51
|
Dopamine firing plays a dual role in coding reward prediction errors and signaling motivation in a working memory task. Proc Natl Acad Sci U S A 2022; 119:2113311119. [PMID: 34992139 PMCID: PMC8764687 DOI: 10.1073/pnas.2113311119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Little is known about how dopamine (DA) neuron firing rates behave in cognitively demanding decision-making tasks. Here, we investigated midbrain DA activity in monkeys performing a discrimination task in which the animal had to use working memory (WM) to report which of two sequentially applied vibrotactile stimuli had the higher frequency. We found that perception was altered by an internal bias, likely generated by deterioration of the representation of the first frequency during the WM period. This bias greatly controlled the DA phasic response during the two stimulation periods, confirming that DA reward prediction errors reflected stimulus perception. In contrast, tonic dopamine activity during WM was not affected by the bias and did not encode the stored frequency. More interestingly, both delay-period activity and phasic responses before the second stimulus negatively correlated with reaction times of the animals after the trial start cue and thus represented motivated behavior on a trial-by-trial basis. During WM, this motivation signal underwent a ramp-like increase. At the same time, motivation positively correlated with accuracy, especially in difficult trials, probably by decreasing the effect of the bias. Overall, our results indicate that DA activity, in addition to encoding reward prediction errors, could at the same time be involved in motivation and WM. In particular, the ramping activity during the delay period suggests a possible DA role in stabilizing sustained cortical activity, hypothetically by increasing the gain communicated to prefrontal neurons in a motivation-dependent way.
Collapse
|
52
|
David M, Serena B, Jeremy B, Madeline T, Bernard BW. CRF-receptor1 modulation of the dopamine projection to prelimbic cortex facilitates cognitive flexibility after acute and chronic stress. Neurobiol Stress 2022; 16:100424. [PMID: 35005102 PMCID: PMC8718497 DOI: 10.1016/j.ynstr.2021.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Stress reduces cognitive flexibility and dopamine D1 receptor-related activity in the prelimbic cortex (PL), effects hypothesized to depend on reduced corticotropic releasing factor receptor type 1 (CRFr1) regulation of dopamine neurons in the ventral tegmental area (VTA). We assessed this hypothesis in rats by examining the effect of chronic unpredictable restraint stress (CUS), mild acute stress, or their combination on cognitive flexibility, CRFr1 expression in the VTA and D1-related activity in PL. In Experiment 1, rats received either CUS or equivalent handling for 14 days before being trained to press two levers to earn distinct food outcomes. Initial learning was assessed using an outcome devaluation test after which cognitive flexibility was assessed by reversing the outcomes earned by the actions. Prior to each reversal training session, half the CUS and controls receiving acute stress with action-outcome updating assessed using a second devaluation test and CRFr1 expression in the VTA assessed using in-situ hybridisation. Although CUS did not itself affect action-outcome learning, its combination with acute stress blocked reversal learning and decreased VTA CRFr1 expression after acute shock. The relationship between these latter two effects was assessed in Experiment 2 by pharmacologically disconnecting the VTA and PL, unilaterally blocking neurons expressing CRFr1 in the VTA and D1 receptors in the contralateral PL during reversal learning after acute stress. Acute stress again blocked reversal learning but only in the group with VTA-PL disconnection, demonstrating that VTA CRFr1-induced facilitation of dopaminergic activity in the PL is necessary for maintaining cognitive flexibility after acute stress. [250]. Acute stress increased CRF receptor1 expression in the VTA. Chronic stress attenuated the effect of acute stress on CRFr1 expression. Chronic stress plus acute stress produced a loss of cognitive flexibility. Blocking VTA CFRr1 and dopamine D1r in PL reduced cognitive flexibility following stress.
Collapse
Affiliation(s)
- Mor David
- School of Medical Sciences, University of Sydney, Australia
| | - Becchi Serena
- Decision Neuroscience Lab, University of New South Wales, Australia
| | - Bowring Jeremy
- School of Medical Sciences, University of Sydney, Australia
| | | | | |
Collapse
|
53
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
54
|
Moore TL, Young DA, Killiany RJ, Fonseca KR, Volfson D, Gray DL, Balice-Gordon R, Kozak R. The Effects of a Novel Non-catechol Dopamine Partial Agonist on Working Memory in the Aged Rhesus Monkey. Front Aging Neurosci 2021; 13:757850. [PMID: 34899271 PMCID: PMC8662559 DOI: 10.3389/fnagi.2021.757850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
Aged-related declines in cognition, especially working memory and executive function, begin in middle-age and these abilities are known to be mediated by the prefrontal cortex (PFC) and more specifically the dopamine (DA) system within the PFC. In both humans and monkeys, there is significant evidence that the PFC is the first cortical region to change with age and the PFC appears to be particularly vulnerable to age-related loss of dopamine (DA). Therefore, the DA system is a strong candidate for therapeutic intervention to slow or reverse age related declines in cognition. In the present study, we administered a novel selective, potent, non-catechol DA D1 R agonist PF-6294 (Pfizer, Inc.) to aged female rhesus monkeys and assessed their performance on two benchmark tasks of working memory - the Delayed Non-match to Sample Task (DNMS) and Delayed Recognition Span Task (DRST). The DNMS task was administered first with the standard 10 s delay and then with 5 min delays, with and without distractors. The DRST was administered each day with four trials with unique sequences and one trial of a repeated sequence to assess evidence learning and retention. Overall, there was no significant effect of drug on performance on any aspect of the DNMS task. In contrast, we demonstrated that a middle range dose of PF-6294 significantly increased memory span on the DRST on the first and last days of testing and by the last day of testing the increased memory span was driven by the performance on the repeated trials.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States.,Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Damon A Young
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States.,Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Kari R Fonseca
- Medicine Design, Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - Dmitri Volfson
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - David L Gray
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - Rita Balice-Gordon
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| | - Rouba Kozak
- Internal Medicine Research Unit Pfizer Worldwide Research, Development and Medical Pfizer Inc., Cambridge, MA, United States
| |
Collapse
|
55
|
Lançon K, Qu C, Navratilova E, Porreca F, Séguéla P. Decreased dopaminergic inhibition of pyramidal neurons in anterior cingulate cortex maintains chronic neuropathic pain. Cell Rep 2021; 37:109933. [PMID: 34852233 PMCID: PMC8728690 DOI: 10.1016/j.celrep.2021.109933] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/02/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Pyramidal neurons in the anterior cingulate cortex (ACC), a prefrontal region involved in processing the affective components of pain, display hyperexcitability in chronic neuropathic pain conditions, and their silencing abolishes hyperalgesia. We show that dopamine, through D1 receptor (D1R) signaling, inhibits pyramidal neurons of mouse ACC by modulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Activation of Gs-coupled D1R by dopamine induces the opening of HCN channels at physiological membrane potentials, driving a significant decrease in input resistance and excitability. Systemic L-DOPA in chronic neuropathic mice rescues HCN channel activity, normalizes pyramidal excitability in ACC, and blocks mechanical and thermal allodynia. Moreover, microinjection of a selective D1R agonist in the ACC relieves the aversiveness of ongoing neuropathic pain, while an ACC D1R antagonist blocks gabapentin- and lidocaine-evoked antinociception. We conclude that dopaminergic inhibition via D1R in ACC plays an analgesic role in physiological conditions and is decreased in chronic pain.
Collapse
Affiliation(s)
- Kevin Lançon
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 2B4, Canada
| | - Chaoling Qu
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Philippe Séguéla
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
56
|
Roussy M, Mendoza-Halliday D, Martinez-Trujillo JC. Neural Substrates of Visual Perception and Working Memory: Two Sides of the Same Coin or Two Different Coins? Front Neural Circuits 2021; 15:764177. [PMID: 34899197 PMCID: PMC8662382 DOI: 10.3389/fncir.2021.764177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Visual perception occurs when a set of physical signals emanating from the environment enter the visual system and the brain interprets such signals as a percept. Visual working memory occurs when the brain produces and maintains a mental representation of a percept while the physical signals corresponding to that percept are not available. Early studies in humans and non-human primates demonstrated that lesions of the prefrontal cortex impair performance during visual working memory tasks but not during perceptual tasks. These studies attributed a fundamental role in working memory and a lesser role in visual perception to the prefrontal cortex. Indeed, single cell recording studies have found that neurons in the lateral prefrontal cortex of macaques encode working memory representations via persistent firing, validating the results of lesion studies. However, other studies have reported that neurons in some areas of the parietal and temporal lobe-classically associated with visual perception-similarly encode working memory representations via persistent firing. This prompted a line of enquiry about the role of the prefrontal and other associative cortices in working memory and perception. Here, we review evidence from single neuron studies in macaque monkeys examining working memory representations across different areas of the visual hierarchy and link them to studies examining the role of the same areas in visual perception. We conclude that neurons in early visual areas of both ventral (V1-V2-V4) and dorsal (V1-V3-MT) visual pathways of macaques mainly encode perceptual signals. On the other hand, areas downstream from V4 and MT contain subpopulations of neurons that encode both perceptual and/or working memory signals. Differences in cortical architecture (neuronal types, layer composition, and synaptic density and distribution) may be linked to the differential encoding of perceptual and working memory signals between early visual areas and higher association areas.
Collapse
Affiliation(s)
- Megan Roussy
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Julio C. Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
57
|
Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F. Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. Int J Mol Sci 2021; 22:ijms222212366. [PMID: 34830246 PMCID: PMC8619146 DOI: 10.3390/ijms222212366] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia, responsible for the onset of several long-term complications. Recent evidence suggests that cognitive dysfunction represents an emerging complication of DM, but the underlying molecular mechanisms are still obscure. Dopamine (DA), a neurotransmitter essentially known for its relevance in the regulation of behavior and movement, modulates cognitive function, too. Interestingly, alterations of the dopaminergic system have been observed in DM. This review aims to offer a comprehensive overview of the most relevant experimental results assessing DA’s role in cognitive function, highlighting the presence of dopaminergic dysfunction in DM and supporting a role for glucotoxicity in DM-associated dopaminergic dysfunction and cognitive impairment. Several studies confirm a role for DA in cognition both in animal models and in humans. Similarly, significant alterations of the dopaminergic system have been observed in animal models of experimental diabetes and in diabetic patients, too. Evidence is accumulating that advanced glycation end products (AGEs) and their precursor methylglyoxal (MGO) are associated with cognitive impairment and alterations of the dopaminergic system. Further research is needed to clarify the molecular mechanisms linking DM-associated dopaminergic dysfunction and cognitive impairment and to assess the deleterious impact of glucotoxicity.
