51
|
Daniel R, Lowry S, Pall H. State of the art vaccination strategies as primary prevention to reduce incidence of gastrointestinal cancers. J Gastrointest Oncol 2021; 12:S316-S323. [PMID: 34422396 DOI: 10.21037/jgo.2020.01.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 11/06/2022] Open
Abstract
Immunizations have influenced the epidemiology of numerous gastrointestinal cancers. Human papillomavirus (HPV) is a common sexually transmitted infection (STI). Although most infections are transient and asymptomatic, persistent infections with oncogenic strains of HPV can progress to cervical, anal, penile, vaginal, vulvar, and oropharyngeal cancers. The introduction of HPV vaccinations has drastically reduced incidences of HPV-vaccine related infections and HPV related cervical cancers. The vaccine has proven to be safe and effective however, HPV vaccination rates have yet to reach target goals in the U.S. and many countries worldwide have not incorporated the vaccine into national immunization programs. The first successful nationwide vaccination program was employed against hepatitis B virus (HBV) in Taiwan in 1984 and demonstrated a statistically significant decrease in the incidence of hepatocellular carcinoma (HCC) in the 6 to 10 years after implementation of universal HBV vaccinations in infants. Twenty-year follow-up studies have continued to demonstrate statistically significant decreased rates of HBV related HCC among vaccinated populations. Despite the successful decrease in incidence of HBV-related HCC, efforts to create an effective prophylactic vaccination against hepatitis C virus (HCV) to prevent chronic HCV infection and its associated morbidity, including HCV-related HCC, have to date been unsuccessful.
Collapse
Affiliation(s)
- Rhea Daniel
- Department of Pediatrics, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Sarah Lowry
- Department of Pediatrics, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Harpreet Pall
- Department of Pediatrics, K. Hovnanian Children's Hospital/Hackensack Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, USA
| |
Collapse
|
52
|
Hartlage AS, Kapoor A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses 2021; 13:1596. [PMID: 34452460 PMCID: PMC8402855 DOI: 10.3390/v13081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
Unless urgently needed to prevent a pandemic, the development of a viral vaccine should follow a rigorous scientific approach. Each vaccine candidate should be designed considering the in-depth knowledge of protective immunity, followed by preclinical studies to assess immunogenicity and safety, and lastly, the evaluation of selected vaccines in human clinical trials. The recently concluded first phase II clinical trial of a human hepatitis C virus (HCV) vaccine followed this approach. Still, despite promising preclinical results, it failed to protect against chronic infection, raising grave concerns about our understanding of protective immunity. This setback, combined with the lack of HCV animal models and availability of new highly effective antivirals, has fueled ongoing discussions of using a controlled human infection model (CHIM) to test new HCV vaccine candidates. Before taking on such an approach, however, we must carefully weigh all the ethical and health consequences of human infection in the absence of a complete understanding of HCV immunity and pathogenesis. We know that there are significant gaps in our knowledge of adaptive immunity necessary to prevent chronic HCV infection. This review discusses our current understanding of HCV immunity and the critical gaps that should be filled before embarking upon new HCV vaccine trials. We discuss the importance of T cells, neutralizing antibodies, and HCV genetic diversity. We address if and how the animal HCV-like viruses can be used for conceptualizing effective HCV vaccines and what we have learned so far from these HCV surrogates. Finally, we propose a logical but narrow path forward for HCV vaccine development.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
53
|
Cao Q, Wu S, Xiao C, Chen S, Chi X, Cui X, Tang H, Su W, Zheng Y, Zhong J, Li Z, Li F, Chen H, Hou L, Wang H, Wen W. Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization. Cell Discov 2021; 7:64. [PMID: 34373443 PMCID: PMC8352953 DOI: 10.1038/s41421-021-00300-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), driven by SARS-CoV-2, is a severe infectious disease that has become a global health threat. Vaccines are among the most effective public health tools for combating COVID-19. Immune status is critical for evaluating the safety and response to the vaccine, however, the evolution of the immune response during immunization remains poorly understood. Single-cell RNA sequencing (scRNA-seq) represents a powerful tool for dissecting multicellular behavior and discovering therapeutic antibodies. Herein, by performing scRNA/V(D)J-seq on peripheral blood mononuclear cells from four COVID-19 vaccine trial participants longitudinally during immunization, we revealed enhanced cellular immunity with concerted and cell type-specific IFN responses as well as boosted humoral immunity with SARS-CoV-2-specific antibodies. Based on the CDR3 sequence and germline enrichment, we were able to identify several potential binding antibodies. We synthesized, expressed and tested 21 clones from the identified lineages. Among them, one monoclonal antibody (P3V6-1) exhibited relatively high affinity with the extracellular domain of Spike protein, which might be a promising therapeutic reagent for COVID-19. Overall, our findings provide insights for assessing vaccine through the novel scRNA/V(D)J-seq approach, which might facilitate the development of more potent, durable and safe prophylactic vaccines.
Collapse
Affiliation(s)
- Qiqi Cao
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuzhen Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University / Naval Medical University, Shanghai, China.,National Center for Liver Cancer, Second Military Medical University / Naval Medical University, Shanghai, China
| | | | - Xiuliang Cui
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University / Naval Medical University, Shanghai, China.,National Center for Liver Cancer, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University / Naval Medical University, Shanghai, China.,Department of Critical Care, Wuhan Huoshenshan Hospital, Wuhan, Hubei, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayong Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaomin Li
- HuaAn McAb Biotech Company, Hangzhou, Zhejiang, China
| | - Fang Li
- HuaAn McAb Biotech Company, Hangzhou, Zhejiang, China
| | - Haijia Chen
- Guangzhou SALIAI Stemcell Science and Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China.
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University / Naval Medical University, Shanghai, China. .,National Center for Liver Cancer, Second Military Medical University / Naval Medical University, Shanghai, China. .,Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wen Wen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University / Naval Medical University, Shanghai, China. .,National Center for Liver Cancer, Second Military Medical University / Naval Medical University, Shanghai, China. .,Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University / Naval Medical University, Shanghai, China.
| |
Collapse
|
54
|
Butler C, Ellis C, Folegatti PM, Swayze H, Allen J, Bussey L, Bellamy D, Lawrie A, Eagling-Vose E, Yu LM, Shanyinde M, Mair C, Flaxman A, Ewer K, Gilbert S, Evans TG. Efficacy and Safety of a Modified Vaccinia Ankara-NP+M1 Vaccine Combined with QIV in People Aged 65 and Older: A Randomised Controlled Clinical Trial (INVICTUS). Vaccines (Basel) 2021; 9:vaccines9080851. [PMID: 34451976 PMCID: PMC8402379 DOI: 10.3390/vaccines9080851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pre-existing T cell responses to influenza have been correlated with improved clinical outcomes in natural history and human challenge studies. We aimed to determine the efficacy, safety and immunogenicity of a T-cell directed vaccine in older people. METHODS This was a multicentre, participant- and safety assessor-blinded, randomised, placebo-controlled trial of the co-administration of Modified Vaccinia Ankara encoding nucleoprotein and matrix protein 1 (MVA-NP+M1) and annual influenza vaccine in participants ≥ 65. The primary outcome was the number of days with moderate or severe influenza-like symptoms (ILS) during the influenza season. RESULTS 846 of a planned 2030 participants were recruited in the UK prior to, and throughout, the 2017/18 flu season. There was no evidence of a difference in the reported rates of days of moderate or severe ILS during influenza-like illness episodes (unadjusted OR = 0.95, 95% CI: 0.54-1.69; adjusted OR = 0.91, 95% CI: 0.51-1.65). The trial was stopped after one season due to a change in the recommended annual flu vaccine, for which safety of the new combination had not been established. More participants in the MVA-NP+M1 group had transient moderate or severe pain, redness, and systemic responses in the first seven days. CONCLUSION The MVA-NP+M1 vaccine is well tolerated in those aged 65 years and over. Larger trials would be needed to determine potential efficacy.
Collapse
Affiliation(s)
- Chris Butler
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Chris Ellis
- Vaccitech Ltd., Oxford OX4 4GE, UK; (C.E.); (L.B.); (E.E.-V.)
| | - Pedro M. Folegatti
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Hannah Swayze
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Julie Allen
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Louise Bussey
- Vaccitech Ltd., Oxford OX4 4GE, UK; (C.E.); (L.B.); (E.E.-V.)
| | - Duncan Bellamy
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Alison Lawrie
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | | | - Ly-Mee Yu
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Milensu Shanyinde
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford OX2 6GG, UK; (C.B.); (H.S.); (J.A.); (L.-M.Y.); (M.S.)
| | - Catherine Mair
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Amy Flaxman
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Katie Ewer
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Sarah Gilbert
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (P.M.F.); (D.B.); (A.L.); (C.M.); (A.F.); (K.E.); (S.G.)
| | - Thomas G. Evans
- Vaccitech Ltd., Oxford OX4 4GE, UK; (C.E.); (L.B.); (E.E.-V.)
- Correspondence:
| | | |
Collapse
|
55
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
56
|
Pisano MB, Giadans CG, Flichman DM, Ré VE, Preciado MV, Valva P. Viral hepatitis update: Progress and perspectives. World J Gastroenterol 2021; 27:4018-4044. [PMID: 34326611 PMCID: PMC8311538 DOI: 10.3748/wjg.v27.i26.4018] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis, secondary to infection with hepatitis A, B, C, D, and E viruses, are a major public health problem and an important cause of morbidity and mortality. Despite the huge medical advances achieved in recent years, there are still points of conflict concerning the pathogenesis, immune response, development of new and more effective vaccines, therapies, and treatment. This review focuses on the most important research topics that deal with issues that are currently being solved, those that remain to be solved, and future research directions. For hepatitis A virus we will address epidemiology, molecular surveillance, new susceptible populations as well as environmental and food detections. In the case of hepatitis B virus, we will discuss host factors related to disease, diagnosis, therapy, and vaccine improvement. On hepatitis C virus, we will focus on pathogenesis, immune response, direct action antivirals treatment in the context of solid organ transplantation, issues related to hepatocellular carcinoma development, direct action antivirals resistance due to selection of resistance-associated variants, and vaccination. Regarding hepatitis D virus, we describe diagnostic methodology, pathogenesis, and therapy. Finally, for hepatitis E virus, we will address epidemiology (including new emerging species), diagnosis, clinical aspects, treatment, the development of a vaccine, and environmental surveillance.
