51
|
Mizushima N, Murphy LO. Autophagy Assays for Biological Discovery and Therapeutic Development. Trends Biochem Sci 2020; 45:1080-1093. [DOI: 10.1016/j.tibs.2020.07.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
|
52
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
53
|
Richetin K, Steullet P, Pachoud M, Perbet R, Parietti E, Maheswaran M, Eddarkaoui S, Bégard S, Pythoud C, Rey M, Caillierez R, Q Do K, Halliez S, Bezzi P, Buée L, Leuba G, Colin M, Toni N, Déglon N. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer's disease. Nat Neurosci 2020; 23:1567-1579. [PMID: 33169029 DOI: 10.1038/s41593-020-00728-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of the tau protein in neurons, neurodegeneration and memory loss. However, the role of non-neuronal cells in this chain of events remains unclear. In the present study, we found accumulation of tau in hilar astrocytes of the dentate gyrus of individuals with AD. In mice, the overexpression of 3R tau specifically in hilar astrocytes of the dentate gyrus altered mitochondrial dynamics and function. In turn, these changes led to a reduction of adult neurogenesis, parvalbumin-expressing neurons, inhibitory synapses and hilar gamma oscillations, which were accompanied by impaired spatial memory performances. Together, these results indicate that the loss of tau homeostasis in hilar astrocytes of the dentate gyrus is sufficient to induce AD-like symptoms, through the impairment of the neuronal network. These results are important for our understanding of disease mechanisms and underline the crucial role of astrocytes in hippocampal function.
Collapse
Affiliation(s)
- Kevin Richetin
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland. .,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland. .,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Pascal Steullet
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Pachoud
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Romain Perbet
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Enea Parietti
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Mathischan Maheswaran
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Séverine Bégard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Catherine Pythoud
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Maria Rey
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Kim Q Do
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sophie Halliez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Geneviève Leuba
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Morvane Colin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Nicolas Toni
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neuroscience (DNC), Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
54
|
Kaludercic N, Maiuri MC, Kaushik S, Fernández ÁF, de Bruijn J, Castoldi F, Chen Y, Ito J, Mukai R, Murakawa T, Nah J, Pietrocola F, Saito T, Sebti S, Semenzato M, Tsansizi L, Sciarretta S, Madrigal-Matute J. Comprehensive autophagy evaluation in cardiac disease models. Cardiovasc Res 2020; 116:483-504. [PMID: 31504266 PMCID: PMC7064050 DOI: 10.1093/cvr/cvz233] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a highly conserved recycling mechanism essential for maintaining cellular homeostasis. The pathophysiological role of autophagy has been explored since its discovery 50 years ago, but interest in autophagy has grown exponentially over the last years. Many researchers around the globe have found that autophagy is a critical pathway involved in the pathogenesis of cardiac diseases. Several groups have created novel and powerful tools for gaining deeper insights into the role of autophagy in the aetiology and development of pathologies affecting the heart. Here, we discuss how established and emerging methods to study autophagy can be used to unravel the precise function of this central recycling mechanism in the cardiac system.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, Department of Biomedical Sciences, National Research Council of Italy (CNR), 35131, Padova, Italy
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Descartes, Université Paris Diderot, 75006, Paris, France
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Álvaro F Fernández
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenny de Bruijn
- Department of Pathology, Cardiovascular Research Institute (CARIM), Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands; Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen, University, Pauwelsstrase 30, 52074, Aachen, Germany
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Descartes, Université Paris Diderot, 75006, Paris, France
| | - Yun Chen
- Departments of Medicine (Cardiology) and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Jumpei Ito
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NY, USA
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NY, USA
| | - Federico Pietrocola
- Cellular Plasticity and Disease Laboratory. Institute for Research in Biomedicine (IRB Barcelona), Barcelona; Institute of Science and Technology (BIST), Barcelona, Spain
| | - Toshiro Saito
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Salwa Sebti
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Martina Semenzato
- Department of Biology, University of Padua, Via U Bassi 58B, 35121, Padua, Italy.,Venetian Institute of Molecular Medicine, Via Orus 2, 35129, Padua, Italy
| | - Lorenza Tsansizi
- Department of Biology, University of Padua, Via U Bassi 58B, 35121, Padua, Italy.,Venetian Institute of Molecular Medicine, Via Orus 2, 35129, Padua, Italy
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, LT, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
55
|
Personnic N, Striednig B, Hilbi H. Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms. ISME JOURNAL 2020; 15:196-210. [PMID: 32951019 DOI: 10.1038/s41396-020-00774-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
The water-borne bacterium Legionella pneumophila is the causative agent of Legionnaires' disease. In the environment, the opportunistic pathogen colonizes different niches, including free-living protozoa and biofilms. The physiological state(s) of sessile Legionella in biofilms and their functional consequences are not well understood. Using single-cell techniques and fluorescent growth rate probes as well as promoter reporters, we show here that sessile L. pneumophila exhibits phenotypic heterogeneity and adopts growing and nongrowing ("dormant") states in biofilms and microcolonies. Phenotypic heterogeneity is controlled by the Legionella quorum sensing (Lqs) system, the transcription factor LvbR, and the temperature. The Lqs system and LvbR determine the ratio between growing and nongrowing sessile subpopulations, as well as the frequency of growth resumption ("resuscitation") and microcolony formation of individual bacteria. Nongrowing L. pneumophila cells are metabolically active, express virulence genes and show tolerance toward antibiotics. Therefore, these sessile nongrowers are persisters. Taken together, the Lqs system, LvbR and the temperature control the phenotypic heterogeneity of sessile L. pneumophila, and these factors regulate the formation of a distinct subpopulation of nongrowing, antibiotic tolerant, virulent persisters. Hence, the biofilm niche of L. pneumophila has a profound impact on the ecology and virulence of this opportunistic pathogen.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| | - Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006, Zürich, Switzerland.
| |
Collapse
|
56
|
Yau B, Hays L, Liang C, Laybutt DR, Thomas HE, Gunton JE, Williams L, Hawthorne WJ, Thorn P, Rhodes CJ, Kebede MA. A fluorescent timer reporter enables sorting of insulin secretory granules by age. J Biol Chem 2020; 295:8901-8911. [PMID: 32341128 PMCID: PMC7335792 DOI: 10.1074/jbc.ra120.012432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/21/2020] [Indexed: 01/03/2023] Open
Abstract
Within the pancreatic β-cells, insulin secretory granules (SGs) exist in functionally distinct pools, displaying variations in motility as well as docking and fusion capability. Current therapies that increase insulin secretion do not consider the existence of these distinct SG pools. Accordingly, these approaches are effective only for a short period, with a worsening of glycemia associated with continued decline in β-cell function. Insulin granule age is underappreciated as a determinant for why an insulin granule is selected for secretion and may explain why newly synthesized insulin is preferentially secreted from β-cells. Here, using a novel fluorescent timer protein, we aimed to investigate the preferential secretion model of insulin secretion and identify how granule aging is affected by variation in the β-cell environment, such as hyperglycemia. We demonstrate the use of a fluorescent timer construct, syncollin-dsRedE5TIMER, which changes its fluorescence from green to red over 18 h, in both microscopy and fluorescence-assisted organelle-sorting techniques. We confirm that the SG-targeting construct localizes to insulin granules in β-cells and does not interfere with normal insulin SG behavior. We visualize insulin SG aging behavior in MIN6 and INS1 β-cell lines and in primary C57BL/6J mouse and nondiabetic human islet cells. Finally, we separated young and old insulin SGs, revealing that preferential secretion of younger granules occurs in glucose-stimulated insulin secretion. We also show that SG population age is modulated by the β-cell environment in vivo in the db/db mouse islets and ex vivo in C57BL/6J islets exposed to different glucose environments.
