51
|
Leroux-Roels I, Davis MG, Steenackers K, Essink B, Vandermeulen C, Fogarty C, Andrews CP, Kerwin E, David MP, Fissette L, Abeele CV, Collete D, de Heusch M, Salaun B, De Schrevel N, Koch J, Verheust C, Dezutter N, Struyf F, Mesaros N, Tica J, Hulstrøm V. Safety and immunogenicity of a respiratory syncytial virus prefusion F (RSVPreF3) candidate vaccine in older adults: phase I/II randomized clinical trial. J Infect Dis 2022; 227:761-772. [PMID: 35904987 PMCID: PMC10044090 DOI: 10.1093/infdis/jiac327] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The aim was to investigate safety and immunogenicity of vaccine formulations against respiratory syncytial virus (RSV) containing the stabilized prefusion conformation of RSV fusion protein (RSVPreF3). METHODS This phase I/II, randomized, controlled, observer-blind study enrolled 48 young adults (YA; 18-40 years) and 1005 older adults (OA; 60-80 years) between January and August 2019. Participants were randomized into equally sized groups to receive two doses of unadjuvanted (YA and OA) or AS01-adjuvanted (OA) vaccine or placebo two months apart. Vaccine safety and immunogenicity were assessed until one (YA) or 12 months (OA) after second vaccination. RESULTS The RSVPreF3 vaccines boosted humoral (RSVPreF3-specific IgG and RSV-A neutralizing antibody) responses, which increased in an antigen-concentration-dependent manner and were highest post-dose one. Compared to pre-vaccination, the geometric mean frequencies of polyfunctional CD4+ T-cells increased after each dose and were significantly higher in adjuvanted than unadjuvanted vaccinees. Post-vaccination immune responses persisted until end of follow-up. Solicited adverse events (AEs) were mostly mild-to-moderate and transient. Despite a higher observed reactogenicity of AS01-containing vaccines, no safety concerns were identified for any assessed formulation. CONCLUSIONS Based on safety and immunogenicity profiles, the AS01E-adjuvanted vaccine containing 120 μg of RSVPreF3 was selected for further clinical development. TRIAL REGISTRATION ClinicalTrials.gov NCT03814590; URL: https://clinicaltrials.gov/ct2/show/NCT03814590.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University Hospital, 9000 Ghent, Belgium
| | - Matthew G Davis
- Rochester Clinical Research, Rochester, NY 14609, United States
| | - Katie Steenackers
- Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Wilrijk, Belgium
| | - Brandon Essink
- Meridian Clinical Research Omaha, Omaha, NE 68134, United States
| | - Corinne Vandermeulen
- Leuven University Vaccinology Center, Department of Public Health & Primary Care, KU Leuven, 3000 Leuven, Belgium
| | - Charles Fogarty
- Lung and Chest Medical Associates, Spartanburg Medical Research, Spartanburg, SC 29303, United States
| | | | - Edward Kerwin
- Crisor, LLC c/o Clinical Research Institute of Southern Oregon, Medford, OR 97504, United States
| | | | | | | | | | | | | | | | - Juliane Koch
- UCB Pharma GmbH, Alfred-Nobel-Strasse 10, 40789 Monheim am Rhein, Germany
| | | | | | - Frank Struyf
- Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Narcisa Mesaros
- Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Jelena Tica
- Janssen-Cilag GmbH, Johnson & Johnson Platz 1, 41470 Neuss, Germany
| | | |
Collapse
|
52
|
Peddireddy SP, Rahman SA, Cillo AR, Vijay GM, Somasundaram A, Workman CJ, Bain W, McVerry BJ, Methe B, Lee JS, Ray P, Ray A, Bruno TC, Vignali DAA, Kitsios GD, Morris A, Singh H, Sarkar A, Das J. Antibodies targeting conserved non-canonical antigens and endemic coronaviruses associate with favorable outcomes in severe COVID-19. Cell Rep 2022; 39:111020. [PMID: 35738278 PMCID: PMC9189107 DOI: 10.1016/j.celrep.2022.111020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/10/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
While there have been extensive analyses characterizing cellular and humoral responses across the severity spectrum in COVID-19, outcome predictors within severe COVID-19 remain less comprehensively elucidated. Furthermore, properties of antibodies (Abs) directed against viral antigens beyond spike and their associations with disease outcomes remain poorly defined. We perform deep molecular profiling of Abs directed against a wide range of antigenic specificities in severe COVID-19 patients. The profiles included canonical (spike [S], receptor-binding domain [RBD], and nucleocapsid [N]) and non-canonical (orf3a, orf8, nsp3, nsp13, and membrane [M]) antigenic specificities. Notably, multivariate Ab profiles directed against canonical or non-canonical antigens are equally discriminative of survival in severe COVID-19. Intriguingly, pre-pandemic healthy controls have cross-reactive Abs directed against nsp13, a protein conserved across coronaviruses. Consistent with these findings, a model built on Ab profiles for endemic coronavirus antigens also predicts COVID-19 outcome. Our results suggest the importance of studying Abs targeting non-canonical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and endemic coronavirus antigens in COVID-19.
Collapse
Affiliation(s)
| | - Syed A Rahman
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Creg J Workman
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Barbara Methe
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prabir Ray
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Ray
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison Morris
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Aniruddh Sarkar
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
53
|
Teixeira AR, Pérez-Cabezas B, Costa DM, Sá M, Golba S, Sefiane-Djemaoune H, Ribeiro J, Kaneko I, Iwanaga S, Yuda M, Tsuji M, Boscardin SB, Amino R, Cordeiro-da-Silva A, Tavares J. Immunization with CSP and a RIG-I Agonist is Effective in Inducing a Functional and Protective Humoral Response Against Plasmodium. Front Immunol 2022; 13:868305. [PMID: 35669785 PMCID: PMC9163323 DOI: 10.3389/fimmu.2022.868305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria is a major public health concern, as a highly effective human vaccine remains elusive. The efficacy of a subunit vaccine targeting the most abundant protein of the sporozoite surface, the circumsporozoite protein (CSP) has been hindered by difficulties in generating an effective humoral response in both quantity and quality. Using the rodent Plasmodium yoelii model we report here that immunization with CSP adjuvanted with 5’ppp-dsRNA, a RIG-I agonist, confers early and long-lasting sterile protection in mice against stringent sporozoite and mosquito bite challenges. The immunization induced high levels of antibodies, which were functional in targeting and killing the sporozoites and were sustained over time through the accumulation of long-lived plasma cells in the bone marrow. Moreover, 5’ppp-dsRNA-adjuvanted immunization with the CSP of P. falciparum was also significantly protective against challenges using a transgenic PfCSP-expressing P. yoelii parasite. Conversely, using the TLR3 agonist poly(A:U) as adjuvant resulted in a formulation that despite inducing high antibody levels was unable to generate equally functional antibodies and was, consequently, less protective. In conclusion, we demonstrate that using 5’ppp-dsRNA as an adjuvant to vaccines targeting CSP induces effective anti-Plasmodium humoral immunity.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Begoña Pérez-Cabezas
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - David M. Costa
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mónica Sá
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sylvain Golba
- Center for Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | | | - Joana Ribeiro
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University Graduate School of Medicine, Mie, Japan
| | - Shiroh Iwanaga
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University Graduate School of Medicine, Mie, Japan
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Silvia Beatriz Boscardin
- Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, Paris, France
| | - Anabela Cordeiro-da-Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Joana Tavares
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- *Correspondence: Joana Tavares,
| |
Collapse
|
54
|
Kaplonek P, Cizmeci D, Fischinger S, Collier AR, Suscovich T, Linde C, Broge T, Mann C, Amanat F, Dayal D, Rhee J, de St. Aubin M, Nilles EJ, Musk ER, Menon AS, Saphire EO, Krammer F, Lauffenburger DA, Barouch DH, Alter G. mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions. Sci Transl Med 2022; 14:eabm2311. [PMID: 35348368 PMCID: PMC8995030 DOI: 10.1126/scitranslmed.abm2311] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/17/2022] [Indexed: 01/02/2023]
Abstract
The successful development of several coronavirus disease 2019 (COVID-19) vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants that are able to evade vaccine-induced neutralizing antibodies, real-world vaccine efficacy has begun to show differences across the two approved mRNA platforms, BNT162b2 and mRNA-1273; these findings suggest that subtle variation in immune responses induced by the BNT162b2 and mRNA-1273 vaccines may confer differential protection. Given our emerging appreciation for the importance of additional antibody functions beyond neutralization, we profiled the postboost binding and functional capacity of humoral immune responses induced by the BNT162b2 and mRNA-1273 vaccines in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to variants of concern. However, differences emerged across epitope-specific responses, with higher concentrations of receptor binding domain (RBD)- and N-terminal domain-specific IgA observed in recipients of mRNA-1273. Antibodies eliciting neutrophil phagocytosis and natural killer cell activation were also increased in mRNA-1273 vaccine recipients as compared to BNT162b2 recipients. RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector functions induced across the mRNA vaccines. These data provide insights into potential differences in protective immunity conferred by these vaccines.
Collapse
Affiliation(s)
- Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Ai-ris Collier
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Colin Mann
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Dayal
- Space Exploration Technologies Corp, Hawthorne, CA 90250, USA
| | - Justin Rhee
- Space Exploration Technologies Corp, Hawthorne, CA 90250, USA
| | | | | | - Elon R. Musk
- Space Exploration Technologies Corp, Hawthorne, CA 90250, USA
| | - Anil S. Menon
- Space Exploration Technologies Corp, Hawthorne, CA 90250, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Douglas A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Dan H. Barouch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
55
|
2021 White Paper on Recent Issues in Bioanalysis: TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness ( Part 3 - Recommendations on Gene Therapy, Cell Therapy, Vaccine Assays; Immunogenicity of Biotherapeutics and Novel Modalities; Integrated Summary of Immunogenicity Harmonization). Bioanalysis 2022; 14:737-793. [PMID: 35578991 DOI: 10.4155/bio-2022-0081] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) are published in volume 14 of Bioanalysis, issues 9 and 10 (2022), respectively.