Collapse
Affiliation(s)
- María B Pisano
- Virology Institute, CONICET, School of Medical Sciences, National University of Córdoba, Cordoba X5016, Argentina
| | - Cecilia G Giadans
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| | - Diego M Flichman
- Institute of Biomedical Investigations in Retrovirus and AIDS (INBIRS), School of Medicine, University of Buenos Aires, CONICET, CABA C1121ABG, Buenos Aires, Argentina
| | - Viviana E Ré
- Virology Institute, CONICET, School of Medical Sciences, National University of Córdoba, Cordoba X5016, Argentina
| | - María V Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| | - Pamela Valva
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| |
Collapse
|
57
|
Where to Next? Research Directions after the First Hepatitis C Vaccine Efficacy Trial. Viruses 2021; 13:v13071351. [PMID: 34372558 PMCID: PMC8310243 DOI: 10.3390/v13071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Thirty years after its discovery, the hepatitis C virus (HCV) remains a leading cause of liver disease worldwide. Given that many countries continue to experience high rates of transmission despite the availability of potent antiviral therapies, an effective vaccine is seen as critical for the elimination of HCV. The recent failure of the first vaccine efficacy trial for the prevention of chronic HCV confirmed suspicions that this virus will be a challenging vaccine target. Here, we examine the published data from this first efficacy trial along with the earlier clinical and pre-clinical studies of the vaccine candidate and then discuss three key research directions expected to be important in ongoing and future HCV vaccine development. These include the following: 1. design of novel immunogens that generate immune responses to genetically diverse HCV genotypes and subtypes, 2. strategies to elicit broadly neutralizing antibodies against envelope glycoproteins in addition to cytotoxic and helper T cell responses, and 3. consideration of the unique immunological status of individuals most at risk for HCV infection, including those who inject drugs, in vaccine platform development and early immunogenicity trials.
Collapse
|
58
|
Duprez JS, Cohen M, Li S, Wilson D, Brookes RH, James DA. Immunocartography: Charting vaccine-driven immunity by applying single cell proteomics to an in vitro human model. J Immunol Methods 2021; 495:113083. [PMID: 34089747 DOI: 10.1016/j.jim.2021.113083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/13/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
The ability to measure immunomodulatory effects of a vaccine is crucial for novel vaccine design. While traditional animal models have been effective, a better understanding of the response in humans to new vaccines in pre-clinical development is critical for advancement to clinical trials. A translational methodology that can capture the complexity of a vaccine-driven response in a human model, which does not require human exposure, is needed. Here we have designed a platform that uses fresh human whole blood as a key component to study the adaptive immune memory response to vaccine formulations. The response is monitored by high-parameter single cell analysis using mass cytometry (Helios, CyTOF System), allowing for a rapid, in-depth characterization of antigen specific proliferation and expansion of preexisting memory T cells in concert with an innate adjuvant-driven response. In this work we demonstrate the capability of this platform to characterize biologically relevant changes in the cellular response across memory T-cells, B cells, monocytes, and NK cells, at an unprecedented level of detail. This approach that we call Immunocartography has the potential to transform the way new vaccines can be assessed before and throughout clinical development.
Collapse
Affiliation(s)
- Jessica S Duprez
- Sanofi Pasteur Ltd., Toronto, Ontario M2R 3T4, Canada; Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Michael Cohen
- Fluidigm Corporation, Markham, Ontario L3R 4G5, Canada
| | - Stephen Li
- Fluidigm Corporation, Markham, Ontario L3R 4G5, Canada
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - D Andrew James
- Sanofi Pasteur Ltd., Toronto, Ontario M2R 3T4, Canada; Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
59
|
Reciprocal Inhibition of Immunogenic Performance in Mice of Two Potent DNA Immunogens Targeting HCV-Related Liver Cancer. Microorganisms 2021; 9:microorganisms9051073. [PMID: 34067686 PMCID: PMC8156932 DOI: 10.3390/microorganisms9051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic HCV infection and associated liver cancer impose a heavy burden on the healthcare system. Direct acting antivirals eliminate HCV, unless it is drug resistant, and partially reverse liver disease, but they cannot cure HCV-related cancer. A possible remedy could be a multi-component immunotherapeutic vaccine targeting both HCV-infected and malignant cells, but also those not infected with HCV. To meet this need we developed a two-component DNA vaccine based on the highly conserved core protein of HCV to target HCV-infected cells, and a renowned tumor-associated antigen telomerase reverse transcriptase (TERT) based on the rat TERT, to target malignant cells. Their synthetic genes were expression-optimized, and HCV core was truncated after aa 152 (Core152opt) to delete the domain interfering with immunogenicity. Core152opt and TERT DNA were highly immunogenic in BALB/c mice, inducing IFN-γ/IL-2/TNF-α response of CD4+ and CD8+ T cells. Additionally, DNA-immunization with TERT enhanced cellular immune response against luciferase encoded by a co-delivered plasmid (Luc DNA). However, DNA-immunization with Core152opt and TERT mix resulted in abrogation of immune response against both components. A loss of bioluminescence signal after co-delivery of TERT and Luc DNA into mice indicated that TERT affects the in vivo expression of luciferase directed by the immediate early cytomegalovirus and interferon-β promoters. Panel of mutant TERT variants was created and tested for their expression effects. TERT with deleted N-terminal nucleoli localization signal and mutations abrogating telomerase activity still suppressed the IFN-β driven Luc expression, while the inactivated reverse transcriptase domain of TERT and its analogue, enzymatically active HIV-1 reverse transcriptase, exerted only weak suppressive effects, implying that suppression relied on the presence of the full-length/nearly full-length TERT, but not its enzymatic activity. The effect(s) could be due to interference of the ectopically expressed xenogeneic rat TERT with biogenesis of mRNA, ribosomes and protein translation in murine cells, affecting the expression of immunogens. HCV core can aggravate this effect, leading to early apoptosis of co-expressing cells, preventing the induction of immune response.
Collapse
|
60
|
Abstract
The immunoprevention of cancer and cancer recurrence is an important area of concern for the scientific community and society as a whole. Researchers have been working for decades to develop vaccines with the potential to alleviate these health care and economic burdens. So far, vaccines have made more progress in preventing cancer than in eliminating already established cancer. In particular, vaccines targeting oncogenic viruses, such as the human papillomavirus and the hepatitis B virus, are exceptional examples of successful prevention of virus-associated cancers, such as cervical cancer and hepatocellular carcinoma. Cancer-preventive vaccines targeting nonviral antigens, such as tumor-associated antigens and neoantigens, are also being extensively tested. Here, we review the currently approved preventive cancer vaccines; discuss the challenges in this field by covering ongoing preclinical and clinical human trials in various cancers; and address various issues related to maximizing cancer vaccine benefit.
Collapse
Affiliation(s)
- Tomohiro Enokida
- Department of Medicine, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alvaro Moreira
- Department of Medicine, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Kimberly and Eric J. Waldman Department of Dermatology at Mount Sinai, New York, New York, USA
| | - Nina Bhardwaj
- Department of Medicine, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Kimberly and Eric J. Waldman Department of Dermatology at Mount Sinai, New York, New York, USA
- Extramural member of the Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
61
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
62
|
Annual Meeting of the Canadian Association for the Study of the Liver (CASL), the Canadian Network on Hepatitis C (CANHEPC) and the Canadian Association of Hepatology Nurses (CAHN) 2021 Abstracts. CANADIAN LIVER JOURNAL 2021; 4:113-248. [PMID: 35991765 PMCID: PMC9204943 DOI: 10.3138/canlivj.4.2.abst] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/06/2023]
|
63
|
Castaneda D, Gonzalez AJ, Alomari M, Tandon K, Zervos XB. From hepatitis A to E: A critical review of viral hepatitis. World J Gastroenterol 2021; 27:1691-1715. [PMID: 33967551 PMCID: PMC8072198 DOI: 10.3748/wjg.v27.i16.1691] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections affecting the liver have had an important impact on humanity, as they have led to significant morbidity and mortality in patients with acute and chronic infections. Once an unknown etiology, the discovery of the viral agents triggered interest of the scientific community to establish the pathogenesis and diagnostic modalities to identify the affected population. With the rapid scientific and technological advances in the last centuries, controlling and even curing the infections became a possibility, with a large focus on preventive medicine through vaccination. Hence, a comprehensive understanding of hepatitis A, B, C, D and E is required by primary care physicians and gastroenterologists to provide care to these patients. The review article describes the epidemiology, pathogenesis, clinical presentation, diagnostic tools and current medication regimens, with a focus on upcoming treatment options and the role of liver transplantation.
Collapse
Affiliation(s)
- Daniel Castaneda
- Digestive Disease Institute, Cleveland Clinic Florida, Weston, FL 33331, United States
| | | | - Mohammad Alomari
- Digestive Disease Institute, Cleveland Clinic Florida, Weston, FL 33331, United States
| | - Kanwarpreet Tandon
- Digestive Disease Institute, Cleveland Clinic Florida, Weston, FL 33331, United States
| | | |
Collapse
|
64
|
Ogbe A, Kronsteiner B, Skelly DT, Pace M, Brown A, Adland E, Adair K, Akhter HD, Ali M, Ali SE, Angyal A, Ansari MA, Arancibia-Cárcamo CV, Brown H, Chinnakannan S, Conlon C, de Lara C, de Silva T, Dold C, Dong T, Donnison T, Eyre D, Flaxman A, Fletcher H, Gardner J, Grist JT, Hackstein CP, Jaruthamsophon K, Jeffery K, Lambe T, Lee L, Li W, Lim N, Matthews PC, Mentzer AJ, Moore SC, Naisbitt DJ, Ogese M, Ogg G, Openshaw P, Pirmohamed M, Pollard AJ, Ramamurthy N, Rongkard P, Rowland-Jones S, Sampson O, Screaton G, Sette A, Stafford L, Thompson C, Thomson PJ, Thwaites R, Vieira V, Weiskopf D, Zacharopoulou P, Turtle L, Klenerman P, Goulder P, Frater J, Barnes E, Dunachie S. T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nat Commun 2021; 12:2055. [PMID: 33824342 PMCID: PMC8024333 DOI: 10.1038/s41467-021-21856-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.