Collapse
Affiliation(s)
- Francesca Chiara Pignalosa
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Paola Mirra
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Cecilia Nigro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Luca Ulianich
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| | - Claudia Miele
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-746-3248
| | - Raffaele Napoli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
| | - Francesca Fiory
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.C.P.); (A.D.); (P.M.); (C.N.); (G.P.); (L.U.); (P.F.); (F.B.); (R.N.); (F.F.)
- URT “Genomic of Diabetes”, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
| |
Collapse
|
58
|
Karalija N, Köhncke Y, Düzel S, Bertram L, Papenberg G, Demuth I, Lill CM, Johansson J, Riklund K, Lövdén M, Bäckman L, Nyberg L, Lindenberger U, Brandmaier AM. A common polymorphism in the dopamine transporter gene predicts working memory performance and in vivo dopamine integrity in aging. Neuroimage 2021; 245:118707. [PMID: 34742942 DOI: 10.1016/j.neuroimage.2021.118707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Dopamine (DA) integrity is suggested as a potential cause of individual differences in working memory (WM) performance among older adults. Still, the principal dopaminergic mechanisms giving rise to WM differences remain unspecified. Here, 61 single-nucleotide polymorphisms, located in or adjacent to various dopamine-related genes, were assessed for their links to WM performance in a sample of 1313 adults aged 61-80 years from the Berlin Aging Study II. Least Absolute Shrinkage and Selection Operator (LASSO) regression was conducted to estimate associations between polymorphisms and WM. Rs40184 in the DA transporter gene, SLC6A3, showed allelic group differences in WM, with T-carriers performing better than C homozygotes (p<0.01). This finding was replicated in an independent sample from the Cognition, Brain, and Aging study (COBRA; baseline: n = 181, ages: 64-68 years; 5-year follow up: n = 129). In COBRA, in vivo DA integrity was measured with 11C-raclopride and positron emission tomography. Notably, WM as well as in vivo DA integrity was higher for rs40184 T-carriers at baseline (p<0.05 for WM and caudate and hippocampal D2-receptor availability) and at the 5-year follow-up (p<0.05 for WM and hippocampal D2 availability). Our findings indicate that individual differences in DA transporter function contribute to differences in WM performance in old age, presumably by regulating DA availability.
Collapse
Affiliation(s)
- Nina Karalija
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden.
| | - Ylva Köhncke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany; Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet & Stockholm University, Solna, Sweden
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany; Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Jarkko Johansson
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- Department of psychology, University of Gothenburg, Gothenburg, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Solna, Sweden
| | - Lars Nyberg
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| |
Collapse
|
59
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
60
|
Perri RL, Perrotta D. Transcranial direct current stimulation of the prefrontal cortex reduces cigarette craving in not motivated to quit smokers: A randomized, sham-controlled study. Addict Behav 2021; 120:106956. [PMID: 33940337 DOI: 10.1016/j.addbeh.2021.106956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Transcranial direct current stimulation (tDCS) over the dorsolaterateral prefrontal cortex (DLPFC) has been indicated as a promising treatment for several addictions, while its contribution for smoking cessation was less investigated. In particular, the role of motivation to quit and the nicotine dependence level as possible mediators of tDCS effect needs to be deepened. In the present study, we recruited twenty smokers who did not look for a treatment to quit: most of them presented a mild level of nicotine addiction, and they were randomly assigned to active or sham group for receiving bilateral tDCS over the DLPFC. tDCS was provided for five consecutive days with anode over the right hemisphere: in the first and the last day the craving level was evaluated through a specific evoking procedure, and the daily cigarette consumption was recorded. Results showed that the active tDCS decreased by about 50% the cigarette craving, while the number of cigarettes smoked remained unchanged and no differences emerged in the sham group. The present study indicates the tDCS of the DLPFC as a possible treatment for smoking addiction because of its effectiveness in reducing craving. Further, as we recruited smokers with no motivation to quit, and the nicotine dependence level was a moderator of the tDCS effect, we suggest that its efficacy might be even greater in the severe smokers looking for a treatment.
Collapse
|
61
|
Investigating interactive effects of worry and the catechol-o-methyltransferase gene (COMT) on working memory performance. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:1153-1163. [PMID: 34173216 DOI: 10.3758/s13415-021-00922-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
Extant research indicates that worry is associated with reduced working memory. It remains unclear, however, what mechanisms contribute to impaired performance in worriers. Critically, dopamine in the prefrontal cortex heavily influences the stability of mental representations during working memory tasks, yet no research has probed its role in associations between worry and working memory. To address this gap, the current study was designed to examine the moderating role of dopamine on the association between worry and working memory, using the catechol-o-methyltransferase (COMT) gene as a proxy for basal levels of dopamine. Across four assessments, we examined within- and between-person variation in worry and its interactive effects with COMT to predict working memory performance. Within-person variation in worry interacted with COMT to predict accuracy, such that higher worry across time predicted less accuracy for homozygous Val carriers but not Met carriers. Our findings demonstrate that basal dopamine plays an important role in how increases in worry across time for an individual negatively impact working memory performance.
Collapse
|
62
|
Fyfe TJ, Scammells PJ, Lane JR, Capuano B. Enantioenriched Positive Allosteric Modulators Display Distinct Pharmacology at the Dopamine D 1 Receptor. Molecules 2021; 26:molecules26133799. [PMID: 34206465 PMCID: PMC8270344 DOI: 10.3390/molecules26133799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Two first-in-class racemic dopamine D1 receptor (D1R) positive allosteric modulator (PAM) chemotypes (1 and 2) were identified from a high-throughput screen. In particular, due to its selectivity for the D1R and reported lack of intrinsic activity, compound 2 shows promise as a starting point toward the development of small molecule allosteric modulators to ameliorate the cognitive deficits associated with some neuropsychiatric disease states; (2) Methods: Herein, we describe the enantioenrichment of optical isomers of 2 using chiral auxiliaries derived from (R)- and (S)-3-hydroxy-4,4-dimethyldihydrofuran-2(3H)-one (d- and l-pantolactone, respectively); (3) Results: We confirm both the racemate and enantiomers of 2 are active and selective for the D1R, but that the respective stereoisomers show a significant difference in their affinity and magnitude of positive allosteric cooperativity with dopamine; (4) Conclusions: These data warrant further investigation of asymmetric syntheses of optically pure analogues of 2 for the development of D1R PAMs with superior allosteric properties.
Collapse
Affiliation(s)
- Tim J. Fyfe
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (T.J.F.); (P.J.S.)
| | - Peter J. Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (T.J.F.); (P.J.S.)
| | - J. Robert Lane
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence: (J.R.L.); (B.C.)
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; (T.J.F.); (P.J.S.)
- Correspondence: (J.R.L.); (B.C.)
| |
Collapse
|
63
|
McCarthy CI, Chou-Freed C, Rodríguez SS, Yaneff A, Davio C, Raingo J. Constitutive activity of dopamine receptor type 1 (D1R) increases CaV2.2 currents in PFC neurons. J Gen Physiol 2021; 152:151624. [PMID: 32259196 PMCID: PMC7201881 DOI: 10.1085/jgp.201912492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/14/2020] [Accepted: 03/12/2020] [Indexed: 01/19/2023] Open
Abstract
Alterations in dopamine receptor type 1 (D1R) density are associated with cognitive deficits of aging and schizophrenia. In the prefrontal cortex (PFC), D1R plays a critical role in the regulation of working memory, which is impaired in these cognitive deficit states, but the cellular events triggered by changes in D1R expression remain unknown. A previous report demonstrated that interaction between voltage-gated calcium channel type 2.2 (CaV2.2) and D1R stimulates CaV2.2 postsynaptic surface location in medial PFC pyramidal neurons. Here, we show that in addition to the occurrence of the physical receptor-channel interaction, constitutive D1R activity mediates up-regulation of functional CaV2.2 surface density. We performed patch-clamp experiments on transfected HEK293T cells and wild-type C57BL/6 mouse brain slices, as well as imaging experiments and cAMP measurements. We found that D1R coexpression led to ∼60% increase in CaV2.2 currents in HEK293T cells. This effect was occluded by preincubation with a D1/D5R inverse agonist, chlorpromazine, and by replacing D1R with a D1R mutant lacking constitutive activity. Moreover, D1R-induced increase in CaV2.2 currents required basally active Gs protein, as well as D1R-CaV2.2 interaction. In mice, intraperitoneal administration of chlorpromazine reduced native CaV currents’ sensitivity to ω-conotoxin-GVIA and their size by ∼49% in layer V/VI pyramidal neurons from medial PFC, indicating a selective effect on CaV2.2. Additionally, we found that reducing D1/D5R constitutive activity correlates with a decrease in the agonist-induced D1/D5R inhibitory effect on native CaV currents. Our results could be interpreted as a stimulatory effect of D1R constitutive activity on the number of CaV2.2 channels available for dopamine-mediated modulation. Our results contribute to the understanding of the physiological role of D1R constitutive activity and may explain the noncanonical postsynaptic distribution of functional CaV2.2 in PFC neurons.