Collapse
Affiliation(s)
- Belinda Yau
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Lori Hays
- STEM-Department of Biology, Edmonds Community College, Lynnwood, Washington, USA
| | - Cassandra Liang
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Jenny E Gunton
- Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia; The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Lindy Williams
- Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia; National Pancreas and Islet Transplant Unit (NPITU), Westmead Hospital, Sydney, New South Wales, Australia
| | - Wayne J Hawthorne
- Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia; National Pancreas and Islet Transplant Unit (NPITU), Westmead Hospital, Sydney, New South Wales, Australia
| | - Peter Thorn
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, Maryland, USA; Pacific Northwest Research Institute, Seattle, Washington, USA
| | - Melkam A Kebede
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
57
|
Leboutet R, Chen Y, Legouis R, Culetto E. Mitophagy during development and stress in C. elegans. Mech Ageing Dev 2020; 189:111266. [DOI: 10.1016/j.mad.2020.111266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
|
58
|
For the Greater (Bacterial) Good: Heterogeneous Expression of Energetically Costly Virulence Factors. Infect Immun 2020; 88:IAI.00911-19. [PMID: 32041785 DOI: 10.1128/iai.00911-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial populations are phenotypically heterogeneous, which allows subsets of cells to survive and thrive following changes in environmental conditions. For bacterial pathogens, changes within the host environment occur over the course of the immune response to infection and can result in exposure to host-derived, secreted antimicrobials or force direct interactions with immune cells. Many recent studies have shown host cell interactions promote virulence factor expression, forcing subsets of bacterial cells to battle the host response, while other bacteria reap the benefits of this pacification. It still remains unclear whether virulence factor expression is truly energetically costly within host tissues and whether expression is sufficient to impact the growth kinetics of virulence factor-expressing cells. However, it is clear that slow-growing subsets of bacteria emerge during infection and that these subsets are particularly difficult to eliminate with antibiotics. This minireview will focus on our current understanding of heterogenous virulence factor expression and discuss the evidence that supports or refutes the hypothesis that virulence factor expression is linked to slowed growth and antibiotic tolerance.
Collapse
|
59
|
Shah EJ, Gurdziel K, Ruden DM. Drosophila Exhibit Divergent Sex-Based Responses in Transcription and Motor Function After Traumatic Brain Injury. Front Neurol 2020; 11:511. [PMID: 32636795 PMCID: PMC7316956 DOI: 10.3389/fneur.2020.00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/08/2020] [Indexed: 12/31/2022] Open
Abstract
Every year, millions of people in the US suffer brain damage from mild to severe traumatic brain injuries (TBI) that result from a sudden impact to the head. Despite TBI being a leading cause of death and disability worldwide, sex differences that contribute to varied outcomes post-injury are not extensively studied and therefore, poorly understood. In this study, we aimed to explore biological sex as a variable influencing response to TBI using Drosophila melanogaster as a model, since flies have been shown to exhibit symptoms commonly seen in other mammalian models of TBI. After inflicting TBI using the high-impact trauma device, we isolated w1118 fly brains and assessed gene transcription changes in male and female flies at control and 1, 2, and 4 hr after TBI. Our results suggest that overall, Drosophila females show more gene transcript changes than males. Females also exhibit upregulated expression changes in immune response and mitochondrial genes across all time-points. In addition, we looked at the impact of injury on mitochondrial health and motor function in both sexes before and after injury. Although both sexes report similar changes in mitochondrial oxidation and negative geotaxis, locomotor activity appears to be more impaired in males than females. These data suggest that sex-differences not only influence the response to TBI but also contribute to varied outcomes post-injury.
Collapse
Affiliation(s)
- Ekta J Shah
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Katherine Gurdziel
- Office of the Vice President for Research, Wayne State University, Detroit, MI, United States
| | - Douglas M Ruden
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States.,Office of the Vice President for Research, Wayne State University, Detroit, MI, United States.,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
60
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
61
|
Macel ML, Ristoratore F, Locascio A, Spagnuolo A, Sordino P, D’Aniello S. Sea as a color palette: the ecology and evolution of fluorescence. ZOOLOGICAL LETTERS 2020; 6:9. [PMID: 32537244 PMCID: PMC7288533 DOI: 10.1186/s40851-020-00161-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Fluorescence and luminescence are widespread optical phenomena exhibited by organisms living in terrestrial and aquatic environments. While many underlying mechanistic features have been identified and characterized at the molecular and cellular levels, much less is known about the ecology and evolution of these forms of bioluminescence. In this review, we summarize recent findings in the evolutionary history and ecological functions of fluorescent proteins (FP) and pigments. Evidence for green fluorescent protein (GFP) orthologs in cephalochordates and non-GFP fluorescent proteins in vertebrates suggests unexplored evolutionary scenarios that favor multiple independent origins of fluorescence across metazoan lineages. Several context-dependent behavioral and physiological roles have been attributed to fluorescent proteins, ranging from communication and predation to UV protection. However, rigorous functional and mechanistic studies are needed to shed light on the ecological functions and control mechanisms of fluorescence.
Collapse
Affiliation(s)
- Marie-Lyne Macel
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Annamaria Locascio
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
62
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
63
|
Windels EM, Van den Bergh B, Michiels J. Bacteria under antibiotic attack: Different strategies for evolutionary adaptation. PLoS Pathog 2020; 16:e1008431. [PMID: 32379814 PMCID: PMC7205213 DOI: 10.1371/journal.ppat.1008431] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacteria are well known for their extremely high adaptability in stressful environments. The clinical relevance of this property is clearly illustrated by the ever-decreasing efficacy of antibiotic therapies. Frequent exposures to antibiotics favor bacterial strains that have acquired mechanisms to overcome drug inhibition and lethality. Many strains, including life-threatening pathogens, exhibit increased antibiotic resistance or tolerance, which considerably complicates clinical practice. Alarmingly, recent studies show that in addition to resistance, tolerance levels of bacterial populations are extremely flexible in an evolutionary context. Here, we summarize laboratory studies providing insight in the evolution of resistance and tolerance and shed light on how the treatment conditions could affect the direction of bacterial evolution under antibiotic stress.
