51
|
Paprzycka O, Wieczorek J, Nowak I, Madej M, Strzalka-Mrozik B. Potential Application of MicroRNAs and Some Other Molecular Biomarkers in Alzheimer's Disease. Curr Issues Mol Biol 2024; 46:5066-5084. [PMID: 38920976 PMCID: PMC11202417 DOI: 10.3390/cimb46060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Alzheimer's disease (AD) is the world's most common neurodegenerative disease, expected to affect up to one-third of the elderly population in the near future. Among the major challenges in combating AD are the inability to reverse the damage caused by the disease, expensive diagnostic tools, and the lack of specific markers for the early detection of AD. This paper highlights promising research directions for molecular markers in AD diagnosis, including the diagnostic potential of microRNAs. The latest molecular methods for diagnosing AD are discussed, with particular emphasis on diagnostic techniques prior to the appearance of full AD symptoms and markers detectable in human body fluids. A collection of recent studies demonstrates the promising potential of molecular methods in AD diagnosis, using miRNAs as biomarkers. Up- or downregulation in neurodegenerative diseases may not only provide a new diagnostic tool but also serve as a marker for differentiating neurodegenerative diseases. However, further research in this direction is needed.
Collapse
Affiliation(s)
- Olga Paprzycka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (J.W.); (M.M.)
| | - Jan Wieczorek
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (J.W.); (M.M.)
| | - Ilona Nowak
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (J.W.); (M.M.)
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (O.P.); (J.W.); (M.M.)
| |
Collapse
|
52
|
Warren A, Nyavor Y, Zarabian N, Mahoney A, Frame LA. The microbiota-gut-brain-immune interface in the pathogenesis of neuroinflammatory diseases: a narrative review of the emerging literature. Front Immunol 2024; 15:1365673. [PMID: 38817603 PMCID: PMC11137262 DOI: 10.3389/fimmu.2024.1365673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Importance Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Nikkia Zarabian
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aidan Mahoney
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Undergraduate College, Princeton University, Princeton, NJ, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
53
|
Duda-Madej A, Stecko J, Szymańska N, Miętkiewicz A, Szandruk-Bender M. Amyloid, Crohn's disease, and Alzheimer's disease - are they linked? Front Cell Infect Microbiol 2024; 14:1393809. [PMID: 38779559 PMCID: PMC11109451 DOI: 10.3389/fcimb.2024.1393809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including β-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Marta Szandruk-Bender
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
54
|
Ramey GD, Tang A, Phongpreecha T, Yang MM, Woldemariam SR, Oskotsky TT, Montine TJ, Allen I, Miller ZA, Aghaeepour N, Capra JA, Sirota M. Exposure to autoimmune disorders increases Alzheimer's disease risk in a multi-site electronic health record analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.02.24306649. [PMID: 38746318 PMCID: PMC11092711 DOI: 10.1101/2024.05.02.24306649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Molecular studies of Alzheimer's disease (AD) implicate potential links between autoimmunity and AD, but the underlying clinical relationships between these conditions remain poorly understood. Electronic health records (EHRs) provide an opportunity to determine the clinical risk relationship between autoimmune disorders and AD and understand whether specific disorders and disorder subtypes affect AD risk at the phenotypic level in human populations. We evaluated relationships between 26 autoimmune disorders and AD across retrospective observational case-control and cohort study designs in the EHR systems at UCSF and Stanford. We quantified overall and sex-specific AD risk effects that these autoimmune disorders confer. We identified significantly increased AD risk in autoimmune disorder patients in both study designs at UCSF and at Stanford. This pattern was driven by specific autoimmunity subtypes including endocrine, gastrointestinal, dermatologic, and musculoskeletal disorders. We also observed increased AD risk from autoimmunity in both women and men, but women with autoimmune disorders continued to have a higher AD prevalence than men, indicating persistent sex-specificity. This study identifies autoimmune disorders as strong risk factors for AD that validate across several study designs and EHR databases. It sets the foundation for exploring how underlying autoimmune mechanisms increase AD risk and contribute to AD pathogenesis.