Collapse
Affiliation(s)
- Clara Inés McCarthy
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Cambria Chou-Freed
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jesica Raingo
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology, Universidad Nacional de La Plata, Consejo de Investigaciones Científicas y Técnicas, Comisión de Investigaciones de la Provincia de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
64
|
Westbrook A, Frank MJ, Cools R. A mosaic of cost-benefit control over cortico-striatal circuitry. Trends Cogn Sci 2021; 25:710-721. [PMID: 34120845 DOI: 10.1016/j.tics.2021.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
Dopamine contributes to cognitive control through well-established effects in both the striatum and cortex. Although earlier work suggests that dopamine affects cognitive control capacity, more recent work suggests that striatal dopamine may also impact on cognitive motivation. We consider the emerging perspective that striatal dopamine boosts control by making people more sensitive to the benefits versus the costs of cognitive effort, and we discuss how this sensitivity shapes competition between controlled and prepotent actions. We propose that dopamine signaling in distinct cortico-striatal subregions mediates different types of cost-benefit tradeoffs, and also discuss mechanisms for the local control of dopamine release, enabling selectivity among cortico-striatal circuits. In so doing, we show how this cost-benefit mosaic can reconcile seemingly conflicting findings about the impact of dopamine signaling on cognitive control.
Collapse
Affiliation(s)
- Andrew Westbrook
- Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
| | - Michael J Frank
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Roshan Cools
- Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
65
|
Lin R, Learman LN, Na CH, Renuse S, Chen KT, Chen PY, Lee GH, Xiao B, Resnick SM, Troncoso JC, Szumlinski KK, Linden DJ, Park JM, Savonenko A, Pandey A, Worley PF. Persistently Elevated mTOR Complex 1-S6 Kinase 1 Disrupts DARPP-32-Dependent D 1 Dopamine Receptor Signaling and Behaviors. Biol Psychiatry 2021; 89:1058-1072. [PMID: 33353667 PMCID: PMC8076344 DOI: 10.1016/j.biopsych.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The serine-threonine kinase mTORC1 (mechanistic target of rapamycin complex 1) is essential for normal cell function but is aberrantly activated in the brain in both genetic-developmental and sporadic diseases and is associated with a spectrum of neuropsychiatric symptoms. The underlying molecular mechanisms of cognitive and neuropsychiatric symptoms remain controversial. METHODS The present study examines behaviors in transgenic models that express Rheb, the most proximal known activator of mTORC1, and profiles striatal phosphoproteomics in a model with persistently elevated mTORC1 signaling. Biochemistry, immunohistochemistry, electrophysiology, and behavior approaches are used to examine the impact of persistently elevated mTORC1 on D1 dopamine receptor (D1R) signaling. The effect of persistently elevated mTORC1 was confirmed using D1-Cre to elevate mTORC1 activity in D1R neurons. RESULTS We report that persistently elevated mTORC1 signaling blocks canonical D1R signaling that is dependent on DARPP-32 (dopamine- and cAMP-regulated neuronal phosphoprotein). The immediate downstream effector of mTORC1, ribosomal S6 kinase 1 (S6K1), phosphorylates and activates DARPP-32. Persistent elevation of mTORC1-S6K1 occludes dynamic D1R signaling downstream of DARPP-32 and blocks multiple D1R responses, including dynamic gene expression, D1R-dependent corticostriatal plasticity, and D1R behavioral responses including sociability. Candidate biomarkers of mTORC1-DARPP-32 occlusion are increased in the brain of human disease subjects in association with elevated mTORC1-S6K1, supporting a role for this mechanism in cognitive disease. CONCLUSIONS The mTORC1-S6K1 intersection with D1R signaling provides a molecular framework to understand the effects of pathological mTORC1 activation on behavioral symptoms in neuropsychiatric disease.
Collapse
Affiliation(s)
- Raozhou Lin
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lisa N. Learman
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chan-Hyun Na
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.,Center for Individualized Medicine, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA
| | - Kevin T. Chen
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Po Yu Chen
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gum-Hwa Lee
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bo Xiao
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Juan C. Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - David J. Linden
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joo-Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.,Center for Individualized Medicine, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA
| | - Paul F. Worley
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Corresponding author. Phone: 410-502-5489
| |
Collapse
|
66
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
67
|
Althobaiti YS, Almutairi FM, Alshehri FS, Altowairqi E, Marghalani AM, Alghorabi AA, Alsanie WF, Gaber A, Alsaab HO, Almalki AH, Hakami AY, Alkhalifa T, Almalki AD, Hardy AMG, Shah ZA. Involvement of the dopaminergic system in the reward-related behavior of pregabalin. Sci Rep 2021; 11:10577. [PMID: 34011976 PMCID: PMC8134490 DOI: 10.1038/s41598-021-88429-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023] Open
Abstract
There has been an increase in cases of drug addiction and prescription drug abuse worldwide. Recently, pregabalin abuse has been a focus for many healthcare agencies, as highlighted by epidemiological studies. We previously evaluated the possibility of pregabalin abuse using the conditioned place preference (CPP) paradigm. We observed that a 60 mg/kg dose could induce CPP in mice and that pregabalin-rewarding properties were mediated through glutamate neurotransmission. Notably, the dopaminergic reward circuitry is also known to play a crucial role in medication-seeking behavior. Therefore, this study aimed to explore the possible involvement of dopaminergic receptor-1 in pregabalin-induced CPP. Mice were randomly allocated to receive saline or the dopamine-1 receptor antagonist SKF-83566 (0.03 mg/kg, intraperitoneal). After 30 min, the mice received either saline or pregabalin (60 mg/kg) during the conditioning phase. Among the control groups that received saline or SKF-83566, the time spent in the two conditioning chambers was not significantly altered. However, among the pregabalin-treated group, there was a marked increase in the time spent in the drug-paired chamber compared to the time spent in the vehicle-paired chamber. Notably, blocking dopamine-1 receptors with SKF-83566 completely prevented pregabalin-induced place preference, thus demonstrating the engagement of the dopaminergic system in pregabalin-induced reward-related behavior.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
- General Administration for Precursors and Laboratories, General Directorate of Narcotics Control, Ministry of Interior, Riyadh, Saudi Arabia.
| | - Farooq M Almutairi
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Deanship of Scientific Research, Taif University, Taif, 21944, Saudi Arabia
- Department of Clinical Laboratories Sciences, University of Hafar Al-Batin, College of Clinical Laboratories Sciences, Hafar Al-Batin, 39923, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ebtehal Altowairqi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Aliyah M Marghalani
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Amal A Alghorabi
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Walaa F Alsanie
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Ahmed Gaber
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Biology, Faculty of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Hashem O Alsaab
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia
| | - Atiah H Almalki
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alqassem Y Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Turki Alkhalifa
- General Administration for Precursors and Laboratories, General Directorate of Narcotics Control, Ministry of Interior, Riyadh, Saudi Arabia
| | - Ahmad D Almalki
- General Administration for Precursors and Laboratories, General Directorate of Narcotics Control, Ministry of Interior, Riyadh, Saudi Arabia
| | - Ana M G Hardy
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
68
|
Zubair M, Murris SR, Isa K, Onoe H, Koshimizu Y, Kobayashi K, Vanduffel W, Isa T. Divergent Whole Brain Projections from the Ventral Midbrain in Macaques. Cereb Cortex 2021; 31:2913-2931. [PMID: 33558867 PMCID: PMC8107798 DOI: 10.1093/cercor/bhaa399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
To understand the connectome of the axonal arborizations of dopaminergic midbrain neurons, we investigated the anterograde spread of highly sensitive viral tracers injected into the ventral tegmental area (VTA) and adjacent areas in 3 macaques. In 2 monkeys, injections were centered on the lateral VTA with some spread into the substantia nigra, while in one animal the injection targeted the medial VTA with partial spread into the ventro-medial thalamus. Double-labeling with antibodies against transduced fluorescent proteins (FPs) and tyrosine hydroxylase indicated that substantial portions of transduced midbrain neurons were dopaminergic. Interestingly, cortical terminals were found either homogeneously in molecular layer I, or more heterogeneously, sometimes forming patches, in the deeper laminae II-VI. In the animals with injections in lateral VTA, terminals were most dense in somatomotor cortex and the striatum. In contrast, when the medial VTA was transduced, dense terminals were found in dorsal prefrontal and temporal cortices, while projections to striatum were sparse. In all monkeys, orbitofrontal and occipito-parietal cortex received strong and weak innervation, respectively. Thus, the dopaminergic ventral midbrain sends heterogeneous projections throughout the brain. Furthermore, our results suggest the existence of subgroups in meso-dopaminergic neurons depending on their location in the primate ventral midbrain.
Collapse
Affiliation(s)
- Muhammad Zubair
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
- Leuven Brain Institute, Leuven 3000, Belgium
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sjoerd R Murris
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
- Leuven Brain Institute, Leuven 3000, Belgium
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Koshimizu
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
- Leuven Brain Institute, Leuven 3000, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
69
|
Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094299. [PMID: 33919025 PMCID: PMC8122651 DOI: 10.3390/ijms22094299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most physiologic processes in the brain and related diseases involve more than one neurotransmitter system. Thus, elucidation of the interaction between different neurotransmitter systems could allow for better therapeutic approaches to the treatments of related diseases. Dopaminergic (DAergic) and cholinergic neurotransmitter system regulate various brain functions that include cognition, movement, emotion, etc. This review focuses on the interaction between the brain DAergic and cholinergic systems with respect to the pathogenesis and treatment of schizophrenia and Parkinson’s disease (PD). We first discussed the selection of motor plans at the level of basal ganglia, the major DAergic and cholinergic pathways in the brain, and the receptor subtypes involved in the interaction between the two signaling systems. Next, the roles of each signaling system were discussed in the context of the negative symptoms of schizophrenia, with a focus on the α7 nicotinic cholinergic receptor and the dopamine D1 receptor in the prefrontal cortex. In addition, the roles of the nicotinic and dopamine receptors were discussed in the context of regulation of striatal cholinergic interneurons, which play crucial roles in the degeneration of nigrostriatal DAergic neurons and the development of L-DOPA-induced dyskinesia in PD patients. Finally, we discussed the general mechanisms of nicotine-induced protection of DAergic neurons.