Collapse
|
56
|
Bing X, Lovelace T, Bunea F, Wegkamp M, Kasturi SP, Singh H, Benos PV, Das J. Essential Regression: A generalizable framework for inferring causal latent factors from multi-omic datasets. PATTERNS (NEW YORK, N.Y.) 2022; 3:100473. [PMID: 35607614 PMCID: PMC9122954 DOI: 10.1016/j.patter.2022.100473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 03/01/2022] [Indexed: 01/19/2023]
Abstract
High-dimensional cellular and molecular profiling of biological samples highlights the need for analytical approaches that can integrate multi-omic datasets to generate prioritized causal inferences. Current methods are limited by high dimensionality of the combined datasets, the differences in their data distributions, and their integration to infer causal relationships. Here, we present Essential Regression (ER), a novel latent-factor-regression-based interpretable machine-learning approach that addresses these problems by identifying latent factors and their likely cause-effect relationships with system-wide outcomes/properties of interest. ER can integrate many multi-omic datasets without structural or distributional assumptions regarding the data. It outperforms a range of state-of-the-art methods in terms of prediction. ER can be coupled with probabilistic graphical modeling, thereby strengthening the causal inferences. The utility of ER is demonstrated using multi-omic system immunology datasets to generate and validate novel cellular and molecular inferences in a wide range of contexts including immunosenescence and immune dysregulation.
Collapse
Affiliation(s)
- Xin Bing
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Tyler Lovelace
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD Program in Computational Biology, Carnegie Mellon – University of Pittsburgh, Pittsburgh, PA, USA
| | - Florentina Bunea
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Marten Wegkamp
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
- Department of Mathematics, Cornell University, Ithaca, NY, USA
| | - Sudhir Pai Kasturi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Panayiotis V. Benos
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
57
|
Lautenbach MJ, Yman V, Silva CS, Kadri N, Broumou I, Chan S, Angenendt S, Sondén K, Plaza DF, Färnert A, Sundling C. Systems analysis shows a role of cytophilic antibodies in shaping innate tolerance to malaria. Cell Rep 2022; 39:110709. [PMID: 35443186 DOI: 10.1016/j.celrep.2022.110709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Natural immunity to malaria develops over time with repeated malaria episodes, but protection against severe malaria and immune regulation limiting immunopathology, called tolerance, develops more rapidly. Here, we comprehensively profile the blood immune system in patients, with or without prior malaria exposure, over 1 year after acute symptomatic Plasmodium falciparum malaria. Using a data-driven analysis approach to describe the immune landscape over time, we show that a dampened inflammatory response is associated with reduced γδ T cell expansion, early expansion of CD16+ monocytes, and parasite-specific antibodies of IgG1 and IgG3 isotypes. This also coincided with reduced parasitemia and duration of hospitalization. Our data indicate that antibody-mediated phagocytosis during the blood stage infection leads to lower parasitemia and less inflammatory response with reduced γδ T cell expansion. This enhanced control and reduced inflammation points to a potential mechanism on how tolerance is established following repeated malaria exposure.
Collapse
Affiliation(s)
- Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, South Stockholm Hospital, Stockholm, Sweden
| | - Carolina Sousa Silva
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Nadir Kadri
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ioanna Broumou
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sherwin Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sina Angenendt
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - David Fernando Plaza
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
58
|
Ningappa M, Rahman SA, Higgs BW, Ashokkumar CS, Sahni N, Sindhi R, Das J. A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation. Cell Rep Med 2022; 3:100605. [PMID: 35492246 PMCID: PMC9044102 DOI: 10.1016/j.xcrm.2022.100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/19/2021] [Accepted: 03/23/2022] [Indexed: 10/27/2022]
Abstract
Selecting the right immunosuppressant to ensure rejection-free outcomes poses unique challenges in pediatric liver transplant (LT) recipients. A molecular predictor can comprehensively address these challenges. Currently, there are no well-validated blood-based biomarkers for pediatric LT recipients before or after LT. Here, we discover and validate separate pre- and post-LT transcriptomic signatures of rejection. Using an integrative machine learning approach, we combine transcriptomics data with the reference high-quality human protein interactome to identify network module signatures, which underlie rejection. Unlike gene signatures, our approach is inherently multivariate and more robust to replication and captures the structure of the underlying network, encapsulating additive effects. We also identify, in an individual-specific manner, signatures that can be targeted by current anti-rejection drugs and other drugs that can be repurposed. Our approach can enable personalized adjustment of drug regimens for the dominant targetable pathways before and after LT in children.
Collapse
Affiliation(s)
- Mylarappa Ningappa
- Department of Surgery and Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed A Rahman
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon W Higgs
- Department of Surgery and Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chethan S Ashokkumar
- Department of Surgery and Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nidhi Sahni
- Department of Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA.,Department of Molecular Carcinogenesis and Bioinformatics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA.,Department of Computational Biology, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Rakesh Sindhi
- Department of Surgery and Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
59
|
Hviid L, Lopez-Perez M, Larsen MD, Vidarsson G. No sweet deal: the antibody-mediated immune response to malaria. Trends Parasitol 2022; 38:428-434. [DOI: 10.1016/j.pt.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
|
60
|
Beutler N, Pholcharee T, Oyen D, Flores-Garcia Y, MacGill RS, Garcia E, Calla J, Parren M, Yang L, Volkmuth W, Locke E, Regules JA, Dutta S, Emerling D, Early AM, Neafsey DE, Winzeler EA, King CR, Zavala F, Burton DR, Wilson IA, Rogers TF. A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum. PLoS Pathog 2022; 18:e1010409. [PMID: 35344575 PMCID: PMC8989322 DOI: 10.1371/journal.ppat.1010409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/07/2022] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved β-sheet face of the ctCSP (denoted β-ctCSP). Antibodies to the β-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the β-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.
Collapse
Affiliation(s)
- Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Randall S. MacGill
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jaeson Calla
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Linlin Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wayne Volkmuth
- Atreca Inc., South San Francisco, California, United States of America
| | - Emily Locke
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Jason A. Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheetij Dutta
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Daniel Emerling
- Atreca Inc., South San Francisco, California, United States of America
| | - Angela M. Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - C. Richter King
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
61
|
Kaplonek P, Fischinger S, Cizmeci D, Bartsch YC, Kang J, Burke JS, Shin SA, Dayal D, Martin P, Mann C, Amanat F, Julg B, Nilles EJ, Musk ER, Menon AS, Krammer F, Saphire EO, Andrea Carfi, Alter G. mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern. Immunity 2022; 55:355-365.e4. [PMID: 35090580 PMCID: PMC8733218 DOI: 10.1016/j.immuni.2022.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/16/2021] [Accepted: 01/04/2022] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 mRNA vaccines confer robust protection against COVID-19, but the emergence of variants has generated concerns regarding the protective efficacy of the currently approved vaccines, which lose neutralizing potency against some variants. Emerging data suggest that antibody functions beyond neutralization may contribute to protection from the disease, but little is known about SARS-CoV-2 antibody effector functions. Here, we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOCs). Although the neutralizing responses to VOCs decreased in both groups, the Fc-mediated responses were distinct. In convalescent individuals, although antibodies exhibited robust binding to VOCs, they showed compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies also bound robustly to VOCs but continued to interact with Fc-receptors and mediate antibody effector functions. These data point to a resilience in the mRNA-vaccine-induced humoral immune response that may continue to offer protection from SARS-CoV-2 VOCs independent of neutralization.
Collapse
Affiliation(s)
| | | | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Jaewon Kang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - John S Burke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sally A Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Diana Dayal
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | | | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Elon R Musk
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Anil S Menon
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Ollman Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
62
|
Wahl I, Wardemann H. How to induce protective humoral immunity against Plasmodium falciparum circumsporozoite protein. J Exp Med 2022; 219:212951. [PMID: 35006242 PMCID: PMC8754000 DOI: 10.1084/jem.20201313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.