Collapse
|
55
|
Adedara IA, Mohammed KA, Canzian J, Ajayi BO, Farombi EO, Emanuelli T, Rosemberg DB, Aschner M. Utility of zebrafish-based models in understanding molecular mechanisms of neurotoxicity mediated by the gut-brain axis. ADVANCES IN NEUROTOXICOLOGY 2024; 11:177-208. [PMID: 38741945 PMCID: PMC11090488 DOI: 10.1016/bs.ant.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The gut microbes perform several beneficial functions which impact the periphery and central nervous systems of the host. Gut microbiota dysbiosis is acknowledged as a major contributor to the development of several neuropsychiatric and neurological disorders including bipolar disorder, depression, anxiety, Parkinson's disease, Alzheimer's disease, attention deficit hyperactivity disorder, and autism spectrum disorder. Thus, elucidation of how the gut microbiota-brain axis plays a role in health and disease conditions is a potential novel approach to prevent and treat brain disorders. The zebrafish (Danio rerio) is an invaluable vertebrate model that possesses conserved brain and intestinal features with those of humans, thus making zebrafish a valued model to investigate the interplay between the gut microbiota and host health. This chapter describes current findings on the utility of zebrafish in understanding molecular mechanisms of neurotoxicity mediated via the gut microbiota-brain axis. Specifically, it highlights the utility of zebrafish as a model organism for understanding how anthropogenic chemicals, pharmaceuticals and bacteria exposure affect animals and human health via the gut-brain axis.
Collapse
Affiliation(s)
- Isaac A. Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Khadija A. Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Babajide O. Ajayi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
56
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
57
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
58
|
Shue F, White LJ, Hendrix R, Ulrich J, Henson RL, Knight W, Martens YA, Wang N, Roy B, Starling SC, Ren Y, Xiong C, Asmann YW, Syrjanen JA, Vassilaki M, Mielke MM, Timsina J, Sung YJ, Cruchaga C, Holtzman DM, Bu G, Petersen RC, Heckman MG, Kanekiyo T. CSF biomarkers of immune activation and Alzheimer's disease for predicting cognitive impairment risk in the elderly. SCIENCE ADVANCES 2024; 10:eadk3674. [PMID: 38569027 PMCID: PMC10990276 DOI: 10.1126/sciadv.adk3674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/23/2024] [Indexed: 04/05/2024]
Abstract
The immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 (N = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels. We observed age-related correlations with AD biomarkers such as total tau, phosphorylated tau-181, neurofilament light chain (NfL), and YKL40. APOE4 was associated with lower Aβ42 and higher SNAP25 in CSF. We explored baseline variables predicting cognitive decline risk, finding age, CSF Aβ42, NfL, and REG4 to be independently correlated. Subjects with older age, lower Aβ42, higher NfL, and higher REG4 at baseline had increased cognitive impairment risk during follow-up. This suggests that assessing CSF inflammatory molecules and AD biomarkers could predict cognitive impairment risk in the elderly.
Collapse
Affiliation(s)
- Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Launia J. White
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rachel Hendrix
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel L. Henson
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William Knight
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bhaskar Roy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yingxue Ren
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 93110, USA
| | - Yan W. Asmann
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jeremy A. Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester MN 55905, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester MN 55905, USA
| | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester MN 55905, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 93110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 93110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 93110, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Michael G. Heckman
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
59
|
Williams ZAP, Lang L, Nicolas S, Clarke G, Cryan J, Vauzour D, Nolan YM. Do microbes play a role in Alzheimer's disease? Microb Biotechnol 2024; 17:e14462. [PMID: 38593310 PMCID: PMC11003713 DOI: 10.1111/1751-7915.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Alzheimer's disease is a complex and progressive condition that affects essential neurological functions such as memory and reasoning. In the brain, neuronal loss, synaptic dysfunction, proteinopathy, neurofibrillary tangles, and neuroinflammation are the hallmarks of Alzheimer's disease pathophysiology. In addition, recent evidence has highlighted that microbes, whether commensal or pathogenic, also have the ability to interact with their host and to regulate its immune system, therefore participating in the exchanges that lead to peripheral inflammation and neuropathology. Because of this intimate relationship, bacteria, viruses, fungi, and protozoa have been implicated in the development of Alzheimer's disease. Here, we bring together current and most recent evidence of the role of microbes in Alzheimer's disease, raising burning questions that need to be addressed to guide therapeutic approaches and potential prophylactic strategies.