Collapse
Affiliation(s)
- Ane Ogbe
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Barbara Kronsteiner
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Donal T Skelly
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthew Pace
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Anthony Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Emily Adland
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Kareena Adair
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Hossain Delowar Akhter
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Serat-E Ali
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Adrienn Angyal
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - M Azim Ansari
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Carolina V Arancibia-Cárcamo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Helen Brown
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Senthil Chinnakannan
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Christopher Conlon
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Catherine de Lara
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Thushan de Silva
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Timothy Donnison
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - David Eyre
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Big Data Institute, Nuffield Department. of Population Health, University of Oxford, Oxford, UK
| | - Amy Flaxman
- Jenner Institute, University of Oxford, Oxford, UK
| | - Helen Fletcher
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Joshua Gardner
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - James T Grist
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Carl-Philipp Hackstein
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Kanoot Jaruthamsophon
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, UK
| | - Lian Lee
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Wenqin Li
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Nicholas Lim
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Philippa C Matthews
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexander J Mentzer
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shona C Moore
- HPRU in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Monday Ogese
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Graham Ogg
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter Openshaw
- Faculty of Medicine, National Heart and Lung institute, Imperial College, London, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Narayan Ramamurthy
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Patpong Rongkard
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Sarah Rowland-Jones
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Nuffield Department. of Clinical Medicine, University of Oxford, Oxford, UK
| | - Oliver Sampson
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, Los Angeles, California, USA
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Craig Thompson
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Paul J Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Ryan Thwaites
- Faculty of Medicine, National Heart and Lung institute, Imperial College, London, UK
| | - Vinicius Vieira
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, Los Angeles, California, USA
| | - Panagiota Zacharopoulou
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Lance Turtle
- HPRU in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, UK
| | - John Frater
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| |
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW The WHO has set ambitious targets for hepatitis C virus (HCV) elimination by 2030. In this review, we explore the possibility of HCV micro-elimination in HIV-positive (+) MSM, discussing strategies for reducing acute HCV incidence and the likely interventions required to meet these targets. RECENT FINDINGS With wider availability of directly acting antivirals (DAAs) in recent years, reductions in acute HCV incidence have been reported in some cohorts of HIV+ MSM. Recent evidence demonstrates that treatment in early infection is well tolerated, cost effective and may reduce the risk of onward transmission. Modelling studies suggest that to reduce incidence, a combination approach including behavioural interventions and access to early treatment, targeting both HIV+ and negative high-risk groups, will be required. HCV vaccine trials have not yet demonstrated efficacy in human studies, however phase one and two studies are ongoing. SUMMARY Some progress towards the WHO HCV elimination targets has been reported. Achieving sustained HCV elimination is likely to require a combination approach including early access to DAAs in acute infection and reinfection, validated and reproducible behavioural interventions and an efficacious HCV vaccine.
Collapse
|
66
|
Hartlage AS, Dravid P, Walker CM, Kapoor A. Adenovirus-vectored T cell vaccine for hepacivirus shows reduced effectiveness against a CD8 T cell escape variant in rats. PLoS Pathog 2021; 17:e1009391. [PMID: 33735321 PMCID: PMC8009437 DOI: 10.1371/journal.ppat.1009391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
There is an urgent need for a vaccine to prevent chronic infection by hepatitis C virus (HCV) and its many genetic variants. The first human vaccine trial, using recombinant viral vectors that stimulate pan-genotypic T cell responses against HCV non-structural proteins, failed to demonstrate efficacy despite significant preclinical promise. Understanding the factors that govern HCV T cell vaccine success is necessary for design of improved immunization strategies. Using a rat model of chronic rodent hepacivirus (RHV) infection, we assessed the impact of antigenic variation and immune escape upon success of a conceptually analogous RHV T cell vaccine. Naïve Lewis rats were vaccinated with a recombinant human adenovirus expressing RHV non-structural proteins (NS)3-5B and later challenged with a viral variant containing immune escape mutations within major histocompatibility complex (MHC) class I-restricted epitopes (escape virus). Whereas 7 of 11 (64%) rats cleared infection caused by wild-type RHV, only 3 of 12 (25%) were protected against heterologous challenge with escape virus. Uncontrolled replication of escape virus was associated with durable CD8 T cell responses targeting escaped epitopes alone. In contrast, clearance of escape virus correlated with CD4 T cell helper immunity and maintenance of CD8 T cell responses against intact viral epitopes. Interestingly, clearance of wild-type RHV infection after vaccination conferred enhanced protection against secondary challenge with escape virus. These results demonstrate that the efficacy of an RHV T cell vaccine is reduced when challenge virus contains escape mutations within MHC class I-restricted epitopes and that failure to sustain CD8 T cell responses against intact epitopes likely underlies immune failure in this setting. Further investigation of the immune responses that yield protection against diverse RHV challenges in this model may facilitate design of broadly effective HCV vaccines. The hepatitis C virus is one of the leading causes of chronic liver disease and cancer worldwide. A vaccine is not yet available and the first phase II clinical trial in humans using a T cell-based immunization strategy recently failed to prevent chronic infection in high risk individuals for unclear reasons. In this study we evaluated how immune escape mutations at major histocompatibility complex (MHC) class I-restricted viral epitopes influence the effectiveness of an adenoviral-vectored T cell vaccine in a rat model of chronic HCV-related rodent hepacivirus infection, currently the only animal model available for evaluation of HCV vaccine strategies. We show that vaccine efficacy is markedly diminished when challenge virus contains naturally-acquired escape mutations at dominant MHC class I-restricted viral epitopes that render a subset of vaccine-generated CD8 T cell responses ineffective. We also identify CD4 T cell help as a critical correlate of vaccine success against heterologous virus challenge. Our results have important implications for human vaccination programs that aim to induce broad protective immunity against heterogeneous HCV strains.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Christopher M. Walker
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
67
|
Marcus H, Thompson E, Zhou Y, Bailey M, Donaldson MM, Stanley DA, Asiedu C, Foulds KE, Roederer M, Moliva JI, Sullivan NJ. Ebola-GP DNA Prime rAd5-GP Boost: Influence of Prime Frequency and Prime/Boost Time Interval on the Immune Response in Non-human Primates. Front Immunol 2021; 12:627688. [PMID: 33790899 PMCID: PMC8006325 DOI: 10.3389/fimmu.2021.627688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Heterologous prime-boost immunization regimens are a common strategy for many vaccines. DNA prime rAd5-GP boost immunization has been demonstrated to protect non-human primates against a lethal challenge of Ebola virus, a pathogen that causes fatal hemorrhagic disease in humans. This protection correlates with antibody responses and is also associated with IFNγ+ TNFα+ double positive CD8+ T-cells. In this study, we compared single DNA vs. multiple DNA prime immunizations, and short vs. long time intervals between the DNA prime and the rAd5 boost to evaluate the impact of these different prime-boost strategies on vaccine-induced humoral and cellular responses in non-human primates. We demonstrated that DNA/rAd5 prime-boost strategies can be tailored to induce either CD4+ T-cell or CD8+ T-cell dominant responses while maintaining a high magnitude antibody response. Additionally, a single DNA prime immunization generated a stable memory response that could be boosted by rAd5 3 years later. These results suggest DNA/rAd5 prime-boost provides a flexible platform that can be fine-tuned to generate desirable T-cell memory responses.
Collapse
Affiliation(s)
- Hadar Marcus
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Emily Thompson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yan Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Bailey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mitzi M Donaldson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Clement Asiedu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
68
|
CD8 + T Cell Responses during HCV Infection and HCC. J Clin Med 2021; 10:jcm10050991. [PMID: 33801203 PMCID: PMC7957882 DOI: 10.3390/jcm10050991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (cHCV) infection is a major global health burden and the leading cause of hepatocellular carcinoma (HCC) in the Western world. The course and outcome of HCV infection is centrally influenced by CD8+ T cell responses. Indeed, strong virus-specific CD8+ T cell responses are associated with spontaneous viral clearance while failure of these responses, e.g., caused by viral escape and T cell exhaustion, is associated with the development of chronic infection. Recently, heterogeneity within the exhausted HCV-specific CD8+ T cells has been observed with implications for immunotherapeutic approaches also for other diseases. In HCC, the presence of tumor-infiltrating and peripheral CD8+ T cell responses correlates with a favorable prognosis. Thus, tumor-associated and tumor-specific CD8+ T cells are considered suitable targets for immunotherapeutic strategies. Here, we review the current knowledge of CD8+ T cell responses in chronic HCV infection and HCC and their respective failure with the potential consequences for T cell-associated immunotherapeutic approaches.
Collapse
|
69
|
Li J, Casey JL, Greenwald ZR, Yasseen III AS, Dickie M, Feld JJ, Cooper CL, Crawley AM. The 9th Canadian Symposium on Hepatitis C Virus: Advances in HCV research and treatment towards elimination. CANADIAN LIVER JOURNAL 2021; 4:59-71. [PMID: 35991475 PMCID: PMC9203168 DOI: 10.3138/canlivj-2020-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 08/31/2024]
Abstract
Hepatitis C virus (HCV) elimination has evolved into a coordinated global effort. Canada, with more than 250,000 chronically infected individuals, is among the countries leading this effort. The 9th Canadian Symposium on HCV, held in February 2020, thus established and addressed its theme, 'advances in HCV research and treatment towards elimination', by gathering together basic scientists, clinicians, epidemiologists, social scientists, and community members interested in HCV research in Canada. Plenary sessions showcased topical research from prominent international and national researchers, complemented by select abstract presentations. This event was hosted by the Canadian Network on Hepatitis C (CanHepC), with support from the Public Health Agency of Canada and the Canadian Institutes of Health Research and in partnership with the Canadian Liver Meeting. CanHepC has an established record in HCV research by its members and in its advocacy activities to address the care, treatment, diagnosis, and immediate and long-term needs of those affected by HCV infection. Many challenges remain in tackling chronic HCV infection, such as the need for a vaccine; difficult-to-treat populations and unknown aspects of patient subgroups, including pregnant women and children; vulnerable people; and issues distinct to Indigenous peoples. There is also increasing concern about long-term clinical outcomes after successful treatment, with the rise in comorbidities such as diabetes, cardiovascular disease, and fatty liver disease and the remaining risk for hepatocellular carcinoma in cirrhotic individuals. The symposium addressed these topics in highlighting research advances that will collectively play an important role in eliminating HCV and minimizing subsequent health challenges.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia L Casey
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zoë R Greenwald
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Abdool S Yasseen III
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Melisa Dickie
- Knowledge Exchange Division, Community AIDS Treatment Information Exchange, Toronto, Ontario, Canada
| | - Jordan J Feld
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Curtis L Cooper
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Infectious Diseases, The Ottawa Hospital, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Angela M Crawley
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
70
|
Belnoue E, Leystra AA, Carboni S, Cooper HS, Macedo RT, Harvey KN, Colby KB, Campbell KS, Vanderveer LA, Clapper ML, Derouazi M. Novel Protein-Based Vaccine against Self-Antigen Reduces the Formation of Sporadic Colon Adenomas in Mice. Cancers (Basel) 2021; 13:cancers13040845. [PMID: 33671373 PMCID: PMC7923075 DOI: 10.3390/cancers13040845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Colorectal cancer remains a leading cause of cancer-related mortality worldwide. However, high-risk populations with a genetic predisposition for colorectal cancer could benefit greatly from novel and efficacious immunopreventive strategies that afford long-lasting protection. The achaete-scute family bHLH transcription factor 2 (Ascl2) has been identified as a promising target for immunoprevention of colorectal cancer, based on its induction during the formation and progression of colorectal tumors and its minimal expression observed in healthy tissue. The goal of the present study was to determine the efficacy of a protein-based vaccine targeting Ascl2 in combination with an anti-PD-1 treatment in a spontaneous colorectal cancer mouse model. This novel vaccine strategy promotes potent tumor-specific immunity, and prevents the formation of colon adenomas in mice. The results demonstrate that Ascl2 is a promising target for immunoprevention for individuals at elevated risk of developing colorectal cancer. Abstract Novel immunopreventive strategies are emerging that show great promise for conferring long-term protection to individuals at high risk of developing colorectal cancer. The KISIMA vaccine platform utilizes a chimeric protein comprising: (1) a selected tumor antigen; (2) a cell-penetrating peptide to improve antigen delivery and epitope presentation, and (3) a TLR2/4 agonist to serve as a self-adjuvant. This study examines the ability of a KISIMA vaccine against achaete-scute family bHLH transcription factor 2 (Ascl2), an early colon cancer antigen, to reduce colon tumor formation by stimulating an anti-tumor immune response. Vaccine administrations were well-tolerated and led to circulating antibodies and antigen-specific T cells in a mouse model of colorectal cancer. To assess preventive efficacy, the vaccine was administered to mice either alone or in combination with the immune checkpoint inhibitor anti-PD-1. When delivered to animals prior to colon tumor formation, the combination strategy significantly reduced the development of colon microadenomas and adenomas, as compared to vehicle-treated controls. This response was accompanied by an increase in the intraepithelial density of CD3+ T lymphocytes. Together, these data indicate that the KISIMA-Ascl2 vaccine shows great potential to be a safe and potent immunopreventive intervention for individuals at high risk of developing colorectal cancer.