Collapse
Affiliation(s)
- Ilka Wahl
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
63
|
Moncunill G, Carnes J, Chad Young W, Carpp L, De Rosa S, Campo JJ, Nhabomba A, Mpina M, Jairoce C, Finak G, Haas P, Muriel C, Van P, Sanz H, Dutta S, Mordmüller B, Agnandji ST, Díez-Padrisa N, Williams NA, Aponte JJ, Valim C, Neafsey DE, Daubenberger C, McElrath MJ, Dobaño C, Stuart K, Gottardo R. Transcriptional correlates of malaria in RTS,S/AS01-vaccinated African children: a matched case–control study. eLife 2022; 11:70393. [PMID: 35060479 PMCID: PMC8782572 DOI: 10.7554/elife.70393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background: In a phase 3 trial in African infants and children, the RTS,S/AS01 vaccine (GSK) showed moderate efficacy against clinical malaria. We sought to further understand RTS,S/AS01-induced immune responses associated with vaccine protection. Methods: Applying the blood transcriptional module (BTM) framework, we characterized the transcriptomic response to RTS,S/AS01 vaccination in antigen-stimulated (and vehicle control) peripheral blood mononuclear cells sampled from a subset of trial participants at baseline and month 3 (1-month post-third dose). Using a matched case–control study design, we evaluated which of these ‘RTS,S/AS01 signature BTMs’ associated with malaria case status in RTS,S/AS01 vaccinees. Antigen-specific T-cell responses were analyzed by flow cytometry. We also performed a cross-study correlates analysis where we assessed the generalizability of our findings across three controlled human malaria infection studies of healthy, malaria-naive adult RTS,S/AS01 recipients. Results: RTS,S/AS01 vaccination was associated with downregulation of B-cell and monocyte-related BTMs and upregulation of T-cell-related BTMs, as well as higher month 3 (vs. baseline) circumsporozoite protein-specific CD4+ T-cell responses. There were few RTS,S/AS01-associated BTMs whose month 3 levels correlated with malaria risk. In contrast, baseline levels of BTMs associated with dendritic cells and with monocytes (among others) correlated with malaria risk. The baseline dendritic cell- and monocyte-related BTM correlations with malaria risk appeared to generalize to healthy, malaria-naive adults. Conclusions: A prevaccination transcriptomic signature associates with malaria in RTS,S/AS01-vaccinated African children, and elements of this signature may be broadly generalizable. The consistent presence of monocyte-related modules suggests that certain monocyte subsets may inhibit protective RTS,S/AS01-induced responses. Funding: Funding was obtained from the NIH-NIAID (R01AI095789), NIH-NIAID (U19AI128914), PATH Malaria Vaccine Initiative (MVI), and Ministerio de Economía y Competitividad (Instituto de Salud Carlos III, PI11/00423 and PI14/01422). The RNA-seq project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under grant number U19AI110818 to the Broad Institute. This study was also supported by the Vaccine Statistical Support (Bill and Melinda Gates Foundation award INV-008576/OPP1154739 to R.G.). C.D. was the recipient of a Ramon y Cajal Contract from the Ministerio de Economía y Competitividad (RYC-2008-02631). G.M. was the recipient of a Sara Borrell–ISCIII fellowship (CD010/00156) and work was performed with the support of Department of Health, Catalan Government grant (SLT006/17/00109). This research is part of the ISGlobal’s Program on the Molecular Mechanisms of Malaria which is partially supported by the Fundación Ramón Areces and we acknowledge support from the Spanish Ministry of Science and Innovation through the ‘Centro de Excelencia Severo Ochoa 2019–2023’ Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona
- CIBER de Enfermedades Infecciosas
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute
| | - William Chad Young
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Lindsay Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Stephen De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | | | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça
| | | | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Paige Haas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute
| | - Carl Muriel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Phu Van
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Héctor Sanz
- ISGlobal, Hospital Clínic - Universitat de Barcelona
| | | | - Benjamin Mordmüller
- CIBER de Enfermedades Infecciosas
- Institute of Tropical Medicine and German Center for Infection Research
| | - Selidji T Agnandji
- Institute of Tropical Medicine and German Center for Infection Research
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242
| | | | | | - John J Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona
| | - Clarissa Valim
- Department of Global Health, Boston University School of Public Health
| | - Daniel E Neafsey
- Broad Institute of Massachusetts Institute of Technology and Harvard
- Harvard T.H. Chan School of Public Health
| | | | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
- Departments of Laboratory Medicine and Medicine, University of Washington
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona
- CIBER de Enfermedades Infecciosas
| | - Ken Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
- Department of Pediatrics, University of Washington
- Department of Global Health, University of Washington
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
- University of Lausanne and Centre Hospitalier Universitaire Vaudois
| |
Collapse
|
64
|
Abstract
Last month, the World Health Organization (WHO) recommended widespread use of RTS,S/AS01 vaccine to prevent malaria in young African children, noting its 30% reduction in deadly severe malaria. In a recent report, Das et al. describe antibody effector functions that may contribute to RTS,S efficacy and thereby guide vaccine improvements.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
65
|
Nawab DH. Vaccinal antibodies: Fc antibody engineering to improve the antiviral antibody response and induce vaccine-like effects. Hum Vaccin Immunother 2021; 17:5532-5545. [PMID: 34844516 PMCID: PMC8903937 DOI: 10.1080/21645515.2021.1985891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/21/2021] [Indexed: 10/19/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic highlights the urgent clinical need for efficient virus therapies and vaccines. Although the functional importance of antibodies is indisputable in viral infections, there are still significant unmet needs that require vast improvements in antibody-based therapeutics. The IgG Fc domain can be engineered to produce antibodies with tailored and potent responses that will meet these clinical demands. Engaging Fc receptors (FcRs) to perform effector functions as cytotoxicity, phagocytosis, complement activation, intracellular neutralization and controlling antibody persistence. Furthermore, it produces vaccine-like effects by activating signals to stimulate T-cell responses, have proven to be required for protection, as neutralization alone does not off the full protection capacity of antibodies. This review highlights antiviral Fc functions and FcRs' contributions in linking innate and adaptive immunity against viral threats. Moreover, it provides the latest Fc engineering strategies to improve the safety and efficacy of human antiviral antibodies and vaccines.
Collapse
Affiliation(s)
- Dhuha H Nawab
- Pharmacy Department, Ministry of Health, Saudi Arabia
| |
Collapse
|
66
|
Wang LT, Pereira LS, Kiyuka PK, Schön A, Kisalu NK, Vistein R, Dillon M, Bonilla BG, Molina-Cruz A, Barillas-Mury C, Tan J, Idris AH, Francica JR, Seder RA. Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein. PLoS Pathog 2021; 17:e1010133. [PMID: 34871332 PMCID: PMC8675929 DOI: 10.1371/journal.ppat.1010133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/16/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human "repeat" mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.
Collapse
Affiliation(s)
- Lawrence T. Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lais S. Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patience K. Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Neville K. Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian G. Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Azza H. Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
67
|
Sequence and vector shapes vaccine induced antibody effector functions in HIV vaccine trials. PLoS Pathog 2021; 17:e1010016. [PMID: 34843602 PMCID: PMC8659322 DOI: 10.1371/journal.ppat.1010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/09/2021] [Accepted: 10/07/2021] [Indexed: 01/07/2023] Open
Abstract
Despite the advent of long-acting anti-retroviral therapy able to control and prevent infection, a preventative vaccine remains a global priority for the elimination of HIV. The moderately protective RV144 vaccine trial suggested functional IgG1 and IgG3 antibodies were a potential correlate of protection, but the RV144-inspired HVTN702 validation trial failed to demonstrate efficacy despite inducing targeted levels of IgG1/IgG3. Alterations in inserts, and antigens, adjuvant, and regimen also resulted in vaccine induced target quantitative levels of the immune correlates, but drove qualitative changes to the humoral immune response, pointing to the urgent need to define the influence of vaccine strategies on shaping antibody quality, not just quantity. Thus, defining how distinct prime/boost approaches tune long-lived functional antibodies represents an important goal in vaccine development. Here, we compared vaccine responses in Phase I and II studies in humans utilizing various combinations of DNA/vector, vector/vector and DNA/protein HIV vaccines. We found that adenoviral vector immunization, compared to pox-viral vectors, resulted in the most potent IgG1 and IgG3 responses, linked to highly functional antibody activity, including assisting NK cell related functions. Minimal differences were observed in the durability of the functional humoral immune response across vaccine regimens, except for antibody dependent phagocytic function, which persisted for longer periods in the DNA/rAd5 and rAd35/rAd5 regimen, likely driven by higher IgG1 levels. Collectively, these findings suggest adenoviral vectors drive superior antibody quality and durability that could inform future clinical vaccine studies. Trial registration: ClinicalTrials.gov NCT00801697, NCT00961883, NCT02207920, NCT00125970, NCT02852005).
Collapse
|
68
|
Abstract
A promising vaccine fails to provide durable protection against infection and clinical malaria in infants, a key malaria vaccine target population, in a phase 2b clinical trial. The need for a highly effective vaccine against malaria remains as urgent as ever.
Collapse
Affiliation(s)
- Irene N Nkumama
- Centre of Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Faith H A Osier
- IAVI Human Immunology Laboratory, Imperial College London, London, UK.
| |
Collapse
|
69
|
Das J, Fallon JK, Yu TC, Michell A, Suscovich TJ, Linde C, Natarajan H, Weiner J, Coccia M, Gregory S, Ackerman ME, Bergmann-Leitner E, Fontana L, Dutta S, Lauffenburger DA, Jongert E, Wille-Reece U, Alter G. Delayed fractional dosing with RTS,S/AS01 improves humoral immunity to malaria via a balance of polyfunctional NANP6- and Pf16-specific antibodies. MED 2021; 2:1269-1286.e9. [DOI: 10.1016/j.medj.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/01/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
|
70
|
Abstract
A correlate of protection (CoP) is a measured adaptive immune response to vaccination or infection that is associated with protection against disease. However, the degree to which a CoP can serve as a surrogate end point for vaccine efficacy should depend on the robustness of this association. While cholera toxin is a dominant target of the human antibody response to Vibrio cholerae infection, antitoxin responses are not associated with long-term immunity, and are not effective CoPs for cholera. Instead, protection appears to be mediated by functional antibodies that target the O-polysaccharide coated V. cholerae outer membrane. Vibriocidal antibodies, which are complement-dependent bactericidal antibodies, remain the most accepted CoP for cholera and are used as surrogate end points in some vaccine studies. However, the association between vibriocidal antibody titers and immunity is not absolute, and they are unlikely to reflect a mechanistic correlate of protection against cholera.
Collapse
Affiliation(s)
- Anita S Iyer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
71
|
Moon JE, Greenleaf ME, Regules JA, Debois M, Duncan EH, Sedegah M, Chuang I, Lee CK, Sikaffy AK, Garver LS, Ivinson K, Angov E, Morelle D, Lievens M, Ockenhouse CF, Ngauy V, Ofori-Anyinam O. A phase IIA extension study evaluating the effect of booster vaccination with a fractional dose of RTS,S/AS01 E in a controlled human malaria infection challenge. Vaccine 2021; 39:6398-6406. [PMID: 34593270 DOI: 10.1016/j.vaccine.2021.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND We previously demonstrated that RTS,S/AS01B and RTS,S/AS01E vaccination regimens including at least one delayed fractional dose can protect against Plasmodium falciparum malaria in a controlled human malaria infection (CHMI) model, and showed inferiority of a two-dose versus three-dose regimen. In this follow-on trial, we evaluated whether fractional booster vaccination extended or induced protection in previously protected (P-Fx) or non-protected (NP-Fx) participants. METHODS 49 participants (P-Fx: 25; NP-Fx: 24) received a fractional (1/5th dose-volume) RTS,S/AS01E booster 12 months post-primary regimen. They underwent P. falciparum CHMI three weeks later and were then followed for six months for safety and immunogenicity. RESULTS Overall vaccine efficacy against re-challenge was 53% (95% CI: 37-65%), and similar for P-Fx (52% [95% CI: 28-68%]) and NP-Fx (54% [95% CI: 29-70%]). Efficacy appeared unaffected by primary regimen or previous protection status. Anti-CS (repeat region) antibody geometric mean concentrations (GMCs) increased post-booster vaccination. GMCs were maintained over time in primary three-dose groups but declined in the two-dose group. Protection after re-challenge was associated with higher anti-CS antibody responses. The booster was well-tolerated. CONCLUSIONS A fractional RTS,S/AS01E booster given one year after completion of a primary two- or three-dose RTS,S/AS01 delayed fractional dose regimen can extend or induce protection against CHMI. CLINICAL TRIAL REGISTRATION NCT03824236. linked to this article can be found on the Research Data as well as Figshare https://figshare.com/s/ee025150f9d1ac739361.