Collapse
Affiliation(s)
- Zoë A. P. Williams
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Sarah Nicolas
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - John Cryan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Yvonne M. Nolan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
60
|
Jaisa-aad M, Muñoz-Castro C, Serrano-Pozo A. Update on modifiable risk factors for Alzheimer's disease and related dementias. Curr Opin Neurol 2024; 37:166-181. [PMID: 38265228 PMCID: PMC10932854 DOI: 10.1097/wco.0000000000001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
PURPOSE OF REVIEW All human beings undergo a lifelong cumulative exposure to potentially preventable adverse factors such as toxins, infections, traumatisms, and cardiovascular risk factors, collectively termed exposome. The interplay between the individual's genetics and exposome is thought to have a large impact in health outcomes such as cancer and cardiovascular disease. Likewise, a growing body of evidence is supporting the idea that preventable factors explain a sizable proportion of Alzheimer's disease and related dementia (ADRD) cases. RECENT FINDINGS Here, we will review the most recent epidemiological, experimental preclinical, and interventional clinical studies examining some of these potentially modifiable risk factors for ADRD. We will focus on new evidence regarding cardiovascular risk factors, air pollution, viral and other infectious agents, traumatic brain injury, and hearing loss. SUMMARY While greater and higher quality epidemiological and experimental evidence is needed to unequivocally confirm their causal link with ADRD and/or unravel the underlying mechanisms, these modifiable risk factors may represent a window of opportunity to reduce ADRD incidence and prevalence at the population level via health screenings, and education and health policies.
Collapse
Affiliation(s)
- Methasit Jaisa-aad
- Massachusetts General Hospital, Boston, MA 02114
- Harvard Medical School, Boston, MA 02115
| | - Clara Muñoz-Castro
- Massachusetts General Hospital, Boston, MA 02114
- Harvard Medical School, Boston, MA 02115
- Universidad de Sevilla, Sevilla (Spain)
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital, Boston, MA 02114
- Harvard Medical School, Boston, MA 02115
- Massachusetts Alzheimer’s Disease Research Center
| |
Collapse
|
61
|
Ren YR, Cui WT, Jiang KL, He KQ, Lu YM, Chen Y, Pan WJ. Protective Mechanism of Polysaccharide ORP-1 Isolated from Oudemansiella raphanipes against Age-Related Cognitive Decline through the Microbiota-Gut-Brain Axis. Mol Nutr Food Res 2024; 68:e2300739. [PMID: 38528314 DOI: 10.1002/mnfr.202300739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Age-related cognitive decline is primarily attributed to the progressive weakening of synaptic function and loss of synapses, while age-related gut microbial dysbiosis is known to impair synaptic plasticity and cognitive behavior by metabolic alterations. To improve the health of the elderly, the protective mechanisms of Oudemansiella raphanipes polysaccharide (ORP-1) against age-related cognitive decline are investigated. The results demonstrate that ORP-1 and its gut microbiota-derived metabolites SCFAs restore a healthy gut microbial population to handle age-related gut microbiota dysbiosis mainly by increasing the abundance of beneficial bacteria Dubosiella, Clostridiales, and Prevotellaceae and reducing the abundance of harmful bacteria Desulfovibrio, strengthen intestinal barrier integrity by abolishing age-related alterations of tight junction (TJ) and mucin 2 (MUC2) proteins expression, diminish age-dependent increase in circulating inflammatory factors, ameliorate cognitive decline by reversing memory- and synaptic plasticity-related proteins levels, and restrain hyperactivation of microglia-mediated synapse engulfment and neuroinflammation. These findings expand the understanding of prebiotic-microbiota-host interactions.
