
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Qld, 4102, Australia
| | - Cassandra D Percy
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld, 4350, Australia
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Qld, 4072, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2753, Australia
| |
Collapse
|
72
|
Sharma S, Choudhary B, Yadav S, Mishra A, Mishra VK, Chand R, Chen C, Pandey SP. Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124155. [PMID: 33049626 DOI: 10.1016/j.jhazmat.2020.124155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
In a previous study, we identified a halotolerant rhizobacterium belonging to the genus Klebsiella (MBE02) that protected peanut seeds from Aspergillus flavus infection. Here, we investigated the mechanisms underlying the effect of MBE02 against A. flavus via untargeted metabolite profiling of peanut seeds treated with MBE02, A. flavus, or MBE02+A. flavus. Thirty-five metabolites were differentially accumulated across the three treatments (compared to the control), and the levels of pipecolic acid (Pip) were reduced upon A. flavus treatment only. We validated the function of Pip against A. flavus using multiple resistant and susceptible peanut cultivars. Pip accumulation was strongly associated with the resistant genotypes that also accumulated several mRNAs of the ALD1-like gene in the Pip biosynthesis pathway. Furthermore, exogenous treatment of a susceptible peanut cultivar with Pip reduced A. flavus infection in the seeds. Our findings indicate that Pip is a key component of peanut resistance to A. flavus.
Collapse
Affiliation(s)
- Sandeep Sharma
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Babita Choudhary
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India.
| | - Sonam Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India.
| | - Avinash Mishra
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India.
| | - Vinod K Mishra
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Shree P Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
73
|
Schmidt R, Saha M. Infochemicals in terrestrial plants and seaweed holobionts: current and future trends. THE NEW PHYTOLOGIST 2021; 229:1852-1860. [PMID: 32984975 DOI: 10.1111/nph.16957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Since the holobiont concept came into the limelight ten years ago, we have become aware that responses of holobionts to climate change stressors may be driven by shifts in the microbiota. However, the complex interactions underlying holobiont responses across aquatic and terrestrial ecosystems remain largely unresolved. One of the key factors driving these responses is the infochemical-mediated communication in the holobiont. In order to come up with a holistic picture, in this Viewpoint we compare mechanisms and infochemicals in the rhizosphere of plants and the eco-chemosphere of seaweeds in response to climate change stressors and other environmental stressors, including drought, warming and nutrient stress. Furthermore, we discuss the inclusion of chemical ecology concepts that are of crucial importance in driving holobiont survival, adaptation and/or holobiont breakdown. Infochemicals can thus be regarded as a 'missing link' in our understanding of holobiont response to climate change and should be investigated while investigating the responses of plant and seaweed holobionts to climate change. This will set the basis for improving our understanding of holobiont responses to climate change stressors across terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Ruth Schmidt
- Department of Microbiology and Biotechnology, Institut Armand Frappier, Montreal, H7V 1B7, Canada
| | - Mahasweta Saha
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| |
Collapse
|
74
|
Stassen MJJ, Hsu SH, Pieterse CMJ, Stringlis IA. Coumarin Communication Along the Microbiome-Root-Shoot Axis. TRENDS IN PLANT SCIENCE 2021; 26:169-183. [PMID: 33023832 DOI: 10.1016/j.tplants.2020.09.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 05/06/2023]
Abstract
Plants shape their rhizosphere microbiome by secreting root exudates into the soil environment. Recently, root-exuded coumarins were identified as novel players in plant-microbiome communication. Beneficial members of the root-associated microbiome stimulate coumarin biosynthesis in roots and their excretion into the rhizosphere. The iron-mobilizing activity of coumarins facilitates iron uptake from the soil environment, while their selective antimicrobial activity shapes the root microbiome, resulting in promotion of plant growth and health. Evidence is accumulating that, in analogy to strigolactones and flavonoids, coumarins may act in microbiome-to-root-to-shoot signaling events. Here, we review this multifaceted role of coumarins in bidirectional chemical communication along the microbiome-root-shoot axis.
Collapse
Affiliation(s)
- Max J J Stassen
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Shu-Hua Hsu
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands; Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, 10617, Taipei, Taiwan
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
75
|
Das J, Yadav SK, Ghosh S, Tyagi K, Magotra A, Krishnan A, Jha G. Enzymatic and non-enzymatic functional attributes of plant microbiome. Curr Opin Biotechnol 2021; 69:162-171. [PMID: 33493841 DOI: 10.1016/j.copbio.2020.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 01/07/2023]
Abstract
Microbiome plays an important role in plant growth and adaptation to various environmental conditions. The cross-talk between host plant and microbes (including microbe-microbe interactions) plays a crucial role in shaping the microbiome. Recent studies have highlighted that plant microbiome is enriched in genes encoding enzymes and natural products. Several novel antimicrobial compounds, bioactive natural products and lytic/degrading enzymes with industrial implications are being identified from the microbiome. Moreover, advancements in metagenomics and culture techniques are facilitating the development of synthetic microbial communities to promote sustainable agriculture. We discuss the recent advancements, opportunities and challenges in harnessing the full potential of plant microbiome.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kriti Tyagi
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ankita Magotra
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aiswarya Krishnan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
76
|