Collapse
Affiliation(s)
- James E Moon
- Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Melissa E Greenleaf
- Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Jason A Regules
- Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | - Elizabeth H Duncan
- Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Martha Sedegah
- Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Ilin Chuang
- Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Cynthia K Lee
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA.
| | - April K Sikaffy
- Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Lindsey S Garver
- Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Karen Ivinson
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA.
| | - Evelina Angov
- Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | - Viseth Ngauy
- Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
72
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
73
|
Kaplonek P, Cizmeci D, Fischinger S, Collier AR, Suscovich T, Linde C, Broge T, Mann C, Amanat F, Dayal D, Rhee J, de St. Aubin M, Nilles EJ, Musk ER, Menon AS, Saphire EO, Krammer F, Lauffenburger DA, Barouch DH, Alter G. Subtle immunological differences in mRNA-1273 and BNT162b2 COVID-19 vaccine induced Fc-functional profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.31.458247. [PMID: 34494026 PMCID: PMC8423223 DOI: 10.1101/2021.08.31.458247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the postboost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitopespecific responses, with higher RBD- and NTD-specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.
Collapse
Affiliation(s)
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Ai-ris Collier
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Colin Mann
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana Dayal
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Justin Rhee
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | | | | | - Elon R. Musk
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Anil S. Menon
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Dan H. Barouch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
74
|
Seaton KE, Spreng RL, Abraha M, Reichartz M, Rojas M, Feely F, Huntwork RHC, Dutta S, Mudrak SV, Alam SM, Gregory S, Jongert E, Coccia M, Ulloa-Montoya F, Wille-Reece U, Tomaras GD, Dennison SM. Subclass and avidity of circumsporozoite protein specific antibodies associate with protection status against malaria infection. NPJ Vaccines 2021; 6:110. [PMID: 34462438 PMCID: PMC8405700 DOI: 10.1038/s41541-021-00372-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
RTS,S/AS01 is an advanced pre-erythrocytic malaria vaccine candidate with demonstrated vaccine efficacy up to 86.7% in controlled human malaria infection (CHMI) studies; however, reproducible immune correlates of protection (CoP) are elusive. To identify candidates of humoral correlates of vaccine mediated protection, we measured antibody magnitude, subclass, and avidity for Plasmodium falciparum (Pf) circumsporozoite protein (CSP) by multiplex assays in two CHMI studies with varying RTS,S/AS01B vaccine dose and timing regimens. Central repeat (NANP6) IgG1 magnitude correlated best with protection status in univariate analyses and was the most predictive for protection in a multivariate model. NANP6 IgG3 magnitude, CSP IgG1 magnitude, and total serum antibody dissociation phase area-under-the-curve for NANP6, CSP, NPNA3, and N-interface binding were also associated with protection status in the regimen adjusted univariate analysis. Identification of multiple immune response features that associate with protection status, such as antibody subclasses, fine specificity and avidity reported here may accelerate development of highly efficacious vaccines against P. falciparum.
Collapse
Grants
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- OPP1151372, OPP12109388 Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
- United States Department of Defense | United States Army | Army Medical Command | Walter Reed Army Institute of Research (WRAIR)
- PATH Malaria Vaccine Initiative
- GlaxoSmithKline (GlaxoSmithKline plc.)
Collapse
Affiliation(s)
- Kelly E Seaton
- Duke Human Vaccine Institute, Durham, NC, USA.
- Duke Center for Human Systems Immunology, Durham, NC, USA.
- Duke University Department of Surgery, Durham, NC, USA.
| | - Rachel L Spreng
- Duke Human Vaccine Institute, Durham, NC, USA.
- Duke Center for Human Systems Immunology, Durham, NC, USA.
| | - Milite Abraha
- Duke Human Vaccine Institute, Durham, NC, USA
- Duke Center for Human Systems Immunology, Durham, NC, USA
- Duke University Department of Surgery, Durham, NC, USA
| | - Matthew Reichartz
- Duke Human Vaccine Institute, Durham, NC, USA
- Duke Center for Human Systems Immunology, Durham, NC, USA
- Duke University Department of Surgery, Durham, NC, USA
| | | | - Frederick Feely
- Duke Human Vaccine Institute, Durham, NC, USA
- Duke Center for Human Systems Immunology, Durham, NC, USA
- Duke University Department of Surgery, Durham, NC, USA
| | - Richard H C Huntwork
- Duke Human Vaccine Institute, Durham, NC, USA
- Duke Center for Human Systems Immunology, Durham, NC, USA
- Duke University Department of Surgery, Durham, NC, USA
| | - Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sarah V Mudrak
- Duke Human Vaccine Institute, Durham, NC, USA
- Duke Center for Human Systems Immunology, Durham, NC, USA
- Duke University Department of Surgery, Durham, NC, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Durham, NC, USA
- Duke University Department of Pathology, Durham, NC, USA
| | - Scott Gregory
- PATH's Malaria Vaccine Initiative, Washington, DC, USA
| | | | | | | | - Ulrike Wille-Reece
- PATH's Malaria Vaccine Initiative, Washington, DC, USA
- GSK, Rockville, MD, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Durham, NC, USA.
- Duke Center for Human Systems Immunology, Durham, NC, USA.
- Duke University Department of Surgery, Durham, NC, USA.
- Duke University Department of Immunology, Durham, NC, USA.
- Duke University Department of Molecular Genetics and Microbiology, Durham, NC, USA.
| | - S Moses Dennison
- Duke Human Vaccine Institute, Durham, NC, USA.
- Duke Center for Human Systems Immunology, Durham, NC, USA.
- Duke University Department of Surgery, Durham, NC, USA.
| |
Collapse
|
75
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
76
|
Marques-Neto LM, Piwowarska Z, Kanno AI, Moraes L, Trentini MM, Rodriguez D, Silva JLSC, Leite LCC. Thirty years of recombinant BCG: new trends for a centenary vaccine. Expert Rev Vaccines 2021; 20:1001-1011. [PMID: 34224293 DOI: 10.1080/14760584.2021.1951243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Global perception of the potential for Bacille Calmette-Guérin (BCG), and consequently recombinant BCG (rBCG), in a variety of prophylactic and therapeutic applications has been increasing. A century of information on BCG, and three decades of experience with rBCG, has generated solid knowledge in this field.Area covered: Here, we review the current state of knowledge of BCG and rBCG development. Molecular tools have facilitated the expression of a variety of molecules in BCG, with the aim of improving its efficacy as a tuberculosis vaccine, generating polyvalent vaccines against other pathogens, including viruses, bacteria, and parasites, and developing immunotherapy approaches against noninvasive bladder cancer. BCG's recently appraised heterologous effects and prospects for expanding its application to other diseases are also addressed.Expert opinion: There are high expectations for new tuberculosis vaccines currently undergoing advanced clinical trials, which could change the prospects of the field. Systems biology could reveal effective biomarkers of protection, which would greatly support vaccine development. The development of appropriate large-scale production processes would further support implementation of new vaccines and rBCG products. The next few years should consolidate the broader applications of BCG and produce insights into improvements using the recombinant BCG technology.
Collapse
Affiliation(s)
| | - Zuzanna Piwowarska
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Alex I Kanno
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luana Moraes
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Monalisa M Trentini
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Jose L S C Silva
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Luciana C C Leite
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
77
|
Digitale JC, Callaway PC, Martin M, Nelson G, Viard M, Rek J, Arinaitwe E, Dorsey G, Kamya M, Carrington M, Rodriguez-Barraquer I, Feeney ME. Association of Inhibitory Killer Cell Immunoglobulin-like Receptor Ligands With Higher Plasmodium falciparum Parasite Prevalence. J Infect Dis 2021; 224:175-183. [PMID: 33165540 PMCID: PMC8491837 DOI: 10.1093/infdis/jiaa698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands influence the outcome of many infectious diseases. We analyzed the relationship of compound KIR-HLA genotypes with risk of Plasmodium falciparum infection in a longitudinal cohort of 890 Ugandan individuals. We found that presence of HLA-C2 and HLA-Bw4, ligands for inhibitory KIR2DL1 and KIR3DL1, respectively, increased the likelihood of P. falciparum parasitemia in an additive manner. Individuals homozygous for HLA-C2, which mediates strong inhibition via KIR2DL1, had the highest odds of parasitemia, HLA-C1/C2 heterozygotes had intermediate odds, and individuals homozygous for HLA-C1, which mediates weaker inhibition through KIR2DL2/3, had the lowest odds of parasitemia. In addition, higher surface expression of HLA-C, the ligand for inhibitory KIR2DL1/2/3, was associated with a higher likelihood of parasitemia. Together these data indicate that stronger KIR-mediated inhibition confers a higher risk of P. falciparum parasitemia and suggest that KIR-expressing effector cells play a role in mediating antiparasite immunity.