Collapse
Affiliation(s)
- Elodie Belnoue
- AMAL Therapeutics, Fondation pour Recherches Médicales, 64 avenue de la Roseraie, 1205 Geneva, Switzerland; (E.B.); (S.C.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Alyssa A. Leystra
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Susanna Carboni
- AMAL Therapeutics, Fondation pour Recherches Médicales, 64 avenue de la Roseraie, 1205 Geneva, Switzerland; (E.B.); (S.C.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Harry S. Cooper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Rodrigo T. Macedo
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Kristen N. Harvey
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Kimberly B. Colby
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (K.B.C.); (K.S.C.)
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (K.B.C.); (K.S.C.)
| | - Lisa A. Vanderveer
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
- Correspondence: (M.L.C.); (M.D.)
| | - Madiha Derouazi
- AMAL Therapeutics, Fondation pour Recherches Médicales, 64 avenue de la Roseraie, 1205 Geneva, Switzerland; (E.B.); (S.C.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
- Correspondence: (M.L.C.); (M.D.)
| |
Collapse
|
71
|
Page K, Melia MT, Veenhuis RT, Winter M, Rousseau KE, Massaccesi G, Osburn WO, Forman M, Thomas E, Thornton K, Wagner K, Vassilev V, Lin L, Lum PJ, Giudice LC, Stein E, Asher A, Chang S, Gorman R, Ghany MG, Liang TJ, Wierzbicki MR, Scarselli E, Nicosia A, Folgori A, Capone S, Cox AL. Randomized Trial of a Vaccine Regimen to Prevent Chronic HCV Infection. N Engl J Med 2021; 384:541-549. [PMID: 33567193 PMCID: PMC8367093 DOI: 10.1056/nejmoa2023345] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND A safe and effective vaccine to prevent chronic hepatitis C virus (HCV) infection is a critical component of efforts to eliminate the disease. METHODS In this phase 1-2 randomized, double-blind, placebo-controlled trial, we evaluated a recombinant chimpanzee adenovirus 3 vector priming vaccination followed by a recombinant modified vaccinia Ankara boost; both vaccines encode HCV nonstructural proteins. Adults who were considered to be at risk for HCV infection on the basis of a history of recent injection drug use were randomly assigned (in a 1:1 ratio) to receive vaccine or placebo on days 0 and 56. Vaccine-related serious adverse events, severe local or systemic adverse events, and laboratory adverse events were the primary safety end points. The primary efficacy end point was chronic HCV infection, defined as persistent viremia for 6 months. RESULTS A total of 548 participants underwent randomization, with 274 assigned to each group. There was no significant difference in the incidence of chronic HCV infection between the groups. In the per-protocol population, chronic HCV infection developed in 14 participants in each group (hazard ratio [vaccine vs. placebo], 1.53; 95% confidence interval [CI], 0.66 to 3.55; vaccine efficacy, -53%; 95% CI, -255 to 34). In the modified intention-to-treat population, chronic HCV infection developed in 19 participants in the vaccine group and 17 in placebo group (hazard ratio, 1.66; 95% CI, 0.79 to 3.50; vaccine efficacy, -66%; 95% CI, -250 to 21). The geometric mean peak HCV RNA level after infection differed between the vaccine group and the placebo group (152.51×103 IU per milliliter and 1804.93×103 IU per milliliter, respectively). T-cell responses to HCV were detected in 78% of the participants in the vaccine group. The percentages of participants with serious adverse events were similar in the two groups. CONCLUSIONS In this trial, the HCV vaccine regimen did not cause serious adverse events, produced HCV-specific T-cell responses, and lowered the peak HCV RNA level, but it did not prevent chronic HCV infection. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT01436357.).
Collapse
Affiliation(s)
- Kimberly Page
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Michael T Melia
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Rebecca T Veenhuis
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Matthew Winter
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Kimberly E Rousseau
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Guido Massaccesi
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - William O Osburn
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Michael Forman
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Elaine Thomas
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Karla Thornton
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Katherine Wagner
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Ventzislav Vassilev
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Lan Lin
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Paula J Lum
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Linda C Giudice
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Ellen Stein
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Alice Asher
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Soju Chang
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Richard Gorman
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Marc G Ghany
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - T Jake Liang
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Michael R Wierzbicki
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Elisa Scarselli
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Alfredo Nicosia
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Antonella Folgori
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Stefania Capone
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| | - Andrea L Cox
- From the University of New Mexico, Albuquerque (K.P., E.T., K.T., K.W.); Johns Hopkins University, Baltimore (M.T.M., R.T.V., M.W., K.E.R., G.M., W.O.O., M.F., A.L.C.), the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (S. Chang, R.G.), and the Emmes Company (M.R.W.), Rockville, and the Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda (M.G.G., T.J.L.) - all in Maryland; GSK Vaccines, Rixensart, Belgium (V.V., L.L.); the University of California, San Francisco, San Francisco (P.J.L., L.C.G., E. Stein, A.A.); the Centers for Disease Control and Prevention, Office of Policy, Planning, and Partnerships, Atlanta (A.A.); and ReiThera, Rome (E. Scarselli, A.F., S. Capone), and CEINGE, Naples (A.N.) - both in Italy
| |
Collapse
|
72
|
Revisiting the Elusive Hepatitis C Vaccine. Vaccines (Basel) 2021; 9:vaccines9020114. [PMID: 33540927 PMCID: PMC7913186 DOI: 10.3390/vaccines9020114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/12/2023] Open
|
73
|
Di Zeo-Sánchez DE, Sánchez-Núñez P, Stephens C, Lucena MI. Characterizing Highly Cited Papers in Mass Cytometry through H-Classics. BIOLOGY 2021; 10:biology10020104. [PMID: 33540586 PMCID: PMC7912900 DOI: 10.3390/biology10020104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Mass cytometry (CyTOF) is a relatively novel technique for the multiparametric analysis of single-cell features with an increasing central role in cell biology, immunology, pharmacology, and biomedicine. This technique mixes the fundamentals of flow cytometry with mass spectrometry and is mainly used for in-depth studies of the immune system and diseases with a significant immune load, such as cancer, autoimmune diseases, and viral diseases like HIV or the recently emerged COVID-19, produced by the SARS-CoV-2 coronavirus. The objective of this study was to provide a useful insight into the evolution of the mass cytometry research field, revealing the knowledge structure (conceptual and social) and authors, countries, sources, documents, and organizations that have made the most significant contribution to its development. We retrieved 937 articles from the Web of Science (2010-2019), analysed 71 Highly Cited Papers (HCP) through the H-Classics methodology and computed the data by using Bibliometrix R package. HCP sources corresponded to high-impact journals, such as Nature Biotechnology and Cell, and its production was concentrated in the US, and specifically Stanford University, affiliation of the most relevant authors in the field. HCPs analysis confirmed great interest in the study of the immune system and complex data processing in the mass cytometry research field.
Collapse
Affiliation(s)
- Daniel E. Di Zeo-Sánchez
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (C.S.); (M.I.L.)
- Correspondence:
| | - Pablo Sánchez-Núñez
- Departamento de Comunicación Audiovisual y Publicidad, Facultad de Ciencias de la Comunicación, Universidad de Málaga, 29010 Malaga, Spain;
- Centro de Investigación Social Aplicada (CISA), Edificio de Investigación Ada Byron, Universidad de Málaga, 29010 Malaga, Spain
| | - Camilla Stephens
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (C.S.); (M.I.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - M. Isabel Lucena
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, 29010 Malaga, Spain; (C.S.); (M.I.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- UICEC IBIMA, Plataforma ISCiii de Investigación Clínica, 28020 Madrid, Spain
| |
Collapse
|
74
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related death worldwide.
Collapse
|
75
|
Keyhole Limpet Hemocyanin-Conjugated Peptides from Hepatitis C Virus Glycoproteins Elicit Neutralizing Antibodies in BALB/c Mice. J Immunol Res 2021; 2021:3108157. [PMID: 33532506 PMCID: PMC7834783 DOI: 10.1155/2021/3108157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Currently, no vaccine to prevent hepatitis C virus (HCV) infection is available. A major challenge in developing an HCV vaccine is the high diversity of HCV sequences. The purpose of immunization with viral glycoproteins is to induce a potent and long-lasting cellular and humoral immune response. However, this strategy only achieves limited protection, and antigen selection plays a crucial role in vaccine design. In this study, we investigated the humoral immune responses induced by intraperitoneal injection of keyhole limpet hemocyanin conjugated with 4 highly conserved peptides, including amino acids [aa]317-325 from E1 and aa418-429, aa502-518, and aa685-693 from E2, or 3 peptides from hypervariable region 1 (HVR1) of E2, including the N terminus of HVR1 (N-HVR1, aa384-396), C terminus of HVR1 (C-HVR1, aa397-410), and HVR1 in BALB/c mice. The neutralizing activity against HCV genotypes 1-6 was assessed using the cell culture HCV (HCVcc) system. The results showed that the 4 conserved peptides efficiently induced antibodies with potent neutralizing activity against 3 or 4 genotypes. Antibodies induced by aa685-693 conferred potent protection (>50%) against genotypes 2, 4, and 5. Peptide N-HVR1 elicited antibodies with the most potent neutralization activities against 3 HCV genotypes: TNcc(1a), S52(3a), and ED43(4a). These findings suggested that peptides within HCV glycoproteins could serve as potent immunogens for vaccine design and development.
