51
|
Morrow CS, Tweed K, Farhadova S, Walsh AJ, Lear BP, Roopra A, Risgaard RD, Klosa PC, Arndt ZP, Peterson ER, Chi MM, Harris AG, Skala MC, Moore DL. Autofluorescence is a biomarker of neural stem cell activation state. Cell Stem Cell 2024; 31:570-581.e7. [PMID: 38521057 PMCID: PMC10997463 DOI: 10.1016/j.stem.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Neural stem cells (NSCs) must exit quiescence to produce neurons; however, our understanding of this process remains constrained by the technical limitations of current technologies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Using this non-destructive, live-cell, and label-free strategy, we found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) have unique autofluorescence profiles. Specifically, qNSCs display an enrichment of autofluorescence localizing to a subset of lysosomes, which can be used as a graded marker of NSC quiescence to predict cell behavior at single-cell resolution. Coupling autofluorescence imaging with single-cell RNA sequencing, we provide resources revealing transcriptional features linked to deep quiescence and rapid NSC activation. Together, we describe an approach for tracking mouse NSC activation state and expand our understanding of adult neurogenesis.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kelsey Tweed
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sabina Farhadova
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alex J Walsh
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bo P Lear
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ryan D Risgaard
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Payton C Klosa
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary P Arndt
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ella R Peterson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michelle M Chi
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Allison G Harris
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
52
|
Xu L, Ramirez-Matias J, Hauptschein M, Sun ED, Lunger JC, Buckley MT, Brunet A. Restoration of neuronal progenitors by partial reprogramming in the aged neurogenic niche. NATURE AGING 2024; 4:546-567. [PMID: 38553564 DOI: 10.1038/s43587-024-00594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/13/2024] [Indexed: 04/21/2024]
Abstract
Partial reprogramming (pulsed expression of reprogramming transcription factors) improves the function of several tissues in old mice. However, it remains largely unknown how partial reprogramming impacts the old brain. Here we use single-cell transcriptomics to systematically examine how partial reprogramming influences the subventricular zone neurogenic niche in aged mouse brains. Whole-body partial reprogramming mainly improves neuroblasts (cells committed to give rise to new neurons) in the old neurogenic niche, restoring neuroblast proportion to more youthful levels. Interestingly, targeting partial reprogramming specifically to the neurogenic niche also boosts the proportion of neuroblasts and their precursors (neural stem cells) in old mice and improves several molecular signatures of aging, suggesting that the beneficial effects of reprogramming are niche intrinsic. In old neural stem cell cultures, partial reprogramming cell autonomously restores the proportion of neuroblasts during differentiation and blunts some age-related transcriptomic changes. Importantly, partial reprogramming improves the production of new neurons in vitro and in old brains. Our work suggests that partial reprogramming could be used to rejuvenate the neurogenic niche and counter brain decline in old individuals.
Collapse
Affiliation(s)
- Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Judith C Lunger
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
53
|
Zhong Y, Wang G, Yang S, Zhang Y, Wang X. The role of DNA damage in neural stem cells ageing. J Cell Physiol 2024; 239:e31187. [PMID: 38219047 DOI: 10.1002/jcp.31187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Neural stem cells (NSCs) are pluripotent stem cells with the potential to differentiate into a variety of nerve cells. NSCs are susceptible to both intracellular and extracellular insults, thus causing DNA damage. Extracellular insults include ultraviolet, ionizing radiation, base analogs, modifiers, alkyl agents and others, while intracellular factors include Reactive oxygen species (ROS) radicals produced by mitochondria, mismatches that occur during DNA replication, deamination of bases, loss of bases, and more. When encountered with DNA damage, cells typically employ three coping strategies: DNA repair, damage tolerance, and apoptosis. NSCs, like many other stem cells, have the ability to divide, differentiate, and repair DNA damage to prevent mutations from being passed down to the next generation. However, when DNA damage accumulates over time, it will lead to a series of alterations in the metabolism of cells, which will cause cellular ageing. The ageing and exhaustion of neural stem cell will have serious effects on the body, such as neurodegenerative diseases. The purpose of this review is to examine the processes by which DNA damage leads to NSCs ageing and the mechanisms of DNA repair in NSCs.
Collapse
Affiliation(s)
- Yiming Zhong
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangming Wang
- School of Medicine, Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
54
|
Li Y, Yang E, Geng Y, Li M, Wang X, Zhang D. TFEB regulates the odontoblastic differentiation of dental pulp stem cells by promoting a positive feedback loop between mitophagy and glycolysis. Arch Oral Biol 2024; 160:105909. [PMID: 38309196 DOI: 10.1016/j.archoralbio.2024.105909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE To evaluate the regulatory effect of transcription factor EB (TFEB) on the odontoblastic differentiation of dental pulp stem cells(DPSCs) in vivo and in vitro. DESIGNS RNA-seq was used to detect differentially expressed genes in differentiated DPSCs. Lysosomes and the expression of the related gene TFEB were examined in DPSCs. DPSCs were then transfected with lentivirus for TFEB-overexpression. Cell proliferation was detected using CCK-8 and EdU assays, while cell differentiation was detected using ALP and ARS detection kits. Subsequently, mitophagy and cell metabolism were examined using TEM and Seahorse. An odontoblastic differentiation model was constructed subcutaneously in nude mice. Finally, the effects of glycolysis and mitophagy inhibitors were evaluated on odontoblastic differentiation and the associated mechanisms were explored. RESULTS TFEB overexpression promoted a significant increase in ALP activity and the expression of differentiation-related genes in DPSCs, while it inhibited cell proliferation. In vivo, TFEB overexpression caused higher bone volume/trabecular volume(BV/TV), and an increase in collagen formation and heightened DMP-1 expression. Furthermore, Seahorse flux analysis demonstrated that TFEB promoted metabolic reprogramming. Transmission electron microscope(TEM) results indicated an increase in mitochondrial autophagosomes after TFEB overexpression, and the expression of mitophagy-related genes was also elevated. The odontoblastic differentiation of DPSCs promoted by TFEB overexpression was suppressed after the addition of 2-DG and Midiv-1. Addition of Midiv-1 reduced the glycolytic rate of DPSCs, while addition of 2-DG also decreased the mitophagy level of the cells. CONCLUSIONS Our results showed that TFEB promoted the odontoblastic differentiation of DPSCs and identified mitophagy and metabolic reprogramming as a positive feedback loop.
Collapse
Affiliation(s)
- Yiming Li
- School and hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Enli Yang
- School and hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yiming Geng
- School and hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingyang Li
- School and hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- School and hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
55
|
Núñez FJ, Banerjee K, Mujeeb AA, Mauser A, Tronrud CE, Zhu Z, Taher A, Kadiyala P, Carney SV, Garcia-Fabiani MB, Comba A, Alghamri MS, McClellan BL, Faisal SM, Nwosu ZC, Hong HS, Qin T, Sartor MA, Ljungman M, Cheng SY, Appelman HD, Lowenstein PR, Lahann J, Lyssiotis CA, Castro MG. Epigenetic Reprogramming of Autophagy Drives Mutant IDH1 Glioma Progression and Response to Radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584091. [PMID: 38559270 PMCID: PMC10979892 DOI: 10.1101/2024.03.08.584091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.
Collapse
|
56
|
Hu Y, Yin SY, Deng T, Li J. A novel pH-activated AIEgen probe for dynamic lysosome tracking and high-efficiency photodynamic therapy. Chem Commun (Camb) 2024; 60:3047-3050. [PMID: 38376492 DOI: 10.1039/d3cc06247c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A novel AIEgen molecular probe (N-3QL) with typical AIE effects, good biocompatibility, lysosome targeting, pH activation, excellent photostability, and high brightness was synthesized using two simple synthetic steps. Spectroscopic and cytotoxicity experiments indicate that N-3QL can not only be used for the dynamic monitoring of cancer cell lysosomes, but also for photodynamic therapy (PDT) ablation of cancer cells.
Collapse
Affiliation(s)
- Yingcai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Sheng-Yan Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
57
|
Scalise S, Zannino C, Lucchino V, Lo Conte M, Abbonante V, Benedetto GL, Scalise M, Gambardella A, Parrotta EI, Cuda G. Ascorbic acid mitigates the impact of oxidative stress in a human model of febrile seizure and mesial temporal lobe epilepsy. Sci Rep 2024; 14:5941. [PMID: 38467734 PMCID: PMC10928078 DOI: 10.1038/s41598-024-56680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 03/13/2024] Open
Abstract
Prolonged febrile seizures (FS) in children are linked to the development of temporal lobe epilepsy (MTLE). The association between these two pathologies may be ascribed to the long-term effects that FS exert on neural stem cells, negatively affecting the generation of new neurons. Among the insults associated with FS, oxidative stress is noteworthy. Here, we investigated the consequences of exposure to hydrogen peroxide (H2O2) in an induced pluripotent stem cell-derived neural stem cells (iNSCs) model of a patient affected by FS and MTLE. In our study, we compare the findings from the MTLE patient with those derived from iNSCs of a sibling exhibiting a milder phenotype defined only by FS, as well as a healthy individual. In response to H2O2 treatment, iNSCs derived from MTLE patients demonstrated an elevated production of reactive oxygen species and increased apoptosis, despite the higher expression levels of antioxidant genes and proteins compared to other cell lines analysed. Among the potential causative mechanisms of enhanced vulnerability of MTLE patient iNSCs to oxidative stress, we found that these cells express low levels of the heat shock protein HSPB1 and of the autophagy adaptor SQSTM1/p62. Pre-treatment of diseased iNSCs with the antioxidant molecule ascorbic acid restored HSBP1 and p62 expression and simultaneously reduced the levels of ROS and apoptosis. Our findings suggest the potential for rescuing the impaired oxidative stress response in diseased iNSCs through antioxidant treatment, offering a promising mechanism to prevent FS degeneration in MTLE.