Collapse
Affiliation(s)
- Jean C Digitale
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University
of California, San Francisco, San Francisco, California, USA
| | - Perri C Callaway
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Infectious Disease and Immunity Graduate Group, University
of California, Berkeley, Berkeley, California, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - George Nelson
- Advanced Biomedical Computational Science, Frederick
National Laboratory for Cancer Research, Frederick, Maryland,
USA
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - John Rek
- Infectious Diseases Research Collaboration,
Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- London School of Hygiene and Tropical
Medicine, London, United
Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- Department of Medicine, Makerere University,
Kampala, Uganda
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH MIT and Harvard,
Cambridge, Massachusetts, USA
| | | | - Margaret E Feeney
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San
Francisco, San Francisco, California, USA
| |
Collapse
|
78
|
Aitken EH, Damelang T, Ortega-Pajares A, Alemu A, Hasang W, Dini S, Unger HW, Ome-Kaius M, Nielsen MA, Salanti A, Smith J, Kent S, Hogarth PM, Wines BD, Simpson JA, Chung AW, Rogerson SJ. Developing a multivariate prediction model of antibody features associated with protection of malaria-infected pregnant women from placental malaria. eLife 2021; 10:e65776. [PMID: 34181872 PMCID: PMC8241440 DOI: 10.7554/elife.65776] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background Plasmodium falciparum causes placental malaria, which results in adverse outcomes for mother and child. P. falciparum-infected erythrocytes that express the parasite protein VAR2CSA on their surface can bind to placental chondroitin sulfate A. It has been hypothesized that naturally acquired antibodies towards VAR2CSA protect against placental infection, but it has proven difficult to identify robust antibody correlates of protection from disease. The objective of this study was to develop a prediction model using antibody features that could identify women protected from placental malaria. Methods We used a systems serology approach with elastic net-regularized logistic regression, partial least squares discriminant analysis, and a case-control study design to identify naturally acquired antibody features mid-pregnancy that were associated with protection from placental malaria at delivery in a cohort of 77 pregnant women from Madang, Papua New Guinea. Results The machine learning techniques selected 6 out of 169 measured antibody features towards VAR2CSA that could predict (with 86% accuracy) whether a woman would subsequently have active placental malaria infection at delivery. Selected features included previously described associations with inhibition of placental binding and/or opsonic phagocytosis of infected erythrocytes, and network analysis indicated that there are not one but multiple pathways to protection from placental malaria. Conclusions We have identified candidate antibody features that could accurately identify malaria-infected women as protected from placental infection. It is likely that there are multiple pathways to protection against placental malaria. Funding This study was supported by the National Health and Medical Research Council (Nos. APP1143946, GNT1145303, APP1092789, APP1140509, and APP1104975).
Collapse
Affiliation(s)
- Elizabeth H Aitken
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Timon Damelang
- Department of Microbiology and Immunology, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Amaya Ortega-Pajares
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Agersew Alemu
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Wina Hasang
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of MelbourneMelbourneAustralia
| | - Holger W Unger
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
- Department of Obstetrics and Gynaecology, Royal Darwin HospitalDarwinAustralia
- Menzies School of Health ResearchDarwinAustralia
| | - Maria Ome-Kaius
- Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Morten A Nielsen
- Centre for Medical Parasitology, Department of Microbiology and immunology, University of CopenhagenCopenhagenDenmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Microbiology and immunology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Disease, Copenhagen University HospitalCopenhagenDenmark
| | - Joe Smith
- Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Stephen Kent
- Department of Microbiology and Immunology, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - P Mark Hogarth
- Seattle Children’s Research InstituteSeattleUnited States
- Immune Therapies Group, Centre for Biomedical Research, Burnet InstituteMelbourneAustralia
- Department of Clinical Pathology, University of MelbourneMelbourneAustralia
- Department of Immunology and Pathology, Monash UniversityMelbourneAustralia
| | - Bruce D Wines
- Immune Therapies Group, Centre for Biomedical Research, Burnet InstituteMelbourneAustralia
- Department of Clinical Pathology, University of MelbourneMelbourneAustralia
- Department of Immunology and Pathology, Monash UniversityMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of MelbourneMelbourneAustralia
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| |
Collapse
|
79
|
Tan J, Cho H, Pholcharee T, Pereira LS, Doumbo S, Doumtabe D, Flynn BJ, Schön A, Kanatani S, Aylor SO, Oyen D, Vistein R, Wang L, Dillon M, Skinner J, Peterson M, Li S, Idris AH, Molina-Cruz A, Zhao M, Olano LR, Lee PJ, Roth A, Sinnis P, Barillas-Mury C, Kayentao K, Ongoiba A, Francica JR, Traore B, Wilson IA, Seder RA, Crompton PD. Functional human IgA targets a conserved site on malaria sporozoites. Sci Transl Med 2021; 13:eabg2344. [PMID: 34162751 PMCID: PMC7611206 DOI: 10.1126/scitranslmed.abg2344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as Plasmodium falciparum, is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to P. falciparum sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection. We found that circulating IgA was induced in three independent sporozoite-exposed cohorts: individuals living in an endemic region in Mali, malaria-naïve individuals immunized intravenously with three large doses of irradiated sporozoites, and malaria-naïve individuals exposed to a single controlled mosquito bite infection. Mechanistically, we found evidence in an animal model that IgA responses were induced by sporozoites at dermal inoculation sites. From malaria-resistant individuals, we isolated several IgA monoclonal antibodies that reduced liver parasite burden in mice. One antibody, MAD2-6, bound to a conserved epitope in the amino terminus of the P. falciparum circumsporozoite protein, the dominant protein on the sporozoite surface. Crystal structures of this antibody revealed a unique mode of binding whereby two Fabs simultaneously bound either side of the target peptide. This study reveals a role for circulating IgA in malaria and identifies the amino terminus of the circumsporozoite protein as a target of functional antibodies.
Collapse
Affiliation(s)
- Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD 20852, USA.
| | - Hyeseon Cho
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lais S Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Samantha O Aylor
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - David Oyen
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lisa Renee Olano
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Patricia J Lee
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
80
|
Shahnaij M, Iyori M, Mizukami H, Kajino M, Yamagoshi I, Syafira I, Yusuf Y, Fujiwara K, Yamamoto DS, Kato H, Ohno N, Yoshida S. Liver-Directed AAV8 Booster Vaccine Expressing Plasmodium falciparum Antigen Following Adenovirus Vaccine Priming Elicits Sterile Protection in a Murine Model. Front Immunol 2021; 12:612910. [PMID: 34248928 PMCID: PMC8261234 DOI: 10.3389/fimmu.2021.612910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte infection by malaria sporozoites is a bottleneck in the life-cycle of Plasmodium spp. including P. falciparum, which causes the most lethal form of malaria. Therefore, developing an effective vaccine capable of inducing the strong humoral and cellular immune responses necessary to block the pre-erythrocytic stage has potential to overcome the spatiotemporal hindrances pertaining to parasite biology and hepatic microanatomy. We recently showed that when combined with a human adenovirus type 5 (AdHu5)-priming vaccine, adeno-associated virus serotype 1 (AAV1) is a potent booster malaria vaccine vector capable of inducing strong and long-lasting protective immune responses in a rodent malaria model. Here, we evaluated the protective efficacy of a hepatotropic virus, adeno-associated virus serotype 8 (AAV8), as a booster vector because it can deliver a transgene potently and rapidly to the liver, the organ malaria sporozoites initially infect and multiply in following sporozoite injection by the bite of an infected mosquito. We first generated an AAV8-vectored vaccine expressing P. falciparum circumsporozoite protein (PfCSP). Intravenous (i.v.) administration of AAV8-PfCSP to mice initially primed with AdHu5-PfCSP resulted in a hepatocyte transduction rate ~2.5 times above that seen with intramuscular (i.m.) administration. This immunization regimen provided a better protection rate (100% sterile protection) than that of the i.m. AdHu5-prime/i.m. AAV8-boost regimen (60%, p < 0.05), i.m. AdHu5-prime/i.v. AAV1-boost (78%), or i.m. AdHu5-prime/i.m. AAV1-boost (80%) against challenge with transgenic PfCSP-expressing P. berghei sporozoites. Compared with the i.m. AdHu5-prime/i.v. AAV1-boost regimen, three other regimens induced higher levels of PfCSP-specific humoral immune responses. Importantly, a single i.v. dose of AAV8-PfCSP recruited CD8+ T cells, especially resident memory CD8+ T cells, in the liver. These data suggest that boost with i.v. AAV8-PfCSP can improve humoral and cellular immune responses in BALB/c mice. Therefore, this regimen holds great promise as a next-generation platform for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Mohammad Shahnaij
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Mizukami
- Division of Gene Therapy, Jichi Medical University, Shimotsuke, Japan
| | - Mayu Kajino
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Iroha Yamagoshi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Intan Syafira
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Yenni Yusuf
- Department of Parasitology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Ken Fujiwara
- Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
81
|
Mokaya J, Kimathi D, Lambe T, Warimwe GM. What Constitutes Protective Immunity Following Yellow Fever Vaccination? Vaccines (Basel) 2021; 9:671. [PMID: 34207358 PMCID: PMC8235545 DOI: 10.3390/vaccines9060671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
Yellow fever (YF) remains a threat to global health, with an increasing number of major outbreaks in the tropical areas of the world over the recent past. In light of this, the Eliminate Yellow Fever Epidemics Strategy was established with the aim of protecting one billion people at risk of YF through vaccination by the year 2026. The current YF vaccine gives excellent protection, but its use is limited by shortages in supply due to the difficulties in producing the vaccine. There are good grounds for believing that alternative fractional dosing regimens can produce strong protection and overcome the problem of supply shortages as less vaccine is required per person. However, immune responses to these vaccination approaches are yet to be fully understood. In addition, published data on immune responses following YF vaccination have mostly quantified neutralising antibody titers. However, vaccine-induced antibodies can confer immunity through other antibody effector functions beyond neutralisation, and an effective vaccine is also likely to induce strong and persistent memory T cell responses. This review highlights the gaps in knowledge in the characterisation of YF vaccine-induced protective immunity in the absence or presence of neutralising antibodies. The assessment of biophysical antibody characteristics and cell-mediated immunity following YF vaccination could help provide a comprehensive landscape of YF vaccine-induced immunity and a better understanding of correlates of protective immunity.
Collapse
Affiliation(s)
- Jolynne Mokaya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 3SU, UK; (D.K.); (G.M.W.)
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230-80108, Kilifi 8010, Kenya
| | - Derick Kimathi
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 3SU, UK; (D.K.); (G.M.W.)
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230-80108, Kilifi 8010, Kenya
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK;
| | - George M. Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 3SU, UK; (D.K.); (G.M.W.)
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230-80108, Kilifi 8010, Kenya
| |
Collapse
|
82
|
Young WC, Carpp LN, Chaudhury S, Regules JA, Bergmann-Leitner ES, Ockenhouse C, Wille-Reece U, deCamp AC, Hughes E, Mahoney C, Pallikkuth S, Pahwa S, Dennison SM, Mudrak SV, Alam SM, Seaton KE, Spreng RL, Fallon J, Michell A, Ulloa-Montoya F, Coccia M, Jongert E, Alter G, Tomaras GD, Gottardo R. Comprehensive Data Integration Approach to Assess Immune Responses and Correlates of RTS,S/AS01-Mediated Protection From Malaria Infection in Controlled Human Malaria Infection Trials. Front Big Data 2021; 4:672460. [PMID: 34212134 PMCID: PMC8239149 DOI: 10.3389/fdata.2021.672460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
RTS,S/AS01 (GSK) is the world’s first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit–with this dataset–in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a “quality as well as quantity” hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.