Collapse
|
70
|
Ren Y, Shen Y, Si N, Fan S, Zhang Y, Xu W, Shi L, Zhang X. Slc20a2-Deficient Mice Exhibit Multisystem Abnormalities and Impaired Spatial Learning Memory and Sensorimotor Gating but Normal Motor Coordination Abilities. Front Genet 2021; 12:639935. [PMID: 33889180 PMCID: PMC8056086 DOI: 10.3389/fgene.2021.639935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Primary familial brain calcification (PFBC, OMIM#213600), also known as Fahr's disease, is a rare autosomal dominant or recessive neurodegenerative disorder characterized by bilateral and symmetrical microvascular calcifications affecting multiple brain regions, particularly the basal ganglia (globus pallidus, caudate nucleus, and putamen) and thalamus. The most common clinical manifestations include cognitive impairment, neuropsychiatric signs, and movement disorders. Loss-of-function mutations in SLC20A2 are the major genetic causes of PFBC. OBJECTIVE This study aimed to investigate whether Slc20a2 knockout mice could recapitulate the dynamic processes and patterns of brain calcification and neurological symptoms in patients with PFBC. We comprehensively evaluated brain calcifications and PFBC-related behavioral abnormalities in Slc20a2-deficient mice. METHODS Brain calcifications were analyzed using classic calcium-phosphate staining methods. The Morris water maze, Y-maze, and fear conditioning paradigms were used to evaluate long-term spatial learning memory, working memory, and episodic memory, respectively. Sensorimotor gating was mainly assessed using the prepulse inhibition of the startle reflex program. Spontaneous locomotor activity and motor coordination abilities were evaluated using the spontaneous activity chamber, cylinder test, accelerating rotor-rod, and narrowing balance beam tests. RESULTS Slc20a2 homozygous knockout (Slc20a2-HO) mice showed congenital and global developmental delay, lean body mass, skeletal malformation, and a high proportion of unilateral or bilateral eye defects. Brain calcifications were detected in the hypothalamus, ventral thalamus, and midbrain early at postnatal day 80 in Slc20a2-HO mice, but were seldom found in Slc20a2 heterozygous knockout (Slc20a2-HE) mice, even at extremely old age. Slc20a2-HO mice exhibited spatial learning memory impairments and sensorimotor gating deficits while exhibiting normal working and episodic memories. The general locomotor activity, motor balance, and coordination abilities were not statistically different between Slc20a2-HO and wild-type mice after adjusting for body weight, which was a major confounding factor in our motor function evaluations. CONCLUSION The human PFBC-related phenotypes were highly similar to those in Slc20a2-HO mice. Therefore, Slc20a2-HO mice might be suitable for the future evaluation of neuropharmacological intervention strategies targeting cognitive and neuropsychiatric impairments.
Collapse
Affiliation(s)
- Yaqiong Ren
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuqi Shen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Nuo Si
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Wanhai Xu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Lei Shi
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| |
Collapse
|
71
|
Differential effects of d- and l-enantiomers of govadine on distinct forms of cognitive flexibility and a comparison with dopaminergic drugs. Psychopharmacology (Berl) 2021; 238:1069-1085. [PMID: 33432392 DOI: 10.1007/s00213-020-05754-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
RATIONALE There is an urgent need for novel drugs for treating cognitive deficits that are defining features of schizophrenia. The individual d- and l-enantiomers of the tetrahydroprotoberberine (THPB) d,l-govadine have been proposed for the treatment of cognitive deficiencies and positive symptoms of schizophrenia, respectively. OBJECTIVES We examined the effects of d-, l-, or d,l-govadine on two distinct forms of cognitive flexibility perturbed in schizophrenia and compared them to those induced by a selective D1 receptor agonist and D2 receptor antagonist. METHODS Male rats received d-, l-, or d,l-govadine (0.3, 0.5, and 1.0 mg/kg), D1 agonist SKF81297(0.1, 0.3, and 1.0 mg/kg), or D2 antagonist haloperidol (0.1-0.2 mg/kg). Experiment 1 used a strategy set-shifting task (between-subjects). In experiment 2, well-trained rats were tested on a probabilistic reversal task (within-subjects). RESULTS d-Govadine improved set-shifting across all doses, whereas higher doses of l-govadine impaired set-shifting. SKF81297 reduced perseverative errors at the lowest dose. Low/high doses of haloperidol increased/decreased set-shifting errors, the latter "improvement" attributable to impaired retrieval of a previous acquired rule. Probabilistic reversal performance was less affected by these drugs, but d-govadine reduced errors during the first reversal, whereas l-govadine impaired initial discrimination learning. d,l-Govadine had no reliable cognitive effects but caused psychomotor slowing like l-govadine and haloperidol. CONCLUSIONS These findings further highlight differences between two enantiomers of d,l-govadine that may reflect differential modulation of D1 and D2 receptors. These preclinical findings give further impetus to formal clinical evaluation of d-govadine as a treatment for cognitive deficiencies related to schizophrenia.
Collapse
|
72
|
Aslostovar L, Boyd AL, Benoit YD, Di Lu J, Garcia Rodriguez JL, Nakanishi M, Porras DP, Reid JC, Mitchell RR, Leber B, Xenocostas A, Foley R, Bhatia M. Abnormal dopamine receptor signaling allows selective therapeutic targeting of neoplastic progenitors in AML patients. CELL REPORTS MEDICINE 2021; 2:100202. [PMID: 33665638 PMCID: PMC7897800 DOI: 10.1016/j.xcrm.2021.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The aberrant expression of dopamine receptors (DRDs) in acute myeloid leukemia (AML) cells has encouraged the repurposing of DRD antagonists such as thioridazine (TDZ) as anti-leukemic agents. Here, we access patient cells from a Phase I dose escalation trial to resolve the cellular and molecular bases of response to TDZ, and we extend these findings to an additional independent cohort of AML patient samples tested preclinically. We reveal that in DRD2+ AML patients, DRD signaling in leukemic progenitors provides leukemia-exclusive networks of sensitivity that spare healthy hematopoiesis. AML progenitor cell suppression can be increased by the isolation of the positive enantiomer from the racemic TDZ mixture (TDZ+), and this is accompanied by reduced cardiac liability. Our study indicates that the development of DRD-directed therapies provides a targeting strategy for a subset of AML patients and potentially other cancers that acquire DRD expression upon transformation from healthy tissue. Leukemic progenitors are a critical cellular target of DRD2 antagonist TDZ DRD2 protein expression is a reliable biomarker of TDZ response DRD2 antagonism selectively triggers leukemic maturation programs via cyclic AMP An enantiomer of TDZ displays a superior efficacy:risk ratio relative to racemic TDZ
Collapse
Affiliation(s)
- Lili Aslostovar
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Allison L Boyd
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, Ottawa University, Ottawa, ON, Canada
| | - Justin Di Lu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Mio Nakanishi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Deanna P Porras
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jennifer C Reid
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ryan R Mitchell
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
73
|
Mailman RB, Yang Y, Huang X. D 1, not D 2, dopamine receptor activation dramatically improves MPTP-induced parkinsonism unresponsive to levodopa. Eur J Pharmacol 2021; 892:173760. [PMID: 33279520 PMCID: PMC7861126 DOI: 10.1016/j.ejphar.2020.173760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
Levodopa is the standard-of-care for Parkinson's disease, but continued loss of dopamine neurons with disease progression decreases its bioconversion to dopamine, leading to increased side effects and decreased efficacy. In theory, dopamine agonists could equal levodopa, but no approved oral "dopamine agonist" matches the efficacy of levodopa. There are consistent data in both primate models and in Parkinson's disease showing that selective high intrinsic activity D1 agonists can equal levodopa in efficacy. There are, however, no data on whether such compounds would be effective in severe disease when levodopa efficacy is low or absent. We compared two approved antiparkinson drugs (levodopa and the D2/3 agonist bromocriptine) with the experimental selective D1 full agonist dihydrexidine in two severely parkinsonian MPTP-treated non-human primates. Bromocriptine caused no discernible improvement in parkinsonian signs, whereas levodopa caused a small transient improvement in one of the two subjects. Conversely, the full D1 agonist dihydrexidine caused a dramatic improvement in both subjects, decreasing parkinsonian signs by ca. 75%. No attenuation of dihydrexidine effects was observed when the two subjects were pretreated with the D2 antagonist remoxipride. These data provide evidence that selective D1 agonists may provide profound antiparkinson symptomatic relief even when the degree of nigrostriatal degeneration is so severe that current drugs are ineffective. Until effective disease-modifying therapies are discovered, high intrinsic activity D1 agonists may offer a major therapeutic advance in improving the quality of life, and potentially the longevity, of late stage Parkinson's patients.
Collapse
Affiliation(s)
- Richard B Mailman
- Departments of Pharmacology and NeurologyPenn State University College of Medicine Hershey PA 17033, USA.
| | - Yang Yang
- Departments of Pharmacology and NeurologyPenn State University College of Medicine Hershey PA 17033, USA.
| | - Xuemei Huang
- Departments of Pharmacology and NeurologyPenn State University College of Medicine Hershey PA 17033, USA.
| |
Collapse
|
74
|
Coley AA, Padilla-Coreano N, Patel R, Tye KM. Valence processing in the PFC: Reconciling circuit-level and systems-level views. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:171-212. [PMID: 33785145 DOI: 10.1016/bs.irn.2020.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An essential component in animal behavior is the ability to process emotion and dissociate among positive and negative valence in response to a rewarding or aversive stimulus. The medial prefrontal cortex (mPFC)-responsible for higher order executive functions that include cognition, learning, and working memory; and is also involved in sociability-plays a major role in emotional processing and control. Although the amygdala is widely regarded as the "emotional hub," the mPFC encodes for context-specific salience and elicits top-down control over limbic circuitry. The mPFC can then conduct behavioral responses, via cortico-striatal and cortico-brainstem pathways, that correspond to emotional stimuli. Evidence shows that abnormalities within the mPFC lead to sociability deficits, working memory impairments, and drug-seeking behavior that include addiction and compulsive disorders; as well as conditions such as anhedonia. Recent studies investigate the effects of aberrant salience processing on cortical circuitry and neuronal populations associated with these behaviors. In this chapter, we discuss mPFC valence processing, neuroanatomical connections, and physiological substrates involved in mPFC-associated behavior. We review neurocomputational and theoretical models such as "mixed selectivity," that describe cognitive control, attentiveness, and motivational drives. Using this knowledge, we describe the effects of valence imbalances and its influence on mPFC neural pathways that contribute to deficits in social cognition, while understanding the effects in addiction/compulsive behaviors and anhedonia.