Collapse
Affiliation(s)
- Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Vittorio Abbonante
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
58
|
García-Juan M, Ordóñez-Gutiérrez L, Wandosell F. Clearance of β-amyloid mediated by autophagy is enhanced by MTORC1 inhibition but not AMPK activation in APP/PSEN1 astrocytes. Glia 2024; 72:588-606. [PMID: 38009275 DOI: 10.1002/glia.24492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Proteostasis mechanisms mediated by macroautophagy/autophagy are altered in neurodegenerative diseases such as Alzheimer disease (AD) and their recovery/enhancement has been proposed as a therapeutic approach. From the two central nodes in the anabolism-catabolism balance, it is generally accepted that mechanistic target of rapamycin kinase complex 1 (MTORC1)_ activation leads to the inhibition of autophagy, whereas adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) has the opposite role. In AD, amyloid beta (Aβ) production disturbs the optimal neuronal/glial proteostasis. As astrocytes are essential for brain homeostasis, the purpose of this work was to analyze if the upregulation of autophagy in this cell type, either by MTORC1 inhibition or AMPK activation, could modulate the generation/degradation of β-amyloid. By using primary astrocytes from amyloid beta precursor protein (APP)/Presenilin 1 (PSEN1) mouse model of AD, we confirmed that MTORC1 inhibition reduced Aβ secretion through moderate autophagy induction. Surprisingly, pharmacologically increased activity of AMPK did not enhance autophagy but had different effects on Aβ secretion. Conversely, AMPK inhibition did not affect autophagy but reduced Aβ secretion. These puzzling data were confirmed through the overexpression of different mutant AMPK isoforms: while only the constitutively active AMPK increased autophagy, all versions augmented Aβ secretion. We conclude that AMPK has a significantly different role in primary astrocytes than in other reported cells, similar to our previous findings in neurons. Our data support that perhaps only a basal AMPK activity is needed to maintain autophagy whereas the increased activity, either physiologically or pharmacologically, has no direct effect on autophagy-dependent amyloidosis. These results shed light on the controversy about the therapeutic effect of AMPK activation on autophagy induction.
Collapse
Affiliation(s)
- Marta García-Juan
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lara Ordóñez-Gutiérrez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Bioquímica ry Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolas Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
59
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
60
|
Zaffagnini G, Cheng S, Salzer MC, Pernaute B, Duran JM, Irimia M, Schuh M, Böke E. Mouse oocytes sequester aggregated proteins in degradative super-organelles. Cell 2024; 187:1109-1126.e21. [PMID: 38382525 DOI: 10.1016/j.cell.2024.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.
Collapse
Affiliation(s)
- Gabriele Zaffagnini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Marion C Salzer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Barbara Pernaute
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Manuel Duran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
61
|
Aleksandrova KV, Vorobev ML, Suvorova II. mTOR pathway occupies a central role in the emergence of latent cancer cells. Cell Death Dis 2024; 15:176. [PMID: 38418814 PMCID: PMC10902345 DOI: 10.1038/s41419-024-06547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The current focus in oncology research is the translational control of cancer cells as a major mechanism of cellular plasticity. Recent evidence has prompted a reevaluation of the role of the mTOR pathway in cancer development leading to new conclusions. The mechanistic mTOR inhibition is well known to be a tool for generating quiescent stem cells and cancer cells. In response to mTOR suppression, quiescent cancer cells dynamically change their proteome, triggering alternative non-canonical translation mechanisms. The shift to selective translation may have clinical relevance, since quiescent tumor cells can acquire new phenotypical features. This review provides new insights into the patterns of mTOR functioning in quiescent cancer cells, enhancing our current understanding of the biology of latent metastasis.
Collapse
Affiliation(s)
| | - Mikhail L Vorobev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Irina I Suvorova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
62
|
Guan T, Guo Y, Zhou T, Yu Q, Sun J, Sun B, Zhang G, Kong J. Oxidized SOD1 accelerates cellular senescence in neural stem cells. Stem Cell Res Ther 2024; 15:55. [PMID: 38414053 PMCID: PMC10900543 DOI: 10.1186/s13287-024-03669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs), especially human NSCs, undergo cellular senescence characterized by an irreversible proliferation arrest and loss of stemness after prolonged culture. While compelling correlative data have been generated to support the oxidative stress theory as one of the primary determinants of cellular senescence of NSCs, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and cellular senescence of NSCs has yet to be firmly established. Human SOD1 (hSOD1) is susceptible to oxidation. Once oxidized, it undergoes aberrant misfolding and gains toxic properties associated with age-related neurodegenerative disorders. The present study aims to examine the role of oxidized hSOD1 in the senescence of NSCs. METHODS NSCs prepared from transgenic mice expressing the wild-type hSOD1 gene were maintained in culture through repeated passages. Extracellular vesicles (EVs) were isolated from culture media at each passage. To selectively knock down oxidized SOD1 in NSCs and EVs, we used a peptide-directed chaperone-mediated protein degradation system named CT4 that we developed recently. RESULTS In NSCs expressing the hSOD1 from passage 5, we detected a significant increase of oxidized hSOD1 and an increased expression of biomarkers of cellular senescence, including upregulation of P53 and SA-β-Gal and cytoplasmic translocation of HMGB1. The removal of oxidized SOD1 remarkably increased the proliferation and stemness of the NSCs. Meanwhile, EVs derived from senescent NSCs carrying the wild-type hSOD1 contained high levels of oxidized hSOD1, which could accelerate the senescence of young NSCs and induce the death of cultured neurons. The removal of oxidized hSOD1 from the EVs abolished their senescence-inducing activity. Blocking oxidized SOD1 on EVs with the SOD1 binding domain of the CT4 peptide mitigated its toxicity to neurons. CONCLUSION Oxidized hSOD1 is a causal factor in the cellular senescence of NSCs. The removal of oxidized hSOD1 is a strategy to rejuvenate NSCs and to improve the quality of EVs derived from senescent cells.
Collapse
Affiliation(s)
- Teng Guan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Ting Zhou
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Yu
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jingyi Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Baoliang Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
63
|
Liu B, Hua D, Shen L, Li T, Tao Z, Fu C, Tang Z, Yang J, Zhang L, Nie A, Jiang Y, Wang J, Li Y, Gu Y, Ning G. NPC1 is required for postnatal islet β cell differentiation by maintaining mitochondria turnover. Theranostics 2024; 14:2058-2074. [PMID: 38505613 PMCID: PMC10945349 DOI: 10.7150/thno.90946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: NPC1 is a protein localized on the lysosome membrane regulating intracellular cholesterol transportation and maintaining normal lysosome function. GWAS studies have found that NPC1 variants in T2D was a pancreatic islet expression quantitative trait locus, suggesting a potential role of NPC1 in T2D islet pathophysiology. Methods: Two-week-old Npc1-/- mice and wild type littermates were employed to examine pancreatic β cell morphology and functional changes induced by loss of Npc1. Single cell RNA sequencing was conducted on primary islets. Npc1-/- Min6 cell line was generated using CRISPR/Cas9 gene editing. Seahorse XF24 was used to analyze primary islet and Min6 cell mitochondria respiration. Ultra-high-resolution cell imaging with Lattice SIM2 and electron microscope imaging were used to observe mitochondria and lysosome in primary islet β and Min6 cells. Mitophagy Dye and mt-Keima were used to measure β cell mitophagy. Results: In Npc1-/- mice, we found that β cell survival and pancreatic β cell mass expansion as well as islet glucose induced insulin secretion in 2-week-old mice were reduced. Npc1 loss retarded postnatal β cell differentiation and growth as well as impaired mitochondria oxidative phosphorylation (OXPHOS) function to increase mitochondrial superoxide production, which might be attributed to impaired autophagy flux particularly mitochondria autophagy (mitophagy) induced by dysfunctional lysosome in Npc1 null β cells. Conclusion: Our study revealed that NPC1 played an important role in maintaining normal lysosome function and mitochondria turnover, which ensured establishment of sufficient mitochondria OXPHOS for islet β cells differentiation and maturation.
Collapse
Affiliation(s)
- Bei Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duanyi Hua
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linyan Shen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheying Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongzheng Tang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aifang Nie
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
64
|
Zhang H, Ishii K, Shibata T, Ishii S, Hirao M, Lu Z, Takamura R, Kitano S, Miyachi H, Kageyama R, Itakura E, Kobayashi T. Fluctuation of lysosomal protein degradation in neural stem cells of the postnatal mouse brain. Development 2024; 151:dev202231. [PMID: 38265146 PMCID: PMC10911176 DOI: 10.1242/dev.202231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.
Collapse
Affiliation(s)
- He Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Karan Ishii
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Tatsuya Shibata
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Shunsuke Ishii
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Marika Hirao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Zhou Lu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Risa Takamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Satsuki Kitano
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Eisuke Itakura
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Taeko Kobayashi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
65
|
Wang G, Ren J, Zeng X, Chen X, Liang A, Wang X, Xu J. Serine and Arginine-Rich Splicing Factor 3 Promotes the Activation of Quiescent Mouse Neural Stem Cells. Stem Cells Dev 2024; 33:79-88. [PMID: 38115601 DOI: 10.1089/scd.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The quiescence and activation of adult stem cells are regulated by many kinds of molecular mechanisms, and RNA alternative splicing participates in regulating many cellular processes. However, the relationship between stem cell quiescence and activation regulation and gene alternative splicing has yet to be studied. In this study, we aimed to elucidate the regulation of stem cell quiescence and activation by RNA alternative splicing. The upregulated genes in activated mouse neural stem cells (NSCs), muscle stem cells, and hematopoietic stem cells were collected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The genes from three tissue stem cells underwent Venn analysis. The mouse NSCs were used for quiescence and reactivation induction. The immunostaining of cell-specific markers was performed to identify cell properties. The reverse transcription-polymerase chain reaction and western blotting were used to detect the gene expression and protein expression, respectively. We found that the upregulated genes in activated stem cells from three tissues were all enriched in RNA splicing-related biological processes; the upregulated RNA splicing-related genes in activated stem cells displayed tissue differences; mouse NSCs were successfully induced into quiescence and reactivation in vitro without losing differentiation potential; serine and arginine-rich splicing factor 3 (Srsf3) was highly expressed in the activated mouse NSCs, and the overexpression of SRSF3 protein promoted the activation of quiescent mouse NSCs and increased the neural cell production. Our data indicate that the alternative splicing change may underline the transition of quiescence and activation of stem cells. The manipulation of the splicing factor may benefit tissue repair by promoting the activation of quiescent stem cells.