Collapse
Affiliation(s)
- William Chad Young
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Sidhartha Chaudhury
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jason A Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elke S Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | | | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ellis Hughes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - S Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Sarah V Mudrak
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - S Munir Alam
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States.,Department of Pathology, Duke University, Durham, NC, United States
| | - Kelly E Seaton
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Rachel L Spreng
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Jon Fallon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Ashlin Michell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, United States.,Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States.,Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
83
|
Rathnayake D, Aitken EH, Rogerson SJ. Beyond Binding: The Outcomes of Antibody-Dependent Complement Activation in Human Malaria. Front Immunol 2021; 12:683404. [PMID: 34168652 PMCID: PMC8217965 DOI: 10.3389/fimmu.2021.683404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Antibody immunity against malaria is effective but non-sterile. In addition to antibody-mediated inhibition, neutralisation or opsonisation of malaria parasites, antibody-mediated complement activation is also important in defense against infection. Antibodies form immune complexes with parasite-derived antigens that can activate the classical complement pathway. The complement system provides efficient surveillance for infection, and its activation leads to parasite lysis or parasite opsonisation for phagocytosis. The induction of complement-fixing antibodies contributes significantly to the development of protective immunity against clinical malaria. These complement-fixing antibodies can form immune complexes that are recognised by complement receptors on innate cells of the immune system. The efficient clearance of immune complexes is accompanied by complement receptor internalisation, abrogating the detrimental consequences of excess complement activation. Here, we review the mechanisms of activation of complement by alternative, classical, and lectin pathways in human malaria at different stages of the Plasmodium life cycle with special emphasis on how complement-fixing antibodies contribute to protective immunity. We briefly touch upon the action of anaphylatoxins, the assembly of membrane attack complex, and the possible reasons underlying the resistance of infected erythrocytes towards antibody-mediated complement lysis, relevant to their prolonged survival in the blood of the human host. We make suggestions for further research on effector functions of antibody-mediated complement activation that would guide future researchers in deploying complement-fixing antibodies in preventive or therapeutic strategies against malaria.
Collapse
Affiliation(s)
| | | | - Stephen J. Rogerson
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
84
|
Lu P, Guerin DJ, Lin S, Chaudhury S, Ackerman ME, Bolton DL, Wallqvist A. Immunoprofiling Correlates of Protection Against SHIV Infection in Adjuvanted HIV-1 Pox-Protein Vaccinated Rhesus Macaques. Front Immunol 2021; 12:625030. [PMID: 34046030 PMCID: PMC8144500 DOI: 10.3389/fimmu.2021.625030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection remains a major public health threat due to its incurable nature and the lack of a highly efficacious vaccine. The RV144 vaccine trial is the only clinical study to date that demonstrated significant but modest decrease in HIV infection risk. To improve HIV-1 vaccine immunogenicity and efficacy, we recently evaluated pox-protein vaccination using a next generation liposome-based adjuvant, Army Liposomal Formulation adsorbed to aluminum (ALFA), in rhesus monkeys and observed 90% efficacy against limiting dose mucosal SHIV challenge in male animals. Here, we analyzed binding antibody responses, as assessed by Fc array profiling using a broad range of HIV-1 envelope antigens and Fc features, to explore the mechanisms of ALFA-mediated protection by employing machine learning and Cox proportional hazards regression analyses. We found that Fcγ receptor 2a-related binding antibody responses were augmented by ALFA relative to aluminium hydroxide, and these responses were associated with reduced risk of infection in male animals. Our results highlight the application of systems serology to provide mechanistic insights to vaccine-elicited protection and support evidence that antibody effector responses protect against HIV-1 infection.
Collapse
Affiliation(s)
- Pinyi Lu
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, United States
| | - Dylan J Guerin
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Shu Lin
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Sidhartha Chaudhury
- Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Diane L Bolton
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Anders Wallqvist
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
85
|
Bolton J, Chaudhury S, MacGill RS, Early AM, King CR, Locke E, Neafsey DE, Bergmann-Leitner ES. Multiplex serological assay for establishing serological profiles of polymorphic, closely related peptide antigens. MethodsX 2021; 8:101345. [PMID: 34430249 PMCID: PMC8374401 DOI: 10.1016/j.mex.2021.101345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2023] Open
Abstract
Profiling of serological responses to establish the landscape of antibody specificities in individuals exposed to pathogens or vaccines is crucial for (a) revealing humoral immune correlates of protection; (b) uncovering markers of pathogen exposure; and (c) identifying antigens and epitopes associated with disease vs. protection. Establishing the antigenic profile of serological responses requires either expensive microarrays or labor- and time-intensive ELISA assays. Multiplex assay platforms are increasingly being evaluated for their usefulness for high-throughput testing of sera or plasma. The methodology described here utilizes a plate-based assay that allows the simultaneous detection of up to ten antigens per well in a 96 well format using an electrochemiluminescence immunoassay (ECLIA).•The newly developed protocol outlines high-throughput profiling of serological responses using a multiplex testing platform with subsequent computational analysis.•The protocol is a modification of the basic assay development manual from the manufacturer of the MESO QuickPlex SQ 120 instrument (MSD, Gaithersburg, MD) and can be used for synthetic peptides as well as full length proteins.•The protocol can be applied to map serological responses to pathogens or pathogen-derived antigens to establish serological profiles in search for biomarkers or immune correlates.
Collapse
Affiliation(s)
- Jessica Bolton
- Immunology Core, Malaria Biologics Branch, WRAIR, Silver Spring, MD 20910, United States
| | - Sidhartha Chaudhury
- Center for Enabling Capabilities, WRAIR, Silver Spring, MD 20910, United States
| | | | - Angela M. Early
- Broad Institute of MIT and Harvard T.H. Chan School of Public Health, Cambridge, MA 02142, United States
| | - C. Richter King
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Daniel E. Neafsey
- Broad Institute of MIT and Harvard T.H. Chan School of Public Health, Cambridge, MA 02142, United States
| | | |
Collapse
|
86
|
Abstract
INTRODUCTION Antibodies mediate pathogen neutralization in addition to several cytotoxic Fc functions through engaging cellular receptors and recruiting effector cells. Fc effector functions have been well described in disease control and protection against infectious diseases including HIV, Ebola, malaria, influenza and tuberculosis, making them attractive targets for vaccine design. AREAS COVERED We briefly summarize the role of Fc effector functions in disease control and protection in viral, bacterial and parasitic infectious diseases. We review Fc effector function in passive immunization and vaccination, and primarily focus on strategies to elicit and modulate these functions as part of a robust vaccine strategy. EXPERT OPINION Despite their known correlation with vaccine efficacy for several diseases, only recently have seminal studies addressed how these Fc effector functions can be elicited and modulated in vaccination. However, gaps remain in assay standardization and the precise mechanisms of diverse functional assays. Furthermore, there are inherent difficulties in the translation of findings from animal models to humans, given the difference in sequence, expression and function of Fc receptors and Fc portions of antibodies. However, overall it is clear that vaccine development to elicit Fc effector function is an important goal for optimal prevention against infectious disease.