Collapse
Affiliation(s)
- Yu-Ru Ren
- School of life Sciences, Anhui University, Hefei, 230601, P. R. China
| | - Wen-Ting Cui
- School of life Sciences, Anhui University, Hefei, 230601, P. R. China
| | - Kai-Li Jiang
- School of life Sciences, Anhui University, Hefei, 230601, P. R. China
| | - Kai-Qi He
- School of life Sciences, Anhui University, Hefei, 230601, P. R. China
| | - Yong-Ming Lu
- School of life Sciences, Anhui University, Hefei, 230601, P. R. China
| | - Yan Chen
- School of life Sciences, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei, 230601, P. R. China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, P. R. China
| | - Wen-Juan Pan
- School of life Sciences, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
62
|
Qiu Y, Mo C, Chen L, Ye W, Chen G, Zhu T. Alterations in microbiota of patients with COVID-19: implications for therapeutic interventions. MedComm (Beijing) 2024; 5:e513. [PMID: 38495122 PMCID: PMC10943180 DOI: 10.1002/mco2.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently caused a global pandemic, resulting in more than 702 million people being infected and over 6.9 million deaths. Patients with coronavirus disease (COVID-19) may suffer from diarrhea, sleep disorders, depression, and even cognitive impairment, which is associated with long COVID during recovery. However, there remains no consensus on effective treatment methods. Studies have found that patients with COVID-19 have alterations in microbiota and their metabolites, particularly in the gut, which may be involved in the regulation of immune responses. Consumption of probiotics may alleviate the discomfort caused by inflammation and oxidative stress. However, the pathophysiological process underlying the alleviation of COVID-19-related symptoms and complications by targeting the microbiota remains unclear. In the current study, we summarize the latest research and evidence on the COVID-19 pandemic, together with symptoms of SARS-CoV-2 and vaccine use, with a focus on the relationship between microbiota alterations and COVID-19-related symptoms and vaccine use. This work provides evidence that probiotic-based interventions may improve COVID-19 symptoms by regulating gut microbiota and systemic immunity. Probiotics may also be used as adjuvants to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yong Qiu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengduChina
| | - Lu Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Wanlin Ye
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Guo Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Tao Zhu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
63
|
Liu Y, Ritchie SC, Teo SM, Ruuskanen MO, Kambur O, Zhu Q, Sanders J, Vázquez-Baeza Y, Verspoor K, Jousilahti P, Lahti L, Niiranen T, Salomaa V, Havulinna AS, Knight R, Méric G, Inouye M. Integration of polygenic and gut metagenomic risk prediction for common diseases. NATURE AGING 2024; 4:584-594. [PMID: 38528230 PMCID: PMC11031402 DOI: 10.1038/s43587-024-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Multiomics has shown promise in noninvasive risk profiling and early detection of various common diseases. In the present study, in a prospective population-based cohort with ~18 years of e-health record follow-up, we investigated the incremental and combined value of genomic and gut metagenomic risk assessment compared with conventional risk factors for predicting incident coronary artery disease (CAD), type 2 diabetes (T2D), Alzheimer disease and prostate cancer. We found that polygenic risk scores (PRSs) improved prediction over conventional risk factors for all diseases. Gut microbiome scores improved predictive capacity over baseline age for CAD, T2D and prostate cancer. Integrated risk models of PRSs, gut microbiome scores and conventional risk factors achieved the highest predictive performance for all diseases studied compared with models based on conventional risk factors alone. The present study demonstrates that integrated PRSs and gut metagenomic risk models improve the predictive value over conventional risk factors for common chronic diseases.