Collapse
|
76
|
Cicconi P, Jones C, Sarkar E, Silva-Reyes L, Klenerman P, de Lara C, Hutchings C, Moris P, Janssens M, Fissette LA, Picciolato M, Leach A, Gonzalez-Lopez A, Dieussaert I, Snape MD. First-in-Human Randomized Study to Assess the Safety and Immunogenicity of an Investigational Respiratory Syncytial Virus (RSV) Vaccine Based on Chimpanzee-Adenovirus-155 Viral Vector-Expressing RSV Fusion, Nucleocapsid, and Antitermination Viral Proteins in Healthy Adults. Clin Infect Dis 2021; 70:2073-2081. [PMID: 31340042 PMCID: PMC7201425 DOI: 10.1093/cid/ciz653] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/19/2019] [Indexed: 11/17/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) disease is a major cause of infant morbidity and mortality. This Phase I, randomized, observer-blind, placebo- and active-controlled study evaluated an investigational vaccine against RSV (ChAd155-RSV) using the viral vector chimpanzee-adenovirus-155, encoding RSV fusion (F), nucleocapsid, and transcription antitermination proteins. Methods Healthy 18–45-year-old adults received ChAd155-RSV, a placebo, or an active control (Bexsero) at Days (D) 0 and 30. An escalation from a low dose (5 × 109 viral particles) to a high dose (5 × 1010 viral particles) occurred after the first 16 participants. Endpoints were solicited/unsolicited and serious adverse events (SAEs), biochemical/hematological parameters, cell-mediated immunogenicity by enzyme-linked immunospot, functional neutralizing antibodies, anti RSV-F immunoglobin (Ig) G, and ChAd155 neutralizing antibodies. Results There were 7 participants who received the ChAd155-RSV low dose, 31 who received the ChAd155-RSV high dose, 19 who received the placebo, and 15 who received the active control. No dose-related toxicity or attributable SAEs at the 1-year follow-up were observed. The RSV-A neutralizing antibodies geometric mean titer ratios (post/pre-immunization) following a high dose were 2.6 (D30) and 2.3 (D60). The ratio of the fold-rise (D0 to D30) in anti-F IgG over the fold-rise in RSV-A–neutralizing antibodies was 1.01. At D7 after the high dose of the study vaccine, the median frequencies of circulating B-cells secreting anti-F antibodies were 133.3/106 (IgG) and 16.7/106 (IgA) in peripheral blood mononuclear cells (PBMCs). The median frequency of RSV-F–specific interferon γ–secreting T-cells after a ChAd155-RSV high dose was 108.3/106 PBMCs at D30, with no increase after the second dose. Conclusions In adults previously naturally exposed to RSV, ChAd155-RSV generated increases in specific humoral and cellular immune responses without raising significant safety concerns. Clinical Trials Registration NCT02491463.
Collapse
Affiliation(s)
- Paola Cicconi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
| | - Esha Sarkar
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Catherine de Lara
- Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Claire Hutchings
- Nuffield Department of Medicine, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Centre, United Kingdom
| |
Collapse
|
77
|
Thimme R. T cell immunity to hepatitis C virus: Lessons for a prophylactic vaccine. J Hepatol 2021; 74:220-229. [PMID: 33002569 DOI: 10.1016/j.jhep.2020.09.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
There is consensus that HCV-specific T cells play a central role in the outcome (clearance vs. persistence) of acute infection and that they contribute to protection against the establishment of persistence after reinfection. However, these T cells often fail and the virus can persist, largely as a result of T cell exhaustion and the emergence of viral escape mutations. Importantly, HCV cure by direct-acting antivirals does not lead to a complete reversion of T cell exhaustion and thus HCV reinfections can occur. The current lack of detailed knowledge about the immunological determinants of viral clearance, persistence and protective immunity is a major roadblock to the development of a prophylactic T cell vaccine. This minireview highlights the basic concepts of successful T cell immunity, major mechanisms of T cell failure and how our understanding of these concepts can be translated into a prophylactic vaccine.
Collapse
Affiliation(s)
- Robert Thimme
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, Germany.
| |
Collapse
|
78
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
79
|
Russell RL, Pelka P, Mark BL. Frontrunners in the race to develop a SARS-CoV-2 vaccine. Can J Microbiol 2020; 67:189-212. [PMID: 33264067 DOI: 10.1139/cjm-2020-0465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous studies continue to be published on the COVID-19 pandemic that is being caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Given the rapidly evolving global response to SARS-CoV-2, here we primarily review the leading COVID-19 vaccine strategies that are currently in Phase III clinical trials. Nonreplicating viral vector strategies, inactivated virus, recombinant protein subunit vaccines, and nucleic acid vaccine platforms are all being pursued in an effort to combat the infection. Preclinical and clinal trial results of these efforts are examined as well as the characteristics of each vaccine strategy from the humoral and cellular immune responses they stimulate, effects of any adjuvants used, and the potential risks associated with immunization such as antibody-dependent enhancement. A number of promising advancements have been made toward the development of multiple vaccine candidates. Preliminary data now emerging from phase III clinical trials show encouraging results for the protective efficacy and safety of at least 3 frontrunning candidates. There is hope that one or more will emerge as potent weapons to protect against SARS-CoV-2.
Collapse
Affiliation(s)
- Raquel L Russell
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
80
|
Collignon C, Bol V, Chalon A, Surendran N, Morel S, van den Berg RA, Capone S, Bechtold V, Temmerman ST. Innate Immune Responses to Chimpanzee Adenovirus Vector 155 Vaccination in Mice and Monkeys. Front Immunol 2020; 11:579872. [PMID: 33329551 PMCID: PMC7734297 DOI: 10.3389/fimmu.2020.579872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Replication-deficient chimpanzee adenovirus (ChAd) vectors represent an attractive vaccine platform and are thus employed as vaccine candidates against several infectious diseases. Since inducing effective immunity depends on the interplay between innate and adaptive immunity, a deeper understanding of innate immune responses elicited by intramuscularly injected ChAd vectors in tissues can advance the platform’s development. Using different candidate vaccines based on the Group C ChAd type 155 (ChAd155) vector, we characterized early immune responses in injected muscles and draining lymph nodes (dLNs) from mice, and complemented these analyses by evaluating cytokine responses and gene expression patterns in peripheral blood from ChAd155-injected macaques. In mice, vector DNA levels gradually decreased post-immunization, but local transgene mRNA expression exhibited two transient peaks [at 6 h and Day (D)5], which were most obvious in dLNs. This dynamic pattern was mirrored by the innate responses in tissues, which developed as early as 1–3 h (cytokines/chemokines) or D1 (immune cells) post-vaccination. They were characterized by a CCL2- and CXCL9/10-dominated chemokine profile, peaking at 6 h (with CXCL10/CCL2 signals also detectable in serum) and D7, and clear immune-cell infiltration peaks at D1/D2 and D6/D7. Experiments with a green fluorescent protein-expressing ChAd155 vector revealed infiltrating hematopoietic cell subsets at the injection site. Cell infiltrates comprised mostly monocytes in muscles, and NK cells, T cells, dendritic cells, monocytes, and B cells in dLNs. Similar bimodal dynamics were observed in whole-blood gene signatures in macaques: most of the 17 enriched immune/innate signaling pathways were significantly upregulated at D1 and D7 and downregulated at D3, and clustering analysis revealed stronger similarities between D1 and D7 signatures versus the D3 signature. Serum cytokine responses (CXCL10, IL1Ra, and low-level IFN-α) in macaques were predominantly observed at D1. Altogether, the early immune responses exhibited bimodal kinetics with transient peaks at D1/D2 and D6/D7, mostly with an IFN-associated signature, and these features were remarkably consistent across most analyzed parameters in murine tissues and macaque blood. These compelling observations reveal a novel aspect of the dynamics of innate immunity induced by ChAd155-vectored vaccines, and contribute to ongoing research to better understand how adenovectors can promote vaccine-induced immunity.
Collapse
Affiliation(s)
| | - Vanesa Bol
- Preclinical R&D, GSK, Rixensart, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
82
|
Hartnell F, Esposito I, Swadling L, Brown A, Phetsouphanh C, de Lara C, Gentile C, Turner B, Dorrell L, Capone S, Folgori A, Barnes E, Klenerman P. Characterizing Hepatitis C Virus-Specific CD4 + T Cells Following Viral-Vectored Vaccination, Directly Acting Antivirals, and Spontaneous Viral Cure. Hepatology 2020; 72:1541-1555. [PMID: 32012325 PMCID: PMC7610807 DOI: 10.1002/hep.31160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Induction of functional helper CD4+ T cells is the hallmark of a protective immune response against hepatitis C virus (HCV), associated with spontaneous viral clearance. Heterologous prime/boost viral vectored vaccination has demonstrated induction of broad and polyfunctional HCV-specific CD8+ T cells in healthy volunteers; however, much less is known about CD4+ T-cell subsets following vaccination. APPROACH AND RESULTS We analyzed HCV-specific CD4+ T-cell populations using major histocompatibility complex class II tetramers in volunteers undergoing HCV vaccination with recombinant HCV adenoviral/modified vaccinia Ankara viral vectors. Peptide-specific T-cell responses were tracked over time, and functional (proliferation and cytokine secretion) and phenotypic (cell surface and intranuclear) markers were assessed using flow cytometry. These were compared to CD4+ responses in 10 human leukocyte antigen-matched persons with HCV spontaneous resolution and 21 chronically infected patients treated with directly acting antiviral (DAA) therapy. Vaccination induced tetramer-positive CD4+ T cells that were highest 1-4 weeks after boosting (mean, 0.06%). Similar frequencies were obtained for those tracked following spontaneous resolution of disease (mean, 0.04%). In addition, the cell-surface phenotype (CD28, CD127) memory subset markers and intranuclear transcription factors, as well as functional capacity of peptide-specific CD4+ T-cell responses characterized after vaccination, are comparable to those following spontaneous viral resolution. In contrast, helper responses in chronic infection were infrequently detected and poorly functional and did not consistently recover following HCV cure. CONCLUSIONS Helper CD4+ T-cell phenotype and function following HCV viral vectored vaccination resembles "protective memory" that is observed following spontaneous clearance of HCV. DAA cure does not promote resurrection of exhausted CD4+ T-cell memory in chronic infection.
Collapse
Affiliation(s)
- Felicity Hartnell
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - Ilaria Esposito
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - Leo Swadling
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | | | - Catherine de Lara
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom
| | | | - Bethany Turner
- Jenner Vaccine TrialsNuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Lucy Dorrell
- Jenner Vaccine TrialsNuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom,Jenner Vaccine TrialsNuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom,NIHR Biomedical Research Centre OxfordJohn Radcliffe HospitalOxfordUnited Kingdom,Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUnited Kingdom,Jenner Vaccine TrialsNuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom,NIHR Biomedical Research Centre OxfordJohn Radcliffe HospitalOxfordUnited Kingdom,Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUnited Kingdom
| |
Collapse
|
83
|
Immune system control of hepatitis C virus infection. Curr Opin Virol 2020; 46:36-44. [PMID: 33137689 DOI: 10.1016/j.coviro.2020.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/11/2020] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) remains a global public health problem even though more than 95% of infections can be cured by treatment with direct-acting antiviral agents. Resolution of viremia post antiviral therapy does not lead to protective immunity and therefore reinfections can occur. Immune cell detection of HCV activates signaling pathways that produce interferons and trigger the innate immune response against the virus, preventing HCV replication and spread. Cells in the innate immune system, including natural killer, dendritic, and Kupffer cells, interact with infected hepatocytes and present viral antigens to T and B cells where their effector responses contribute to infection outcome. Despite the immune activation, HCV can evade the host response and establish persistent infection. Plans to understand the correlates of protection and strategies to activate proper innate and adaptive immune responses are needed for development of an effective prophylactic vaccine that stimulates protective immunity and limits HCV transmission.