Collapse
Affiliation(s)
- Simone I Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| |
Collapse
|
87
|
Selva KJ, van de Sandt CE, Lemke MM, Lee CY, Shoffner SK, Chua BY, Davis SK, Nguyen THO, Rowntree LC, Hensen L, Koutsakos M, Wong CY, Mordant F, Jackson DC, Flanagan KL, Crowe J, Tosif S, Neeland MR, Sutton P, Licciardi PV, Crawford NW, Cheng AC, Doolan DL, Amanat F, Krammer F, Chappell K, Modhiran N, Watterson D, Young P, Lee WS, Wines BD, Mark Hogarth P, Esterbauer R, Kelly HG, Tan HX, Juno JA, Wheatley AK, Kent SJ, Arnold KB, Kedzierska K, Chung AW. Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nat Commun 2021; 12:2037. [PMID: 33795692 PMCID: PMC8016934 DOI: 10.1038/s41467-021-22236-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kevin J Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa M Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Suzanne K Shoffner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brendon Y Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Samantha K Davis
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Francesca Mordant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Katie L Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Shidan Tosif
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Melanie R Neeland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Philip Sutton
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Nigel W Crawford
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Immunisation Service, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Infection Prevention & Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Paul Young
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
88
|
Kurtovic L, Wetzel D, Reiling L, Drew DR, Palmer C, Kouskousis B, Hanssen E, Wines BD, Hogarth PM, Suckow M, Jenzelewski V, Piontek M, Chan JA, Beeson JG. Novel Virus-Like Particle Vaccine Encoding the Circumsporozoite Protein of Plasmodium falciparum Is Immunogenic and Induces Functional Antibody Responses in Mice. Front Immunol 2021; 12:641421. [PMID: 33815393 PMCID: PMC8010251 DOI: 10.3389/fimmu.2021.641421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
RTS,S is the leading malaria vaccine in development, but has demonstrated only moderate protective efficacy in clinical trials. RTS,S is a virus-like particle (VLP) that uses the human hepatitis B virus as scaffold to display the malaria sporozoite antigen, circumsporozoite protein (CSP). Particle formation requires four-fold excess scaffold antigen, and as a result, CSP represents only a small portion of the final vaccine construct. Alternative VLP or nanoparticle platforms that reduce the amount of scaffold antigen and increase the amount of the target CSP antigen present in particles may enhance vaccine immunogenicity and efficacy. Here, we describe the production and characterization of a novel VLP that uses the small surface antigen (dS) of duck hepatitis B virus to display CSP. The CSP-dS fusion protein successfully formed VLPs without the need for excess scaffold antigen, and thus CSP represented a larger portion of the vaccine construct. CSP-dS formed large particles approximately 31-74 nm in size and were confirmed to display CSP on the surface. CSP-dS VLPs were highly immunogenic in mice and induced antibodies to multiple regions of CSP, even when administered at a lower vaccine dosage. Vaccine-induced antibodies demonstrated relevant functional activities, including Fc-dependent interactions with complement and Fcγ-receptors, previously identified as important in malaria immunity. Further, vaccine-induced antibodies had similar properties (epitope-specificity and avidity) to monoclonal antibodies that are protective in mouse models. Our novel platform to produce VLPs without excess scaffold protein has wide implications for the future development of vaccines for malaria and other infectious diseases.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Linda Reiling
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Damien R. Drew
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | | | | | - Eric Hanssen
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Bruce D. Wines
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P. Mark Hogarth
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | | | | | | | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Departments of Immunology and Pathology and Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
89
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
90
|
Damelang T, Aitken EH, Hasang W, Lopez E, Killian M, Unger HW, Salanti A, Shub A, McCarthy E, Kedzierska K, Lappas M, Kent SJ, Rogerson SJ, Chung AW. Antibody mediated activation of natural killer cells in malaria exposed pregnant women. Sci Rep 2021; 11:4130. [PMID: 33602987 PMCID: PMC7893158 DOI: 10.1038/s41598-021-83093-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Immune effector responses against Plasmodium falciparum include antibody-mediated activation of innate immune cells, which can induce Fc effector functions, including antibody-dependent cellular cytotoxicity, and the secretion of cytokines and chemokines. These effector functions are regulated by the composition of immunoglobulin G (IgG) Fc N-linked glycans. However, a role for antibody-mediated natural killer (NK) cells activation or Fc N-linked glycans in pregnant women with malaria has not yet been established. Herein, we studied the capacity of IgG antibodies from pregnant women, with placental malaria or non-placental malaria, to induce NK cell activation in response to placental malaria-associated antigens DBL2 and DBL3. Antibody-mediated NK cell activation was observed in pregnant women with malaria, but no differences were associated with susceptibility to placental malaria. Elevated anti-inflammatory glycosylation patterns of IgG antibodies were observed in pregnant women with or without malaria infection, which were not seen in healthy non-pregnant controls. This suggests that pregnancy-associated anti-inflammatory Fc N-linked glycans may dampen the antibody-mediated activation of NK cells in pregnant women with malaria infection. Overall, although anti-inflammatory glycans and antibody-dependent NK cell activation were detected in pregnant women with malaria, a definitive role for these antibody features in protecting against placental malaria remains to be proven.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth H Aitken
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Wina Hasang
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Martin Killian
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Internal Medicine, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Groupe sur l'Immunité des Muqueuses et Agents Pathogènes, Université Jean Monnet Saint-Etienne, Saint-Etienne, France
| | - Holger W Unger
- Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Obstetrics and Gynaecology, Royal Darwin Hospital, Darwin, NT, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ali Salanti
- Department for Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alexis Shub
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth McCarthy
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Infectious Diseases Department, Alfred Health, Melbourne Sexual Health Centre, Monash University, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
91
|
Bartsch YC, Fischinger S, Siddiqui SM, Chen Z, Yu J, Gebre M, Atyeo C, Gorman MJ, Zhu AL, Kang J, Burke JS, Slein M, Gluck MJ, Beger S, Hu Y, Rhee J, Petersen E, Mormann B, Aubin MDS, Hasdianda MA, Jambaulikar G, Boyer EW, Sabeti PC, Barouch DH, Julg BD, Musk ER, Menon AS, Lauffenburger DA, Nilles EJ, Alter G. Discrete SARS-CoV-2 antibody titers track with functional humoral stability. Nat Commun 2021; 12:1018. [PMID: 33589636 PMCID: PMC7884400 DOI: 10.1038/s41467-021-21336-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 02/03/2023] Open
Abstract
Antibodies serve as biomarkers of infection, but if sustained can confer long-term immunity. Yet, for most clinically approved vaccines, binding antibody titers only serve as a surrogate of protection. Instead, the ability of vaccine induced antibodies to neutralize or mediate Fc-effector functions is mechanistically linked to protection. While evidence has begun to point to persisting antibody responses among SARS-CoV-2 infected individuals, cases of re-infection have begun to emerge, calling the protective nature of humoral immunity against this highly infectious pathogen into question. Using a community-based surveillance study, we aimed to define the relationship between titers and functional antibody activity to SARS-CoV-2 over time. Here we report significant heterogeneity, but limited decay, across antibody titers amongst 120 identified seroconverters, most of whom had asymptomatic infection. Notably, neutralization, Fc-function, and SARS-CoV-2 specific T cell responses were only observed in subjects that elicited RBD-specific antibody titers above a threshold. The findings point to a switch-like relationship between observed antibody titer and function, where a distinct threshold of activity-defined by the level of antibodies-is required to elicit vigorous humoral and cellular response. This response activity level may be essential for durable protection, potentially explaining why re-infections occur with SARS-CoV-2 and other common coronaviruses.
Collapse
Affiliation(s)
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institut für HIV Forschung, Universität Duisburg-Essen, Duisburg, Germany
| | - Sameed M Siddiqui
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhilin Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jingyou Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Makda Gebre
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Alex Lee Zhu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jaewon Kang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - John S Burke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Matthew Slein
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Matthew J Gluck
- Space Exploration Technologies Corp, Hawthorne, CA, USA
- Icahn School of Medicine at Mount Sinai, Nw York, USA
| | - Samuel Beger
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Yiyuan Hu
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Justin Rhee
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Eric Petersen
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | | | | | | | | | | | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Massachusetts Consortium on Pandemic Readiness, Cambridge, MA, USA
| | - Dan H Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pandemic Readiness, Cambridge, MA, USA
| | - Boris D Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Elon R Musk
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Anil S Menon
- Space Exploration Technologies Corp, Hawthorne, CA, USA.
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Massachusetts Consortium on Pandemic Readiness, Cambridge, MA, USA.
| |
Collapse
|
92
|
Tissues: the unexplored frontier of antibody mediated immunity. Curr Opin Virol 2021; 47:52-67. [PMID: 33581646 DOI: 10.1016/j.coviro.2021.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Pathogen-specific immunity evolves in the context of the infected tissue. However, current immune correlates analyses and vaccine efficacy metrics are based on immune functions from peripheral cells. Less is known about tissue-resident mechanisms of immunity. While antibodies represent the primary correlate of immunity following most clinically approved vaccines, how antibodies interact with localized, compartment-specific immune functions to fight infections, remains unclear. Emerging data demonstrate a unique community of immune cells that reside within different tissues. These tissue-specific immunological communities enable antibodies to direct both expected and unexpected local attack strategies to control, disrupt, and eliminate infection in a tissue-specific manner. Defining the full breadth of antibody effector functions, how they selectively contribute to control at the site of infection may provide clues for the design of next-generation vaccines able to direct the control, elimination, and prevention of compartment specific diseases of both infectious and non-infectious etiologies.
Collapse
|
93
|
Chatterjee D, Cockburn IA. The challenges of a circumsporozoite protein-based malaria vaccine. Expert Rev Vaccines 2021; 20:113-125. [PMID: 33554669 DOI: 10.1080/14760584.2021.1874924] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION A safe and effective vaccine will likely be necessary for the control or eradication of malaria which kills 400,000 annually. Our most advanced vaccine candidate to date is RTS,S which is based on the Plasmodium falciparum circumsporozoite protein (PfCSP) of the malaria parasite. However, protection by RTS,S is incomplete and short-lived. AREAS COVERED Here we summarize results from recent clinical trials of RTS,S and critically evaluate recent studies that aim to understand the correlates of protective immunity and why vaccine-induced protection is short-lived. In particular, recent systems serology studies have highlighted a key role for the necessity of inducing functional antibodies. In-depth analyses of immune responses to CSP in both mouse models and vaccinated humans have also highlighted difficulties in generating the maintaining high-quality antibody responses. Finally, in recent years biophysical and structural studies of antibody binding to PfCSP have led to a better understanding of how highly potent antibodies can block infection, which can inform vaccine design. EXPERT OPINION We highlight how both structure-guided vaccine design and a better understanding of the immune response to PfCSP can inform a second generation of PfCSP-based vaccines stimulating a broader range of protective targets within PfCSP.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Ian Andrew Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| |
Collapse
|
94
|
Butler SE, Crowley AR, Natarajan H, Xu S, Weiner JA, Bobak CA, Mattox DE, Lee J, Wieland-Alter W, Connor RI, Wright PF, Ackerman ME. Distinct Features and Functions of Systemic and Mucosal Humoral Immunity Among SARS-CoV-2 Convalescent Individuals. Front Immunol 2021; 11:618685. [PMID: 33584712 PMCID: PMC7876222 DOI: 10.3389/fimmu.2020.618685] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding humoral immune responses to SARS-CoV-2 infection will play a critical role in the development of vaccines and antibody-based interventions. We report systemic and mucosal antibody responses in convalescent individuals who experienced varying severity of disease. Whereas assessment of neutralization and antibody-mediated effector functions revealed polyfunctional antibody responses in serum, only robust neutralization and phagocytosis were apparent in nasal wash samples. Serum neutralization and effector functions correlated with systemic SARS-CoV-2-specific IgG response magnitude, while mucosal neutralization was associated with nasal SARS-CoV-2-specific IgA. Antibody depletion experiments support the mechanistic relevance of these correlations. Associations between nasal IgA responses, virus neutralization at the mucosa, and less severe disease suggest the importance of assessing mucosal immunity in larger natural infection cohorts. Further characterization of antibody responses at the portal of entry may define their ability to contribute to protection from infection or reduced risk of hospitalization, informing public health assessment strategies and vaccine development efforts.