Collapse
Affiliation(s)
- Austin A Coley
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Reesha Patel
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, United States.
| |
Collapse
|
75
|
Alexander WH, Womelsdorf T. Interactions of Medial and Lateral Prefrontal Cortex in Hierarchical Predictive Coding. Front Comput Neurosci 2021; 15:605271. [PMID: 33613221 PMCID: PMC7888340 DOI: 10.3389/fncom.2021.605271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive control and decision-making rely on the interplay of medial and lateral prefrontal cortex (mPFC/lPFC), particularly for circumstances in which correct behavior requires integrating and selecting among multiple sources of interrelated information. While the interaction between mPFC and lPFC is generally acknowledged as a crucial circuit in adaptive behavior, the nature of this interaction remains open to debate, with various proposals suggesting complementary roles in (i) signaling the need for and implementing control, (ii) identifying and selecting appropriate behavioral policies from a candidate set, and (iii) constructing behavioral schemata for performance of structured tasks. Although these proposed roles capture salient aspects of conjoint mPFC/lPFC function, none are sufficiently well-specified to provide a detailed account of the continuous interaction of the two regions during ongoing behavior. A recent computational model of mPFC and lPFC, the Hierarchical Error Representation (HER) model, places the regions within the framework of hierarchical predictive coding, and suggests how they interact during behavioral periods preceding and following salient events. In this manuscript, we extend the HER model to incorporate real-time temporal dynamics and demonstrate how the extended model is able to capture single-unit neurophysiological, behavioral, and network effects previously reported in the literature. Our results add to the wide range of results that can be accounted for by the HER model, and provide further evidence for predictive coding as a unifying framework for understanding PFC function and organization.
Collapse
Affiliation(s)
- William H. Alexander
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
76
|
Babić Leko M, Hof PR, Šimić G. Alterations and interactions of subcortical modulatory systems in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:379-421. [PMID: 33785136 DOI: 10.1016/bs.pbr.2020.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is not fully understood. Here we summarize current knowledge on the involvement of the serotonergic, noradrenergic, dopaminergic, cholinergic, and opioid systems in AD, emphasizing the importance of interactions between the serotonergic and the other subcortical modulatory systems during the progression of AD. In physiological conditions, all neurotransmitter systems function in concert and are interdependent at both the neuroanatomical and molecular levels. Through their early involvement in AD, cognitive and behavioral abilities that rely on their interactions also become disrupted. Considering that serotonin (5HT) regulates the release of noradrenaline (NA), dopamine (DA) and acetylcholine (ACh), any alteration in 5HT levels leads to disturbance of NA, DA, and ACh homeostasis in the brain. One of the earliest pathological changes during the prodromal phase of AD is a decrease of serotonergic transmission throughout the brain, with serotonergic receptors being also affected. Additionally, serotonergic and noradrenergic as well as serotonergic and dopaminergic nuclei are reciprocally interconnected. As the serotonergic dorsal raphe nucleus (DRN) is affected by pathological changes early in AD, and the noradrenergic locus coeruleus (LC) and dopaminergic ventral tegmental area (VTA) exhibit AD-related pathological changes, their connectivity also becomes altered in AD. Such disrupted interactions among neurotransmitter systems in AD can be used in the development of multi-target drugs. Some of the potential AD therapeutics (such as ASS234, RS67333, tropisetron) target multiple neurotransmitter systems to achieve the best possible improvement of cognitive and behavioral deficits observed in AD. Here, we review how serotonergic system interacts with other subcortical modulatory systems (noradrenergic, dopaminergic, cholinergic, and opioid systems) during AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia.
| |
Collapse
|
77
|
Hayes J, Laursen B, Eneberg E, Kehler J, Rasmussen LK, Langgard M, Bastlund JF, Gerdjikov TV. Phosphodiesterase type 1 inhibition alters medial prefrontal cortical activity during goal-driven behaviour and partially reverses neurophysiological deficits in the rat phencyclidine model of schizophrenia. Neuropharmacology 2021; 186:108454. [PMID: 33444639 DOI: 10.1016/j.neuropharm.2021.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Positive modulation of cAMP signalling by phosphodiesterase (PDE) inhibitors has recently been explored as a potential target for the reversal of cognitive and behavioural deficits implicating the corticoaccumbal circuit. Previous studies show that PDE type 1 isoform B (PDE1B) inhibition may improve memory function in rodent models; however, the contribution of PDE1B inhibition to impulsivity, attentional and motivational functions as well as its neurophysiological effects have not been investigated. To address this, we recorded single unit activity in medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) in Lister Hooded rats treated with the PDE1B inhibitor Lu AF64386 and tested in the 5-choice serial reaction time task (5-CSRTT). We also asked whether PDE1B inhibition modulates neurophysiological deficits produced by subchronic phencyclidine (PCP) treatment, a rat pharmacological model of schizophrenia. Lu AF64386 significantly affected behavioural parameters consistent with a reduction in goal-directed behaviour, however without affecting accuracy. Additionally, it reduced mPFC neuronal activity. Pre-treatment with PCP did not affect behavioural parameters, however it significantly disrupted overall neuronal firing while increasing phasic responses to reward-predicting cues and disrupting mPFC-NAc cross-talk. The latter two effects were reversed by Lu AF64386. These findings suggest PDE1B inhibition may be beneficial in disorders implicating a dysfunction of the mPFC-NAc network.
Collapse
Affiliation(s)
- Jessica Hayes
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, United Kingdom
| | | | | | - Jan Kehler
- Molecular Discovery and Innovation, Lundbeck A/S, Denmark
| | | | | | | | - Todor V Gerdjikov
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, United Kingdom.
| |
Collapse
|
78
|
Preliminary effects of prefrontal tDCS on dopamine-mediated behavior and psychophysiology. Behav Brain Res 2021; 402:113091. [PMID: 33359843 DOI: 10.1016/j.bbr.2020.113091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022]
Abstract
The ability to manipulate dopamine in vivo through non-invasive, reversible mechanisms has the potential to impact clinical, translational, and basic research. Recent PET studies have demonstrated increased dopamine release in the striatum after bifrontal transcranial direct current stimulation (tDCS). We sought to extend this work by examining whether bifrontal tDCS could demonstrate an effect on behavioral and physiological correlates of subcortical dopamine activity. We conducted a preliminary between-subjects study (n = 30) with active and sham tDCS and used spontaneous eye blink rate (EBR), facial attractiveness ratings, and greyscales orienting bias as indirect proxies for dopamine functioning. The initial design and analyses were pre-registered (https://osf.io/gmnpc). Stimulation did not significantly affect any of the three measures, though effect sizes were often moderately large and were all in the predicted directions. Additional exploratory analyses suggested that stimulation's effect on EBR might depend on pre-stimulation dopamine levels. Our results suggest that larger samples than those that are standard in tDCS literature should be used to assess the effect of tDCS on dopamine using indirect measures. Further, exploratory results add to a growing body of work demonstrating the importance of accounting for individual differences in tDCS response.
Collapse
|
79
|
Tejeda HA, Wang H, Flores RJ, Yarur HE. Dynorphin/Kappa-Opioid Receptor System Modulation of Cortical Circuitry. Handb Exp Pharmacol 2021; 271:223-253. [PMID: 33580392 DOI: 10.1007/164_2021_440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cortical circuits control a plethora of behaviors, from sensation to cognition. The cortex is enriched with neuropeptides and receptors that play a role in information processing, including opioid peptides and their cognate receptors. The dynorphin (DYN)/kappa-opioid receptor (KOR) system has been implicated in the processing of sensory and motivationally-charged emotional information and is highly expressed in cortical circuits. This is important as dysregulation of DYN/KOR signaling in limbic and cortical circuits has been implicated in promoting negative affect and cognitive deficits in various neuropsychiatric disorders. However, research investigating the role of this system in controlling cortical circuits and computations therein is limited. Here, we review the (1) basic anatomy of cortical circuits, (2) anatomical architecture of the cortical DYN/KOR system, (3) functional regulation of cortical synaptic transmission and microcircuit function by the DYN/KOR system, (4) regulation of behavior by the cortical DYN/KOR system, (5) implications for the DYN/KOR system for human health and disease, and (6) future directions and unanswered questions for the field. Further work elucidating the role of the DYN/KOR system in controlling cortical information processing and associated behaviors will be of importance to increasing our understanding of principles underlying neuropeptide modulation of cortical circuits, mechanisms underlying sensation and perception, motivated and emotional behavior, and cognition. Increased emphasis in this area of study will also aid in the identification of novel ways to target the DYN/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Hector E Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
80
|
Choi JY, Jang HJ, Ornelas S, Fleming WT, Fürth D, Au J, Bandi A, Engel EA, Witten IB. A Comparison of Dopaminergic and Cholinergic Populations Reveals Unique Contributions of VTA Dopamine Neurons to Short-Term Memory. Cell Rep 2020; 33:108492. [PMID: 33326775 PMCID: PMC8038523 DOI: 10.1016/j.celrep.2020.108492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/18/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022] Open
Abstract
We systematically compare the contributions of two dopaminergic and two cholinergic ascending populations to a spatial short-term memory task in rats. In ventral tegmental area dopamine (VTA-DA) and nucleus basalis cholinergic (NB-ChAT) populations, trial-by-trial fluctuations in activity during the delay period relate to performance with an inverted-U, despite the fact that both populations have low activity during that time. Transient manipulations reveal that only VTA-DA neurons, and not the other three populations we examine, contribute causally and selectively to short-term memory. This contribution is most significant during the delay period, when both increases and decreases in VTA-DA activity impair short-term memory. Our results reveal a surprising dissociation between when VTA-DA neurons are most active and when they have the biggest causal contribution to short-term memory, and they also provide support for classic ideas about an inverted-U relationship between neuromodulation and cognition.