Collapse
Affiliation(s)
- Etthel M. Windels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
64
|
Goncalves J, Wan Y, Guo X, Rha K, LeBoeuf B, Zhang L, Estler K, Garcia LR. Succinate Dehydrogenase-Regulated Phosphoenolpyruvate Carboxykinase Sustains Copulation Fitness in Aging C. elegans Males. iScience 2020; 23:100990. [PMID: 32240955 PMCID: PMC7115159 DOI: 10.1016/j.isci.2020.100990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Dysregulated metabolism accelerates reduced decision-making and locomotor ability during aging. To identify mechanisms for delaying behavioral decline, we investigated how C. elegans males sustain their copulatory behavior during early to mid-adulthood. We found that in mid-aged males, gluco-/glyceroneogenesis, promoted by phosphoenolpyruvate carboxykinase (PEPCK), sustains competitive reproductive behavior. C. elegans' PEPCK paralogs, pck-1 and pck-2, increase in expression during the first 2 days of adulthood. Insufficient PEPCK expression correlates with reduced egl-2-encoded ether-a-go-go K+ channel expression and premature hyper-excitability of copulatory circuits. For copulation, pck-1 is required in neurons, whereas pck-2 is required in the epidermis. However, PCK-2 is more essential, because we found that epidermal PCK-2 likely supplements the copulation circuitry with fuel. We identified the subunit A of succinate dehydrogenase SDHA-1 as a potent modulator of PEPCK expression. We postulate that during mid-adulthood, reduction in mitochondrial physiology signals the upregulation of cytosolic PEPCK to sustain the male's energy demands. C. elegans upregulates pck-1- and pck-2-encoded PEPCK during early adulthood Loss of PEPCK causes premature male copulatory behavior decline Epidermal PEPCK is required to sustain the copulatory fitness Subunit A of succinate dehydrogenase antagonizes PEPCK expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoyan Guo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Kyoungsun Rha
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Liusuo Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Kerolayne Estler
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
65
|
Protein and Mitochondria Quality Control Mechanisms and Cardiac Aging. Cells 2020; 9:cells9040933. [PMID: 32290135 PMCID: PMC7226975 DOI: 10.3390/cells9040933] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the United States. Advancing age is a primary risk factor for developing CVD. Estimates indicate that 20% of the US population will be ≥65 years old by 2030. Direct expenditures for treating CVD in the older population combined with indirect costs, secondary to lost wages, are predicted to reach $1.1 trillion by 2035. Therefore, there is an eminent need to discover novel therapeutic targets and identify new interventions to delay, lessen the severity, or prevent cardiovascular complications associated with advanced age. Protein and organelle quality control pathways including autophagy/lysosomal and the ubiquitin-proteasome systems, are emerging contributors of age-associated myocardial dysfunction. In general, two findings have sparked this interest. First, strong evidence indicates that cardiac protein degradation pathways are altered in the heart with aging. Second, it is well accepted that damaged and misfolded protein aggregates and dysfunctional mitochondria accumulate in the heart with age. In this review, we will: (i) define the different protein and mitochondria quality control mechanisms in the heart; (ii) provide evidence that each quality control pathway becomes dysfunctional during cardiac aging; and (iii) discuss current advances in targeting these pathways to maintain cardiac function with age.
Collapse
|
66
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
67
|
Montava-Garriga L, Singh F, Ball G, Ganley IG. Semi-automated quantitation of mitophagy in cells and tissues. Mech Ageing Dev 2020; 185:111196. [PMID: 31843465 PMCID: PMC6961211 DOI: 10.1016/j.mad.2019.111196] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/19/2022]
Abstract
Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo.
Collapse
Affiliation(s)
- Lambert Montava-Garriga
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - François Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Graeme Ball
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
68
|
Burnaevskiy N, Sands B, Yun S, Tedesco PM, Johnson TE, Kaeberlein M, Brent R, Mendenhall A. Chaperone biomarkers of lifespan and penetrance track the dosages of many other proteins. Nat Commun 2019; 10:5725. [PMID: 31844058 PMCID: PMC6914778 DOI: 10.1038/s41467-019-13664-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/11/2019] [Indexed: 12/27/2022] Open
Abstract
Many traits vary among isogenic individuals in homogeneous environments. In microbes, plants and animals, variation in the protein chaperone system affects many such traits. In the animal model C. elegans, the expression level of hsp-16.2 chaperone biomarkers correlates with or predicts the penetrance of mutations and lifespan after heat shock. But the physiological mechanisms causing cells to express different amounts of the biomarker were unknown. Here, we used an in vivo microscopy approach to dissect different contributions to cell-to-cell variation in hsp-16.2 expression in the intestines of young adult animals, which generate the most lifespan predicting signal. While we detected both cell autonomous intrinsic noise and signaling noise, we found both contributions were relatively unimportant. The major contributor to cell-to-cell variation in biomarker expression was general differences in protein dosage. The hsp-16.2 biomarker reveals states of high or low effective dosage for many genes.
Collapse
Affiliation(s)
| | - Bryan Sands
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Soo Yun
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Patricia M Tedesco
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Thomas E Johnson
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Roger Brent
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | |
Collapse
|
69
|
Live cell imaging of signaling and metabolic activities. Pharmacol Ther 2019; 202:98-119. [DOI: 10.1016/j.pharmthera.2019.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
|
70
|
Abstract
Monitoring spatio-temporal patterns of gene expression by fluorescent proteins requires longitudinal observation, which is often difficult to implement. Here, we fuse a fluorescent timer (FT) protein with an immediate early gene (IEG) promoter to track live gene expression in single cells. This results in a stimulus- and time-dependent spectral shift from blue to red for subsequent monitoring with fluorescence activated cell sorting (FACS) and live cell imaging. This spectral shift enables imputing the time point of activity post-hoc to dissociate early and late responders from a single snapshot in time. Thus, we provide a tool for tracking stimulus-driven IEG expression and demonstrate proof of concept exploiting promoter::FT fusions, adding new dimensions to experiments that require reconstructing spatio-temporal patterns of gene expression in cells, tissues or living organisms.
Collapse
|
71
|
Eldeeb MA, Siva-Piragasam R, Ragheb MA, Esmaili M, Salla M, Fahlman RP. A molecular toolbox for studying protein degradation in mammalian cells. J Neurochem 2019; 151:520-533. [PMID: 31357232 DOI: 10.1111/jnc.14838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
Protein degradation is a crucial regulatory process in maintaining cellular proteostasis. The selective degradation of intracellular proteins controls diverse cellular and biochemical processes in all kingdoms of life. Targeted protein degradation is implicated in controlling the levels of regulatory proteins as well as eliminating misfolded and any otherwise abnormal proteins. Deregulation of protein degradation is concomitant with the progression of various neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Thus, methods of measuring metabolic half-lives of proteins greatly influence our understanding of the diverse functions of proteins in mammalian cells including neuronal cells. Historically, protein degradation rates have been studied via exploiting methods that estimate overall protein degradation or focus on few individual proteins. Notably, with the recent technical advances and developments in proteomic and imaging techniques, it is now possible to measure degradation rates of a large repertoire of defined proteins and analyze the degradation profile in a detailed spatio-temporal manner, with the aim of determining proteome-wide protein stabilities upon different physiological conditions. Herein, we discuss some of the classical and novel methods for determining protein degradation rates highlighting the crucial role of some state of art approaches in deciphering the global impact of dynamic nature of targeted degradation of cellular proteins. This article is part of the Special Issue "Proteomics".
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohamed Salla
- Department of Biological Sciences, Lebanese International University, Bekaa, Lebanon
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
72
|
Evans CS, Holzbaur ELF. Quality Control in Neurons: Mitophagy and Other Selective Autophagy Mechanisms. J Mol Biol 2019; 432:240-260. [PMID: 31295455 DOI: 10.1016/j.jmb.2019.06.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/19/2022]
Abstract
The cargo-specific removal of organelles via selective autophagy is important to maintain neuronal homeostasis. Genetic studies indicate that deficits in these pathways are implicated in neurodegenerative diseases, including Parkinson's and amyotrophic lateral sclerosis. Here, we review our current understanding of the pathways that regulate mitochondrial quality control, and compare these mechanisms to those regulating turnover of the endoplasmic reticulum and the clearance of protein aggregates. Research suggests that there are multiple mechanisms regulating the degradation of specific cargos, such as dysfunctional organelles and protein aggregates. These mechanisms are critical for neuronal health, as neurons are uniquely vulnerable to impairment in organelle quality control pathways due to their morphology, size, polarity, and postmitotic nature. We highlight the consequences of dysregulation of selective autophagy in neurons and discuss current challenges in correlating noncongruent findings from in vitro and in vivo systems.