Lu Y, Tsuda K. Intimate Association of PRR- and NLR-Mediated Signaling in Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:3-14. [PMID: 33048599 DOI: 10.1094/mpmi-08-20-0239-ia] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.Plants recognize the presence or invasion of microbes through cell surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs). Although PRRs and NLRs are activated by ligands located in different subcellular compartments through distinct mechanisms, signals initiated from PRRs and NLRs converge into several common signaling pathways with different dynamics. Increasing evidence suggests that PRR- and NLR-mediated signaling extensively crosstalk and such interaction can greatly influence immune response outcomes. Sophisticated experimental setups enabled dissection of the signaling events downstream of PRRs and NLRs with fine temporal and spatial resolution; however, the molecular links underlying the observed interactions in PRR and NLR signaling remain to be elucidated. In this review, we summarize the latest knowledge about activation and signaling mediated by PRRs and NLRs, deconvolute the intimate association between PRR- and NLR-mediated signaling, and propose hypotheses to guide further research on key topics.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- You Lu
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Interdisciplinary Sciences Research Institute, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
77
|
Daraz U, Li Y, Sun Q, Zhang M, Ahmad I. Inoculation of Bacillus spp. Modulate the soil bacterial communities and available nutrients in the rhizosphere of vetiver plant irrigated with acid mine drainage. CHEMOSPHERE 2021; 263:128345. [PMID: 33297270 DOI: 10.1016/j.chemosphere.2020.128345] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 05/16/2023]
Abstract
Acid mine drainage (AMD) is one of an important pollution sources associated with mining activities and often inhibits plant growth. Plant growth promoting bacteria has received extensive attention for enhancing adaptability of plants growing in AMD polluted soils. The present study investigated the effect of plant growth promoting Bacillus spp. (strains UM5, UM10, UM13, UM15 and UM20) to improve vetiver (Chrysopogon zizanioides L.) adaptability in a soil irrigated with 50% AMD. Bacillus spp. exhibited P-solubilization, IAA and siderophore production. The Bacillus spp. strains UM10 and UM13 significantly increased shoot (4.2-2.5%) and root (3.4-1.9%) biomass in normal and AMD-impacted soil, respectively. Bacillus sp. strain UM20 significantly increased soil AP (379.93 mg/kg) while strain UM13 increased TN (1501.69 mg/kg) and WEON (114.44 mg/kg) than control. Proteobacteria, Chloroflexi, Acidobacteria and Bacteroidetes are the dominant phyla, of which Acidobacteria (12%) and Bacteroidetes (8.5%) were dominated in soil inoculated with Bacillus sp. strain UM20 while Proteobacteria (70%) in AMD soil only. However, the Chao1 and evenness indices were significantly increased in soil inoculated with Bacillus sp. strain UM13. Soil pH, AP and N fractions were positively correlated with the inoculation of bacterial strains UM13 and UM20. Plant growth promoting Bacillus spp. strains UM13 and UM20 were the main contributors to the variations in the rhizosphere bacterial community structure, improving soil available P, TN, WEON, NO3--N thus could be a best option to promote C. zizanioides adaptability in AMD-impacted soils.
Collapse
Affiliation(s)
- Umar Daraz
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, China
| | - Yang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, China.
| | - Mingzhu Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, 230601, China; Key Laboratory of Wetland Ecological Protection and Restoration, China; Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad Vehari-Campus, Vehari, 61100, Pakistan
| |
Collapse
|
78
|
Specific PP2A Catalytic Subunits Are a Prerequisite for Positive Growth Effects in Arabidopsis Co-Cultivated with Azospirillum brasilense and Pseudomonas simiae. PLANTS 2020; 10:plants10010066. [PMID: 33396893 PMCID: PMC7823443 DOI: 10.3390/plants10010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) stimulate plant growth, but the underlying mechanism is poorly understood. In this study, we asked whether PROTEIN PHOSPHATASE 2A (PP2A), a regulatory molecular component of stress, growth, and developmental signaling networks in plants, contributes to the plant growth responses induced by the PGPR Azospirillum brasilense (wild type strain Sp245 and auxin deficient strain FAJ0009) and Pseudomonas simiae (WCS417r). The PGPR were co-cultivated with Arabidopsis wild type (WT) and PP2A (related) mutants. These plants had mutations in the PP2A catalytic subunits (C), and the PP2A activity-modulating genes LEUCINE CARBOXYL METHYL TRANSFERASE 1 (LCMT1) and PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (PTPA). When exposed to the three PGPR, WT and all mutant Arabidopsis revealed the typical phenotype of PGPR-treated plants with shortened primary root and increased lateral root density. Fresh weight of plants generally increased when the seedlings were exposed to the bacteria strains, with the exception of catalytic subunit double mutant c2c5. The positive effect on root and shoot fresh weight was especially pronounced in Arabidopsis mutants with low PP2A activity. Comparison of different mutants indicated a significant role of the PP2A catalytic subunits C2 and C5 for a positive response to PGPR.
Collapse
|
79
|
Valette M, Rey M, Doré J, Gerin F, Wisniewski-Dyé F. Identification of a small set of genes commonly regulated in rice roots in response to beneficial rhizobacteria. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2537-2551. [PMID: 33424163 PMCID: PMC7772126 DOI: 10.1007/s12298-020-00911-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Rhizosphere bacteria, whether phytopathogenic or phytobeneficial, are thought to be perceived by the plant as a threat. Plant Growth-Promoting Rhizobacteria (PGPR), such as many strains of the Azospirillum genus known as the main phytostimulator of cereals, cooperate with host plants and favorably affect their growth and health. An earlier study of rice root transcriptome, undertaken with two rice cultivars and two Azospirillum strains, revealed a strain-dependent response during the rice-Azospirillum association and showed that only a few genes, including some implicated in plant defense, were commonly regulated in all tested conditions. Here, a set of genes was selected from previous studies and their expression was monitored by qRT-PCR in rice roots inoculated with ten PGPR strains isolated from various plants and belonging to various genera (Azospirillum, Herbaspirillum, Paraburkholderia). A common expression pattern was highlighted for four genes that are proposed to be markers of the rice-PGPR interaction: two genes involved in diterpenoid phytoalexin biosynthesis (OsDXS3 and OsDTC2) and one coding for an uncharacterized protein (Os02g0582900) were significantly induced by PGPR whereas one defense-related gene encoding a pathogenesis-related protein (PR1b, Os01g0382000) was significantly repressed. Interestingly, exposure to a rice bacterial pathogen also triggered the expression of OsDXS3 while the expression of Os02g0582900 and PR1b was down-regulated, suggesting that these genes might play a key role in rice-bacteria interactions. Integration of these results with previous data led us to propose that the jasmonic acid signaling pathway might be triggered in rice roots upon inoculation with PGPR.