Collapse
Affiliation(s)
- Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Ren
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinhao Zeng
- Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xu Chen
- Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Hu M, Dong X, Zhao W. Lysosome-targeted Aza-BODIPY photosensitizers for anti-cancer photodynamic therapy. Bioorg Med Chem 2024; 99:117583. [PMID: 38198943 DOI: 10.1016/j.bmc.2023.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Developing effective near-infrared (NIR) photosensitizers (PSs) has been an attractive goal of photodynamic therapy (PDT) for cancer treatment. In this study, we synthesized N, N-diethylaminomethylphenyl-containing Aza-BODIPY photosensitizers and comprehensively investigated their photophysical/photochemical properties, as well as cell-based and animal-based anti-tumor studies. Among them, BDP 1 has strong NIR absorption at 680 nm and higher singlet oxygen yield in PBS which showed favorable pH-activatable and lysosome-targeting ability. BDP 1 could be easily taken up by tumor cells and showed negligible dark activity (IC50 > 50 μM), however strong phototoxicity upon exposure to light irradiation. The acceptable fluorescence emission from BDP 1 allowed convenient in vivo fluorescence imaging for organ distribution studies in mice. After PDT treatment with upon single time PDT treatment at the beginning using relatively low light dose (54 J/ cm2), BDP 1 (2 mg/kg, 0.1 mL) was found to have strong efficacy to inhibit tumor growth and even to ablate off tumor without causing body weight loss. Therefore, pH-activatable and lysosome-targeted PS may become an effective way to develop potent PDT agent.
Collapse
Affiliation(s)
- Mei Hu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Weili Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China; Key Laboratory for Special Functional Materials of the Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
67
|
Gabel AM, Belleville AE, Thomas JD, McKellar SA, Nicholas TR, Banjo T, Crosse EI, Bradley RK. Multiplexed screening reveals how cancer-specific alternative polyadenylation shapes tumor growth in vivo. Nat Commun 2024; 15:959. [PMID: 38302465 PMCID: PMC10834521 DOI: 10.1038/s41467-024-44931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Alternative polyadenylation (APA) is strikingly dysregulated in many cancers. Although global APA dysregulation is frequently associated with poor prognosis, the importance of most individual APA events is controversial simply because few have been functionally studied. Here, we address this gap by developing a CRISPR-Cas9-based screen to manipulate endogenous polyadenylation and systematically quantify how APA events contribute to tumor growth in vivo. Our screen reveals individual APA events that control mouse melanoma growth in an immunocompetent host, with concordant associations in clinical human cancer. For example, forced Atg7 3' UTR lengthening in mouse melanoma suppresses ATG7 protein levels, slows tumor growth, and improves host survival; similarly, in clinical human melanoma, a long ATG7 3' UTR is associated with significantly prolonged patient survival. Overall, our study provides an easily adaptable means to functionally dissect APA in physiological systems and directly quantifies the contributions of recurrent APA events to tumorigenic phenotypes.
Collapse
Affiliation(s)
- Austin M Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrea E Belleville
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - James D Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Siegen A McKellar
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Taylor R Nicholas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Toshihiro Banjo
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Edie I Crosse
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
68
|
Tang W, Huo F, Long J, Zhang S, Tian W. Cellular Senescence in Craniofacial Tissue Regeneration: Inducers, Biomarkers, and Interventions. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:128-141. [PMID: 37565284 DOI: 10.1089/ten.teb.2023.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Craniofacial defects and dental tissue loss have significant negative impacts on the structure and function of jaws and face, often resulting in psychological issues in patients, emphasizing the urgent need for effective craniofacial tissue reconstruction. Unfortunately, natural regeneration of these tissues is limited. Dental-derived mesenchymal stem cells (MSCs) have emerged as a promising resource for tissue engineering-based therapeutic approaches. However, the clinical outcomes of MSC-based transplantation have not met expectations due to various complex reasons, and cellular senescence is recognized as one of the potential mechanisms contributing to the suboptimal results. The quality of MSC decreases during large-scale in vitro expansion, and it is also influenced by the age and the health status of donors. To address these challenges, extensive efforts have been made to developing strategies to combat senescence in tissue engineering, leveraging on current knowledge of underlying mechanisms. This review aims to elucidate the impact of cell senescence in craniofacial and dental regeneration and provides an overview of state-of-the-art antisenescence strategies. We first discuss the potential factors that trigger cell senescence in craniofacial tissue engineering. Then we describe senescence biomarkers, monitoring methods for senescent MSCs, and their underlying molecular mechanisms. The primary focus of this review is on current strategies to inhibit and alleviate cell senescence in tissue engineering. We summarize the strategies concerning the prevention of cell senescence, senolysis, modulation of the senescent associated secretory phenotype, and reversal of senescent MSCs, offering promising opportunities to overcome the challenges associated with cell senescence in craniofacial tissue engineering.
Collapse
Affiliation(s)
- Weibing Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jie Long
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Siyuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
69
|
Rao NR, Upadhyay A, Savas JN. Derailed protein turnover in the aging mammalian brain. Mol Syst Biol 2024; 20:120-139. [PMID: 38182797 PMCID: PMC10897147 DOI: 10.1038/s44320-023-00009-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
Efficient protein turnover is essential for cellular homeostasis and organ function. Loss of proteostasis is a hallmark of aging culminating in severe dysfunction of protein turnover. To investigate protein turnover dynamics as a function of age, we performed continuous in vivo metabolic stable isotope labeling in mice along the aging continuum. First, we discovered that the brain proteome uniquely undergoes dynamic turnover fluctuations during aging compared to heart and liver tissue. Second, trends in protein turnover in the brain proteome during aging showed sex-specific differences that were tightly tied to cellular compartments. Next, parallel analyses of the insoluble proteome revealed that several cellular compartments experience hampered turnover, in part due to misfolding. Finally, we found that age-associated fluctuations in proteasome activity were associated with the turnover of core proteolytic subunits, which was recapitulated by pharmacological suppression of proteasome activity. Taken together, our study provides a proteome-wide atlas of protein turnover across the aging continuum and reveals a link between the turnover of individual proteasome subunits and the age-associated decline in proteasome activity.
Collapse
Affiliation(s)
- Nalini R Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
70
|
Jackson BT, Finley LWS. Metabolic regulation of the hallmarks of stem cell biology. Cell Stem Cell 2024; 31:161-180. [PMID: 38306993 PMCID: PMC10842269 DOI: 10.1016/j.stem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Stem cells perform many different functions, each of which requires specific metabolic adaptations. Over the past decades, studies of pluripotent and tissue stem cells have uncovered a range of metabolic preferences and strategies that correlate with or exert control over specific cell states. This review aims to describe the common themes that emerge from the study of stem cell metabolism: (1) metabolic pathways supporting stem cell proliferation, (2) metabolic pathways maintaining stem cell quiescence, (3) metabolic control of cellular stress responses and cell death, (4) metabolic regulation of stem cell identity, and (5) metabolic requirements of the stem cell niche.
Collapse
Affiliation(s)
- Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
71
|
Diehl FF, Sapp KM, Vander Heiden MG. The bidirectional relationship between metabolism and cell cycle control. Trends Cell Biol 2024; 34:136-149. [PMID: 37385879 DOI: 10.1016/j.tcb.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
The relationship between metabolism and cell cycle progression is complex and bidirectional. Cells must rewire metabolism to meet changing biosynthetic demands across cell cycle phases. In turn, metabolism can influence cell cycle progression through direct regulation of cell cycle proteins, through nutrient-sensing signaling pathways, and through its impact on cell growth, which is linked to cell division. Furthermore, metabolism is a key player in mediating quiescence-proliferation transitions in physiologically important cell types, such as stem cells. How metabolism impacts cell cycle progression, exit, and re-entry, as well as how these processes impact metabolism, is not fully understood. Recent advances uncovering mechanistic links between cell cycle regulators and metabolic processes demonstrate a complex relationship between metabolism and cell cycle control, with many questions remaining.