Collapse
Affiliation(s)
- Chantell S Evans
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6085, USA.
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
73
|
Nogales A, Ávila-Pérez G, Rangel-Moreno J, Chiem K, DeDiego ML, Martínez-Sobrido L. A Novel Fluorescent and Bioluminescent Bireporter Influenza A Virus To Evaluate Viral Infections. J Virol 2019; 93:e00032-19. [PMID: 30867298 PMCID: PMC6498038 DOI: 10.1128/jvi.00032-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
Abstract
Studying influenza A virus (IAV) requires the use of secondary approaches to detect the presence of virus in infected cells. To overcome this problem, we and others have generated recombinant IAV expressing fluorescent or luciferase reporter genes. These foreign reporter genes can be used as valid surrogates to track the presence of virus. However, the limited capacity for incorporating foreign sequences in the viral genome forced researchers to select a fluorescent or a luciferase reporter gene, depending on the type of study. To circumvent this limitation, we engineered a novel recombinant replication-competent bireporter IAV (BIRFLU) expressing both fluorescent and luciferase reporter genes. In cultured cells, BIRFLU displayed growth kinetics comparable to those of wild-type (WT) virus and was used to screen neutralizing antibodies or compounds with antiviral activity. The expression of two reporter genes allows monitoring of viral inhibition by fluorescence or bioluminescence, overcoming the limitations associated with the use of one reporter gene as a readout. In vivo, BIRFLU effectively infected mice, and both reporter genes were detected using in vivo imaging systems (IVIS). The ability to generate recombinant IAV harboring multiple foreign genes opens unique possibilities for studying virus-host interactions and for using IAV in high-throughput screenings (HTS) to identify novel antivirals that can be incorporated into the therapeutic armamentarium to control IAV infections. Moreover, the ability to genetically manipulate the viral genome to express two foreign genes offers the possibility of developing novel influenza vaccines and the feasibility for using recombinant IAV as vaccine vectors to treat other pathogen infections.IMPORTANCE Influenza A virus (IAV) causes a human respiratory disease that is associated with significant health and economic consequences. In recent years, the use of replication-competent IAV expressing an easily traceable fluorescent or luciferase reporter protein has significantly contributed to progress in influenza research. However, researchers have been forced to select a fluorescent or a luciferase reporter gene due to the restricted capacity of the influenza viral genome for including foreign sequences. To overcome this limitation, we generated, for the first time, a recombinant replication-competent bireporter IAV (BIRFLU) that stably expresses two reporter genes (one fluorescent and one luciferase) to track IAV infections in vitro and in vivo The combination of cutting-edge techniques from molecular biology, animal research, and imaging technologies brings researchers the unique opportunity to use this new generation of reporter-expressing IAV to study viral infection dynamics in both cultured cells and animal models of viral infection.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Center for Animal Health Research, INIA-CISA, Madrid, Spain
| | - Gines Ávila-Pérez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Javier Rangel-Moreno
- Division of Allergy/Immunology and Rheumatology, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Kevin Chiem
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
74
|
Abstract
It is generally regarded that the progression of an infection within host macrophages is the consequence of a failed immune response. However, recent appreciation of macrophage heterogeneity, with respect to both development and metabolism, indicates that the reality is more complex. Different lineages of tissue-resident macrophages respond divergently to microbial, environmental and immunological stimuli. The emerging picture that the developmental origin of macrophages determines their responses to immune stimulation and to infection stresses the importance of in vivo infection models. Recent investigations into the metabolism of infecting microorganisms and host macrophages indicate that their metabolic interface can be a major determinant of pathogen growth or containment. This Review focuses on the integration of data from existing studies, the identification of challenges in generating and interpreting data from ongoing studies and a discussion of the technologies and tools that are required to best address future questions in the field.
Collapse
Affiliation(s)
- David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brian C VanderVen
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
75
|
Alber AB, Suter DM. Dynamics of protein synthesis and degradation through the cell cycle. Cell Cycle 2019; 18:784-794. [PMID: 30907235 PMCID: PMC6527273 DOI: 10.1080/15384101.2019.1598725] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/05/2023] Open
Abstract
Protein expression levels depend on the balance between their synthesis and degradation rates. Even quiescent (G0) cells display a continuous turnover of proteins, despite protein levels remaining largely constant over time. In cycling cells, global protein levels need to be precisely doubled at each cell division in order to maintain cellular homeostasis, but we still lack a quantitative understanding of how this is achieved. Recent studies have shed light on cell cycle-dependent changes in protein synthesis and degradation rates. Here we discuss current population-based and single cell approaches used to assess protein synthesis and degradation, and review the insights they have provided into the dynamics of protein turnover in different cell cycle phases.
Collapse
Affiliation(s)
- Andrea Brigitta Alber
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Michael Suter
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
76
|
Bumann D. Salmonella Single-Cell Metabolism and Stress Responses in Complex Host Tissues. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0009-2019. [PMID: 30953427 PMCID: PMC11588158 DOI: 10.1128/microbiolspec.bai-0009-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/12/2023] Open
Abstract
Systemic Salmonella enterica infections are a major cause of mortality worldwide and are becoming increasingly untreatable. Recent single-cell data from a mouse model of typhoid fever show that the host immune system actually eradicates many Salmonella cells, while other Salmonella organisms thrive at the same time in the same tissue, causing lethal disease progression. The surviving Salmonella cells have highly heterogeneous metabolism, growth rates, and exposure to various stresses. Emerging evidence suggests that similarly heterogeneous host-pathogen encounters might be a key feature of many infectious diseases. This heterogeneity offers fascinating opportunities for research and application. If we understand the mechanisms that determine the disparate local outcomes, we might be able to develop entirely novel strategies for infection control by broadening successful host antimicrobial attacks and closing permissive niches in which pathogens can thrive. This review describes suitable technologies, a current working model of heterogeneous host-Salmonella interactions, the impact of diverse Salmonella subsets on antimicrobial chemotherapy, and major open questions and challenges.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
77
|
The Role of the Host in Driving Phenotypic Heterogeneity in Salmonella. Trends Microbiol 2019; 27:508-523. [PMID: 30755344 DOI: 10.1016/j.tim.2019.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
The complex infection environment within hosts exerts unique stresses across tissues and cell types, selecting for phenotypic heterogeneity in bacterial populations. Pathogens maintain variability during infection as a strategy to cope with fluctuating host immune conditions, leading to diversification of virulence phenotypes. Recent improvements in single-cell analyses have revealed that distinct bacterial subpopulations contribute unique colonization and growth strategies across infection sites. We discuss several examples of host-driven phenotypic heterogeneity in Salmonella populations throughout the course of infection, highlighting how variation in gene expression, growth rate, immune evasion, and metabolic activity contribute to overall bacterial success at the population level. We additionally focus our discussion on the implications of diversity within bacterial communities for antimicrobial efficacy.