Collapse
Affiliation(s)
- Marine Valette
- Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Lyon1, 16 rue Dubois, 69622 Villeurbanne, France
| | - Marjolaine Rey
- Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Lyon1, 16 rue Dubois, 69622 Villeurbanne, France
| | - Jeanne Doré
- Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Lyon1, 16 rue Dubois, 69622 Villeurbanne, France
| | - Florence Gerin
- Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Lyon1, 16 rue Dubois, 69622 Villeurbanne, France
| | - Florence Wisniewski-Dyé
- Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Lyon1, 16 rue Dubois, 69622 Villeurbanne, France
| |
Collapse
|
80
|
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J 2020; 18:3539-3554. [PMID: 33304453 PMCID: PMC7711191 DOI: 10.1016/j.csbj.2020.11.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versatility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this complex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic versatility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the recent advances regarding these mechanisms and the underlying bacterial genetic factors required for successful rhizosphere colonization.
Collapse
Affiliation(s)
- Antoine Zboralski
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
81
|
Jain A, Chatterjee A, Das S. Synergistic consortium of beneficial microorganisms in rice rhizosphere promotes host defense to blight-causing Xanthomonas oryzae pv. oryzae. PLANTA 2020; 252:106. [PMID: 33205288 DOI: 10.1007/s00425-020-03515-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Rice plants primed with beneficial microbes Bacillus amyloliquefaciens and Aspergillus spinulosporus with biocontrol potential against Xanthomonas oryzae pv. oryzae, provided protection from disease by reprogramming host defence response under pathogen challenge. Plant-beneficial microbe interactions taking place in the rhizosphere are widely used for growth promotion and mitigation of biotic stresses in plants. The present study aims to evaluate the defense network induced by beneficial microorganisms in the rice rhizosphere, and the three-way interaction involved upon inoculation with dreadful bacteria Xanthomonas oryzae pv. oryzae (Xoo). Differential expression of defense-related enzymes, proteins, and genes in rice variety Swarna primed with a microbial consortium of Bacillus amyloliquefaciens and Aspergillus spinulosporus were quantified in the presence and absence of Xoo. The time-based expression profile alterations in leaves under the five distinct treatments "(unprimed unchallenged, unprimed Xoo challenged, B. amyloliquefaciens primed and challenged, A. spinulosporus primed and challenged, B. amyloliquefaciens and A. spinulosporus consortium primed and challenged)" revealed differential early upregulation of SOD, PAL, PO, PPO activities and TPC content in beneficial microbes primed plants in comparison to unprimed challenged plants. The enhanced defense response in all the rice plants recruited with beneficial microbe was also reflected by reduced plant mortality and an increased plant dry biomass and chlorophyll content. Also, more than 550 protein spots were observed per gel by PD Quest software, a total of 55 differentially expressed protein spots were analysed used MALDI-TOF MS, out of which 48 spots were recognized with a significant score with direct or supporting roles in stress alleviation and disease resistance. qRT-PCR was carried out to compare the biochemical and proteomic data to mRNA levels. We conclude that protein biogenesis and alleviated resistance response may contribute to improved biotic stress adaptation. These results might accelerate the functional regulation of the Xoo-receptive proteins in the presence of beneficial rhizospheric microbes and their computation as promising molecular markers for superior disease management.
Collapse
Affiliation(s)
- Akansha Jain
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Anwesha Chatterjee
- Vijaygarh Jyotish Ray College, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
82
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
83
|
Kim W, Prokchorchik M, Tian Y, Kim S, Jeon H, Segonzac C. Perception of unrelated microbe-associated molecular patterns triggers conserved yet variable physiological and transcriptional changes in Brassica rapa ssp. pekinensis. HORTICULTURE RESEARCH 2020; 7:186. [PMID: 33328480 PMCID: PMC7603518 DOI: 10.1038/s41438-020-00410-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Pattern-triggered immunity (PTI) includes the different transcriptional and physiological responses that enable plants to ward off microbial invasion. Surface-localized pattern-recognition receptors (PRRs) recognize conserved microbe-associated molecular patterns (MAMPs) and initiate a branched signaling cascade that culminate in an effective restriction of pathogen growth. In the model species Arabidopsis thaliana, early PTI events triggered by different PRRs are broadly conserved although their nature or intensity is dependent on the origin and features of the detected MAMP. In order to provide a functional basis for disease resistance in leafy vegetable crops, we surveyed the conservation of PTI events in Brassica rapa ssp. pekinensis. We identified the PRR homologs present in B. rapa genome and found that only one of the two copies of the bacterial Elongation factor-Tu receptor (EFR) might function. We also characterized the extent and unexpected specificity of the transcriptional changes occurring when B. rapa seedlings are treated with two unrelated MAMPs, the bacterial flagellin flg22 peptide and the fungal cell wall component chitin. Finally, using a MAMP-induced protection assay, we could show that bacterial and fungal MAMPs elicit a robust immunity in B. rapa, despite significant differences in the kinetic and amplitude of the early signaling events. Our data support the relevance of PTI for crop protection and highlight specific functional target for disease resistance breeding in Brassica crops.