Collapse
Affiliation(s)
- Jung Yoon Choi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Hee Jae Jang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sharon Ornelas
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Weston T Fleming
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jennifer Au
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Akhil Bandi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
81
|
Activation and blockade of 5-HT 6 receptor in the medial septum-diagonal band recover working memory in the hemiparkinsonian rats. Brain Res 2020; 1748:147072. [PMID: 32853642 DOI: 10.1016/j.brainres.2020.147072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
Abstract
Working memory impairment is a common symptom occurred in Parkinson's disease (PD). The medial septum-diagonal band (MS-DB) complex and 5-HT6 receptor are involved in modulation of cognition. However, their roles in working memory in PD are still unknown. Here, we used behavioral, neurochemical and immunohistochemical approaches to assess the role of MS-DB 5-HT6 receptor in working memory in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. Intra-MS-DB injection of 5-HT6 receptor agonist WAY208466 (3, 6 and 12 μg/rat) enhanced working memory and increased dopamine (DA) and noradrenaline (NA) levels in the medial prefrontal cortex (mPFC) and hippocampus in sham and 6-OHDA-lesioned rats. The dose that produced significant effect on working memory in 6-OHDA-lesioned rats was lower than that in sham rats, indicating hypersensitivity of 5-HT6 receptor after lesioning. Intra-MS-DB injection of 5-HT6 receptor antagonist SB258585 (2, 4 and 8 μg/rat) alleviated working memory deficits and increased DA level in the mPFC and hippocampus and NA level in the mPFC in 6-OHDA-lesioned rats while having no effect in sham rats, suggesting that SB258585 did not change normal cognitive status. These results suggest that activation and blockade of MS-DB 5-HT6 receptor recovered working memory in 6-OHDA-lesioned rats, which is probably related to changes in monoamine levels in the mPFC and hippocampus.
Collapse
|
82
|
Amphetamine-induced alteration to gaze parameters: A novel conceptual pathway and implications for naturalistic behavior. Prog Neurobiol 2020; 199:101929. [PMID: 33091542 DOI: 10.1016/j.pneurobio.2020.101929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/03/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022]
Abstract
Amphetamine produces a multiplicity of well-documented end-order biochemical, pharmacological and biobehavioural effects. Mechanistically, amphetamine downregulates presynaptic and postsynaptic striatal monoamine (primarily dopaminergic) systems, producing alterations to key brain regions which manifest as stereotyped ridged behaviour which occurs under both acute and chronic dosing schedules and persists beyond detoxification. Despite evidence of amphetamine-induced visual attentional dysfunction, no conceptual synthesis has yet captured how characteristic pharmaco-behavioural processes are critically implicated via these pathways, nor described the potential implications for safety-sensitive behaviours. Drawing on known pathomechanisms, we propose a cross-disciplinary, novel conceptual functional system framework for delineating the biobehavioural consequences of amphetamine use on visual attentional capacity and discuss the implications for functional and behavioural outcomes. Specifically, we highlight the manifest implications for behaviours that are conceptually driven and highly dependent on visual information processing for timely execution of visually-guided movements. Following this, we highlight the potential impact on safety-sensitive, but common behaviours, such as driving a motor vehicle. The close pathophysiological relationship between oculomotor control and higher-order cognitive processes further suggests that dynamic measurement of movement related to the motion of the eye (gaze behaviour) may be a simple, effective and direct measure of behavioural performance capabilities in naturalistic settings. Consequently, we discuss the potential efficacy of ocular monitoring for the detection and monitoring of driver states for this drug user group, and potential wider application. Significance statement: We propose a novel biochemical-physiological-behavioural pathway which delineates how amphetamine use critically alters oculomotor function, visual-attentional performance and information processing capabilities. Given the manifest implications for behaviours that are conceptually driven and highly dependent on these processes, we recommend oculography as a novel means of detecting and monitoring gaze behaviours during naturalistic tasks such as driving. Real-word examination of gaze behaviour therefore present as an effective means to detect driver impairment and prevent performance degradation due to these drugs.
Collapse
|
83
|
Individual differences in working memory capacity and the regulation of arousal. Atten Percept Psychophys 2020; 82:3273-3290. [DOI: 10.3758/s13414-020-02077-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
84
|
Abstract
Nootropics are drugs used to either treat or benefit cognition deficits. Among this class, methylphenidate is a popular agent, which acts through indirect dopaminergic and noradrenergic agonism and, therefore, is proposed to enhance performance in catecholamine-dependent cognitive domains such as attention, memory and prefrontal cortex-dependent executive functions. However, investigation into the efficacy of methylphenidate as a cognitive enhancer has yielded variable results across all domains, leading to debate within the scientific community surrounding its off-label use in healthy individuals seeking scholaristic benefit or increased productivity. Through analysis of experimental data and methodological evaluation, it is apparent that there are dose-, task- and domain-dependent considerations surrounding the use of methylphenidate in healthy individuals, whereby tailored dose administration is likely to provide benefit on an individual basis dependent on the domain of cognition in which benefit is required. Additionally, it is apparent that there are subjective effects of methylphenidate, which may increase user productivity irrespective of cognitive benefit. Whilst there is not extensive study in healthy older adults, it is plausible that there are dose-dependent benefits to methylphenidate in older adults in selective cognitive domains that might improve quality of life and reduce fall risk. Methylphenidate appears to produce dose-dependent benefits to individuals with attention-deficit/hyperactivity disorder, but the evidence for benefit in Parkinson's disease and schizophrenia is inconclusive. As with any off-label use of pharmacological agents, and especially regarding drugs with neuromodulatory effects, there are inherent safety concerns; epidemiological and experimental evidence suggests there are sympathomimetic, cardiovascular and addictive considerations, which might further restrict their use within certain demographics.
Collapse
|
85
|
Kheyrkhah H, Soltani Zangbar H, Salimi O, Shahabi P, Alaei H. Prefrontal dopaminergic system and its role in working memory and cognition in spinal cord‐injured rats. Exp Physiol 2020; 105:1579-1587. [DOI: 10.1113/ep088537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/09/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Hasan Kheyrkhah
- Department of PhysiologyFaculty of MedicineIsfahan University of Medical Sciences Isfahan Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and CognitionFaculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Omid Salimi
- Neurosciences Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Parviz Shahabi
- Neurosciences Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - HojjatAllah Alaei
- Department of PhysiologyFaculty of MedicineIsfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
86
|
Flashman LA, McDonald BC, Ford JC, Kenny RM, Andrews KD, Saykin AJ, McAllister TW. Differential Effects of Pergolide and Bromocriptine on Working Memory Performance and Brain Activation after Mild Traumatic Brain Injury. J Neurotrauma 2020; 38:225-234. [PMID: 32635808 DOI: 10.1089/neu.2020.7087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dopamine D1 and D2 receptors differ with respect to patterns of regional brain distribution and behavioral effects. Pre-clinical work suggests that D1 agonists enhance working memory, but the absence of selective D1 agonists has constrained using this approach in humans. This study examines working memory performance in mild traumatic brain injury (mTBI) patients when given pergolide, a mixed D1/D2 agonist, compared with bromocriptine, a selective D2 agonist. Fifteen individuals were studied 1 month after mTBI and compared with 17 healthy controls. At separate visits, participants were administered 1.25 mg bromocriptine or 0.05 mg pergolide prior to functional magnetic resonance imaging (MRI) using a working memory task (visual-verbal n-back). Results indicated a significant group-by-drug interaction for mean performance across n-back task conditions, where the mTBI group showed better performance on pergolide relative to bromocriptine, whereas controls showed the opposite pattern. There was also a significant effect of diagnosis, where mTBI patients performed worse than controls, particularly while on bromocriptine, as shown in our prior work. Functional MRI activation during the most challenging task condition (3-back > 0-back contrast) showed a significant group-by-drug interaction, with the mTBI group showing increased activation relative to controls in working memory circuitry while on pergolide, including in the left inferior frontal gyrus. Across participants there was a positive correlation between change in activation in this region and change in performance between drug conditions. Results suggest that activation of the D1 receptor may improve working memory performance after mTBI. This has implications for the development of pharmacological strategies to treat cognitive deficits after mTBI.
Collapse
Affiliation(s)
- Laura A Flashman
- Department of Neurology, Wake Forest Medical School and Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James C Ford
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Rachel M Kenny
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katharine D Andrews
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
87
|
Effects of COMT Genotypes on Working Memory Performance in Fibromyalgia Patients. J Clin Med 2020; 9:jcm9082479. [PMID: 32752289 PMCID: PMC7464119 DOI: 10.3390/jcm9082479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Growing research has reported the presence of a clear impairment of working memory functioning in fibromyalgia. Although different genetic factors involving dopamine availability (i.e, the COMT gene) have been associated with the more severe presentation of key symptoms in fibromyalgia, scientific evidence regarding the influence of COMT genotypes on cognitive impairment in these patients is still lacking. To this end, 167 participants took part in the present investigation. Working memory performance was assessed by the application of the SST (Spatial Span Test) and LNST (Letter and Number Sequence Test) belonging to the Weschler Memory Scale III. Significant working memory impairment was shown by the fibromyalgia patients. Remarkably, our results suggest that performance according to different working memory measures might be influenced by different genotypes of the COMT gene. Specifically, fibromyalgia patients carrying the Val/Val genotype exhibited significantly worse outcomes for the span of SST backward, SST backward score, SST total score and the Working Memory Index (WMI) than the Val/Val healthy carriers. Furthermore, the Val/Val patients performed worse on the SST backward and SST score than heterozygotes. Our findings are the first to show a link between the COMT gene and working memory dysfunction in fibromyalgia, supporting the idea that higher COMT enzyme activity would contribute to more severe working memory impairment in fibromyalgia.