Collapse
|
84
|
Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci 2020; 77:4315-4324. [PMID: 32367191 PMCID: PMC7223886 DOI: 10.1007/s00018-020-03538-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) was the first human tumor virus being discovered and remains to date the only human pathogen that can transform cells in vitro. 55 years of EBV research have now brought us to the brink of an EBV vaccine. For this purpose, recombinant viral vectors and their heterologous prime-boost vaccinations, EBV-derived virus-like particles and viral envelope glycoprotein formulations are explored and are discussed in this review. Even so, cell-mediated immune control by cytotoxic lymphocytes protects healthy virus carriers from EBV-associated malignancies, antibodies might be able to prevent symptomatic primary infection, the most likely EBV-associated pathology against which EBV vaccines will be initially tested. Thus, the variety of EBV vaccines reflects the sophisticated life cycle of this human tumor virus and only vaccination in humans will finally be able to reveal the efficacy of these candidates. Nevertheless, the recently renewed efforts to develop an EBV vaccine and the long history of safe adoptive T cell transfer to treat EBV-associated malignancies suggest that this oncogenic γ-herpesvirus can be targeted by immunotherapies. Such vaccination should ideally implement the very same immune control that protects healthy EBV carriers.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Carol S Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
85
|
Capone S, Brown A, Hartnell F, Sorbo MD, Traboni C, Vassilev V, Colloca S, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E, Swadling L. Optimising T cell (re)boosting strategies for adenoviral and modified vaccinia Ankara vaccine regimens in humans. NPJ Vaccines 2020; 5:94. [PMID: 33083029 PMCID: PMC7550607 DOI: 10.1038/s41541-020-00240-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.
Collapse
Affiliation(s)
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Cinzia Traboni
- ReiThera Srl, Via di Castel Romano, 100, 00128 Rome, Italy.,Present Address: Nouscom Srl, Via di Castel Romano, 100, 00128 Rome, Italy
| | | | | | - Alfredo Nicosia
- Keires AG, Baumleingasse 18, CH 4051 Basel, Switzerland.,CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK.,The Jenner Institute, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK.,The Jenner Institute, University of Oxford, Oxford, UK
| | - Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Present Address: Rayne Institute, University College London, London, UK
| |
Collapse
|
86
|
Goldstein N, Bockstal V, Bart S, Luhn K, Robinson C, Gaddah A, Callendret B, Douoguih M. Safety and Immunogenicity of Heterologous and Homologous Two Dose Regimens of Ad26- and MVA-Vectored Ebola Vaccines: A Randomized, Controlled Phase 1 Study. J Infect Dis 2020; 226:595-607. [PMID: 32939546 PMCID: PMC9441209 DOI: 10.1093/infdis/jiaa586] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 11/12/2022] Open
Abstract
Background This phase 1 placebo-controlled study assessed the safety and immunogenicity of 2-dose regimens of Ad26.ZEBOV (adenovirus serotype 26 [Ad26]) and MVA-BN-Filo (modified vaccinia Ankara [MVA]) vaccines with booster vaccination at day 360. Methods Healthy US adults (N = 164) randomized into 10 groups received saline placebo or standard or high doses of Ad26 or MVA in 2-dose regimens at 7-, 14-, 28-, or 56-day intervals; 8 groups received booster Ad26 or MVA vaccinations on day 360. Participants reported solicited and unsolicited reactogenicity; we measured immunoglobulin G binding, neutralizing antibodies and cellular immune responses to Ebola virus glycoprotein. Results All regimens were well tolerated with no serious vaccine-related adverse events. Heterologous (Ad26,MVA [dose 1, dose 2] or MVA,Ad26) and homologous (Ad26,Ad26) regimens induced humoral and cellular immune responses 21 days after dose 2; responses were higher after heterologous regimens. Booster vaccination elicited anamnestic responses in all participants. Conclusions Both heterologous and homologous Ad26,MVA Ebola vaccine regimens are well tolerated in healthy adults, regardless of interval or dose level. Heterologous 2-dose Ad26,MVA regimens containing an Ebola virus insert induce strong, durable humoral and cellular immune responses. Immunological memory was rapidly recalled by booster vaccination, suggesting that Ad26 booster doses could be considered for individuals at risk of Ebola infection, who previously received the 2-dose regimen.
Collapse
Affiliation(s)
- Neil Goldstein
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| | - Viki Bockstal
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| | | | - Kerstin Luhn
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| | - Cynthia Robinson
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| | - Auguste Gaddah
- Janssen Infectious Diseases and Vaccines, Beerse, Belgium
| | | | - Macaya Douoguih
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| |
Collapse
|
87
|
Shin MS, Kim D, Yim K, Park HJ, You S, Dong X, Koumpouras F, Shaw AC, Fan R, Krishnaswamy S, Kang I. IL-7 receptor alpha defines heterogeneity and signature of human effector memory CD8 + T cells in high dimensional analysis. Cell Immunol 2020; 355:104155. [PMID: 32619811 PMCID: PMC7415611 DOI: 10.1016/j.cellimm.2020.104155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/14/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
The IL-7 receptor alpha chain (IL-7Rα or CD127) can be differentially expressed in memory CD8+ T cells. Here we investigated whether IL-7Rα could serve as a key molecule in defining a comprehensive landscape of heterogeneity in human effector memory (EM) CD8+ T cells using high-dimensional Cytometry by Time-Of-Flight (CyTOF) and single-cell RNA-seq (scRNA-seq). IL-7Rα had diverse, but organized, expressional relationship in EM CD8+ T cells with molecules related to cell function and gene regulation, which rendered an immune landscape defining heterogeneous cell subsets. The differential expression of these molecules likely has biological implications as we found in vivo signatures of transcription factors and homeostasis cytokine receptors, including T-bet and IL-7Rα. Our findings indicate the existence of heterogeneity in human EM CD8+ T cells as defined by distinct but organized expression patterns of multiple molecules in relationship to IL-7Rα and its possible biological significance in modulating downstream events.
Collapse
Affiliation(s)
- Min Sun Shin
- Departments of Internal Medicine and Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Kristina Yim
- Departments of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hong-Jai Park
- Departments of Internal Medicine and Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xuemei Dong
- Departments of Internal Medicine and Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fotios Koumpouras
- Departments of Internal Medicine and Yale University School of Medicine, New Haven, CT 06520, USA
| | - Albert C Shaw
- Departments of Internal Medicine and Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Smita Krishnaswamy
- Departments of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Insoo Kang
- Departments of Internal Medicine and Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
88
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
89
|
Marques-da-Silva C, Peissig K, Kurup SP. Pre-Erythrocytic Vaccines against Malaria. Vaccines (Basel) 2020; 8:vaccines8030400. [PMID: 32708179 PMCID: PMC7565498 DOI: 10.3390/vaccines8030400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Malaria, caused by the protozoan Plasmodium, is a devastating disease with over 200 million new cases reported globally every year. Although immunization is arguably the best strategy to eliminate malaria, despite decades of research in this area we do not have an effective, clinically approved antimalarial vaccine. The current impetus in the field is to develop vaccines directed at the pre-erythrocytic developmental stages of Plasmodium, utilizing novel vaccination platforms. We here review the most promising pre-erythrocytic stage antimalarial vaccine candidates.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Kristen Peissig
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Samarchith P. Kurup
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
90
|
Leoni G, D'Alise AM, Cotugno G, Langone F, Garzia I, De Lucia M, Fichera I, Vitale R, Bignone V, Tucci FG, Mori F, Leuzzi A, Di Matteo E, Troise F, Abbate A, Merone R, Ruzza V, Diodoro MG, Yadav M, Gordon-Alonso M, Vanhaver C, Panigada M, Soprana E, Siccardi A, Folgori A, Colloca S, van der Bruggen P, Nicosia A, Lahm A, Catanese MT, Scarselli E. A Genetic Vaccine Encoding Shared Cancer Neoantigens to Treat Tumors with Microsatellite Instability. Cancer Res 2020; 80:3972-3982. [PMID: 32690723 DOI: 10.1158/0008-5472.can-20-1072] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/01/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022]
Abstract
Tumors with microsatellite instability (MSI) are caused by a defective DNA mismatch repair system that leads to the accumulation of mutations within microsatellite regions. Indels in microsatellites of coding genes can result in the synthesis of frameshift peptides (FSP). FSPs are tumor-specific neoantigens shared across patients with MSI. In this study, we developed a neoantigen-based vaccine for the treatment of MSI tumors. Genetic sequences from 320 MSI tumor biopsies and matched healthy tissues in The Cancer Genome Atlas database were analyzed to select shared FSPs. Two hundred nine FSPs were selected and cloned into nonhuman Great Ape Adenoviral and Modified Vaccinia Ankara vectors to generate a viral-vectored vaccine, referred to as Nous-209. Sequencing tumor biopsies of 20 independent patients with MSI colorectal cancer revealed that a median number of 31 FSPs out of the 209 encoded by the vaccine was detected both in DNA and mRNA extracted from each tumor biopsy. A relevant number of peptides encoded by the vaccine were predicted to bind patient HLA haplotypes. Vaccine immunogenicity was demonstrated in mice with potent and broad induction of FSP-specific CD8 and CD4 T-cell responses. Moreover, a vaccine-encoded FSP was processed in vitro by human antigen-presenting cells and was subsequently able to activate human CD8 T cells. Nous-209 is an "off-the-shelf" cancer vaccine encoding many neoantigens shared across sporadic and hereditary MSI tumors. These results indicate that Nous-209 can induce the optimal breadth of immune responses that might achieve clinical benefit to treat and prevent MSI tumors. SIGNIFICANCE: These findings demonstrate the feasibility of an "off-the-shelf" vaccine for treatment and prevention of tumors harboring frameshift mutations and neoantigenic peptides as a result of microsatellite instability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cristophe Vanhaver
- de Duve Institute and the Université catholique de Louvain, Brussels, Belgium
| | - Maddalena Panigada
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | - Elisa Soprana
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | - Antonio Siccardi
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | | | | | | | - Alfredo Nicosia
- Nouscom AG, Bäumleingasse, Basel, Switzerland.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Via Comunale Margherita, Naples, Italy
| | | | | | | |
Collapse
|
91
|
Abstract
Tumor immunology is undergoing a renaissance due to the recent profound clinical successes of tumor immunotherapy. These advances have coincided with an exponential growth in the development of -omics technologies. Armed with these technologies and their associated computational and modeling toolsets, systems biologists have turned their attention to tumor immunology in an effort to understand the precise nature and consequences of interactions between tumors and the immune system. Such interactions are inherently multivariate, spanning multiple time and size scales, cell types, and organ systems, rendering systems biology approaches particularly amenable to their interrogation. While in its infancy, the field of 'Cancer Systems Immunology' has already influenced our understanding of tumor immunology and immunotherapy. As the field matures, studies will move beyond descriptive characterizations toward functional investigations of the emergent behavior that govern tumor-immune responses. Thus, Cancer Systems Immunology holds incredible promise to advance our ability to fight this disease.