Collapse
Affiliation(s)
- Wanhui Kim
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Maxim Prokchorchik
- Life Sciences Department, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Yonghua Tian
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seulgi Kim
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyelim Jeon
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
84
|
Sunita K, Mishra I, Mishra J, Prakash J, Arora NK. Secondary Metabolites From Halotolerant Plant Growth Promoting Rhizobacteria for Ameliorating Salinity Stress in Plants. Front Microbiol 2020; 11:567768. [PMID: 33193157 PMCID: PMC7641974 DOI: 10.3389/fmicb.2020.567768] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Soil salinization has emerged as one of the prime environmental constraints endangering soil quality and agricultural productivity. Anthropogenic activities coupled with rapid pace of climate change are the key drivers of soil salinity resulting in degradation of agricultural lands. Increasing levels of salt not only impair structure of soil and its microbial activity but also restrict plant growth by causing harmful imbalance and metabolic disorders. Potential of secondary metabolites synthesized by halotolerant plant growth promoting rhizobacteria (HT-PGPR) in the management of salinity stress in crops is gaining importance. A wide array of secondary metabolites such as osmoprotectants/compatible solutes, exopolysaccharides (EPS) and volatile organic compounds (VOCs) from HT-PGPR have been reported to play crucial roles in ameliorating salinity stress in plants and their symbiotic partners. In addition, HT-PGPR and their metabolites also help in prompt buffering of the salt stress and act as biological engineers enhancing the quality and productivity of saline soils. The review documents prominent secondary metabolites from HT-PGPR and their role in modulating responses of plants to salinity stress. The review also highlights the mechanisms involved in the production of secondary metabolites by HT-PGPR in saline conditions. Utilizing the HT-PGPR and their secondary metabolites for the development of novel bioinoculants for the management of saline agro-ecosystems can be an important strategy in the future.
Collapse
Affiliation(s)
- Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| | - Isha Mishra
- Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Jitendra Mishra
- DST-Center for Policy Research, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Jai Prakash
- Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Naveen Kumar Arora
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
85
|
Zhang J, Coaker G, Zhou JM, Dong X. Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. MOLECULAR PLANT 2020; 13:1358-1378. [PMID: 32916334 PMCID: PMC7541739 DOI: 10.1016/j.molp.2020.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 05/19/2023]
Abstract
After three decades of the amazing progress made on molecular studies of plant-microbe interactions (MPMI), we have begun to ask ourselves "what are the major questions still remaining?" as if the puzzle has only a few pieces missing. Such an exercise has ultimately led to the realization that we still have many more questions than answers. Therefore, it would be an impossible task for us to project a coherent "big picture" of the MPMI field in a single review. Instead, we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jian-Min Zhou
- CAS Center for Excellence in Biotic Interactions, College of Advanced Agricutural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
86
|
Bakker PAHM, Berendsen RL, Van Pelt JA, Vismans G, Yu K, Li E, Van Bentum S, Poppeliers SWM, Sanchez Gil JJ, Zhang H, Goossens P, Stringlis IA, Song Y, de Jonge R, Pieterse CMJ. The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. MOLECULAR PLANT 2020; 13:1394-1401. [PMID: 32979564 DOI: 10.1016/j.molp.2020.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Looking forward includes looking back every now and then. In 2007, David Weller looked back at 30 years of biocontrol of soil-borne pathogens by Pseudomonas and signified that the progress made over decades of research has provided a firm foundation to formulate current and future research questions. It has been recognized for more than a century that soil-borne microbes play a significant role in plant growth and health. The recent application of high-throughput omics technologies has enabled detailed dissection of the microbial players and molecular mechanisms involved in the complex interactions in plant-associated microbiomes. Here, we highlight old and emerging plant microbiome concepts related to plant disease control, and address perspectives that modern and emerging microbiomics technologies can bring to functionally characterize and exploit plant-associated microbiomes for the benefit of plant health in future microbiome-assisted agriculture.
Collapse
Affiliation(s)
- Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Gilles Vismans
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ke Yu
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Erqin Li
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Sietske Van Bentum
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Sanne W M Poppeliers
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Juan J Sanchez Gil
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hao Zhang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Pim Goossens
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Yang Song
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
87
|
Vishwanathan K, Zienkiewicz K, Liu Y, Janz D, Feussner I, Polle A, Haney CH. Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1-dependent manner. THE NEW PHYTOLOGIST 2020; 228:728-740. [PMID: 32473606 DOI: 10.1111/nph.16715] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/22/2020] [Indexed: 05/19/2023]
Abstract
Below-ground microbes can induce systemic resistance against foliar pests and pathogens on diverse plant hosts. The prevalence of induced systemic resistance (ISR) among plant-microbe-pest systems raises the question of host specificity in microbial induction of ISR. To test whether ISR is limited by plant host range, we tested the ISR-inducing ectomycorrhizal fungus Laccaria bicolor on the nonmycorrhizal plant Arabidopsis thaliana. We used the cabbage looper Trichoplusia ni and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) as readouts for ISR on Arabidopsis. We found that root inoculation with L. bicolor triggered ISR against T. ni and induced systemic susceptibility (ISS) against the bacterial pathogen Pto. We found that L. bicolor-triggered ISR against T. ni was dependent on jasmonic acid signaling and salicylic acid biosynthesis and signaling. Heat-killed L. bicolor and chitin were sufficient to trigger ISR against T. ni and ISS against Pto. The chitin receptor CERK1 was necessary for L. bicolor-mediated effects on systemic immunity. Collectively our findings suggest that some ISR responses might not require intimate symbiotic association, but rather might be the result of root perception of conserved microbial signals.
Collapse
Affiliation(s)
- Kishore Vishwanathan
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dennis Janz
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Cara H Haney
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
88
|
Rich-Griffin C, Eichmann R, Reitz MU, Hermann S, Woolley-Allen K, Brown PE, Wiwatdirekkul K, Esteban E, Pasha A, Kogel KH, Provart NJ, Ott S, Schäfer P. Regulation of Cell Type-Specific Immunity Networks in Arabidopsis Roots. THE PLANT CELL 2020; 32:2742-2762. [PMID: 32699170 PMCID: PMC7474276 DOI: 10.1105/tpc.20.00154] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 05/04/2023]
Abstract
While root diseases are among the most devastating stresses in global crop production, our understanding of root immunity is still limited relative to our knowledge of immune responses in leaves. Considering that root performance is based on the concerted functions of its different cell types, we undertook a cell type-specific transcriptome analysis to identify gene networks activated in epidermis, cortex, and pericycle cells of Arabidopsis (Arabidopsis thaliana) roots challenged with two immunity elicitors, the bacterial flagellin-derived flg22 and the endogenous Pep1 peptide. Our analyses revealed distinct immunity gene networks in each cell type. To further substantiate our understanding of regulatory patterns underlying these cell type-specific immunity networks, we developed a tool to analyze paired transcription factor binding motifs in the promoters of cell type-specific genes. Our study points toward a connection between cell identity and cell type-specific immunity networks that might guide cell types in launching immune response according to the functional capabilities of each cell type.