Collapse
Affiliation(s)
- Yang Liu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Shu Mei Teo
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Matti O Ruuskanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Computing, University of Turku, Turku, Finland
| | - Oleg Kambur
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Jon Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Karin Verspoor
- School of Computing Technologies, RMIT University, Melbourne, Victoria, Australia
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rob Knight
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| |
Collapse
|
64
|
Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024; 16:789. [PMID: 38542700 PMCID: PMC10975805 DOI: 10.3390/nu16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Recent research exploring the relationship between the gut and the brain suggests that the condition of the gut microbiota can influence cognitive health. A well-balanced gut microbiota may help reduce inflammation, which is linked to neurodegenerative conditions. Prebiotics, probiotics, and symbiotics are nutritional supplements and functional food components associated with gastrointestinal well-being. The bidirectional communication of the gut-brain axis is essential for maintaining homeostasis, with pre-, pro-, and symbiotics potentially affecting various cognitive functions such as attention, perception, and memory. Numerous studies have consistently shown that incorporating pre-, pro-, and symbiotics into a healthy diet can lead to improvements in cognitive functions and mood. Maintaining a healthy gut microbiota can support optimal cognitive function, which is crucial for disease prevention in our fast-paced, Westernized society. Our results indicate cognitive benefits in healthy older individuals with probiotic supplementation but not in healthy older individuals who have good and adequate levels of physical activity. Additionally, it appears that there are cognitive benefits in patients with mild cognitive impairment and Alzheimer's disease, while mixed results seem to arise in younger and healthier individuals. However, it is important to acknowledge that individual responses may vary, and the use of these dietary supplements should be tailored to each individual's unique health circumstances and needs.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Andrea Lehoczki
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
65
|
Ma YY, Li X, Yu JT, Wang YJ. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: from bench to bedside. Transl Neurodegener 2024; 13:12. [PMID: 38414054 PMCID: PMC10898075 DOI: 10.1186/s40035-024-00404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The aetiologies and origins of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), are complex and multifaceted. A growing body of evidence suggests that the gut microbiome plays crucial roles in the development and progression of neurodegenerative diseases. Clinicians have come to realize that therapeutics targeting the gut microbiome have the potential to halt the progression of neurodegenerative diseases. This narrative review examines the alterations in the gut microbiome in AD, PD, ALS and HD, highlighting the close relationship between the gut microbiome and the brain in neurodegenerative diseases. Processes that mediate the gut microbiome-brain communication in neurodegenerative diseases, including the immunological, vagus nerve and circulatory pathways, are evaluated. Furthermore, we summarize potential therapeutics for neurodegenerative diseases that modify the gut microbiome and its metabolites, including diets, probiotics and prebiotics, microbial metabolites, antibacterials and faecal microbiome transplantation. Finally, current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
| | - Xin Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China.
| |
Collapse
|
66
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
67
|
Ross FC, Mayer DE, Gupta A, Gill CIR, Del Rio D, Cryan JF, Lavelle A, Ross RP, Stanton C, Mayer EA. Existing and Future Strategies to Manipulate the Gut Microbiota With Diet as a Potential Adjuvant Treatment for Psychiatric Disorders. Biol Psychiatry 2024; 95:348-360. [PMID: 37918459 DOI: 10.1016/j.biopsych.2023.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Nutrition and diet quality play key roles in preventing and slowing cognitive decline and have been linked to multiple brain disorders. This review compiles available evidence from preclinical studies and clinical trials on the impact of nutrition and interventions regarding major psychiatric conditions and some neurological disorders. We emphasize the potential role of diet-related microbiome alterations in these effects and highlight commonalities between various brain disorders related to the microbiome. Despite numerous studies shedding light on these findings, there are still gaps in our understanding due to the limited availability of definitive human trial data firmly establishing a causal link between a specific diet and microbially mediated brain functions and symptoms. The positive impact of certain diets on the microbiome and cognitive function is frequently ascribed with the anti-inflammatory effects of certain microbial metabolites or a reduction of proinflammatory microbial products. We also critically review recent research on pro- and prebiotics and nondietary interventions, particularly fecal microbiota transplantation. The recent focus on diet in relation to brain disorders could lead to improved treatment outcomes with combined dietary, pharmacological, and behavioral interventions.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dylan E Mayer
- Institute of Human Nutrition, Columbia University, New York, New York
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland.