Collapse
|
78
|
Wilson RJ, Drake JC, Cui D, Ritger ML, Guan Y, Call JA, Zhang M, Leitner LM, Gödecke A, Yan Z. Voluntary running protects against neuromuscular dysfunction following hindlimb ischemia-reperfusion in mice. J Appl Physiol (1985) 2019; 126:193-201. [PMID: 30433863 PMCID: PMC6383643 DOI: 10.1152/japplphysiol.00358.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Ischemia-reperfusion (IR) due to temporary restriction of blood flow causes tissue/organ damages under various disease conditions, including stroke, myocardial infarction, trauma, and orthopedic surgery. In the limbs, IR injury to motor nerves and muscle fibers causes reduced mobility and quality of life. Endurance exercise training has been shown to increase tissue resistance to numerous pathological insults. To elucidate the impact of endurance exercise training on IR injury in skeletal muscle, sedentary and exercise-trained mice (5 wk of voluntary running) were subjected to ischemia by unilateral application of a rubber band tourniquet above the femur for 1 h, followed by reperfusion. IR caused significant muscle injury and denervation at neuromuscular junction (NMJ) as early as 3 h after tourniquet release as well as depressed muscle strength and neuromuscular transmission in sedentary mice. Despite similar degrees of muscle atrophy and oxidative stress, exercise-trained mice had significantly reduced muscle injury and denervation at NMJ with improved regeneration and functional recovery following IR. Together, these data suggest that endurance exercise training preserves motor nerve and myofiber structure and function from IR injury and promote functional regeneration. NEW & NOTEWORTHY This work provides the first evidence that preemptive voluntary wheel running reduces neuromuscular dysfunction following ischemia-reperfusion injury in skeletal muscle. These findings may alter clinical practices in which a tourniquet is used to modulate blood flow.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Biochemistry and Molecular Genetics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Joshua C Drake
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Di Cui
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Matthew L Ritger
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Yuntian Guan
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia , Athens, Georgia
- Regenerative Bioscience Center, University of Georgia , Athens, Georgia
| | - Mei Zhang
- Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Lucia M Leitner
- Institute of Cardiovascular Physiology, Heinrich Heine University of Düsseldorf , Düsseldorf , Germany
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Heinrich Heine University of Düsseldorf , Düsseldorf , Germany
| | - Zhen Yan
- Department of Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Department of Pharmacology, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| |
Collapse
|
79
|
Pickett SB, Thomas ED, Sebe JY, Linbo T, Esterberg R, Hailey DW, Raible DW. Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish mechanosensory hair cells. eLife 2018; 7:38062. [PMID: 30596476 PMCID: PMC6345563 DOI: 10.7554/elife.38062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play a prominent role in mechanosensory hair cell damage and death. Although hair cells are thought to be energetically demanding cells, how mitochondria respond to these demands and how this might relate to cell death is largely unexplored. Using genetically encoded indicators, we found that mitochondrial calcium flux and oxidation are regulated by mechanotransduction and demonstrate that hair cell activity has both acute and long-term consequences on mitochondrial function. We tested whether variation in mitochondrial activity reflected differences in the vulnerability of hair cells to the toxic drug neomycin. We observed that susceptibility did not correspond to the acute level of mitochondrial activity but rather to the cumulative history of that activity.
Collapse
Affiliation(s)
- Sarah B Pickett
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Eric D Thomas
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Joy Y Sebe
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Robert Esterberg
- Department of Biological Structure, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Dale W Hailey
- Department of Biological Structure, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| |
Collapse
|
80
|
Beuter D, Gomes-Filho JV, Randau L, Díaz-Pascual F, Drescher K, Link H. Selective Enrichment of Slow-Growing Bacteria in a Metabolism-Wide CRISPRi Library with a TIMER Protein. ACS Synth Biol 2018; 7:2775-2782. [PMID: 30424596 DOI: 10.1021/acssynbio.8b00379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Construction of pooled genetic variant libraries has become very fast and versatile. The current limitation of this technique is to select cells with a desired phenotype from very large libraries. Especially cells with poor fitness and slow growth are difficult to select because they are rapidly outcompeted by fitter cells. Here, we demonstrate selective and high-throughput enrichment of slow-growing strains using a fluorescent TIMER protein and flow cytometry. As a proof of principle, we created a metabolism-wide CRISPR interference library for Escherichia coli and enriched targets that interfere with amino acid metabolism. After enrichment of slow-growing cells, the CRISPRi library consisted almost entirely of targets that block amino acid biosynthesis. These results provide general guidelines for how to enrich slow-growing strains from a large pool of genetic variants, with applications in genetic screens, metabolic engineering, and synthetic biology.
Collapse
Affiliation(s)
- Dominik Beuter
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
81
|
Bending D, Prieto Martín P, Paduraru A, Ducker C, Marzaganov E, Laviron M, Kitano S, Miyachi H, Crompton T, Ono M. A timer for analyzing temporally dynamic changes in transcription during differentiation in vivo. J Cell Biol 2018; 217:2931-2950. [PMID: 29941474 PMCID: PMC6080944 DOI: 10.1083/jcb.201711048] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/06/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Bending et al. establish a new tool, Timer of cell kinetics and activity (Tocky), revealing the temporal dynamics of cellular activation and differentiation in vivo. The tool analyzes the temporal sequence of molecular processes during cellular differentiation and can classify cells based on the frequency they receive signaling events in vivo. Understanding the mechanisms of cellular differentiation is challenging because differentiation is initiated by signaling pathways that drive temporally dynamic processes, which are difficult to analyze in vivo. We establish a new tool, Timer of cell kinetics and activity (Tocky; or toki [time in Japanese]). Tocky uses the fluorescent Timer protein, which spontaneously shifts its emission spectrum from blue to red, in combination with computer algorithms to reveal the dynamics of differentiation in vivo. Using a transcriptional target of T cell receptor (TCR) signaling, we establish Nr4a3-Tocky to follow downstream effects of TCR signaling. Nr4a3-Tocky reveals the temporal sequence of events during regulatory T cell (Treg) differentiation and shows that persistent TCR signals occur during Treg generation. Remarkably, antigen-specific T cells at the site of autoimmune inflammation also show persistent TCR signaling. In addition, by generating Foxp3-Tocky, we reveal the in vivo dynamics of demethylation of the Foxp3 gene. Thus, Tocky is a tool for cell biologists to address previously inaccessible questions by directly revealing dynamic processes in vivo.
Collapse
Affiliation(s)
- David Bending
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Paz Prieto Martín
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Alina Paduraru
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Catherine Ducker
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Erik Marzaganov
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Marie Laviron
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| | - Satsuki Kitano
- Institute for Viral Research, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Institute for Viral Research, Kyoto University, Kyoto, Japan
| | - Tessa Crompton
- University College London Great Ormond Street Institute of Child Health, London, England, UK
| | - Masahiro Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, England, UK
| |
Collapse
|
82
|
Abstract
Animal and plant tissue is composed of distinct populations of cells. These cells interact over time to build and maintain the tissue and can cause disease when disrupted. Scientists have developed clever techniques to investigate characteristics and natural dynamics of these cells within intact tissue by expressing fluorescent proteins in subsets of cells. However, at times, experiments require more selected visualization of cells within the tissue, sometimes at the single-cell or population-of-cells manner. To achieve this and visualize single cells within a population of cells, scientists have utilized single-cell photoconversion of fluorescent proteins. To demonstrate this technique, we show here how to direct UV light to an Eos-expressing cell of interest in an intact, living zebrafish. We then image those photoconverted Eos+ cells 24 h later to determine how they changed in the tissue. We describe two techniques: single cell photoconversion and photoconversions of populations of cell. These techniques can be used to visualize cell-cell interactions, cell-fate and differentiation, and cell migrations, making it a technique that is applicable in numerous biological questions.