Collapse
Affiliation(s)
| | - Ruth Eichmann
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Molecular Botany, Ulm University, 89069 Ulm, Germany
| | - Marco U Reitz
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sophie Hermann
- Institute of Phytopathology, Justus Liebig University, 35392 Giessen, Germany
| | | | - Paul E Brown
- Bioinformatics Research Technology Platform, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Kate Wiwatdirekkul
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Justus Liebig University, 35392 Giessen, Germany
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Sascha Ott
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Molecular Botany, Ulm University, 89069 Ulm, Germany
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
89
|
Jiménez-Vázquez KR, García-Cárdenas E, Barrera-Ortiz S, Ortiz-Castro R, Ruiz-Herrera LF, Ramos-Acosta BP, Coria-Arellano JL, Sáenz-Mata J, López-Bucio J. The plant beneficial rhizobacterium Achromobacter sp. 5B1 influences root development through auxin signaling and redistribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1639-1654. [PMID: 32445404 DOI: 10.1111/tpj.14853] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 05/20/2023]
Abstract
Roots provide physical and nutritional support to plant organs that are above ground and play critical roles for adaptation via intricate movements and growth patterns. Through screening the effects of bacterial isolates from roots of halophyte Mesquite (Prosopis sp.) on Arabidopsis thaliana, we identified Achromobacter sp. 5B1 as a probiotic bacterium that influences plant functional traits. Detailed genetic and architectural analyses in Arabidopsis grown in vitro and in soil, cell division measurements, auxin transport and response gene expression and brefeldin A treatments demonstrated that root colonization with Achromobacter sp. 5B1 changes the growth and branching patterns of roots, which were related to auxin perception and redistribution. Expression analysis of auxin transport and signaling revealed a redistribution of auxin within the primary root tip of wild-type seedlings by Achromobacter sp. 5B1 that is disrupted by brefeldin A and correlates with repression of auxin transporters PIN1 and PIN7 in root provasculature, and PIN2 in the epidermis and cortex of the root tip, whereas expression of PIN3 was enhanced in the columella. In seedlings harboring AUX1, EIR1, AXR1, ARF7ARF19, TIR1AFB2AFB3 single, double or triple loss-of-function mutations, or in a dominant (gain-of-function) mutant of SLR1, the bacterium caused primary roots to form supercoils that are devoid of lateral roots. The changes in growth and root architecture elicited by the bacterium helped Arabidopsis seedlings to resist salt stress better. Thus, Achromobacter sp. 5B1 fine tunes both root movements and the auxin response, which may be important for plant growth and environmental adaptation.
Collapse
Affiliation(s)
- Kirán R Jiménez-Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351 El Haya, Xalapa, Veracruz, 91070, México
| | - León F Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Blanca P Ramos-Acosta
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Frac. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México
| | - Jessica L Coria-Arellano
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Frac. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México
| | - Jorge Sáenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Frac. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| |
Collapse
|
90
|
Cannon AE, Yan C, Burks DJ, Rao X, Azad RK, Chapman KD. Lipophilic signals lead to organ-specific gene expression changes in Arabidopsis seedlings. PLANT DIRECT 2020; 4:e00242. [PMID: 32775951 PMCID: PMC7403840 DOI: 10.1002/pld3.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 05/10/2023]
Abstract
In plants, N-acylethanolamines (NAEs) are most abundant in desiccated seeds and their levels decline during germination and early seedling establishment. However, endogenous NAE levels rise in seedlings when ABA or environmental stress is applied, and this results in an inhibition of further seedling development. When the most abundant, polyunsaturated NAEs of linoleic acid (18:2) and linolenic acid (18:3) were exogenously applied, seedling development was affected in an organ-specific manner. NAE 18:2 primarily affected primary root elongation and NAE 18:3 primarily affected cotyledon greening and expansion and overall seedling growth. The molecular components and signaling mechanisms involved in this pathway are not well understood. In addition, the bifurcating nature of this pathway provides a unique system in which to study the spatial aspects and interaction of these lipid-specific and organ-targeted signaling pathways. Using whole transcriptome sequencing (RNA-seq) and differential expression analysis, we identified early (1-3 hr) transcriptional changes induced by the exogenous treatment of NAE 18:2 and NAE 18:3 in cotyledons, roots, and seedlings. These two treatments led to a significant enrichment in ABA-response and chitin-response genes in organs where the treatments led to changes in development. In Arabidopsis seedlings, NAE 18:2 treatment led to the repression of genes involved in cell wall biogenesis and organization in roots and seedlings. In addition, cotyledons, roots, and seedlings treated with NAE 18:3 also showed a decrease in transcripts that encode proteins involved in growth processes. NAE 18:3 also led to changes in the abundance of transcripts involved in the modulation of chlorophyll biosynthesis and catabolism in cotyledons. Overall, NAE 18:2 and NAE 18:3 treatment led to lipid-type and organ-specific gene expression changes that include overlapping and non-overlapping gene sets. These data will provide future, rich opportunities to examine the genetic pathways involved in transducing early signals into downstream physiological changes in seedling growth.