| | - Emeran A Mayer
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
68
|
Laske C, Müller S, Munk MHJ, Honold I, Willmann M, Peter S, Schoppmeier U. Prognostic Value of Gut Microbiome for Conversion from Mild Cognitive Impairment to Alzheimer's Disease Dementia within 4 Years: Results from the AlzBiom Study. Int J Mol Sci 2024; 25:1906. [PMID: 38339197 PMCID: PMC10855790 DOI: 10.3390/ijms25031906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Alterations in the gut microbiome are associated with the pathogenesis of Alzheimer's disease (AD) and can be used as a diagnostic measure. However, longitudinal data of the gut microbiome and knowledge about its prognostic significance for the development and progression of AD are limited. The aim of the present study was to develop a reliable predictive model based on gut microbiome data for AD development. In this longitudinal study, we investigated the intestinal microbiome in 49 mild cognitive impairment (MCI) patients over a mean (SD) follow-up of 3.7 (0.6) years, using shotgun metagenomics. At the end of the 4-year follow-up (4yFU), 27 MCI patients converted to AD dementia and 22 MCI patients remained stable. The best taxonomic model for the discrimination of AD dementia converters from stable MCI patients included 24 genera, yielding an area under the receiver operating characteristic curve (AUROC) of 0.87 at BL, 0.92 at 1yFU and 0.95 at 4yFU. The best models with functional data were obtained via analyzing 25 GO (Gene Ontology) features with an AUROC of 0.87 at BL, 0.85 at 1yFU and 0.81 at 4yFU and 33 KO [Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog] features with an AUROC of 0.79 at BL, 0.88 at 1yFU and 0.82 at 4yFU. Using ensemble learning for these three models, including a clinical model with the four parameters of age, gender, body mass index (BMI) and Apolipoprotein E (ApoE) genotype, yielded an AUROC of 0.96 at BL, 0.96 at 1yFU and 0.97 at 4yFU. In conclusion, we identified novel and timely stable gut microbiome algorithms that accurately predict progression to AD dementia in individuals with MCI over a 4yFU period.
Collapse
Affiliation(s)
- Christoph Laske
- Section for Dementia Research, Hertie Institute for Clinical Brain Research, Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Stephan Müller
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Matthias H J Munk
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Biology, Technische Universität Darmstadt, 64277 Darmstadt, Germany
| | - Iris Honold
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Matthias Willmann
- SYNLAB MVZ Leinfelden-Echterdingen GmbH, Labor Dr. Bayer, 70771 Leinfelden-Echterdingen, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrich Schoppmeier
- Institute of Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
69
|
Yue M, Zhang L. Exploring the Mechanistic Interplay between Gut Microbiota and Precocious Puberty: A Narrative Review. Microorganisms 2024; 12:323. [PMID: 38399733 PMCID: PMC10892899 DOI: 10.3390/microorganisms12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiota has been implicated in the context of sexual maturation during puberty, with discernible differences in its composition before and after this critical developmental stage. Notably, there has been a global rise in the prevalence of precocious puberty in recent years, particularly among girls, where approximately 90% of central precocious puberty cases lack a clearly identifiable cause. While a link between precocious puberty and the gut microbiota has been observed, the precise causality and underlying mechanisms remain elusive. This narrative review aims to systematically elucidate the potential mechanisms that underlie the intricate relationship between the gut microbiota and precocious puberty. Potential avenues of exploration include investigating the impact of the gut microbiota on endocrine function, particularly in the regulation of hormones, such as gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Additionally, this review will delve into the intricate interplay between the gut microbiome, metabolism, and obesity, considering the known association between obesity and precocious puberty. This review will also explore how the microbiome's involvement in nutrient metabolism could impact precocious puberty. Finally, attention is given to the microbiota's ability to produce neurotransmitters and neuroactive compounds, potentially influencing the central nervous system components involved in regulating puberty. By exploring these mechanisms, this narrative review seeks to identify unexplored targets and emerging directions in understanding the role of the gut microbiome in relation to precocious puberty. The ultimate goal is to provide valuable insights for the development of non-invasive diagnostic methods and innovative therapeutic strategies for precocious puberty in the future, such as specific probiotic therapy.