Collapse
Affiliation(s)
- Lauren Green
- Department of Biological Sciences, University of Notre Dame; Center for Stem Cells and Regenerative Medicine, University of Notre Dame
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame; Center for Stem Cells and Regenerative Medicine, University of Notre Dame;
| |
Collapse
|
83
|
Williams JA, Ding WX. Mechanisms, pathophysiological roles and methods for analyzing mitophagy - recent insights. Biol Chem 2018; 399:147-178. [PMID: 28976892 DOI: 10.1515/hsz-2017-0228] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
In 2012, we briefly summarized the mechanisms, pathophysiological roles and methods for analyzing mitophagy. As then, the mitophagy field has continued to grow rapidly, and many new molecular mechanisms regulating mitophagy and molecular tools for monitoring mitophagy have been discovered and developed. Therefore, the purpose of this review is to update information regarding these advances in mitophagy while focusing on basic molecular mechanisms of mitophagy in different organisms and its pathophysiological roles. We also discuss the advantage and limitations of current methods to monitor and quantify mitophagy in cultured cells and in vivo mouse tissues.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
84
|
Lidsky PV, Lukyanov KA, Misra T, Handke B, Mishin AS, Lehner CF. A genetically encoded fluorescent probe for imaging of oxygenation gradients in living Drosophila. Development 2018; 145:dev.156257. [PMID: 29437781 DOI: 10.1242/dev.156257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
Abstract
Oxygen concentrations vary between tissues of multicellular organisms and change under certain physiological or pathological conditions. Multiple methods have been developed for measuring oxygenation of biological samples in vitro and in vivo However, most require complex equipment, are laborious and have significant limitations. Here we report that oxygen concentration determines the choice between two maturation pathways of DsRed FT (Timer). At high oxygen levels, this DsRed derivate matures predominantly into a red fluorescent isoform. By contrast, a green fluorescent isoform is favored by low oxygen levels. Ratiometric analysis of green and red fluorescence after a pulse of Timer expression in Drosophila larvae provides a record of the history of tissue oxygenation during a subsequent chase period, for the whole animal with single-cell precision. Tissue spreads revealed fine differences in oxygen exposure among different cells of the same organ. We expect that the simplicity and robustness of our approach will greatly impact hypoxia research, especially in small animal models.
Collapse
Affiliation(s)
- Peter V Lidsky
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Konstantin A Lukyanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Nizhny Novgorod State Medical Academy, Nizhny Novgorod, 603005, Russia
| | - Tvisha Misra
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| | - Björn Handke
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Nizhny Novgorod State Medical Academy, Nizhny Novgorod, 603005, Russia
| | - Christian F Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
85
|
McNamara G, Difilippantonio M, Ried T, Bieber FR. Microscopy and Image Analysis. ACTA ACUST UNITED AC 2018; 94:4.4.1-4.4.89. [DOI: 10.1002/cphg.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Thomas Ried
- Section of Cancer Genomics Genetics Branch Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | |
Collapse
|
86
|
Gordeev AA, Chetverin AB. Methods for Screening Live Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:S81-S102. [DOI: 10.1134/s0006297918140080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
87
|
Wilson RJ, Drake JC, Cui D, Zhang M, Perry HM, Kashatus JA, Kusminski CM, Scherer PE, Kashatus DF, Okusa MD, Yan Z. Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion 2017; 44:20-26. [PMID: 29274400 PMCID: PMC6387589 DOI: 10.1016/j.mito.2017.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/24/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022]
Abstract
Assessment of structural and functional changes of mitochondria is vital for biomedical research as mitochondria are the power plants essential for biological processes and tissue/organ functions. Others and we have developed a novel reporter gene, pMitoTimer, which codes for a redox sensitive mitochondrial targeted protein that switches from green fluorescence protein (GFP) to red fluorescent protein (DsRed) when oxidized. It has been shown in transfected cells, transgenic C. elegans and Drosophila m., as well as somatically transfected adult skeletal muscle that this reporter gene allows quantifiable assessment of mitochondrial structure, oxidative stress, and lysosomal targeting of mitochondria-containing autophagosomes. Here, we generated CAG-CAT-MitoTimer transgenic mice using a transgene containing MitoTimer downstream of LoxP-flanked bacterial chloramphenicol acetyltransferase (CAT) gene with stop codon under the control of the cytomegalovirus (CMV) enhancer fused to the chicken β-actin promoter (CAG). When CAG-CAT-MitoTimer mice were crossbred with various tissue-specific (muscle, adipose tissue, kidney, and pancreatic tumor) or global Cre transgenic mice, the double transgenic offspring showed MitoTimer expression in tissue-specific or global manner. Lastly, we show that hindlimb ischemia-reperfusion caused early, transient increases of mitochondrial oxidative stress, mitochondrial fragmentation and lysosomal targeting of autophagosomes containing mitochondria as well as a later reduction of mitochondrial content in skeletal muscle along with mitochondrial oxidative stress in sciatic nerve. Thus, we have generated conditional MitoTimer mice and provided proof of principle evidence of their utility to simultaneously assess mitochondrial structure, oxidative stress, and mitophagy in vivo in a tissue-specific, controllable fashion.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Joshua C Drake
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Di Cui
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mei Zhang
- Department of Medicine-Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather M Perry
- Department of Medicine-Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Jennifer A Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | | - Philipp E Scherer
- Department of Internal Medicine, UT Southwestern, Dallas, TX, United States
| | - David F Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mark D Okusa
- Department of Medicine-Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Zhen Yan
- Department of Medicine-Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
88
|
Ben Rejeb S, Lereclus D, Slamti L. Analysis of abrB Expression during the Infectious Cycle of Bacillus thuringiensis Reveals Population Heterogeneity. Front Microbiol 2017; 8:2471. [PMID: 29312181 PMCID: PMC5732988 DOI: 10.3389/fmicb.2017.02471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
Using the model host/pathogen pair Galleria mellonella/Bacillus thuringiensis, we have shown that these bacteria could kill their insect host, survive in its cadaver and form spores by sequentially activating virulence, necrotrophism and sporulation genes. However, the population isolated from the cadavers was heterogeneous, including non-sporulating cells in an unknown physiological state. To characterize these bacteria, we used a transcriptional fusion between the promoter of a gene expressed during early exponential growth (abrB) and a reporter gene encoding a destabilized version of GFP, in combination with a fluorescent reporter of the necrotrophic state. The composition of the bacterial population during infection was then analyzed by flow cytometry. We showed that the PabrB promoter was activated in the population that had turned on the necrotrophic reporter, suggesting a re-entry into vegetative growth. Strikingly, the cells that did not go through the necrotrophic state did not activate the PabrB promoter and appear as a dormant subpopulation. We propose a new model describing the B. thuringiensis cell types during infection.