Collapse
|
88
|
Zhong P, Qin L, Yan Z. Dopamine Differentially Regulates Response Dynamics of Prefrontal Cortical Principal Neurons and Interneurons to Optogenetic Stimulation of Inputs from Ventral Tegmental Area. Cereb Cortex 2020; 30:4402-4409. [PMID: 32236403 PMCID: PMC7325712 DOI: 10.1093/cercor/bhaa027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 01/11/2020] [Indexed: 01/15/2023] Open
Abstract
Prefrontal cortex (PFC) is highly influenced by the inputs from ventral tegmental area (VTA); however, how the projection from VTA impacts PFC neurons and how the synaptically released dopamine affects PFC activity are largely unclear. Using optogenetics and electrophysiological approaches, we examined the impact of VTA stimulation on PFC principal neurons and parvalbumin-positive (PV+) interneurons and the modulatory role of dopamine. We found that the brief activation of the VTA-PFC circuit immediately induced action potential firing, which was mediated by glutamatergic transmission. However, strong stimulation of VTA gradually induced a marked and prolonged enhancement of the excitability of PFC PV+ interneurons and a modest and short-lived enhancement of the excitability of PFC principal neurons. Blocking dopamine receptors (DARs) shortened the VTA excitation of PFC PV+ interneurons and prolonged the VTA excitation of PFC principal neurons. Blocking GABAA receptors induced a similar effect as DAR antagonists in PFC principal neurons, suggesting that the dopaminergic effect is through influencing the inhibitory transmission system. These results have revealed a role of dopamine in regulating the temporal dynamics of excitation/inhibition balance in VTA-PFC circuit, which provides insights into the functional consequence of activating dopamine system in the mesocortical system.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo 14203, NY, USA
| | - Luye Qin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo 14203, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo 14203, NY, USA
| |
Collapse
|
89
|
Kim YC, Narayanan NS. Prefrontal D1 Dopamine-Receptor Neurons and Delta Resonance in Interval Timing. Cereb Cortex 2020; 29:2051-2060. [PMID: 29897417 DOI: 10.1093/cercor/bhy083] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/23/2018] [Indexed: 11/12/2022] Open
Abstract
Considerable evidence has shown that prefrontal neurons expressing D1-type dopamine receptors (D1DRs) are critical for working memory, flexibility, and timing. This line of work predicts that frontal neurons expressing D1DRs mediate cognitive processing. During timing tasks, one form this cognitive processing might take is time-dependent ramping activity-monotonic changes in firing rate over time. Thus, we hypothesized the prefrontal D1DR+ neurons would strongly exhibit time-dependent ramping during interval timing. We tested this idea using an interval-timing task in which we used optogenetics to tag D1DR+ neurons in the mouse medial frontal cortex (MFC). While 23% of MFC D1DR+ neurons exhibited ramping, this was significantly less than untagged MFC neurons. By contrast, MFC D1DR+ neurons had strong delta-frequency (1-4 Hz) coherence with other MFC ramping neurons. This coherence was phase-locked to cue onset and was strongest early in the interval. To test the significance of these interactions, we optogenetically stimulated MFC D1DR+ neurons early versus late in the interval. We found that 2-Hz stimulation early in the interval was particularly effective in rescuing timing-related behavioral performance deficits in dopamine-depleted animals. These findings provide insight into MFC networks and have relevance for disorders such as Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Young-Cho Kim
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nandakumar S Narayanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Aging Mind and Brain Initiative, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
90
|
Dopaminergic D 1 Receptor Stimulation Affects Effort and Risk Preferences. Biol Psychiatry 2020; 87:678-685. [PMID: 31668477 DOI: 10.1016/j.biopsych.2019.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Activation of D1 receptors has been related to successful goal-directed behavior, but it remains unclear whether D1 receptor activation causally tips the balance of weighing costs and benefits in humans. Here, we tested the impact of pharmacologically stimulated D1 receptors on sensitivity to risk, delay, and effort costs in economic choice and investigated whether D1 receptor stimulation would bias preferences toward options with increased costs in a cost-specific manner. METHODS In a randomized, double-blind, placebo-controlled, parallel-group phase 1 study, 120 healthy young volunteers received either placebo or 1 of 3 doses (6 mg, 15 mg, or 30 mg) of a novel, selective D1 agonist (PF-06412562). After drug administration, participants performed decision tasks measuring their preferences for risky, delayed, and effortful outcomes. RESULTS Higher doses of the D1 agonist increased the willingness to exert physical effort for reward as well as reduced the preference for risky outcomes. We observed no effects on preferences for delayed rewards. CONCLUSIONS The current results provide evidence that D1 receptor stimulation causally affects core aspects of cost-benefit decision making in humans.
Collapse
|
91
|
Brun A, Brunet L, Cerclet D, Masson A, Ravit M, Tassin JP, Zornig S, Zurlo MC, Guénoun T, Missonnier S, Di Rocco V, Mitsopoulou L, Jacquet E, Jung J, Roussillon R. International Health Practices: A Multidisciplinary Approach to Therapeutic Mediations With an Artistic Medium Based on the Model of Play. Front Psychol 2020; 11:254. [PMID: 32180749 PMCID: PMC7059606 DOI: 10.3389/fpsyg.2020.00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
This article, corresponding to a part of the restitution of a financed international research project between France, Brazil, Canada, Italy and Belgium, aims to offer a modelisation and qualitative evaluation of mediation care settings based on an original methodological tool that involves identifying the typical games at the foundations of creativity, following a multidisciplinary perspective. Therapeutic mediations are settings or devices organized around a “pliable medium,” often artistic, like painting, modeling, writing and theater, which are very widespread in institutional practices, both in France and abroad. The scientific objectives of this research consist in a multi-disciplinary exploration (anthropology, criminology, neuroscience, clinical psychology) of the process of creative symbolization understood as a process of transformation involving play. According to this orientation, play can be defined as a psychic process whereby a subjective experience can be explored with pleasure, and consequently symbolized and appropriated. Our fundamental and original hypothesis is that play is at the source of the creative process, conceived as a work of metabolization by the psyche of playful experiences during the different stages of life. The review of the understanding of play in psychoanalysis, anthropology, criminology and neuroscience emphasizes the richness of this model and the importance of reflecting on the typical games in the field of psychic care. A clinical example of treatment in a pictorial therapeutic mediation setting of a child with psychotic disorders makes it possible to identify a number of typical games as well as the modalities of interpretation of the therapists through play. These multidisciplinary studies lead to the presentation of a general table of typical games, and these first results highlight the richness of identifying typical games in clinical settings. Ultimately, the multidisciplinary approach shows the interest of the model of play in the evaluation of therapeutic mediation settings, with a convergence of the different disciplines emphasizing the pertinence of this model. The scientific impact of this research overlaps with its societal impact, through the development of innovative tools for evaluating therapeutic mediations, in order to take account of the evolution of the different forms of social expression of psychic suffering.
Collapse
Affiliation(s)
- Anne Brun
- CRPPC, Lumière University Lyon 2, Lyon, France
| | - Louis Brunet
- GREPP, Section Psychodynamique, UQAM, Montreal, QC, Canada
| | - Denis Cerclet
- UMR 5600, Environnement, Ville, Société, Lumière University Lyon 2, Lyon, France
| | - Antonie Masson
- CRID, Interdisciplinaire Déviance et Pénalité, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Jean-Pol Tassin
- Neuroscience Paris-Seine UMR 8246 CNRS/U1130 Inserm/Sorbonne Université, Paris, France
| | - Silvia Zornig
- Family and Child, Theory and Clinic, University Pontificale Catholic de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Clelia Zurlo
- Dynamic Psychology Laboratory (PsyDy Lab), University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | - Johan Jung
- CRPPC, Lumière University Lyon 2, Lyon, France
| | | |
Collapse
|
92
|
Masse NY, Rosen MC, Freedman DJ. Reevaluating the Role of Persistent Neural Activity in Short-Term Memory. Trends Cogn Sci 2020; 24:242-258. [PMID: 32007384 PMCID: PMC7288241 DOI: 10.1016/j.tics.2019.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
A traditional view of short-term working memory (STM) is that task-relevant information is maintained 'online' in persistent spiking activity. However, recent experimental and modeling studies have begun to question this long-held belief. In this review, we discuss new evidence demonstrating that information can be 'silently' maintained via short-term synaptic plasticity (STSP) without the need for persistent activity. We discuss how the neural mechanisms underlying STM are inextricably linked with the cognitive demands of the task, such that the passive maintenance and the active manipulation of information are subserved differently in the brain. Together, these recent findings point towards a more nuanced view of STM in which multiple substrates work in concert to support our ability to temporarily maintain and manipulate information.
Collapse
Affiliation(s)
- Nicolas Y Masse
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| | - Matthew C Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - David J Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
93
|
Mueller A, Krock RM, Shepard S, Moore T. Dopamine Receptor Expression Among Local and Visual Cortex-Projecting Frontal Eye Field Neurons. Cereb Cortex 2020; 30:148-164. [PMID: 31038690 PMCID: PMC7029694 DOI: 10.1093/cercor/bhz078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Dopaminergic modulation of prefrontal cortex plays an important role in numerous cognitive processes, including attention. The frontal eye field (FEF) is modulated by dopamine and has an established role in visual attention, yet the underlying circuitry upon which dopamine acts is not known. We compared the expression of D1 and D2 dopamine receptors (D1Rs and D2Rs) across different classes of FEF neurons, including those projecting to dorsal or ventral extrastriate cortex. First, we found that both D1Rs and D2Rs are more prevalent on pyramidal neurons than on several classes of interneurons and are particularly prevalent on putatively long-range projecting pyramidals. Second, higher proportions of pyramidal neurons express D1Rs than D2Rs. Third, overall a higher proportion of inhibitory neurons expresses D2Rs than D1Rs. Fourth, among inhibitory interneurons, a significantly higher proportion of parvalbumin+ neurons expresses D2Rs than D1Rs, and a significantly higher proportion of calbindin+ neurons expresses D1Rs than D2Rs. Finally, compared with D2Rs, virtually all of the neurons with identified projections to both dorsal and ventral extrastriate visual cortex expressed D1Rs. Our results demonstrate that dopamine tends to act directly on the output of the FEF and that dopaminergic modulation of top-down projections to visual cortex is achieved predominately via D1Rs.