Collapse
Affiliation(s)
- Savannah E. Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Andrew R. Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Shiwei Xu
- Program in Quantitative and Biology Sciences, Dartmouth College, Hanover, NH, United States
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Carly A. Bobak
- Program in Quantitative and Biology Sciences, Dartmouth College, Hanover, NH, United States
| | - Daniel E. Mattox
- Department of Computer Science, Dartmouth College, Hanover, NH, United States
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Wendy Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Ruth I. Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Peter F. Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
- Program in Quantitative and Biology Sciences, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
95
|
Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine. Vaccine 2021; 39:968-975. [PMID: 33431225 DOI: 10.1016/j.vaccine.2020.12.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 01/15/2023]
Abstract
The circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites, a prime vaccine target, and is known to have polymorphisms in the C-terminal region. Vaccines using a single allele may have lower efficacy against genotypic variants. Recent studies have found evidence suggesting the efficacy of the CSP-based RTS,S malaria vaccine may be limited against P. falciparum CSP alleles that diverge from the 3D7 vaccine allele, particularly in this polymorphic C-terminal region. In order to assess the breadth of the RTS,S-induced antibody responses against CSP C-terminal antigenic variants, we used a novel multiplex assay to measure reactivity of serum samples from a recent RTS,S study against C-terminal peptides from 3D7 and seven additional CSP alleles that broadly represent the genetic diversity found in circulating P. falciparum field isolates. We found that responses to the variants showed, on average, a ~ 30-fold reduction in reactivity relative to the vaccine-matched 3D7 allele. The extent of this reduction, ranging from 21 to 69-fold, correlated with the number of polymorphisms between the variants and 3D7. We calculated antibody breadth of each sample as the median relative reactivity to the seven CSP variants compared to 3D7. Surprisingly, protection from 3D7 challenge in the RTS,S study was associated with higher C-terminal antibody breadth. These findings suggest CSP C-terminal-specific avidity or fine-specificity may play a role in RTS,S-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.
Collapse
|
96
|
Bell GJ, Agnandji ST, Asante KP, Ghansah A, Kamthunzi P, Emch M, Bailey JA. Impacts of Ecology, Parasite Antigenic Variation, and Human Genetics on RTS,S/AS01e Malaria Vaccine Efficacy. CURR EPIDEMIOL REP 2021; 8:79-88. [PMID: 34367877 PMCID: PMC8324449 DOI: 10.1007/s40471-021-00271-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Global malaria elimination has little chance of success without an effective vaccine. The first malaria vaccine, RTS,S/AS01e, demonstrated moderate efficacy against clinical malaria in phase III trials and is undergoing large-scale effectiveness trials in Africa. Importantly, the vaccine did not perform equally well between phase III study sites. Though reasons for the moderate efficacy and this variation are unclear, various mechanisms have been suggested. This review summarizes the recent literature on such mechanisms, with a focus on those involving landscape ecology, parasite antigenic variation, and human host genetic differences. RECENT FINDINGS Transmission intensity may have a role pre- and post-vaccination in modulating immune responses to the vaccine. Furthermore, malaria incidence may "rebound" in vaccinated populations living in high transmission intensity settings. There is growing evidence that both genetic variation in the parasite circumsporozoite protein and variation of human host genetic factors affect RTS,S vaccine efficacy. These genetic factors may be interacting in complex ways to produce variation in the natural and vaccine-induced immune responses that protect against malaria. SUMMARY Due to the modest efficacy of RTS,S/AS01e, the combinations of factors (ecological, parasite, human host) impacting its effectiveness must be clearly understood, as this information will be critical for implementation policy and future vaccine designs.
Collapse
Affiliation(s)
- Griffin J. Bell
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon ,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Michael Emch
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 USA ,Department of Geography, University of North Carolina, Chapel Hill 220 E Cameron Ave, Chapel Hill, NC 27599 USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick St, Rm 314B, Providence, RI 02912 USA
| |
Collapse
|
97
|
Suau R, Vidal M, Aguilar R, Ruiz-Olalla G, Vázquez-Santiago M, Jairoce C, Nhabomba AJ, Gyan B, Dosoo D, Asante KP, Owusu-Agyei S, Campo JJ, Izquierdo L, Cavanagh D, Coppel RL, Chauhan V, Angov E, Dutta S, Gaur D, Beeson JG, Moncunill G, Dobaño C. RTS,S/AS01 E malaria vaccine induces IgA responses against CSP and vaccine-unrelated antigens in African children in the phase 3 trial. Vaccine 2020; 39:687-698. [PMID: 33358704 DOI: 10.1016/j.vaccine.2020.12.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The evaluation of immune responses to RTS,S/AS01 has traditionally focused on immunoglobulin (Ig) G antibodies that are only moderately associated with protection. The role of other antibody isotypes that could also contribute to vaccine efficacy remains unclear. Here we investigated whether RTS,S/AS01E elicits antigen-specific serum IgA antibodies to the vaccine and other malaria antigens, and we explored their association with protection. METHODS Ninety-five children (age 5-17 months old at first vaccination) from the RTS,S/AS01E phase 3 clinical trial who received 3 doses of RTS,S/AS01E or a comparator vaccine were selected for IgA quantification 1 month post primary immunization. Two sites with different malaria transmission intensities (MTI) and clinical malaria cases and controls, were included. Measurements of IgA against different constructs of the circumsporozoite protein (CSP) vaccine antigen and 16 vaccine-unrelated Plasmodium falciparum antigens were performed using a quantitative suspension array assay. RESULTS RTS,S vaccination induced a 1.2 to 2-fold increase in levels of serum/plasma IgA antibodies to all CSP constructs, which was not observed upon immunization with a comparator vaccine. The IgA response against 13 out of 16 vaccine-unrelated P. falciparum antigens also increased after vaccination, and levels were higher in recipients of RTS,S than in comparators. IgA levels to malaria antigens before vaccination were more elevated in the high MTI than the low MTI site. No statistically significant association of IgA with protection was found in exploratory analyses. CONCLUSIONS RTS,S/AS01E induces IgA responses in peripheral blood against CSP vaccine antigens and other P. falciparum vaccine-unrelated antigens, similar to what we previously showed for IgG responses. Collectively, data warrant further investigation of the potential contribution of vaccine-induced IgA responses to efficacy and any possible interplay, either synergistic or antagonistic, with protective IgG, as identifying mediators of protection by RTS,S/AS01E immunization is necessary for the design of improved second-generation vaccines. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT008666191.
Collapse
Affiliation(s)
- Roger Suau
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Miquel Vázquez-Santiago
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Chenjerai Jairoce
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique.
| | - Augusto J Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Ben Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana.
| | - David Dosoo
- Kintampo Health Research Centre, Kintampo, Ghana.
| | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Kintampo, Ghana; Disease Control Department. London School of Hygiene and Tropical Medicine, London, UK
| | - Joseph J Campo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain.
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK.
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA.
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA.
| | - Deepak Gaur
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Australia; Department of Medicine, University of Melbourne, Australia.
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique.
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Carrer Rosselló 153 CEK Building, E-08036 Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique.
| |
Collapse
|
98
|
Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 2020; 21:83-100. [PMID: 33353987 PMCID: PMC7754704 DOI: 10.1038/s41577-020-00479-7] [Citation(s) in RCA: 681] [Impact Index Per Article: 170.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Immunization is a cornerstone of public health policy and is demonstrably highly cost-effective when used to protect child health. Although it could be argued that immunology has not thus far contributed much to vaccine development, in that most of the vaccines we use today were developed and tested empirically, it is clear that there are major challenges ahead to develop new vaccines for difficult-to-target pathogens, for which we urgently need a better understanding of protective immunity. Moreover, recognition of the huge potential and challenges for vaccines to control disease outbreaks and protect the older population, together with the availability of an array of new technologies, make it the perfect time for immunologists to be involved in designing the next generation of powerful immunogens. This Review provides an introductory overview of vaccines, immunization and related issues and thereby aims to inform a broad scientific audience about the underlying immunological concepts. This Review, aimed at a broad scientific audience, provides an introductory guide to the history, development and immunological basis of vaccines, immunization and related issues to provide insight into the challenges facing immunologists who are designing the next generation of vaccines.
Collapse
Affiliation(s)
- Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK. .,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK.
| | - Else M Bijker
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| |
Collapse
|
99
|
Chaudhury S, Macgill RS, Early AM, Bolton JS, King CR, Locke E, Pierson T, Wirth DF, Neafsey DE, Bergmann-leitner ES. Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine.. [DOI: 10.1101/2020.11.15.20232033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractThe circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites and a prime vaccine target. Responses induced by the CSP-based RTS,S vaccine towards the polymorphic C-terminal region of P.falciparum-CSP raise concerns that vaccines using single alleles may have lower efficacy against genotypic variants. We characterized the extent of C-terminal cross-reactivity of antibodies induced by RTS,S (based on the 3D7 allele) with variants representing seven circulating field isolates through a novel HTS-multiplex assay for screening closely related peptides. Reactivity to variants showed approximately 30-fold reduction in recognition relative to 3D7. The degree of reduced cross-reactivity,ranging from 21 to 69-fold, directly correlated with the number of polymorphisms between variants and 3D7. Surprisingly, protection assessed by challenge with 3D7 parasites was strongly associated with higher C-terminal antibody breadth suggesting that C-terminal specific avidity or fine-specificity may play a role in RTS,S/AS01B-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.
Collapse
|
100
|
Abuga KM, Jones-Warner W, Hafalla JCR. Immune responses to malaria pre-erythrocytic stages: Implications for vaccine development. Parasite Immunol 2020; 43:e12795. [PMID: 32981095 PMCID: PMC7612353 DOI: 10.1111/pim.12795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Radiation-attenuated sporozoites induce sterilizing immunity and remain the 'gold standard' for malaria vaccine development. Despite practical challenges in translating these whole sporozoite vaccines to large-scale intervention programmes, they have provided an excellent platform to dissect the immune responses to malaria pre-erythrocytic (PE) stages, comprising both sporozoites and exoerythrocytic forms. Investigations in rodent models have provided insights that led to the clinical translation of various vaccine candidates-including RTS,S/AS01, the most advanced candidate currently in a trial implementation programme in three African countries. With advances in immunology, transcriptomics and proteomics, and application of lessons from past failures, an effective, long-lasting and wide-scale malaria PE vaccine remains feasible. This review underscores the progress in PE vaccine development, focusing on our understanding of host-parasite immunological crosstalk in the tissue environments of the skin and the liver. We highlight possible gaps in the current knowledge of PE immunity that can impact future malaria vaccine development efforts.
Collapse
Affiliation(s)
- Kelvin Mokaya Abuga
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - William Jones-Warner
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|