Collapse
Affiliation(s)
- Frances F Diehl
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kiera M Sapp
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
72
|
Wu J, Yang OJ, Soderblom EJ, Yan D. Heat Shock Proteins Function as Signaling Molecules to Mediate Neuron-Glia Communication During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576052. [PMID: 38293019 PMCID: PMC10827141 DOI: 10.1101/2024.01.18.576052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nervous system is primarily composed of neurons and glia, and the communication between them plays profound roles in regulating the development and function of the brain. Neuron-glia signal transduction is known to be mediated by secreted or juxtacrine signals through ligand-receptor interactions on the cell membrane. Here, we report a novel mechanism for neuron-glia signal transduction, wherein neurons transmit proteins to glia through extracellular vesicles, activating glial signaling pathways. We find that in the amphid sensory organ of Caenorhabditis elegans, different sensory neurons exhibit varying aging rates. This discrepancy in aging is governed by the crosstalk between neurons and glia. We demonstrate that early-aged neurons can transmit heat shock proteins (HSP) to glia via extracellular vesicles. These neuronal HSPs activate the IRE1-XBP1 pathway, further increasing their expression in glia, forming a positive feedback loop. Ultimately, the activation of the IRE1-XBP-1 pathway leads to the transcriptional regulation of chondroitin synthases to protect glia-embedded neurons from aging-associated functional decline. Therefore, our studies unveil a novel mechanism for neuron-glia communication in the nervous system and provide new insights into our understanding of brain aging.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Olivia Jiaming Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- East Chapel Hill High School, Chapel Hill, NC 27514, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University Medical School, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell biology, Department of Neurobiology, Regeneration next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
73
|
Wang B, Zhang G, Hu Y, Mohsin A, Chen Z, Hao W, Li Z, Gao WQ, Guo M, Xu H. Uncovering impaired mitochondrial and lysosomal function in adipose-derived stem cells from obese individuals with altered biological activity. Stem Cell Res Ther 2024; 15:12. [PMID: 38185703 PMCID: PMC10773039 DOI: 10.1186/s13287-023-03625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) have been extensively used in preclinical and clinical trials for treating various diseases. However, the differences between ADSCs from lean individuals (L-ADSCs) and those from obese individuals (O-ADSCs) have not been thoroughly investigated, particularly regarding their mitochondrial and lysosomal functions. Therefore, this study aims to evaluate the differences between L-ADSCs and O-ADSCs in terms of cell biological activity, mitochondria, and lysosomes. METHODS We first isolated and cultured L-ADSCs and O-ADSCs. We then compared the differences between the two groups in terms of biological activity, including cell proliferation, differentiation potential, and their effect on the polarization of macrophages. Additionally, we observed the mitochondrial and lysosomal morphology of ADSCs using an electronic microscope, MitoTracker Red, and lysotracker Red dyes. We assessed mitochondrial function by examining mitochondrial membrane potential and membrane fluidity, antioxidative ability, and cell energy metabolism. Lysosomal function was evaluated by measuring autophagy and phagocytosis. Finally, we performed transcriptome analysis of the ADSCs using RNA sequencing. RESULTS The biological activities of O-ADSCs were decreased, including cell immunophenotypic profiles, cell proliferation, and differentiation potential. Furthermore, compared to L-ADSCs, O-ADSCs promoted M1-type macrophage polarization and inhibited M2-type macrophage polarization. Additionally, the mitochondrial morphology of O-ADSCs was altered, with the size of the cells becoming smaller and mitochondrial fragments increasing. O-ADSCs also exhibited decreased mitochondrial membrane potential and membrane fluidity, antioxidative ability, and energy metabolism. With respect to lysosomes, O-ADSCs contained ungraded materials in their lysosomes, enhanced lysosomal permeability, and reduced autophagy and phagocytosis ability. RNA sequence analysis indicated that the signalling pathways related to cell senescence, cancer, and inflammation were upregulated, whereas the signalling pathways associated with stemness, cell differentiation, metabolism, and response to stress and stimuli were downregulated. CONCLUSIONS This study indicates that ADSCs from individuals (BMI > 30 kg/m2) exhibit impaired mitochondrial and lysosomal function with decreased biological activity.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Ge Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Yuwen Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Zhimin Chen
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Weijie Hao
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Zhanxia Li
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui District, Shanghai, 200235, People's Republic of China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
74
|
Zou W, Lv Y, Zhang S, Li L, Sun L, Jiao J. Lysosomal dynamics regulate mammalian cortical neurogenesis. Dev Cell 2024; 59:64-78.e5. [PMID: 38103552 DOI: 10.1016/j.devcel.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/16/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Mammalian neocortex formation follows a stereotypical pattern wherein the self-renew and differentiation of neural stem cells are coordinated with diverse organelle dynamics. However, the role of lysosomes in brain development has long been overlooked. Here, we demonstrate the highly dynamic lysosomal quantities, types, and localizations in developing brain. We observed asymmetric endolysosome inheritance during radial glial cell (RGC) division and the increased autolysosomes within intermediate progenitor cells (IPs) and newborn neurons. Disruption of lysosomal function shortens the S phase of the cell cycle and promotes RGC differentiation. Mechanistically, we revealed a post-transcriptional regulation governing ribosome homeostasis and cell-cycle progression through differential lysosomal activity modulation. In the human forebrain organoid, lysosomal dynamics are conserved; specifically, during the mitosis of outer subventricular zone RGCs (oRGs), lysosomes are inherited by the progeny without basal process. Together, our results identify the critical role of lysosomal dynamics in regulating mouse and human brain development.
Collapse
Affiliation(s)
- Wenzheng Zou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 523710, China
| | - Yuqing Lv
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shukui Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
75
|
Lee SW, Oh YM, Victor MB, Yang Y, Chen S, Strunilin I, Dahiya S, Dolle RE, Pak SC, Silverman GA, Perlmutter DH, Yoo AS. Longitudinal modeling of human neuronal aging reveals the contribution of the RCAN1-TFEB pathway to Huntington's disease neurodegeneration. NATURE AGING 2024; 4:95-109. [PMID: 38066314 PMCID: PMC11456361 DOI: 10.1038/s43587-023-00538-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
Aging is a common risk factor in neurodegenerative disorders. Investigating neuronal aging in an isogenic background stands to facilitate analysis of the interplay between neuronal aging and neurodegeneration. Here we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs) in Huntington's disease identified pathways involving RCAN1, a negative regulator of calcineurin. Notably, RCAN1 protein increased with age in reprogrammed MSNs as well as in human postmortem striatum and RCAN1 knockdown rescued patient-derived MSNs of Huntington's disease from degeneration. RCAN1 knockdown enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, leading to TFEB's nuclear localization by dephosphorylation. Furthermore, G2-115, an analog of glibenclamide with autophagy-enhancing activities, reduced the RCAN1-calcineurin interaction, phenocopying the effect of RCAN1 knockdown. Our results demonstrate that targeting RCAN1 genetically or pharmacologically can increase neuronal resilience in Huntington's disease.
Collapse
Affiliation(s)
- Seong Won Lee
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, USA
| | - Young Mi Oh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, USA
| | - Matheus B Victor
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilya Strunilin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Roland E Dolle
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen C Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gary A Silverman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Perlmutter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
76
|
Yu D, Li M, Linghu G, Hu Y, Hajdarovic KH, Wang A, Singh R, Webb AE. CellBiAge: Improved single-cell age classification using data binarization. Cell Rep 2023; 42:113500. [PMID: 38032797 PMCID: PMC10791072 DOI: 10.1016/j.celrep.2023.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Aging is a major risk factor for many diseases. Accurate methods for predicting age in specific cell types are essential to understand the heterogeneity of aging and to assess rejuvenation strategies. However, classifying organismal age at single-cell resolution using transcriptomics is challenging due to sparsity and noise. Here, we developed CellBiAge, a robust and easy-to-implement machine learning pipeline, to classify the age of single cells in the mouse brain using single-cell transcriptomics. We show that binarization of gene expression values for the top highly variable genes significantly improved test performance across different models, techniques, sexes, and brain regions, with potential age-related genes identified for model prediction. Additionally, we demonstrate CellBiAge's ability to capture exercise-induced rejuvenation in neural stem cells. This study provides a broadly applicable approach for robust classification of organismal age of single cells in the mouse brain, which may aid in understanding the aging process and evaluating rejuvenation methods.
Collapse
Affiliation(s)
- Doudou Yu
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA; Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Manlin Li
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Guanjie Linghu
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Yihuan Hu
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | | | - An Wang
- Department of Applied Mathematics & Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
77
|
Fares J, Petrosyan E, Kanojia D, Dmello C, Cordero A, Duffy JT, Yeeravalli R, Sahani MH, Zhang P, Rashidi A, Arrieta VA, Ulasov I, Ahmed AU, Miska J, Balyasnikova IV, James CD, Sonabend AM, Heimberger AB, Lesniak MS. Metixene is an incomplete autophagy inducer in preclinical models of metastatic cancer and brain metastases. J Clin Invest 2023; 133:e161142. [PMID: 37847564 PMCID: PMC10721147 DOI: 10.1172/jci161142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
A paucity of chemotherapeutic options for metastatic brain cancer limits patient survival and portends poor clinical outcomes. Using a CNS small-molecule inhibitor library of 320 agents known to be blood-brain barrier permeable and approved by the FDA, we interrogated breast cancer brain metastasis vulnerabilities to identify an effective agent. Metixene, an antiparkinsonian drug, was identified as a top therapeutic agent that was capable of decreasing cellular viability and inducing cell death across different metastatic breast cancer subtypes. This agent significantly reduced mammary tumor size in orthotopic xenograft assays and improved survival in an intracardiac model of multiorgan site metastases. Metixene further extended survival in mice bearing intracranial xenografts and in an intracarotid mouse model of multiple brain metastases. Functional analysis revealed that metixene induced incomplete autophagy through N-Myc downstream regulated 1 (NDRG1) phosphorylation, thereby leading to caspase-mediated apoptosis in both primary and brain-metastatic cells, regardless of cancer subtype or origin. CRISPR/Cas9 KO of NDRG1 led to autophagy completion and reversal of the metixene apoptotic effect. Metixene is a promising therapeutic agent against metastatic brain cancer, with minimal reported side effects in humans, which merits consideration for clinical translation.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alex Cordero
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joseph T. Duffy
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ragini Yeeravalli
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mayurbhai H. Sahani
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Peng Zhang
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aida Rashidi
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Victor A. Arrieta
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ilya Ulasov
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason Miska
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Irina V. Balyasnikova
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C. David James
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
78
|
Maiti S, Bhattacharya K, Wider D, Hany D, Panasenko O, Bernasconi L, Hulo N, Picard D. Hsf1 and the molecular chaperone Hsp90 support a 'rewiring stress response' leading to an adaptive cell size increase in chronic stress. eLife 2023; 12:RP88658. [PMID: 38059913 DOI: 10.7554/elife.88658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Cells are exposed to a wide variety of internal and external stresses. Although many studies have focused on cellular responses to acute and severe stresses, little is known about how cellular systems adapt to sublethal chronic stresses. Using mammalian cells in culture, we discovered that they adapt to chronic mild stresses of up to two weeks, notably proteotoxic stresses such as heat, by increasing their size and translation, thereby scaling the amount of total protein. These adaptations render them more resilient to persistent and subsequent stresses. We demonstrate that Hsf1, well known for its role in acute stress responses, is required for the cell size increase, and that the molecular chaperone Hsp90 is essential for coupling the cell size increase to augmented translation. We term this translational reprogramming the 'rewiring stress response', and propose that this protective process of chronic stress adaptation contributes to the increase in size as cells get older, and that its failure promotes aging.