Collapse
Affiliation(s)
- Adrienne Mueller
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca M Krock
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Shepard
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tirin Moore
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
94
|
Woodcock EA, Zakiniaeiz Y, Morris ED, Cosgrove KP. Sex and the dopaminergic system: Insights from addiction studies. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:141-165. [PMID: 33008522 PMCID: PMC11267480 DOI: 10.1016/b978-0-444-64123-6.00011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sex differences are present in psychiatric disorders associated with disrupted dopamine function, and thus, sex differences in dopamine neurobiology may underlie these clinical disparities. In this chapter, we review sex differences in the dopaminergic system with a focus on substance use disorders, especially tobacco smoking, as our exemplar disorder. This chapter is organized into five sections describing sex differences in the dopaminergic system: (1) neurobiology, (2) role of sex hormones, (3) genetic underpinnings, (4) cognitive function, and (5) influence on addiction. In each section, we provide an overview of the topic area, summarize sex differences identified to date, highlight addiction research, especially clinical neuroimaging studies, and suggest avenues for future research.
Collapse
Affiliation(s)
- Eric A Woodcock
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States
| | - Yasmin Zakiniaeiz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Invicro, LLC, New Haven, CT, United States
| | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States.
| |
Collapse
|
95
|
Mäki-Marttunen V, Hagen T, Laeng B, Espeseth T. Distinct Neural Mechanisms Meet Challenges in Dynamic Visual Attention due to Either Load or Object Spacing. J Cogn Neurosci 2020; 32:65-84. [DOI: 10.1162/jocn_a_01469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
When engaged in dynamic visuospatial tasks, the brain copes with perceptual and cognitive processing challenges. During multiple-object tracking (MOT), the number of objects to be tracked (i.e., load) imposes attentional demands, but so does spatial interference from irrelevant objects (i.e., close encounters). Presently, it is not clear whether the effect of load on accuracy solely depends on the number of close encounters. If so, the same cognitive and physiological mechanisms deal with increasing load by preparing for and dealing with spatial interference. However, this has never been directly tested. Such knowledge is important to understand the neurophysiology of dynamic visual attention and resolve conflicting views within visual cognition concerning sources of capacity limitations. We varied the processing challenge in MOT task in two ways: the number of targets and the minimum spatial proximity between targets and distractors. In a first experiment, we measured task-induced pupil dilations and saccades during MOT. In a separate cohort, we measured fMRI activity. In both cohorts, increased load and close encounters (i.e., close spatial proximity) led to reduced accuracy in an additive manner. Load was associated with pupil dilations, whereas close encounters were not. Activity in dorsal attentional areas and frequency of saccades were proportionally larger both with higher levels of load and close encounters. Close encounters recruited additionally ventral attentional areas that may reflect orienting mechanisms. The activity in two brainstem nuclei, ventral tegmental area/substantia nigra and locus coeruleus, showed clearly dissociated patterns. Our results constitute convergent evidence indicating that different mechanisms underlie processing challenges due to load and object spacing.
Collapse
|
96
|
Juarez EJ, Castrellon JJ, Green MA, Crawford JL, Seaman KL, Smith CT, Dang LC, Matuskey D, Morris ED, Cowan RL, Zald DH, Samanez-Larkin GR. Reproducibility of the correlative triad among aging, dopamine receptor availability, and cognition. Psychol Aging 2019; 34:921-932. [PMID: 31589058 PMCID: PMC6829049 DOI: 10.1037/pag0000403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The evidence that dopamine function mediates the association between aging and cognition is one of the most cited findings in the cognitive neuroscience of aging. However, few and relatively small studies have directly examined these associations. Here we examined correlations among adult age, dopamine D2-like receptor (D2R) availability, and cognition in two cross-sectional studies of healthy human adults. Participants completed a short cognitive test battery and, on a separate day, a PET scan with either the high-affinity D2R tracer [18F]Fallypride (Study 1) or [11C]FLB457 (Study 2). Digit span, a measure of short-term memory maintenance and working memory, was the only cognitive test for which dopamine D2R availability partially mediated the age effect on cognition. In Study 1, age was negatively correlated with digit span. Striatal D2R availability was positively correlated with digit span controlling for age. The age effect on digit span was smaller when controlling for striatal D2R availability. Although other cognitive measures used here have individually been associated with age and D2R availability in prior studies, we found no consistent evidence for significant associations between low D2R availability and low cognitive performance on these measures. These results at best only partially supported the correlative triad of age, dopamine D2R availability, and cognition. While a wealth of other research in human and nonhuman animals demonstrates that dopamine makes critical contributions to cognition, the present studies suggest caution in interpreting PET findings as evidence that dopamine D2R loss is a primary cause of broad age-related declines in fluid cognition. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linh C Dang
- Department of Psychology, Vanderbilt University
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University
| | | | | | | |
Collapse
|
97
|
Felsing DE, Jain MK, Allen JA. Advances in Dopamine D1 Receptor Ligands for Neurotherapeutics. Curr Top Med Chem 2019; 19:1365-1380. [PMID: 31553283 DOI: 10.2174/1568026619666190712210903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
The dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators. From this, several novel molecules and mechanisms have recently entered clinical studies. Here we review the major classes of D1R selective ligands including antagonists, orthosteric agonists, non-catechol biased agonists and positive allosteric modulators, highlighting their structure-activity relationships and medicinal chemistry. Recent chemistry breakthroughs and innovative approaches to selectively target and activate the D1R also hold promise for creating pharmacotherapy for several neurological diseases.
Collapse
Affiliation(s)
- Daniel E Felsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - Manish K Jain
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - John A Allen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| |
Collapse
|
98
|
Fallon SJ, Kienast A, Muhammed K, Ang YS, Manohar SG, Husain M. Dopamine D2 receptor stimulation modulates the balance between ignoring and updating according to baseline working memory ability. J Psychopharmacol 2019; 33:1254-1263. [PMID: 31526206 DOI: 10.1177/0269881119872190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Working memory (WM) deficits in neuropsychiatric disorders have often been attributed to altered dopaminergic signalling. Specifically, D2 receptor stimulation is thought to affect the ease with which items can be gated into and out of WM. In addition, this effect has been hypothesised to vary according to baseline WM ability, a putative index of dopamine synthesis levels. Moreover, whether D2 stimulation affects WM vicariously through modulating relatively WM-free cognitive control processes has not been explored. AIMS We examined the effect of administering a dopamine agonist on the ability to ignore or update information in WM. METHOD A single dose of cabergoline (1 mg) was administered to healthy older adult humans in a within-subject, double-blind, placebo-controlled study. In addition, we obtained measures of baseline WM ability and relatively WM-free cognitive control (overcoming response conflict). RESULTS Consistent with predictions, baseline WM ability significantly modulated the effect that drug administration had on the proficiency of ignoring and updating. High-WM individuals were relatively better at ignoring compared to updating after drug administration. Whereas the opposite occurred in low-WM individuals. Although the ability to overcome response conflict was not affected by cabergoline, a negative relationship between the effect the drug had on response conflict performance and ignoring was observed. Thus, both response conflict and ignoring are coupled to dopaminergic stimulation levels. CONCLUSIONS Cumulatively, these results provide evidence that dopamine affects subcomponents of cognitive control in a diverse, antagonistic fashion and that the direction of these effects is dependent upon baseline WM.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Kinan Muhammed
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yuen-Siang Ang
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
99
|
Leyrer‐Jackson JM, Thomas MP. Dopaminergic D1 receptor effects on commissural inputs targeting layer V pyramidal subtypes of the mouse medial prefrontal cortex. Physiol Rep 2019; 7:e14256. [PMID: 31650716 PMCID: PMC6813257 DOI: 10.14814/phy2.14256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/28/2022] Open
Abstract
In humans, prefrontal cortical areas are known to support goal-directed behaviors, mediating a variety of functions that render behavior more flexible in the face of changing environmental demands. In mice, these functions are mediated by homologous regions within medial prefrontal cortex (mPFC) and rely heavily on proper dopaminergic tone. Comprised of two major subtypes, pyramidal tract (PT) and intratelencephalic (IT), layer V pyramidal cells serve as the major outputs of the mPFC, targeting brainstem nuclei and the contralateral hemisphere, respectively. However, it remains relatively unknown how cortical inputs targeting these subtypes are integrated. We explored how layer V pyramidal cell subtypes integrate commissural inputs, which integrate information flow between the hemispheres. An optogenetic approach was used to elicit commissural fiber activation onto PT and IT cells and the effects of D1 receptor activation on elicited EPSPs were explored. We showed that commissural inputs into PT and IT cells elicit facilitating and depressing EPSP patterns, respectively. D1 receptor activation increased the initial EPSP amplitude, enhanced EPSP facilitation, and prolonged EPSP decay time constant in PT cells. In IT cells, D1 receptor activation increased commissural-evoked initial EPSP amplitude but did not affect facilitation or EPSP shape. Furthermore, D1 receptor activation elicited burst firing in a subset of PT cells in response to commissural fiber activation. Combined, these results lend insight into the role of dopamine in promoting persistent firing and temporal integration in PT and IT cells, respectively, that in turn may contribute to working memory functions.
Collapse
Affiliation(s)
- Jonna M. Leyrer‐Jackson
- School of PsychologyPsychology Department – Behavioral NeuroscienceArizona State UniversityTempeArizona
| | - Mark P. Thomas
- School of Biological SciencesUniversity of Northern ColoradoGreeleyColorado
| |
Collapse
|
100
|
Jonikaitis D, Moore T. The interdependence of attention, working memory and gaze control: behavior and neural circuitry. Curr Opin Psychol 2019; 29:126-134. [PMID: 30825836 DOI: 10.1016/j.copsyc.2019.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/31/2023]
Abstract
Visual attention, visual working memory, and gaze control are basic functions that all select a subset of visual input to guide immediate or subsequent behavior. In this review, we focus on the relationship between these three functions and describe evidence, both at the behavioral and neural circuit levels that they are heavily interdependent. We start with the demonstration that gaze control - or saccade preparation in particular - leads to spatial attention. Next, we show that spatial attention and working memory interact at the behavioral level and rely on a common set of neural mechanisms. Next, we discuss the evidence that gaze control mechanisms are involved in spatial working memory. Lastly, we highlight the links between gaze control and non-spatial memory.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|