Collapse
Affiliation(s)
- Ashley E. Cannon
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | - Chengshi Yan
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | - David J. Burks
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | - Rajeev K. Azad
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTXUSA
- Department of MathematicsUniversity of North TexasDentonTXUSA
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTXUSA
| |
Collapse
|
91
|
Saad MM, Eida AA, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3878-3901. [PMID: 32157287 PMCID: PMC7450670 DOI: 10.1093/jxb/eraa111] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
Plants are now recognized as metaorganisms which are composed of a host plant associated with a multitude of microbes that provide the host plant with a variety of essential functions to adapt to the local environment. Recent research showed the remarkable importance and range of microbial partners for enhancing the growth and health of plants. However, plant-microbe holobionts are influenced by many different factors, generating complex interactive systems. In this review, we summarize insights from this emerging field, highlighting the factors that contribute to the recruitment, selection, enrichment, and dynamic interactions of plant-associated microbiota. We then propose a roadmap for synthetic community application with the aim of establishing sustainable agricultural systems that use microbial communities to enhance the productivity and health of plants independently of chemical fertilizers and pesticides. Considering global warming and climate change, we suggest that desert plants can serve as a suitable pool of potentially beneficial microbes to maintain plant growth under abiotic stress conditions. Finally, we propose a framework for advancing the application of microbial inoculants in agriculture.
Collapse
Affiliation(s)
- Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette Cedex, France
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
92
|
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu Rev Microbiol 2020; 74:81-100. [PMID: 32530732 DOI: 10.1146/annurev-micro-022620-014327] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jonathan M Conway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Sarah Gilbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Paulo José Pereira Lima Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo 13418-900, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
93
|
Rigo R, Bazin J, Romero‐Barrios N, Moison M, Lucero L, Christ A, Benhamed M, Blein T, Huguet S, Charon C, Crespi M, Ariel F. The Arabidopsis lncRNA ASCO modulates the transcriptome through interaction with splicing factors. EMBO Rep 2020; 21:e48977. [PMID: 32285620 PMCID: PMC7202219 DOI: 10.15252/embr.201948977] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Alternative splicing (AS) is a major source of transcriptome diversity. Long noncoding RNAs (lncRNAs) have emerged as regulators of AS through different molecular mechanisms. In Arabidopsis thaliana, the AS regulators NSRs interact with the ALTERNATIVE SPLICING COMPETITOR (ASCO) lncRNA. Here, we analyze the effect of the knock-down and overexpression of ASCO at the genome-wide level and find a large number of deregulated and differentially spliced genes related to flagellin responses and biotic stress. In agreement, ASCO-silenced plants are more sensitive to flagellin. However, only a minor subset of deregulated genes overlaps with the AS defects of the nsra/b double mutant, suggesting an alternative way of action for ASCO. Using biotin-labeled oligonucleotides for RNA-mediated ribonucleoprotein purification, we show that ASCO binds to the highly conserved spliceosome component PRP8a. ASCO overaccumulation impairs the recognition of specific flagellin-related transcripts by PRP8a. We further show that ASCO also binds to another spliceosome component, SmD1b, indicating that it interacts with multiple splicing factors. Hence, lncRNAs may integrate a dynamic network including spliceosome core proteins, to modulate transcriptome reprogramming in eukaryotes.
Collapse
Affiliation(s)
- Richard Rigo
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
| | - Jérémie Bazin
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
| | - Natali Romero‐Barrios
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
| | - Michaël Moison
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| | - Aurélie Christ
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
| | - Moussa Benhamed
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
| | - Thomas Blein
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
| | - Stéphanie Huguet
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
| | - Céline Charon
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
| | - Martin Crespi
- Institute of Plant Sciences Paris‐Saclay (IPS2)CNRSINRAUniversities Paris‐Sud, Evry and Paris‐DiderotSorbonne Paris‐CiteUniversity of Paris‐SaclayOrsayFrance
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
94
|
Lee S, Kim S, Lee N, Ahn C, Ryu C. d-Lactic acid secreted by Chlorella fusca primes pattern-triggered immunity against Pseudomonas syringae in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:761-778. [PMID: 31869481 PMCID: PMC7318130 DOI: 10.1111/tpj.14661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 05/13/2023]
Abstract
Biological control agents including microbes and their products have been studied as sustainable crop protection strategies. Although aquatic microalgae have been recently introduced as a biological control agent, the underlying molecular mechanisms are largely unknown. The aim of the present study was to investigate the molecular mechanisms underlying biological control by microalga Chlorella fusca. Foliar application of C. fusca elicits induced resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 that activates plant immunity rather than direct antagonism. To understand the basis of C. fusca-triggered induced resistance at the transcriptional level, we conducted RNA sequencing (RNA-seq) analysis. RNA-seq data showed that, upon pathogen inoculation, C. fusca treatment primed the expression of cysteine-rich receptor-like kinases, WRKY transcription factor genes, and salicylic acid and jasmonic acid signalling-related genes. Intriguingly, the application of C. fusca primed pathogen-associated molecular pattern -triggered immunity, characterized by reactive oxygen species burst and callose deposition, upon flagellin 22 treatment. The attempts to find C. fusca determinants allowed us to identify d-lactic acid secreted in the supernatant of C. fusca as a defence priming agent. This is the first report of the mechanism of innate immune activation by aquatic microalga Chlorella in higher plants.