Collapse
Affiliation(s)
- Samarpan Maiti
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Diana Wider
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Olesya Panasenko
- BioCode: RNA to Proteins Core Facility, Département de Microbiologie et Médecine Moléculaire, Faculté de Médecine, Université de Genève, Genève, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| |
Collapse
|
79
|
Bai W, Li Y, Zhao L, Li R, Geng J, Lu Y, Zhao Y, Wang J. Rational design of a ratiometric fluorescent probe for imaging lysosomal nitroreductase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123032. [PMID: 37356386 DOI: 10.1016/j.saa.2023.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Overexpressed nitroreductase (NTR) is often utilized to evaluate the hypoxic degree in tumor tissues, thus it is of great importance to develop high selective and efficient optical method to detect NTR. The dynamic fusion and function of lysosome promoted us to explore the possible appearance of NTR inside this organelle and to probe its behavior in a cellular context. In this work, a ratiometric fluorescent probe based on an extended π-π conjugation of a triphenylamine unit was designed for NTR detection and lysosomes imaging. The dual-emission mechanism of the probe in the presence of catalytic NTR was confirmed by theoretical study. The structure-function relationship between probe and NTR was revealed by docking calculations, suggesting a suitable structural and spatial match of them. The photophysical studies showed the probe had high selectivity, rapid response and a wide pH range towards NTR. MTT assay indicated the probe had low cytotoxicity in both normal (HUVEC) and tumor (MCF-7) cells. Furthermore, the inverse fluorescent imaging results confirmed the probe was NTR-active and exhibited time- and concentration-dependent fluorescence signals. In addition, the relatively high Pearson's correlation coefficient (0.99 in HepG2 and 0.97 in MCF-7 cells, compared to Lyso-Tracker Red) demonstrated the probe had excellent lysosomes colocalization. This study illustrates a ratiometric detection of NTR agent for lysosomes fluorescent imaging, which may provide a novel insight in molecular design.
Collapse
Affiliation(s)
- Wenjun Bai
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yixuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Ruxin Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jiahou Geng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yang Lu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Jinhui Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
80
|
Liu F, Liu Z, Cheng W, Zhao Q, Zhang X, Zhang H, Yu M, Xu H, Gao Y, Jiang Q, Shi G, Wang L, Gu S, Wang J, Cao N, Chen Z. The PERK Branch of the Unfolded Protein Response Safeguards Protein Homeostasis and Mesendoderm Specification of Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303799. [PMID: 37890465 PMCID: PMC10724406 DOI: 10.1002/advs.202303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/14/2023] [Indexed: 10/29/2023]
Abstract
Cardiac development involves large-scale rearrangements of the proteome. How the developing cardiac cells maintain the integrity of the proteome during the rapid lineage transition remains unclear. Here it is shown that proteotoxic stress visualized by the misfolded and/or aggregated proteins appears during early cardiac differentiation of human pluripotent stem cells and is resolved by activation of the PERK branch of unfolded protein response (UPR). PERK depletion increases misfolded and/or aggregated protein accumulation, leading to pluripotency exit defect and impaired mesendoderm specification of human pluripotent stem cells. Mechanistically, it is found that PERK safeguards mesendoderm specification through its conserved downstream effector ATF4, which subsequently activates a novel transcriptional target WARS1, to cope with the differentiation-induced proteotoxic stress. The results indicate that protein quality control represents a previously unrecognized core component of the cardiogenic regulatory network. Broadly, these findings provide a framework for understanding how UPR is integrated into the developmental program by activating the PERK-ATF4-WARS1 axis.
Collapse
Affiliation(s)
- Fang Liu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
- Department of Clinical LaboratoryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022P. R. China
| | - Zhun Liu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Weisheng Cheng
- Prenatal Diagnosis CenterDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230022P. R. China
- Department of Medical InformaticsZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080P. R. China
| | - Qingquan Zhao
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Xinyu Zhang
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - He Zhang
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Miao Yu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - He Xu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Yichen Gao
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Qianrui Jiang
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Guojun Shi
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity ResearchGuangdong Provincial Key Laboratory of DiabetologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangdong510080P. R. China
| | - Likun Wang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shanshan Gu
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Jia Wang
- School of Health and Life SciencesUniversity of Health and Rehabilitation SciencesShandong266071China
| | - Nan Cao
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| | - Zhongyan Chen
- Advanced Medical Technology CenterZhongshan School of Medicine and the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080P. R. China
- Key Laboratory for Stem Cells and Tissue EngineeringSun Yat‐Sen UniversityMinistry of EducationGuangzhou510080P. R. China
| |
Collapse
|
81
|
Chamoli M, Rane A, Foulger A, Chinta SJ, Shahmirzadi AA, Kumsta C, Nambiar DK, Hall D, Holcom A, Angeli S, Schmidt M, Pitteri S, Hansen M, Lithgow GJ, Andersen JK. A drug-like molecule engages nuclear hormone receptor DAF-12/FXR to regulate mitophagy and extend lifespan. NATURE AGING 2023; 3:1529-1543. [PMID: 37957360 PMCID: PMC10797806 DOI: 10.1038/s43587-023-00524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Autophagy-lysosomal function is crucial for maintaining healthy lifespan and preventing age-related diseases. The transcription factor TFEB plays a key role in regulating this pathway. Decreased TFEB expression is associated with various age-related disorders, making it a promising therapeutic target. In this study, we screened a natural product library and discovered mitophagy-inducing coumarin (MIC), a benzocoumarin compound that enhances TFEB expression and lysosomal function. MIC robustly increases the lifespan of Caenorhabditis elegans in an HLH-30/TFEB-dependent and mitophagy-dependent manner involving DCT-1/BNIP3 while also preventing mitochondrial dysfunction in mammalian cells. Mechanistically, MIC acts by inhibiting ligand-induced activation of the nuclear hormone receptor DAF-12/FXR, which, in turn, induces mitophagy and extends lifespan. In conclusion, our study uncovers MIC as a promising drug-like molecule that enhances mitochondrial function and extends lifespan by targeting DAF-12/FXR. Furthermore, we discovered DAF-12/FXR as a previously unknown upstream regulator of HLH-30/TFEB and mitophagy.
Collapse
Affiliation(s)
| | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Anna Foulger
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, Vallejo, CA, USA
| | - Azar Asadi Shahmirzadi
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - David Hall
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angelina Holcom
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Minna Schmidt
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Malene Hansen
- Buck Institute for Research on Aging, Novato, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
82
|
Zhu Y, Liu Y, Ma Y, Chen L, Huang H, Huang S, Zhang H, He Y, Tan C, He Y, Qiang L. Macrophage autophagy deficiency-induced CEBPB accumulation alleviates atopic dermatitis via impairing M2 polarization. Cell Rep 2023; 42:113430. [PMID: 37963021 DOI: 10.1016/j.celrep.2023.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/02/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Macroautophagy/autophagy plays a pivotal role in immune regulation. Its significance is evident in modulation of immune cell differentiation and maturation, physiologically and pathologically. Here, we investigate the role of macrophage autophagy on the development of atopic dermatitis (AD). By employing an MC903-induced AD mice model, we observe reduced cutaneous inflammation in macrophage Atg5 cKO mice compared with WT mice. Notably, there is a decreased infiltration of M2 macrophages in lesional skin from Atg5 cKO mice. Furthermore, impaired STAT6 phosphorylation and diminished expression of M2 markers are detected in autophagy-deficient macrophages. Our mechanistic exploration reveals that CEBPB drives the transcription of SOCS1/3 and SQSTM1/p62-mediated autophagy degrades CEBPB normally. Autophagy deficiency leads to CEBPB accumulation, and further promotes the expression of SOCS1/3. This process inhibits JAK1-STAT6 pathway activation and M2 marker expression. Together, our study indicates that autophagy is required for M2 activation and macrophage autophagy may be a promising target for AD intervention.
Collapse
Affiliation(s)
- Yongcheng Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Yuxiang Ma
- Department of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201213, China.
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huiling Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Cheng Tan
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China.
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
83
|
Calatayud-Baselga I, Casares-Crespo L, Franch-Ibáñez C, Guijarro-Nuez J, Sanz P, Mira H. Autophagy drives the conversion of developmental neural stem cells to the adult quiescent state. Nat Commun 2023; 14:7541. [PMID: 38001081 PMCID: PMC10673888 DOI: 10.1038/s41467-023-43222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Neurogenesis in the adult mammalian brain relies on the lifelong persistence of quiescent neural stem cell (NSC) reservoirs. Little is known about the mechanisms that lead to the initial establishment of quiescence, the main hallmark of adult stem cells, during development. Here we show that protein aggregates and autophagy machinery components accumulate in developmental radial glia-like NSCs as they enter quiescence and that pharmacological or genetic blockade of autophagy disrupts quiescence acquisition and maintenance. Conversely, increasing autophagy through AMPK/ULK1 activation instructs the acquisition of the quiescent state without affecting BMP signaling, a gatekeeper of NSC quiescence during adulthood. Selective ablation of Atg7, a critical gene for autophagosome formation, in radial glia-like NSCs at early and late postnatal stages compromises the initial acquisition and maintenance of quiescence during the formation of the hippocampal dentate gyrus NSC niche. Therefore, we demonstrate that autophagy is cell-intrinsically required to establish NSC quiescence during hippocampal development. Our results uncover an important role of autophagy in the transition of developmental NSCs into their dormant adult form, paving the way for studies directed at further understanding the mechanisms of stem cell niche formation and maintenance in the mammalian brain.