Collapse
Affiliation(s)
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
92
|
Bots ST, Hoeben RC. Non-Human Primate-Derived Adenoviruses for Future Use as Oncolytic Agents? Int J Mol Sci 2020; 21:ijms21144821. [PMID: 32650405 PMCID: PMC7404033 DOI: 10.3390/ijms21144821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Non-human primate (NHP)-derived adenoviruses have formed a valuable alternative for the use of human adenoviruses in vaccine development and gene therapy strategies by virtue of the low seroprevalence of neutralizing immunity in the human population. The more recent use of several human adenoviruses as oncolytic agents has exhibited excellent safety profiles and firm evidence of clinical efficacy. This proffers the question whether NHP-derived adenoviruses could also be employed for viral oncolysis in human patients. While vaccine vectors are conventionally made as replication-defective vectors, in oncolytic applications replication-competent viruses are used. The data on NHP-derived adenoviral vectors obtained from vaccination studies can only partially support the suitability of NHP-derived adenoviruses for use in oncolytic virus therapy. In addition, the use of NHP-derived adenoviruses in humans might be received warily given the recent zoonotic infections with influenza viruses and coronaviruses. In this review, we discuss the similarities and differences between human- and NHP-derived adenoviruses in view of their use as oncolytic agents. These include their genome organization, receptor use, replication and cell lysis, modulation of the host’s immune responses, as well as their pathogenicity in humans. Together, the data should facilitate a rational and data-supported decision on the suitability of NHP-derived adenoviruses for prospective use in oncolytic virus therapy.
Collapse
|
93
|
Hepatitis C virus vaccine design: focus on the humoral immune response. J Biomed Sci 2020; 27:78. [PMID: 32631318 PMCID: PMC7338099 DOI: 10.1186/s12929-020-00669-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of safe and highly effective direct-acting antivirals, hepatitis C virus (HCV) infection remains a significant health problem. In 2016, the World Health Organization set out to reduce the rate of new HCV infections by 90% by 2030. Still, global control of the virus does not seem to be achievable in the absence of an effective vaccine. Current approaches to the development of a vaccine against HCV include the production of recombinant proteins, synthetic peptides, DNA vaccines, virus-like particles, and viral vectors expressing various antigens. In this review, we focus on the development of vaccines targeting the humoral immune response against HCV based on the cumulative evidence supporting the important role of neutralizing antibodies in protection against HCV infection. The main targets of HCV-specific neutralizing antibodies are the glycoproteins E1 and E2. Recent advances in the knowledge of HCV glycoprotein structure and their epitopes, as well as the possibility of getting detailed information on the human antibody repertoire generated by the infection, will allow rational structure-based antigen design to target specific germline antibodies. Although obtaining a vaccine capable of inducing sterilizing immunity will be a difficult task, a vaccine that prevents chronic hepatitis C infections, a more realistic goal in the short term, would have a considerable health impact.
Collapse
|
94
|
Donnison T, von Delft A, Brown A, Swadling L, Hutchings C, Hanke T, Chinnakannan S, Barnes E. Viral vectored hepatitis C virus vaccines generate pan-genotypic T cell responses to conserved subdominant epitopes. Vaccine 2020; 38:5036-5048. [PMID: 32532545 DOI: 10.1016/j.vaccine.2020.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/11/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Viral genetic variability presents a major challenge to the development of a prophylactic hepatitis C virus (HCV) vaccine. A promising HCV vaccine using chimpanzee adenoviral vectors (ChAd) encoding a genotype (gt) 1b non-structural protein (ChAd-Gt1b-NS) generated high magnitude T cell responses. However, these T cells showed reduced cross-recognition of dominant epitope variants and the vaccine has recently been shown to be ineffective at preventing chronic HCV. To address the challenge of viral diversity, we developed ChAd vaccines encoding HCV genomic sequences that are conserved between all major HCV genotypes and adjuvanted by truncated shark invariant chain (sIitr). METHODS Age-matched female mice were immunised intramuscularly with ChAd (108 infectious units) encoding gt-1 and -3 (ChAd-Gt1/3) or gt-1 to -6 (ChAd-Gt1-6) conserved segments spanning the HCV proteome, or gt-1b (ChAd-Gt1b-NS control), with immunogenicity assessed 14-days post-vaccination. RESULTS Conserved segment vaccines, ChAd-Gt1/3 and ChAd-Gt1-6, generated high-magnitude, broad, and functional CD4+ and CD8+ T cell responses. Compared to the ChAd-Gt1b-NS vaccine, these vaccines generated significantly greater responses against conserved non-gt-1 antigens, including conserved subdominant epitopes that were not targeted by ChAd-Gt1b-NS. Epitopes targeted by the conserved segment HCV vaccine induced T cells, displayed 96.6% mean sequence homology between all HCV subtypes (100% sequence homology for the majority of genotype-1, -2, -4 sequences and 94% sequence homology for gt-3, -6, -7, and -8) in contrast to 85.1% mean sequence homology for epitopes targeted by ChAd-Gt1b-NS induced T cells. The addition of truncated shark invariant chain (sIitr) increased the magnitude, breadth, and cross-reactivity of the T cell response. CONCLUSIONS We have demonstrated that genetically adjuvanted ChAd vectored HCV T cell vaccines encoding genetic sequences conserved between genotypes are immunogenic, activating T cells that target subdominant conserved HCV epitopes. These pre-clinical studies support the use of conserved segment HCV T cell vaccines in human clinical trials.
Collapse
Affiliation(s)
- Timothy Donnison
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Annette von Delft
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Leo Swadling
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Claire Hutchings
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Tomáš Hanke
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Senthil Chinnakannan
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom; Jenner Institute, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom.
| |
Collapse
|
95
|
Han JW, Sung PS, Hong SH, Lee H, Koh JY, Lee H, White S, Maslow JN, Weiner DB, Park SH, Jeong M, Heo J, Ahn SH, Shin EC. IFNL3-adjuvanted HCV DNA vaccine reduces regulatory T cell frequency and increases virus-specific T cell responses. J Hepatol 2020; 73:72-83. [PMID: 32088322 DOI: 10.1016/j.jhep.2020.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Although direct-acting antiviral (DAA) treatment results in a sustained virologic response (SVR) in most patients with chronic HCV infection, they are at risk of re-infection. Moreover, the immune system is not completely normalized even after SVR (e.g. increased regulatory T [Treg] cell frequency). We developed a DNA vaccine, GLS-6150, to prevent re-infection of patients with DAA-induced SVR and evaluated its safety and immunogenicity in individuals with chronic HCV infection. METHODS GLS-6150 consists of plasmids encoding HCV non-structural proteins (NS3-NS5A) and adjuvant IFNL3. The vaccine was administered 4 times at 4-weekly intervals to 3 groups (1, 3, or 6 mg/vaccination; n = 6 per group), followed by a 6 mg boost at 24 weeks (n = 14). Peripheral blood T cell responses were evaluated by interferon (IFN)-γ enzyme-linked immunospot assays, intracellular cytokine staining, and major histocompatibility complex class-I (MHC-I) dextramer staining. Treg cell frequency was assessed by flow cytometry. RESULTS Severe adverse events or vaccine discontinuation were not reported. The IFN-γ spot-forming cells specific to NS3-NS5A were increased by GLS-6150. Both CD4+ and CD8+ T cells produced multiple cytokines. However, the frequency and phenotype of HCV-specific MHC-I dextramer+CD8+ T cells were not changed. Interestingly, the frequency of Treg cells, particularly activated Treg cells, was decreased by GLS-6150, as expected from previous reports that IFNL3 adjuvants decrease Treg cell frequency. Ex vivo IFN-λ3 treatment reduced Treg frequency in pre-vaccination peripheral blood mononuclear cells. Finally, Treg cell frequency inversely correlated with HCV-specific, IFN-γ-producing T cell responses in the study participants. CONCLUSIONS We demonstrate that GLS-6150 decreases Treg cell frequency and enhances HCV-specific T cell responses without significant side effects. A phase I clinical trial of GLS-6150 is currently underway in patients with DAA-induced SVR. CLINICAL TRIAL NUMBER NCT02027116. LAY SUMMARY Although direct-acting antivirals (DAAs) are successfully used for the treatment of chronic hepatitis C virus (HCV) infection, a prophylactic HCV vaccine needs to be developed, especially for patients who achieve a sustained virologic response. In the current study, we show that a DNA vaccine (GLS-6150) was safe and increased HCV-specific T cell responses. A clinical trial is underway to test this vaccine in patients with a sustained virologic response following DAA therapy.
Collapse
Affiliation(s)
- Ji Won Han
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Pil Soo Sung
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seon-Hui Hong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Hoyoung Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - June Young Koh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyojin Lee
- GeneOne Life Science, Inc., Seoul 06060, Republic of Korea
| | - Scott White
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Joel N Maslow
- GeneOne Life Science, Inc., Seoul 06060, Republic of Korea
| | | | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea
| | - Moonsup Jeong
- GeneOne Life Science, Inc., Seoul 06060, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University, Busan 49241, Republic of Korea.
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
96
|
Heterologous Combination of ChAdOx1 and MVA Vectors Expressing Protein NS1 as Vaccination Strategy to Induce Durable and Cross-Protective CD8+ T Cell Immunity to Bluetongue Virus. Vaccines (Basel) 2020; 8:vaccines8030346. [PMID: 32610561 PMCID: PMC7564706 DOI: 10.3390/vaccines8030346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The sequence of non-structural protein NS1 of bluetongue virus (BTV), which contains immunodominant CD8+ T cell epitopes, is highly conserved among BTV serotypes, and has therefore become a major tool in the development of a universal BTV vaccine. In this work, we have engineered multiserotype BTV vaccine candidates based on recombinant chimpanzee adenovirus (ChAdOx1) and modified vaccinia virus Ankara (MVA) vectors expressing the NS1 protein of BTV-4 or its truncated form NS1-Nt. A single dose of ChAdOx1-NS1 or ChAdOx1-NS1-Nt induced a moderate CD8+ T cell response and protected IFNAR(-/-) mice against a lethal dose of BTV-4/MOR09, a reassortant strain between BTV-1 and BTV-4, although the animals showed low viremia after infection. Furthermore, IFNAR(-/-) mice immunized with a single dose of ChAdOx1-NS1 were protected after challenge with a lethal dose of BTV-8 in absence of viremia nor clinical signs. Additionally, the heterologous prime-boost ChAdOx1/MVA expressing NS1 or NS1-Nt elicited a robust NS1 specific CD8+ T cell response and protected the animals against BTV-4/MOR09 even 16 weeks after immunization, with undetectable levels of viremia at any time after challenge. Subsequently, the best immunization strategy based on ChAdOx1/MVA-NS1 was assayed in sheep. Non-immunized animals presented fever and viremia levels up to 104 PFU/mL after infection. In contrast, although viremia was detected in immunized sheep, the level of virus in blood was 100 times lower than in non-immunized animals in absence of clinical signs.