Collapse
Affiliation(s)
- Sang‐Moo Lee
- Molecular Phytobacteriology LaboratoryKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141South Korea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyUniversity of Science and TechnologyDaejeon34113South Korea
| | - Seon‐Kyu Kim
- Personalized Genomic Medicine Research CenterKRIBBDaejeon34141South Korea
| | - Nakyeong Lee
- Cell Factory Research CenterKRIBBDaejeon34141South Korea
- Department of Environmental BiotechnologyKRIBB School of BiotechnologyUniversity of Science and TechnologyDaejeon34113South Korea
| | - Chi‐Yong Ahn
- Cell Factory Research CenterKRIBBDaejeon34141South Korea
- Department of Environmental BiotechnologyKRIBB School of BiotechnologyUniversity of Science and TechnologyDaejeon34113South Korea
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon34141South Korea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyUniversity of Science and TechnologyDaejeon34113South Korea
| |
Collapse
|
95
|
Vergnes S, Gayrard D, Veyssière M, Toulotte J, Martinez Y, Dumont V, Bouchez O, Rey T, Dumas B. Phyllosphere Colonization by a Soil Streptomyces sp. Promotes Plant Defense Responses Against Fungal Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:223-234. [PMID: 31544656 DOI: 10.1094/mpmi-05-19-0142-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Streptomycetes are soil-dwelling, filamentous actinobacteria and represent a prominent bacterial clade inside the plant root microbiota. The ability of streptomycetes to produce a broad spectrum of antifungal metabolites suggests that these bacteria could be used to manage plant diseases. Here, we describe the identification of a soil Streptomyces strain named AgN23 which strongly activates a large array of defense responses when applied on Arabidopsis thaliana leaves. AgN23 increased the biosynthesis of salicylic acid, leading to the development of salicylic acid induction deficient 2 (SID2)-dependent necrotic lesions. Size exclusion fractionation of plant elicitors secreted by AgN23 showed that these signals are tethered into high molecular weight complexes. AgN23 mycelium was able to colonize the leaf surface, leading to plant resistance against Alternaria brassicicola infection in wild-type Arabidopsis plants. AgN23-induced resistance was found partially compromised in salicylate, jasmonate, and ethylene mutants. Our data show that Streptomyces soil bacteria can develop at the surface of plant leaves to induce defense responses and protection against foliar fungal pathogens, extending their potential use to manage plant diseases.
Collapse
Affiliation(s)
- Sophie Vergnes
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| | - Damien Gayrard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
- De Sangosse, Bonnel, 47480 Pont-Du-Casse, France
| | - Marine Veyssière
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| | - Justine Toulotte
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| | - Yves Martinez
- CNRS, Plateforme Imagerie-Microscopie, Fédération de Recherche FR3450, Castanet-Tolosan, France
| | - Valérie Dumont
- CRITT-Bio-industries, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
- De Sangosse, Bonnel, 47480 Pont-Du-Casse, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
96
|
Pršić J, Ongena M. Elicitors of Plant Immunity Triggered by Beneficial Bacteria. FRONTIERS IN PLANT SCIENCE 2020; 11:594530. [PMID: 33304371 PMCID: PMC7693457 DOI: 10.3389/fpls.2020.594530] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 05/19/2023]
Abstract
The molecular basis of plant immunity triggered by microbial pathogens is being well-characterized as a complex sequential process leading to the activation of defense responses at the infection site, but which may also be systemically expressed in all organs, a phenomenon also known as systemic acquired resistance (SAR). Some plant-associated and beneficial bacteria are also able to stimulate their host to mount defenses against pathogen ingress via the phenotypically similar, induced systemic resistance phenomenon. Induced systemic resistance resembles SAR considering its mechanistic principle as it successively involves recognition at the plant cell surface, stimulation of early cellular immune-related events, systemic signaling via a fine-tuned hormonal cross-talk and activation of defense mechanisms. It thus represents an indirect but efficient mechanism by which beneficial bacteria with biocontrol potential improve the capacity of plants to restrict pathogen invasion. However, according to our current vision, induced systemic resistance is specific considering some molecular aspects underpinning these different steps. Here we overview the chemical diversity of compounds that have been identified as induced systemic resistance elicitors and thereby illustrating the diversity of plants species that are responsive as well as the range of pathogens that can be controlled via this phenomenon. We also point out the need for further investigations allowing better understanding how these elicitors are sensed by the host and the diversity and nature of the stimulated defense mechanisms.
Collapse
|
97
|
Kępczyńska E, Karczyński P. Medicago truncatula root developmental changes by growth-promoting microbes isolated from Fabaceae, growing on organic farms, involve cell cycle changes and WOX5 gene expression. PLANTA 2019; 251:25. [PMID: 31784832 DOI: 10.1007/s00425-019-03300-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Both root nodules and the rhizosphere of Fabaceae plants grown on organic farms are a rich source of bacteria, mainly from the families Enterobacteriaceae and Pseudomonadaceae. The enhanced root system growth in M. truncatula after inoculation with selected bacteria includes an increase of nuclei in the cell cycle S phase and a reduction in phase G2 as well as an enhanced expression of the WOX5 gene. Synthetic fertilizers and pesticides are commonly used to improve plant quality and health. However, it is necessary to look for other efficient and also environmentally safe methods. One such method involves the use of bacteria known as plant growth-promoting bacteria (PGPB). Seventy-two bacterial isolates from the rhizospheric soil and root nodule samples of legumes, including bean, alfalfa, lupine and barrel medic, grown on an organic farm in Western Pomerania (Poland) were screened for their growth-promoting capacities and 38 selected isolates were identified based on 16S rRNA gene sequencing. The analysis showed the isolates to represent 17 strains assigned to 6 families: Enterobacteriaceae, Pseudomonadaceae, Xanthomonadaceae, Rhizobiaceae, Bacillaceae and Alcaligenaceae. Pot experiments showed that 13 strains, capable of producing indole compounds from tryptophan in vitro, could significantly enhance the root and shoot weight of 10-week-old Medicago truncatula seedlings. Compared to non-inoculated seedlings, the root system of inoculated ones was more branched; in addition, the root length, surface area and, especially, the root volume were higher. The 24-h root inoculation with the three selected strains increased the nuclei population in the G1 and S phases, decreased it in the G2 phase and enhanced the WUSCHEL-related Homeobox5 (WOX5) gene expression in root tips and lateral zones. The "arrest" of nuclei in the S phase and the enhancement of the WOX5 gene expression were observed to gradually disappear once the bacterial suspension was rinsed off the seedling roots and the roots were transferred to water for further growth. This study shows that the nodules and rhizosphere of legumes grown on organic farms are a rich source of different PGPB species and provides new data on the ability of these bacteria to interfere with cell cycle and gene expression during the root development.