Collapse
Affiliation(s)
- Isabel Calatayud-Baselga
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Lucía Casares-Crespo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Carmina Franch-Ibáñez
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - José Guijarro-Nuez
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain.
| |
Collapse
|
84
|
Duan X, Tong Q, Fu C, Chen L. Lysosome-targeted fluorescent probes: Design mechanism and biological applications. Bioorg Chem 2023; 140:106832. [PMID: 37683542 DOI: 10.1016/j.bioorg.2023.106832] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
As an integral organelle in the eukaryote, the lysosome is the degradation center and metabolic signal center in living cells, and partakes in significant physiological processes such as autophagy, cell death and cellular senescence. Fluorescent probe has become a favorite tool for studying organelles and their chemical microenvironments because of its high specificity and non-destructive merits. Over recent years, it has been reported that increasingly new lysosome-targeted probes play a major role in the diagnosis and monitor of diseases, in particular cancer and neurodegenerative diseases. In order to deepen the relevant research on lysosome, it is challenging and inevitability to design novel lysosomal targeting probes. This review first introduces the concepts of lysosome and its closely related biological activities, and then introduces the fluorescent probes for lysosome in detail according to different detection targets, including targeting mechanism, biological imaging, and application in diseases. Finally, we summarize the specific challenges and discuss the future development direction facing the current lysosome-targeted fluorescent probes. We hope that this review can help biologists grasp the application of fluorescent probes and broaden the research ideas of researchers targeting fluorescent probes so as to design more accurate and functional probes for application in diseases.
Collapse
Affiliation(s)
- Xiangning Duan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Qin Tong
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengxiao Fu
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
85
|
Glynos A, Bozhilova LV, Frison M, Burr S, Stewart JB, Chinnery PF. High-throughput single-cell analysis reveals progressive mitochondrial DNA mosaicism throughout life. SCIENCE ADVANCES 2023; 9:eadi4038. [PMID: 37878704 PMCID: PMC10599618 DOI: 10.1126/sciadv.adi4038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
Heteroplasmic mitochondrial DNA (mtDNA) mutations are a major cause of inherited disease and contribute to common late-onset human disorders. The late onset and clinical progression of mtDNA-associated disease is thought to be due to changing heteroplasmy levels, but it is not known how and when this occurs. Performing high-throughput single-cell genotyping in two mouse models of human mtDNA disease, we saw unanticipated cell-to-cell differences in mtDNA heteroplasmy levels that emerged prenatally and progressively increased throughout life. Proliferating spleen cells and nondividing brain cells had a similar single-cell heteroplasmy variance, implicating mtDNA or organelle turnover as the major force determining cell heteroplasmy levels. The two different mtDNA mutations segregated at different rates with no evidence of selection, consistent with different rates of random genetic drift in vivo, leading to the accumulation of cells with a very high mutation burden at different rates. This provides an explanation for differences in severity seen in human diseases caused by similar mtDNA mutations.
Collapse
Affiliation(s)
- Angelos Glynos
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Lyuba V. Bozhilova
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michele Frison
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - James B. Stewart
- Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F. Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
86
|
Wang Y, Jin S, Luo D, He D, Yu M, Zhu L, Li Z, Chen L, Ding C, Wu X, Wu T, Huang W, Zhao X, Xu M, Xie Z, Liu Y. Prim-O-glucosylcimifugin ameliorates aging-impaired endogenous tendon regeneration by rejuvenating senescent tendon stem/progenitor cells. Bone Res 2023; 11:54. [PMID: 37872152 PMCID: PMC10593834 DOI: 10.1038/s41413-023-00288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/25/2023] Open
Abstract
Adult tendon stem/progenitor cells (TSPCs) are essential for tendon maintenance, regeneration, and repair, yet they become susceptible to senescence with age, impairing the self-healing capacity of tendons. In this study, we employ a recently developed deep-learning-based efficacy prediction system to screen potential stemness-promoting and senescence-inhibiting drugs from natural products using the transcriptional signatures of stemness. The top-ranked candidate, prim-O-glucosylcimifugin (POG), a saposhnikovia root extract, could ameliorate TPSC senescent phenotypes caused by long-term passage and natural aging in rats and humans, as well as restore the self-renewal and proliferative capacities and tenogenic potential of aged TSPCs. In vivo, the systematic administration of POG or the local delivery of POG nanoparticles functionally rescued endogenous tendon regeneration and repair in aged rats to levels similar to those of normal animals. Mechanistically, POG protects TSPCs against functional impairment during both passage-induced and natural aging by simultaneously suppressing nuclear factor-κB and decreasing mTOR signaling with the induction of autophagy. Thus, the strategy of pharmacological intervention with the deep learning-predicted compound POG could rejuvenate aged TSPCs and improve the regenerative capacity of aged tendons.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Min Yu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Liyuan Chen
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Chengye Ding
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Xiaolan Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Tianhao Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China
| | - Weiran Huang
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100083, China
| | - Xuelin Zhao
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Meng Xu
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100083, China.
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, China.
| |
Collapse
|
87
|
Koh Y, Kim H, Joo SY, Song S, Choi YH, Kim HR, Moon B, Byun J, Hong J, Shin DY, Park S, Lee KH, Lee KT, Lee JK, Park D, Lee SH, Jang JY, Lee H, Kim JA, Yoon SS, Park JK. Genetic assessment of pathogenic germline alterations in lysosomal genes among Asian patients with pancreatic ductal adenocarcinoma. J Transl Med 2023; 21:730. [PMID: 37848935 PMCID: PMC10580633 DOI: 10.1186/s12967-023-04549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Lysosomes are closely linked to autophagic activity, which plays a vital role in pancreatic ductal adenocarcinoma (PDAC) biology. The survival of PDAC patients is still poor, and the identification of novel genetic factors for prognosis and treatment is highly required to prevent PDAC-related deaths. This study investigated the germline variants related to lysosomal dysfunction in patients with PDAC and to analyze whether they contribute to the development of PDAC. METHODS The germline putative pathogenic variants (PPV) in genes involved in lysosomal storage disease (LSD) was compared between patients with PDAC (n = 418) and healthy controls (n = 845) using targeted panel and whole-exome sequencing. Furthermore, pancreatic organoids from wild-type and KrasG12D mice were used to evaluate the effect of lysosomal dysfunction on PDAC development. RNA sequencing (RNA-seq) analysis was performed with established PDAC patient-derived organoids (PDOs) according to the PPV status. RESULTS The PPV in LSD-related genes was higher in patients with PDAC than in healthy controls (8.13 vs. 4.26%, Log2 OR = 1.65, P = 3.08 × 10-3). The PPV carriers of LSD-related genes with PDAC were significantly younger than the non-carriers (mean age 61.5 vs. 65.3 years, P = 0.031). We further studied a variant of the lysosomal enzyme, galactosylceramidase (GALC), which was the most frequently detected LSD variant in our cohort. Autophagolysosomal activity was hampered when GALC was downregulated, which was accompanied by paradoxically elevated autophagic flux. Furthermore, the number of proliferating Ki-67+ cells increased significantly in pancreatic organoids derived from Galc knockout KrasG12D mice. Moreover, GALC PPV carriers tended to show drug resistance in both PDAC cell line and PDAC PDO, and RNA-seq analysis revealed that various metabolism and gene repair pathways were upregulated in PDAC PDOs harboring a GALC variant. CONCLUSIONS Genetically defined lysosomal dysfunction is frequently observed in patients with young-onset PDAC. This might contribute to PDAC development by altering metabolism and impairing autophagolysosomal activity, which could be potentially implicated in therapeutic applications for PDAC.
Collapse
Affiliation(s)
- Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyemin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Young Joo
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Seulki Song
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Hoon Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Rae Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byul Moon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jamin Byun
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Solip Park
- Structural Biology Department, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyu Taek Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Kyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Se-Hoon Lee
- Department of Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| | - Jung-Ae Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea.
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University School of Medicine, Seoul, Republic of Korea.
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
88
|
Krogsaeter EK, McKetney J, Marquez A, Cakir Z, Stevenson E, Jang GM, Rao A, Zhou A, Huang Y, Krogan NJ, Swaney DL. Lysosomal proteomics reveals mechanisms of neuronal apoE4associated lysosomal dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560519. [PMID: 37873080 PMCID: PMC10592882 DOI: 10.1101/2023.10.02.560519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
ApoE4 is the primary risk factor for Alzheimer's Disease. While apoE is primarily expressed by astrocytes, AD pathology including endosomal abnormalities and mitochondrial dysfunction first occurs in neurons. Lysosomes are poised at the convergence point between these features. We find that apoE4-expressing cells exhibit lysosomal alkalinization, reduced lysosomal proteolysis, and impaired mitophagy. To identify driving factors for this lysosomal dysfunction, we performed quantitative lysosomal proteome profiling. This revealed that apoE4 expression results in lysosomal depletion of Lgals3bp and accumulation of Tmed5 in both Neuro-2a cells and postmitotic human neurons. Modulating the expression of both proteins affected lysosomal function, with Tmed5 knockdown rescuing lysosomal alkalinization in apoE4 cells, and Lgals3bp knockdown causing lysosomal alkalinization and reduced lysosomal density in apoE3 cells. Taken together, our work reveals that apoE4 exerts gain-of-toxicity by alkalinizing the lysosomal lumen, pinpointing lysosomal Tmed5 accumulation and Lgals3bp depletion as apoE4-associated drivers for this phenotype.