Collapse
Affiliation(s)
- Samia Ben Rejeb
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Leyla Slamti
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
89
|
Lin Z, Xu W, Li C, Wang Y, Yang L, Zou B, Gao S, Yao W, Song Z, Liu G. β-8-Oxoguanine DNA Glycosylase Overexpression Reduces Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis Through the JNK Signaling Pathway in Human Bronchial Epithelial Cells. DNA Cell Biol 2017; 36:1071-1080. [PMID: 29227732 DOI: 10.1089/dna.2017.3769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ziying Lin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenya Xu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunyan Li
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bao'an Zou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shenglan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weimin Yao
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeqing Song
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
90
|
Coxsackievirus B Escapes the Infected Cell in Ejected Mitophagosomes. J Virol 2017; 91:JVI.01347-17. [PMID: 28978702 DOI: 10.1128/jvi.01347-17] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/22/2017] [Indexed: 01/05/2023] Open
Abstract
Coxsackievirus B (CVB) is a common enterovirus that can cause various systemic inflammatory diseases. Because CVB lacks an envelope, it has been thought to be inherently cytolytic, wherein CVB can escape from the infected host cell only by causing it to rupture. In recent years, however, we and others have observed that various naked viruses, such as CVB, can trigger the release of infectious extracellular microvesicles (EMVs) that contain viral material. This mode of cellular escape has been suggested to allow the virus to be masked from the adaptive immune system. Additionally, we have previously reported that these viral EMVs have LC3, suggesting that they originated from autophagosomes. We now report that CVB-infected cells trigger DRP1-mediated fragmentation of mitochondria, which is a precursor to autophagic mitochondrial elimination (mitophagy). However, rather than being degraded by lysosomes, mitochondrion-containing autophagosomes are released from the cell. We believe that CVB localizes to mitochondria, induces mitophagy, and subsequently disseminates from the cell in an autophagosome-bound mitochondrion-virus complex. Suppressing the mitophagy pathway in HL-1 cardiomyocytes with either small interfering RNA (siRNA) or Mdivi-1 caused marked reduction in virus production. The findings in this study suggest that CVB subverts mitophagy machinery to support viral dissemination in released EMVs.IMPORTANCE Coxsackievirus B (CVB) can cause a number of life-threatening inflammatory diseases. Though CVB is well known to disseminate via cytolysis, recent reports have revealed a second pathway in which CVB can become encapsulated in host membrane components to escape the cell in an exosome-like particle. Here we report that these membrane-bound structures derive from mitophagosomes. Blocking various steps in the mitophagy pathway reduced levels of intracellular and extracellular virus. Not only does this study reveal a novel mechanism of picornaviral dissemination, but also it sheds light on new therapeutic targets to treat CVB and potentially other picornaviral infections.
Collapse
|
91
|
Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, Fisher CC, Zhang M, Saucerman JJ, Goodyear LJ, Kundu M, Yan Z. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun 2017; 8:548. [PMID: 28916822 PMCID: PMC5601463 DOI: 10.1038/s41467-017-00520-9] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/05/2017] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial health is critical for skeletal muscle function and is improved by exercise training through both mitochondrial biogenesis and removal of damaged/dysfunctional mitochondria via mitophagy. The mechanisms underlying exercise-induced mitophagy have not been fully elucidated. Here, we show that acute treadmill running in mice causes mitochondrial oxidative stress at 3-12 h and mitophagy at 6 h post-exercise in skeletal muscle. These changes were monitored using a novel fluorescent reporter gene, pMitoTimer, that allows assessment of mitochondrial oxidative stress and mitophagy in vivo, and were preceded by increased phosphorylation of AMP activated protein kinase (Ampk) at tyrosine 172 and of unc-51 like autophagy activating kinase 1 (Ulk1) at serine 555. Using mice expressing dominant negative and constitutively active Ampk in skeletal muscle, we demonstrate that Ulk1 activation is dependent on Ampk. Furthermore, exercise-induced metabolic adaptation requires Ulk1. These findings provide direct evidence of exercise-induced mitophagy and demonstrate the importance of Ampk-Ulk1 signaling in skeletal muscle.Exercise is associated with biogenesis and removal of dysfunctional mitochondria. Here the authors use a mitochondrial reporter gene to demonstrate the occurrence of mitophagy following exercise in mice, and show this is dependent on AMPK and ULK1 signaling.
Collapse
Affiliation(s)
- Rhianna C Laker
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Joshua C Drake
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Rebecca J Wilson
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Vitor A Lira
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Health and Human Physiology, Obesity Research and Education Initiative, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, IA, 52242, USA
| | - Bevan M Lewellen
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen A Ryall
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Carleigh C Fisher
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mei Zhang
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Laurie J Goodyear
- Research Division, Joslin Diabetes Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhen Yan
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
92
|
Müller A, Mziaut H, Neukam M, Knoch KP, Solimena M. A 4D view on insulin secretory granule turnover in the β-cell. Diabetes Obes Metab 2017; 19 Suppl 1:107-114. [PMID: 28880479 DOI: 10.1111/dom.13015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/31/2023]
Abstract
Insulin secretory granule (SG) turnover consists of several highly regulated processes allowing for proper β-cell function and insulin secretion. Besides the spatial distribution of insulin SGs, their age has great impact on the likelihood of their secretion and their behaviour within the β-cell. While quantitative measurements performed decades ago demonstrated the preferential secretion of young insulin, new experimental approaches aim to investigate insulin ageing at the granular level. Live-cell imaging, automated image analysis and correlative light and electron microscopy have fostered knowledge of age-defined insulin SG dynamics, their interaction with the cytoskeleton and ultrastructural features. Here, we review our recent work in regards to the connection between insulin SG age, SG dynamics, intracellular location and interaction with other proteins.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hassan Mziaut
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| |
Collapse
|
93
|
Cárcamo E, Roldán-Salgado A, Osuna J, Bello-Sanmartin I, Yáñez JA, Saab-Rincón G, Viadiu H, Gaytán P. Spiked Genes: A Method to Introduce Random Point Nucleotide Mutations Evenly throughout an Entire Gene Using a Complete Set of Spiked Oligonucleotides for the Assembly. ACS OMEGA 2017; 2:3183-3191. [PMID: 30023688 PMCID: PMC6044943 DOI: 10.1021/acsomega.7b00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 06/08/2023]
Abstract
In vitro mutagenesis methods have revolutionized biological research and the biotechnology industry. In this study, we describe a mutagenesis method based on synthesizing a gene using a complete set of forward and reverse spiked oligonucleotides that have been modified to introduce a low ratio of mutant nucleotides at each position. This novel mutagenesis scheme named "Spiked Genes" yields a library of clones with an enhanced mutation distribution due to its unbiased nucleotide incorporation. Using the far-red fluorescent protein emKate as a model, we demonstrated that Spiked Genes yields richer libraries than those obtained via enzymatic methods. We obtained a library without bias toward any nucleotide or base pair and with even mutations, transitions, and transversion frequencies. Compared with enzymatic methods, the proposed synthetic approach for the creation of gene libraries represents an improved strategy for screening protein variants and does not require a starting template.
Collapse
Affiliation(s)
- Edson Cárcamo
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Abigail Roldán-Salgado
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Joel Osuna
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Iván Bello-Sanmartin
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Jorge A. Yáñez
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Gloria Saab-Rincón
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Héctor Viadiu
- Instituto
de Química, Universidad Nacional
Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad
de Mexico 04510, México
| | - Paul Gaytán
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
94
|
Alieva RR, Kudryasheva NS. Variability of fluorescence spectra of coelenteramide-containing proteins as a basis for toxicity monitoring. Talanta 2017; 170:425-431. [PMID: 28501192 DOI: 10.1016/j.talanta.2017.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
Abstract
Nowadays, physicochemical approach to understanding toxic effects remains underdeveloped. A proper development of such mode would be concerned with simplest bioassay systems. Coelenteramide-Containing Fluorescent Proteins (CLM-CFPs) can serve as proper tools for study primary physicochemical processes in organisms under external exposures. CLM-CFPs are products of bioluminescent reactions of marine coelenterates. As opposed to Green Fluorescent Proteins, the CLM-CFPs are not widely applied in biomedical research, and their potential as colored biomarkers is undervalued now. Coelenteramide, fluorophore of CLM-CFPs, is a photochemically active molecule; it acts as a proton donor in its electron-excited states, generating several forms of different fluorescent state energy and, hence, different fluorescence color, from violet to green. Contributions of the forms to the visible fluorescence depend on the coelenteramide microenvironment in proteins. Hence, CLM-CFPs can serve as fluorescence biomarkers with color differentiation to monitor results of destructive biomolecule exposures. The paper reviews experimental and theoretical studies of spectral-luminescent and photochemical properties of CLM-CFPs, as well as their variation under different exposures - chemicals, temperature, and ionizing radiation. Application of CLM-CFPs as toxicity bioassays of a new type is justified.