Collapse
Affiliation(s)
- Ewa Kępczyńska
- Department of Plant Biotechnology, Faculty of Biology, University of Szczecin, Wąska 13, 71-413, Szczecin, Poland.
| | - Piotr Karczyński
- Department of Plant Biotechnology, Faculty of Biology, University of Szczecin, Wąska 13, 71-413, Szczecin, Poland
| |
Collapse
|
98
|
Yu K, Liu Y, Tichelaar R, Savant N, Lagendijk E, van Kuijk SJ, Stringlis IA, van Dijken AJ, Pieterse CM, Bakker PA, Haney CH, Berendsen RL. Rhizosphere-Associated Pseudomonas Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. Curr Biol 2019; 29:3913-3920.e4. [DOI: 10.1016/j.cub.2019.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
|
99
|
Li B, Ferreira MA, Huang M, Camargos LF, Yu X, Teixeira RM, Carpinetti PA, Mendes GC, Gouveia-Mageste BC, Liu C, Pontes CSL, Brustolini OJB, Martins LGC, Melo BP, Duarte CEM, Shan L, He P, Fontes EPB. The receptor-like kinase NIK1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity. Nat Commun 2019; 10:4996. [PMID: 31676803 PMCID: PMC6825196 DOI: 10.1038/s41467-019-12847-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/04/2019] [Indexed: 01/23/2023] Open
Abstract
Plants deploy various immune receptors to recognize pathogens and defend themselves. Crosstalk may happen among receptor-mediated signal transduction pathways in the same host during simultaneous infection of different pathogens. However, the related function of the receptor-like kinases (RLKs) in thwarting different pathogens remains elusive. Here, we report that NIK1, which positively regulates plant antiviral immunity, acts as an important negative regulator of antibacterial immunity. nik1 plants exhibit dwarfed morphology, enhanced disease resistance to bacteria and increased PAMP-triggered immunity (PTI) responses, which are restored by NIK1 reintroduction. Additionally, NIK1 negatively regulates the formation of the FLS2/BAK1 complex. The interaction between NIK1 and FLS2/BAK1 is enhanced upon flg22 perception, revealing a novel PTI regulatory mechanism by an RLK. Furthermore, flg22 perception induces NIK1 and RPL10A phosphorylation in vivo, activating antiviral signalling. The NIK1-mediated inverse modulation of antiviral and antibacterial immunity may allow bacteria and viruses to activate host immune responses against each other. Plants deploy numerous receptor-like kinases (RLKs) to respond to pathogens. Here the authors show that NIK1, an RLK that positively regulates antiviral immunity, negatively regulates the response to bacteria by modulating FLS2/BAK1 complex formation, suggesting crosstalk between bacterial and viral immunity.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Marco Aurélio Ferreira
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Luiz Fernando Camargos
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil.,Federal Institute of Education from Goias, Science and Technology, Urutaí, GO, 75790-000, Brazil
| | - Xiao Yu
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ruan M Teixeira
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Paola A Carpinetti
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Giselle C Mendes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Rio do Sul, SC, 89163-356, Brazil
| | - Bianca C Gouveia-Mageste
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil
| | - Chenglong Liu
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Claudia S L Pontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil
| | - Otávio J B Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Laboratório Nacional de Computação Cientifica (LNCC), Petrópolis, RJ, Brazil
| | - Laura G C Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Bruno P Melo
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Christiane E M Duarte
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa, MG, 36570.900, Brazil. .,Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570.900, Brazil.
| |
Collapse
|
100
|
Kang X, Wang L, Guo Y, Ul Arifeen MZ, Cai X, Xue Y, Bu Y, Wang G, Liu C. A Comparative Transcriptomic and Proteomic Analysis of Hexaploid Wheat's Responses to Colonization by Bacillus velezensis and Gaeumannomyces graminis, Both Separately and Combined. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1336-1347. [PMID: 31125282 DOI: 10.1094/mpmi-03-19-0066-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tritrophic interactions involving a biocontrol agent, a pathogen, and a plant have been analyzed predominantly from the perspective of the biocontrol agent. To explore the adaptive strategies of wheat in response to beneficial, pathogenic, and combined microorganisms, we performed the first comprehensive transcriptomic, proteomic, and biochemical analysis in wheat roots after exposure to Bacillus velezensis CC09, Gaeumannomyces graminis var. tritici, and their combined colonization, respectively. The transcriptional or translational programming of wheat roots inoculated with beneficial B. velezensis showed mild alterations compared with that of pathogenic G. graminis var. tritici. However, the combination of B. velezensis and G. graminis var. tritici activated a larger transcriptional or translational program than for each single microorganism, although the gene expression pattern was similar to that of individual infection by G. graminis var. tritici, suggesting a prioritization of defense against G. graminis var. tritici infection. Surprisingly, pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity made wheat pretreated with B. velezensis more sensitive to subsequent G. graminis var. tritici infection. Additionally, B. velezensis triggered a salicylic acid (SA)-dependent mode of induced systemic resistance that resembles pathogen-induced systemic acquired resistance. Wheat plants mainly depend on SA-mediated resistance, and not that mediated by jasmonic acid (JA), against the necrotrophic pathogen G. graminis var. tritici. Moreover, SA-JA interactions resulted in antagonistic effects regardless of the type of microorganisms in wheat. Further enhancement of SA-dependent defense responses such as lignification to the combined infection was shown to reduce the level of induced JA-dependent defense against subsequent infection with G. graminis var. tritici. Altogether, our results demonstrate how the hexaploid monocot wheat responds to beneficial or pathogenic microorganisms and prolongs the onset of take-all disease through modulation of cell reprogramming and signaling events.
Collapse
Affiliation(s)
- Xingxing Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lanhua Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Muhammad Zain Ul Arifeen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xunchao Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yarong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuanqin Bu
- Nanjing Institute of Environmental Sciences, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, China
| | - Gang Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|