Collapse
Affiliation(s)
- Einar K. Krogsaeter
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- These authors contributed equally
| | - Justin McKetney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- These authors contributed equally
| | - Angelica Marquez
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Zeynep Cakir
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Erica Stevenson
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Gwendolyn M. Jang
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, The J. David Gladstone Institutes, San Francisco, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, USA
| | - Anton Zhou
- Gladstone Institute of Neurological Disease, The J. David Gladstone Institutes, San Francisco, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, The J. David Gladstone Institutes, San Francisco, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, USA
- Neuroscience Graduate Program, University of California, San Francisco, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, USA
- Departments of Neurology and Pathology, University of California, San Francisco, USA
| | - Nevan J. Krogan
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Danielle L. Swaney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| |
Collapse
|
89
|
Cui B, Song L, Wang Q, Li K, He Q, Wu X, Gao F, Liu M, An C, Gao Q, Hu C, Hao X, Dong F, Zhou J, Liu D, Song Z, Yan X, Zhang J, Bai Y, Mao Q, Yang X, Liang Z. Non-small cell lung cancers (NSCLCs) oncolysis using coxsackievirus B5 and synergistic DNA-damage response inhibitors. Signal Transduct Target Ther 2023; 8:366. [PMID: 37743418 PMCID: PMC10518312 DOI: 10.1038/s41392-023-01603-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
With the continuous in-depth study of the interaction mechanism between viruses and hosts, the virus has become a promising tool in cancer treatment. In fact, many oncolytic viruses with selectivity and effectiveness have been used in cancer therapy. Human enterovirus is one of the most convenient sources to generate oncolytic viruses, however, the high seroprevalence of some enteroviruses limits its application which urges to exploit more oncolytic enteroviruses. In this study, coxsackievirus B5/Faulkner (CV-B5/F) was screened for its potential oncolytic effect against non-small cell lung cancers (NSCLCs) through inducing apoptosis and autophagy. For refractory NSCLCs, DNA-dependent protein kinase (DNA-PK) or ataxia telangiectasia mutated protein (ATM) inhibitors can synergize with CV-B5/F to promote refractory cell death. Here, we showed that viral infection triggered endoplasmic reticulum (ER) stress-related pro-apoptosis and autophagy signals, whereas repair for double-stranded DNA breaks (DSBs) contributed to cell survival which can be antagonized by inhibitor-induced cell death, manifesting exacerbated DSBs, apoptosis, and autophagy. Mechanistically, PERK pathway was activated by the combination of CV-B5/F and inhibitor, and the irreversible ER stress-induced exacerbated cell death. Furthermore, the degradation of activated STING by ERphagy promoted viral replication. Meanwhile, no treatment-related deaths due to CV-B5/F and/or inhibitors occurred. Conclusively, our study identifies an oncolytic CV-B5/F and the synergistic effects of inhibitors of DNA-PK or ATM, which is a potential therapy for NSCLCs.
Collapse
Affiliation(s)
- Bopei Cui
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Lifang Song
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Qian Wang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Kelei Li
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Beijing Minhai Biotechnology Co., Ltd, Beijing, China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xing Wu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Mingchen Liu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Chaoqiang An
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Beijing Minhai Biotechnology Co., Ltd, Beijing, China
| | - Qiushuang Gao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Chaoying Hu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaotian Hao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Fangyu Dong
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Taibang Biologic Group, Beijing, China
| | | | - Dong Liu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Ziyang Song
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Shanghai Institute of Biological Products Co., Ltd, Shanghai, China
| | - Xujia Yan
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Jialu Zhang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China.
- China National Biotec Group Company Limited, Beijing, China.
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
90
|
Spangenberg SH, Palermo A, Gazaniga NR, Martínez-Peña F, Guijas C, Chin EN, Rinschen MM, Sander PN, Webb B, Pereira LE, Jia Y, Meitz L, Siuzdak G, Lairson LL. Hydroxyproline metabolism enhances IFN-γ-induced PD-L1 expression and inhibits autophagic flux. Cell Chem Biol 2023; 30:1115-1134.e10. [PMID: 37467751 PMCID: PMC11426993 DOI: 10.1016/j.chembiol.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/20/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The immune checkpoint protein PD-L1 plays critical roles in both immune system homeostasis and tumor progression. Impaired PD-1/PD-L1 function promotes autoimmunity and PD-L1 expression within tumors promotes immune evasion. If and how changes in metabolism or defined metabolites regulate PD-L1 expression is not fully understood. Here, using a metabolomics activity screening-based approach, we have determined that hydroxyproline (Hyp) significantly and directly enhances adaptive (i.e., IFN-γ-induced) PD-L1 expression in multiple relevant myeloid and cancer cell types. Mechanistic studies reveal that Hyp acts as an inhibitor of autophagic flux, which allows it to regulate this negative feedback mechanism, thereby contributing to its overall effect on PD-L1 expression. Due to its prevalence in fibrotic tumors, these findings suggest that hydroxyproline could contribute to the establishment of an immunosuppressive tumor microenvironment and that Hyp metabolism could be targeted to pharmacologically control PD-L1 expression for the treatment of cancer or autoimmune diseases.
Collapse
Affiliation(s)
| | - Amelia Palermo
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathalia R Gazaniga
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Carlos Guijas
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Markus M Rinschen
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp N Sander
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bill Webb
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura E Pereira
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying Jia
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lance Meitz
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, La Jolla, CA 92037, USA.
| | - Luke L Lairson
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
91
|
Petrović DJ, Jagečić D, Krasić J, Sinčić N, Mitrečić D. Effect of Fetal Bovine Serum or Basic Fibroblast Growth Factor on Cell Survival and the Proliferation of Neural Stem Cells: The Influence of Homocysteine Treatment. Int J Mol Sci 2023; 24:14161. [PMID: 37762465 PMCID: PMC10531752 DOI: 10.3390/ijms241814161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vitro cell culture is a routinely used method which is also applied for in vitro modeling of various neurological diseases. On the other hand, media used for cell culture are often not strictly standardized between laboratories, which hinders the comparison of the obtained results. Here, we compared the effects of homocysteine (Hcy), a molecule involved in neurodegeneration, on immature cells of the nervous system cultivated in basal medium or media supplemented by either fetal bovine serum or basic fibroblast growth factor. The number of cells in basal media supplemented with basic fibroblast growth factor (bFGF) was 2.5 times higher in comparison to the number of cells in basal media supplemented with fetal bovine serum (FBS). We also found that the neuron-specific β-3-tubulin protein expression dose dependently decreased with increasing Hcy exposure. Interestingly, bFGF exerts a protective effect on β-3-tubulin protein expression at a concentration of 1000 µM Hcy compared to FBS-treated neural stem cells on Day 7. Supplementation with bFGF increased SOX2 protein expression two-fold compared to FBS supplementation. GFAP protein expression increased five-fold on Day 3 in FBS-treated neural stem cells, whereas on Day 7, bFGF increased GFAP expression two-fold compared to FBS-treated neural stem cells. Here, we have clearly shown that the selection of culturing media significantly influences various cellular parameters, which, in turn, can lead to different conclusions in experiments based on in vitro models of pathological conditions.
Collapse
Affiliation(s)
- Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Glycoscience Research Laboratory, Genos Ltd., 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jure Krasić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Laboratory for Neurogenomics and In Situ Hybridization, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nino Sinčić
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers (epiMark), Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
92
|
Mutvei AP, Nagiec MJ, Blenis J. Balancing lysosome abundance in health and disease. Nat Cell Biol 2023; 25:1254-1264. [PMID: 37580388 DOI: 10.1038/s41556-023-01197-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/28/2023] [Indexed: 08/16/2023]
Abstract
Lysosomes are catabolic organelles that govern numerous cellular processes, including macromolecule degradation, nutrient signalling and ion homeostasis. Aberrant changes in lysosome abundance are implicated in human diseases. Here we outline the mechanisms of lysosome biogenesis and turnover, and discuss how changes in the lysosome pool impact physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Anders P Mutvei
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Michal J Nagiec
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
93
|
Jung R, Lechler MC, Fernandez-Villegas A, Chung CW, Jones HC, Choi YH, Thompson MA, Rödelsperger C, Röseler W, Kaminski Schierle GS, Sommer RJ, David DC. A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans. PLoS Biol 2023; 21:e3002284. [PMID: 37708127 PMCID: PMC10501630 DOI: 10.1371/journal.pbio.3002284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.
Collapse
Affiliation(s)
- Raimund Jung
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Marie C. Lechler
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Ana Fernandez-Villegas
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Chyi Wei Chung
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Harry C. Jones
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | - Yoon Hee Choi
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | | | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Waltraud Röseler
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | | | - Ralf J. Sommer
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Della C. David
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
94
|
Zhang SQ, Deng Q, Zhu Q, Hu ZL, Long LH, Wu PF, He JG, Chen HS, Yue Z, Lu JH, Wang F, Chen JG. Cell type-specific NRBF2 orchestrates autophagic flux and adult hippocampal neurogenesis in chronic stress-induced depression. Cell Discov 2023; 9:90. [PMID: 37644025 PMCID: PMC10465581 DOI: 10.1038/s41421-023-00583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/22/2023] [Indexed: 08/31/2023] Open
Abstract
Dysfunctional autophagy and impairment of adult hippocampal neurogenesis (AHN) each contribute to the pathogenesis of major depressive disorder (MDD). However, whether dysfunctional autophagy is linked to aberrant AHN underlying MDD remains unclear. Here we demonstrate that the expression of nuclear receptor binding factor 2 (NRBF2), a component of autophagy-associated PIK3C3/VPS34-containing phosphatidylinositol 3-kinase complex, is attenuated in the dentate gyrus (DG) under chronic stress. NRBF2 deficiency inhibits the activity of the VPS34 complex and impairs autophagic flux in adult neural stem cells (aNSCs). Moreover, loss of NRBF2 disrupts the neurogenesis-related protein network and causes exhaustion of aNSC pool, leading to the depression-like phenotype. Strikingly, overexpressing NRBF2 in aNSCs of the DG is sufficient to rescue impaired AHN and depression-like phenotype of mice. Our findings reveal a significant role of NRBF2-dependent autophagy in preventing chronic stress-induced AHN impairment and suggest the therapeutic potential of targeting NRBF2 in MDD treatment.