Collapse
|
97
|
Esposito I, Cicconi P, D'Alise AM, Brown A, Esposito M, Swadling L, Holst PJ, Bassi MR, Stornaiuolo M, Mori F, Vassilev V, Li W, Donnison T, Gentile C, Turner B, von Delft A, Del Sorbo M, Barra F, Contino AM, Abbate A, Novellino E, Thomsen AR, Christensen JP, Lahm A, Grazioli F, Ammendola V, Siani L, Colloca S, Klenerman P, Nicosia A, Dorrell L, Folgori A, Capone S, Barnes E. MHC class II invariant chain-adjuvanted viral vectored vaccines enhances T cell responses in humans. Sci Transl Med 2020; 12:12/548/eaaz7715. [PMID: 32554708 PMCID: PMC7610808 DOI: 10.1126/scitranslmed.aaz7715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/26/2020] [Indexed: 12/27/2022]
Abstract
Strategies to enhance the induction of high magnitude T cell responses through vaccination are urgently needed. Major histocompatibility complex (MHC) class II-associated invariant chain (Ii) plays a critical role in antigen presentation, forming MHC class II peptide complexes for the generation of CD4+ T cell responses. Preclinical studies evaluating the fusion of Ii to antigens encoded in vector delivery systems have shown that this strategy may enhance T cell immune responses to the encoded antigen. We now assess this strategy in humans, using chimpanzee adenovirus 3 and modified vaccinia Ankara vectors encoding human Ii fused to the nonstructural (NS) antigens of hepatitis C virus (HCV) in a heterologous prime/boost regimen. Vaccination was well tolerated and enhanced the peak magnitude, breadth, and proliferative capacity of anti-HCV T cell responses compared to non-Ii vaccines in humans. Very high frequencies of HCV-specific T cells were elicited in humans. Polyfunctional HCV-specific CD8+ and CD4+ responses were induced with up to 30% of CD3+CD8+ cells targeting single HCV epitopes; these were mostly effector memory cells with a high proportion expressing T cell activation and cytolytic markers. No volunteers developed anti-Ii T cell or antibody responses. Using a mouse model and in vitro experiments, we show that Ii fused to NS increases HCV immune responses through enhanced ubiquitination and proteasomal degradation. This strategy could be used to develop more potent HCV vaccines that may contribute to the HCV elimination targets and paves the way for developing class II Ii vaccines against cancer and other infections.
Collapse
Affiliation(s)
- Ilaria Esposito
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Paola Cicconi
- The Jenner Institute Laboratories, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Johannes Holst
- Center for Medical Parasitology, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.,InProTher ApS, BioInnovation Institute, 2200 Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Center for Medical Parasitology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | | | | | - Wenqin Li
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Timothy Donnison
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Chiara Gentile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Bethany Turner
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Annette von Delft
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.,The Jenner Institute Laboratories, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.,CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy.,Keires AG, 4051 Basel, Switzerland
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.,Oxford NIHR Biomedical Research Centre, Headington OX3 9DU, UK
| | | | | | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK. .,The Jenner Institute Laboratories, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
98
|
Sepulveda-Crespo D, Resino S, Martinez I. Innate Immune Response against Hepatitis C Virus: Targets for Vaccine Adjuvants. Vaccines (Basel) 2020; 8:vaccines8020313. [PMID: 32560440 PMCID: PMC7350220 DOI: 10.3390/vaccines8020313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Despite successful treatments, hepatitis C virus (HCV) infections continue to be a significant world health problem. High treatment costs, the high number of undiagnosed individuals, and the difficulty to access to treatment, particularly in marginalized susceptible populations, make it improbable to achieve the global control of the virus in the absence of an effective preventive vaccine. Current vaccine development is mostly focused on weakly immunogenic subunits, such as surface glycoproteins or non-structural proteins, in the case of HCV. Adjuvants are critical components of vaccine formulations that increase immunogenic performance. As we learn more information about how adjuvants work, it is becoming clear that proper stimulation of innate immunity is crucial to achieving a successful immunization. Several hepatic cell types participate in the early innate immune response and the subsequent inflammation and activation of the adaptive response, principally hepatocytes, and antigen-presenting cells (Kupffer cells, and dendritic cells). Innate pattern recognition receptors on these cells, mainly toll-like receptors, are targets for new promising adjuvants. Moreover, complex adjuvants that stimulate different components of the innate immunity are showing encouraging results and are being incorporated in current vaccines. Recent studies on HCV-vaccine adjuvants have shown that the induction of a strong T- and B-cell immune response might be enhanced by choosing the right adjuvant.
Collapse
Affiliation(s)
| | - Salvador Resino
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| | - Isidoro Martinez
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| |
Collapse
|
99
|
Czarnota A, Offersgaard A, Pihl AF, Prentoe J, Bukh J, Gottwein JM, Bieńkowska-Szewczyk K, Grzyb K. Specific Antibodies Induced by Immunization with Hepatitis B Virus-Like Particles Carrying Hepatitis C Virus Envelope Glycoprotein 2 Epitopes Show Differential Neutralization Efficiency. Vaccines (Basel) 2020; 8:vaccines8020294. [PMID: 32532076 PMCID: PMC7350033 DOI: 10.3390/vaccines8020294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection with associated chronic liver diseases is a major health problem worldwide. Here, we designed hepatitis B virus (HBV) small surface antigen (sHBsAg) virus-like particles (VLPs) presenting different epitopes derived from the HCV E2 glycoprotein (residues 412-425, 434-446, 502-520, and 523-535 of isolate H77C). Epitopes were selected based on their amino acid sequence conservation and were previously reported as targets of HCV neutralizing antibodies. Chimeric VLPs obtained in the Leishmania tarentolae expression system, in combination with the adjuvant Addavax, were used to immunize mice. Although all VLPs induced strong humoral responses, only antibodies directed against HCV 412-425 and 523-535 epitopes were able to react with the native E1E2 glycoprotein complexes of different HCV genotypes in ELISA. Neutralization assays against genotype 1-6 cell culture infectious HCV (HCVcc), revealed that only VLPs carrying the 412-425 epitope induced efficient HCV cross-neutralizing antibodies, but with isolate specific variations in efficacy that could not necessarily be explained by differences in epitope sequences. In contrast, antibodies targeting 434-446, 502-520, and 523-535 epitopes were not neutralizing HCVcc, highlighting the importance of conformational antibodies for efficient virus neutralization. Thus, 412-425 remains the most promising linear E2 epitope for further bivalent, rationally designed vaccine research.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
- Correspondence:
| |
Collapse
|
100
|
Cappuccini F, Bryant R, Pollock E, Carter L, Verrill C, Hollidge J, Poulton I, Baker M, Mitton C, Baines A, Meier A, Schmidt G, Harrop R, Protheroe A, MacPherson R, Kennish S, Morgan S, Vigano S, Romero PJ, Evans T, Catto J, Hamdy F, Hill AVS, Redchenko I. Safety and immunogenicity of novel 5T4 viral vectored vaccination regimens in early stage prostate cancer: a phase I clinical trial. J Immunother Cancer 2020; 8:e000928. [PMID: 32591433 PMCID: PMC7319775 DOI: 10.1136/jitc-2020-000928] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) has been under investigation as a target for antigen-specific immunotherapies in metastatic disease settings for the last two decades leading to a licensure of the first therapeutic cancer vaccine, Sipuleucel-T, in 2010. However, neither Sipuleucel-T nor other experimental PCa vaccines that emerged later induce strong T-cell immunity. METHODS In this first-in-man study, VANCE, we evaluated a novel vaccination platform based on two replication-deficient viruses, chimpanzee adenovirus (ChAd) and MVA (Modified Vaccinia Ankara), targeting the oncofetal self-antigen 5T4 in early stage PCa. Forty patients, either newly diagnosed with early-stage PCa and scheduled for radical prostatectomy or patients with stable disease on an active surveillance protocol, were recruited to the study to assess the vaccine safety and T-cell immunogenicity. Secondary and exploratory endpoints included immune infiltration into the prostate, prostate-specific antigen (PSA) change, and assessment of phenotype and functionality of antigen-specific T cells. RESULTS The vaccine had an excellent safety profile. Vaccination-induced 5T4-specific T-cell responses were measured in blood by ex vivo IFN-γ ELISpot and were detected in the majority of patients with a mean level in responders of 198 spot-forming cells per million peripheral blood mononuclear cells. Flow cytometry analysis demonstrated the presence of both CD8+ and CD4+ polyfunctional 5T4-specific T cells in the circulation. 5T4-reactive tumor-infiltrating lymphocytes were isolated from post-treatment prostate tissue. Some of the patients had a transient PSA rise 2-8 weeks following vaccination, possibly indicating an inflammatory response in the target organ. CONCLUSIONS An excellent safety profile and T-cell responses elicited in the circulation and also detected in the prostate gland support the evaluation of the ChAdOx1-MVA 5T4 vaccine in efficacy trials. It remains to be seen if this vaccination strategy generates immune responses of sufficient magnitude to mediate clinical efficacy and whether it can be effective in late-stage PCa settings, as a monotherapy in advanced disease or as part of multi-modality PCa therapy. To address these questions, the phase I/II trial, ADVANCE, is currently recruiting patients with intermediate-risk PCa, and patients with advanced metastatic castration-resistant PCa, to receive this vaccine in combination with nivolumab. TRIAL REGISTRATION The trial was registered with the U.S. National Institutes of Health (NIH) Clinical Trials Registry (ClinicalTrials.gov identifier NCT02390063).
Collapse
Affiliation(s)
- Federica Cappuccini
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Richard Bryant
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK
- Department of Urology, Churchill Hospital, Oxford, UK
| | - Emily Pollock
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Lucy Carter
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University, Oxford, UK
| | - Julianne Hollidge
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK
| | - Ian Poulton
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Megan Baker
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Celia Mitton
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Andrea Baines
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | | | | | | | - Andrew Protheroe
- Department of Oncology, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford, UK
| | | | - Steven Kennish
- Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Susan Morgan
- Department of Pathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Selena Vigano
- Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pedro J Romero
- Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - James Catto
- Academic Urology Unit, The University of Sheffield, Sheffield, UK
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK
- Department of Urology, Churchill Hospital, Oxford, UK
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| | - Irina Redchenko
- Nuffield Department of Medicine, The Jenner Institute, Oxford University, Oxford, UK
| |
Collapse
|