Collapse
Affiliation(s)
- Roza R Alieva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| | - Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| |
Collapse
|
95
|
Chow RWY, Vermot J. The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology. F1000Res 2017; 6. [PMID: 28413613 PMCID: PMC5389412 DOI: 10.12688/f1000research.10617.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/24/2022] Open
Abstract
The zebrafish ( Danio rerio) is a powerful vertebrate model to study cellular and developmental processes in vivo. The optical clarity and their amenability to genetic manipulation make zebrafish a model of choice when it comes to applying optical techniques involving genetically encoded photoresponsive protein technologies. In recent years, a number of fluorescent protein and optogenetic technologies have emerged that allow new ways to visualize, quantify, and perturb developmental dynamics. Here, we explain the principles of these new tools and describe some of their representative applications in zebrafish.
Collapse
Affiliation(s)
- Renee Wei-Yan Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
96
|
Altshuler-Keylin S, Kajimura S. Mitochondrial homeostasis in adipose tissue remodeling. Sci Signal 2017; 10:10/468/eaai9248. [PMID: 28246203 DOI: 10.1126/scisignal.aai9248] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial homeostasis is regulated by a balance between mitochondrial biogenesis and degradation. Emerging evidence suggests that mitophagy, a selective form of autophagy that degrades mitochondria, plays a key role in the physiology and pathophysiology of mitochondria-enriched cells, such as brown and beige adipocytes. This review discusses findings regarding the roles of autophagy and mitophagy in cellular development, maintenance, and functions of metabolic organs, including adipose tissue, liver, and pancreas. A better understanding of the molecular links between mitophagy and energy metabolism will help to identify promising targets for the treatment of obesity and obesity-associated disorders.
Collapse
Affiliation(s)
- Svetlana Altshuler-Keylin
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA
| | - Shingo Kajimura
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0669, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA
| |
Collapse
|
97
|
Aoki T, Frȍsen J, Fukuda M, Bando K, Shioi G, Tsuji K, Ollikainen E, Nozaki K, Laakkonen J, Narumiya S. Prostaglandin E2-EP2-NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal 2017; 10:10/465/eaah6037. [PMID: 28174280 DOI: 10.1126/scisignal.aah6037] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Intracranial aneurysms are common but are generally untreated, and their rupture can lead to subarachnoid hemorrhage. Because of the poor prognosis associated with subarachnoid hemorrhage, preventing the progression of intracranial aneurysms is critically important. Intracranial aneurysms are caused by chronic inflammation of the arterial wall due to macrophage infiltration triggered by monocyte chemoattractant protein-1 (MCP-1), macrophage activation mediated by the transcription factor nuclear factor κB (NF-κB), and inflammatory signaling involving prostaglandin E2 (PGE2) and prostaglandin E receptor subtype 2 (EP2). We correlated EP2 and cyclooxygenase-2 (COX-2) with macrophage infiltration in human intracranial aneurysm lesions. Monitoring the spatiotemporal pattern of NF-κB activation during intracranial aneurysm development in mice showed that NF-κB was first activated in macrophages in the adventitia and in endothelial cells and, subsequently, in the entire arterial wall. Mice with a macrophage-specific deletion of Ptger2 (which encodes EP2) or macrophage-specific expression of an IκBα mutant that restricts NF-κB activation had fewer intracranial aneurysms with reduced macrophage infiltration and NF-κB activation. In cultured cells, EP2 signaling cooperated with tumor necrosis factor-α (TNF-α) to activate NF-κB and synergistically induce the expression of proinflammatory genes, including Ptgs2 (encoding COX-2). EP2 signaling also stabilized Ccl2 (encoding MCP-1) by activating the RNA-stabilizing protein HuR. Rats administered an EP2 antagonist had reduced macrophage infiltration and intracranial aneurysm formation and progression. This signaling pathway in macrophages thus facilitates intracranial aneurysm development by amplifying inflammation in intracranial arteries. These results indicate that EP2 antagonists may therefore be a therapeutic alternative to surgery.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.,Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Juhana Frȍsen
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki 00029 HUS, Finland.,Hemorrhagic Brain Pathology Research Group, NeuroCenter, Kuopio University Hospital, Kuopio 70029 KYS, Finland.,Department of Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio 70029 KYS, Finland
| | - Miyuki Fukuda
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kana Bando
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Hyogo 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Hyogo 650-0047, Japan
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Hyogo 650-0047, Japan
| | - Keiichi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Eliisa Ollikainen
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki 00029 HUS, Finland
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Johanna Laakkonen
- Department of Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan. .,Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
98
|
Williams JA, Zhao K, Jin S, Ding WX. New methods for monitoring mitochondrial biogenesis and mitophagy in vitro and in vivo. Exp Biol Med (Maywood) 2017; 242:781-787. [PMID: 28093935 DOI: 10.1177/1535370216688802] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Removal of damaged mitochondria through mitophagy is critical for maintaining cellular homeostasis and functions. Increasing evidence implicates mitophagy in red blood cell differentiation, neurodegeneration, macrophage-mediated inflammation, ischemia, adipogenesis, drug-induced tissue injury, and cancer. Considerable progress has been made toward understanding the biochemical mechanisms involved in mitophagy regulation. However, few reliable assays to monitor and quantify mitophagy have been developed, particularly in vivo. In this review, we summarize the recent development of three assays, MitoTimer, mt-Keima and mito-QC, for monitoring and quantifying mitophagy in cells and in animal tissues. We also discuss the advantages and limitations of these three assays when using them to monitor and quantify mitophagy. Impact statement Removal of damaged mitochondria through mitophagy is critical for maintaining cellular homeostasis and functions. However, reliable quantitative assays to monitor mitophagy, particularly in vivo, are just emerging. This review will summarize the current novel quantitative assays to monitor mitophagy in vivo.
Collapse
Affiliation(s)
- Jessica A Williams
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Katrina Zhao
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shengkan Jin
- 2 Department of Pharmacology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Wen-Xing Ding
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
99
|
Karreman MA, Hyenne V, Schwab Y, Goetz JG. Intravital Correlative Microscopy: Imaging Life at the Nanoscale. Trends Cell Biol 2016; 26:848-863. [DOI: 10.1016/j.tcb.2016.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 01/04/2023]
|
100
|
Weber T, Namikawa K, Winter B, Müller-Brown K, Kühn R, Wurst W, Köster RW. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons. Development 2016; 143:4279-4287. [PMID: 27729409 DOI: 10.1242/dev.122721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/30/2016] [Indexed: 01/11/2023]
Abstract
The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTACTM) further expands the repertoire of genetic tools for conditional interrogation of cellular functions.
Collapse
Affiliation(s)
- Thomas Weber
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany.,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Kazuhiko Namikawa
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Barbara Winter
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Karina Müller-Brown
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Ralf Kühn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Feodor-Lynen-Str. 17, München 81377, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, München 81377, Germany.,Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Reinhard W Köster
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| |
Collapse
|