Collapse
Affiliation(s)
- Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China.
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
95
|
Norton ES, Whaley LA, Jones VK, Brooks MM, Russo MN, Morderer D, Jessen E, Schiapparelli P, Ramos-Fresnedo A, Zarco N, Carrano A, Rossoll W, Asmann YW, Lam TT, Chaichana KL, Anastasiadis PZ, Quiñones-Hinojosa A, Guerrero-Cázares H. Cell-specific crosstalk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553966. [PMID: 37662251 PMCID: PMC10473635 DOI: 10.1101/2023.08.19.553966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially due to subventricular zone (SVZ) contact. Despite this, crosstalk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood. Using cell-specific proteomics, we show that LV-proximal GBM prevents neuronal maturation of NSCs through induction of senescence. Additionally, GBM brain tumor initiating cells (BTICs) increase expression of CTSB upon interaction with NPCs. Lentiviral knockdown and recombinant protein experiments reveal both cell-intrinsic and soluble CTSB promote malignancy-associated phenotypes in BTICs. Soluble CTSB stalls neuronal maturation in NPCs while promoting senescence, providing a link between LV-tumor proximity and neurogenesis disruption. Finally, we show LV-proximal CTSB upregulation in patients, showing the relevance of this crosstalk in human GBM biology. These results demonstrate the value of proteomic analysis in tumor microenvironment research and provide direction for new therapeutic strategies in GBM. Highlights Periventricular GBM is more malignant and disrupts neurogenesis in a rodent model.Cell-specific proteomics elucidates tumor-promoting crosstalk between GBM and NPCs.NPCs induce upregulated CTSB expression in GBM, promoting tumor progression.GBM stalls neurogenesis and promotes NPC senescence via CTSB.
Collapse
|
96
|
Deng LJ, Wu D, Yang XF, Li T. miR-146a-5p Modulates Adult Hippocampal Neurogenesis Deficits Through Klf4/p-Stat3 Signaling in APP/PS1 Mice. Neuroscience 2023; 526:314-325. [PMID: 37321367 DOI: 10.1016/j.neuroscience.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and currently, no effective treatment strategies exist for this condition. MicroRNAs (miRNAs) have emerged as promising therapeutic targets of AD. Previous studies have highlighted the significant role of miR-146a-5p in regulating adult hippocampal neurogenesis (AHN). Here, we aimed to investigate whether miR-146a-5p plays a role in the mechanisms of AD. We employed quantitative real-time PCR (qRT-PCR) to assess the expression of miR-146a-5p. Additionally, we examined the expression of Krüppel-like factor 4 (Klf4), Signal transducer and activator of transcription 3 (Stat3), and phosphorylated Stat3 (p-Stat3) using western blot analysis. Furthermore, we validated the interaction between miR-146a-5p and Klf4 using a dual-luciferase reporter assay. Immunofluorescence staining was employed to evaluate AHN. And Contextual fear conditioning discrimination learning (CFC-DL) experiment was used to detect pattern separation. Our findings in the hippocampus of APP/PS1 mice revealed upregulated levels of miR-146a-5p and p-Stat3, while Klf4 levels were downregulated. Interestingly, both miR-146a-5p antagomir and p-Stat3 inhibitor obviously rescued neurogenesis and pattern separation in APP/PS1 mice. Moreover, application of miR-146a-5p agomir reversed the protective effects of Klf4 upregulation. These findings open new avenues for protection against AD through the modulation of neurogenesis and cognitive decline via the miR-146a-5p/Klf4/p-Stat3 pathway.
Collapse
Affiliation(s)
- Li-Jun Deng
- Department of Neurosurgery, The Affiliated Hospital of Jianghan University, Wuhan 430022, PR China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Jianghan University, Wuhan 430022, PR China
| | - Xiao-Fan Yang
- Department of Hand Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Tao Li
- Department of Hand Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
97
|
Jiménez Peinado P, Urbach A. From Youthful Vigor to Aging Decline: Unravelling the Intrinsic and Extrinsic Determinants of Hippocampal Neural Stem Cell Aging. Cells 2023; 12:2086. [PMID: 37626896 PMCID: PMC10453598 DOI: 10.3390/cells12162086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Since Joseph Altman published his pioneering work demonstrating neurogenesis in the hippocampus of adult rats, the number of publications in this field increased exponentially. Today, we know that the adult hippocampus harbors a pool of adult neural stem cells (NSCs) that are the source of life-long neurogenesis and plasticity. The functions of these NSCs are regulated by extrinsic cues arising from neighboring cells and the systemic environment. However, this tight regulation is subject to imbalance with age, resulting in a decline in adult NSCs and neurogenesis, which contributes to the progressive deterioration of hippocampus-related cognitive functions. Despite extensive investigation, the mechanisms underlying this age-related decline in neurogenesis are only incompletely understood, but appear to include an increase in NSC quiescence, changes in differentiation patterns, and NSC exhaustion. In this review, we summarize recent work that has improved our knowledge of hippocampal NSC aging, focusing on NSC-intrinsic mechanisms as well as cellular and molecular changes in the niche and systemic environment that might be involved in the age-related decline in NSC functions. Additionally, we identify future directions that may advance our understanding of NSC aging and the concomitant loss of hippocampal neurogenesis and plasticity.
Collapse
Affiliation(s)
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, 07747 Jena, Germany
- Aging Research Center Jena, Leibniz Institute on Aging, 07745 Jena, Germany
| |
Collapse
|
98
|
Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M. Neural stem cell metabolism revisited: a critical role for mitochondria. Trends Endocrinol Metab 2023; 34:446-461. [PMID: 37380501 DOI: 10.1016/j.tem.2023.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Metabolism has emerged as a key regulator of stem cell behavior. Mitochondria are crucial metabolic organelles that are important for differentiated cells, yet considered less so for stem cells. However, recent studies have shown that mitochondria influence stem cell maintenance and fate decisions, inviting a revised look at this topic. In this review, we cover the current literature addressing the role of mitochondrial metabolism in mouse and human neural stem cells (NSCs) in the embryonic and adult brain. We summarize how mitochondria are implicated in fate regulation and how substrate oxidation affects NSC quiescence. We further explore single-cell RNA sequencing (scRNA-seq) data for metabolic signatures of adult NSCs, highlight emerging technologies reporting on metabolic signatures, and discuss mitochondrial metabolism in other stem cells.
Collapse
Affiliation(s)
- Valentina Scandella
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon M G Braun
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marlen Knobloch
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
99
|
Ding L, Chu W, Xia Y, Shi M, Li T, Zhou FQ, Deng DYB. UCHL1 facilitates protein aggregates clearance to enhance neural stem cell activation in spinal cord injury. Cell Death Dis 2023; 14:479. [PMID: 37507386 PMCID: PMC10382505 DOI: 10.1038/s41419-023-06003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Activation of endogenous neural stem cells (NSCs) is greatly significant for the adult neurogenesis; however, it is extremely limited in the spinal cord after injury. Recent evidence suggests that accumulation of protein aggregates impairs the ability of quiescent NSCs to activate. Ubiquitin c-terminal hydrolase l-1 (UCHL1), an important deubiquitinating enzyme, plays critical roles in protein aggregations clearance, but its effects on NSC activation remains unknown. Here, we show that UCHL1 promotes NSC activation by clearing protein aggregates through ubiquitin-proteasome approach. Upregulation of UCHL1 facilitated the proliferation of spinal cord NSCs after spinal cord injury (SCI). Based on protein microarray analysis of SCI cerebrospinal fluid, it is further revealed that C3+ neurotoxic reactive astrocytes negatively regulated UCHL1 and proteasome activity via C3/C3aR signaling, led to increased abundances of protein aggregations and decreased NSC proliferation. Furthermore, blockade of reactive astrocytes or C3/C3aR pathway enhanced NSC activation post-SCI by reserving UCHL1 and proteasome functions. Together, this study elucidated a mechanism regulating NSC activation in the adult spinal cord involving the UCHL1-proteasome approach, which may provide potential molecular targets and new insights for NSC fate regulation.
Collapse
Affiliation(s)
- Lu Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Weiwei Chu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Xia
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ming Shi
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Tian Li
- Obstetrics and Gynecology Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - David Y B Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
100
|
Yeo RW, Zhou OY, Zhong BL, Sun ED, Navarro Negredo P, Nair S, Sharmin M, Ruetz TJ, Wilson M, Kundaje A, Dunn AR, Brunet A. Chromatin accessibility dynamics of neurogenic niche cells reveal defects in neural stem cell adhesion and migration during aging. NATURE AGING 2023; 3:866-893. [PMID: 37443352 PMCID: PMC10353944 DOI: 10.1038/s43587-023-00449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
The regenerative potential of brain stem cell niches deteriorates during aging. Yet the mechanisms underlying this decline are largely unknown. Here we characterize genome-wide chromatin accessibility of neurogenic niche cells in vivo during aging. Interestingly, chromatin accessibility at adhesion and migration genes decreases with age in quiescent neural stem cells (NSCs) but increases with age in activated (proliferative) NSCs. Quiescent and activated NSCs exhibit opposing adhesion behaviors during aging: quiescent NSCs become less adhesive, whereas activated NSCs become more adhesive. Old activated NSCs also show decreased migration in vitro and diminished mobilization out of the niche for neurogenesis in vivo. Using tension sensors, we find that aging increases force-producing adhesions in activated NSCs. Inhibiting the cytoskeletal-regulating kinase ROCK reduces these adhesions, restores migration in old activated NSCs in vitro, and boosts neurogenesis in vivo. These results have implications for restoring the migratory potential of NSCs and for improving neurogenesis in the aged brain.
Collapse
Affiliation(s)
- Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Brian L Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Mahfuza Sharmin
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Tyson J Ruetz
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mikaela Wilson
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|