Collapse
Affiliation(s)
- Min Yue
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
70
|
Seo DO, Holtzman DM. Current understanding of the Alzheimer's disease-associated microbiome and therapeutic strategies. Exp Mol Med 2024; 56:86-94. [PMID: 38172602 PMCID: PMC10834451 DOI: 10.1038/s12276-023-01146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal progressive neurodegenerative disease. Despite tremendous research efforts to understand this complex disease, the exact pathophysiology of the disease is not completely clear. Recently, anti-Aβ antibodies have been shown to remove amyloid from the brain and slow the clinical progression of mild dementia by ~30%. However, exploring alternative strategies is crucial to understanding and developing more effective therapeutic interventions. In recent years, the microbiota-gut-brain axis has received significant attention in the AD field. Numerous studies have suggested that alterations in the gut microbiota composition are associated with the progression of AD, and several underlying mechanisms have been proposed. However, studies in this area are still in their infancy, and many aspects of this field are just beginning to be explored and understood. Gaining a deeper understanding of the intricate interactions and signaling pathways involved in the microbiota-AD interaction is crucial for optimizing therapeutic strategies targeting gut microbiota to positively impact AD. In this review, we aim to summarize the current understanding of the microbiota-gut-brain axis in AD. We will discuss the existing evidence regarding the role of gut microbiota in AD pathogenesis, suggested underlying mechanisms, biological factors influencing the microbiome-gut-brain axis in AD, and remaining questions in the field. Last, we will discuss potential therapeutic approaches to recondition the community of gut microbiota to alleviate disease progression. An ongoing exploration of the gut-brain axis and the development of microbiota-based therapies hold the potential for advancing AD management in the future.
Collapse
Affiliation(s)
- Dong-Oh Seo
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
71
|
Saha P, Weigle IQ, Slimmon N, Poli PB, Patel P, Zhang X, Cao Y, Michalkiewicz J, Gomm A, Zhang C, Tanzi RE, Dylla N, Al-Hendy A, Sisodia SS. Early modulation of the gut microbiome by female sex hormones alters amyloid pathology and microglial function. Sci Rep 2024; 14:1827. [PMID: 38246956 PMCID: PMC10800351 DOI: 10.1038/s41598-024-52246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
It is well-established that women are disproportionately affected by Alzheimer's disease. The mechanisms underlying this sex-specific disparity are not fully understood, but several factors that are often associated-including interactions of sex hormones, genetic factors, and the gut microbiome-likely contribute to the disease's etiology. Here, we have examined the role of sex hormones and the gut microbiome in mediating Aβ amyloidosis and neuroinflammation in APPPS1-21 mice. We report that postnatal gut microbiome perturbation in female APPPS1-21 mice leads to an elevation in levels of circulating estradiol. Early stage ovariectomy (OVX) leads to a reduction of plasma estradiol that is correlated with a significant alteration of gut microbiome composition and reduction in Aβ pathology. On the other hand, supplementation of OVX-treated animals with estradiol restores Aβ burden and influences gut microbiome composition. The reduction of Aβ pathology with OVX is paralleled by diminished levels of plaque-associated microglia that acquire a neurodegenerative phenotype (MGnD-type) while estradiol supplementation of OVX-treated animals leads to a restoration of activated microglia around plaques. In summary, our investigation elucidates the complex interplay between sex-specific hormonal modulations, gut microbiome dynamics, metabolic perturbations, and microglial functionality in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Piyali Saha
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Ian Q Weigle
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Nicholas Slimmon
- School of Biomedical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pedro Blauth Poli
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaoqiong Zhang
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yajun Cao
- Genomic Facility, The University of Chicago, Chicago, IL, USA
| | - Julia Michalkiewicz
- Department of Physiology and Biophysics, The University of Illinois, Chicago, IL, USA
| | - Ashley Gomm
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Can Zhang
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Rudolph E Tanzi
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Nicholas Dylla
- Duchossois Family Institute, The University of Chicago, Chicago, IL, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL, USA
| | - Sangram S Sisodia
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
72
|
Gao H, Fang B, Sun Z, Du X, Guo H, Zhao L, Zhang M. Effect of Human Milk Oligosaccharides on Learning and Memory in Mice with Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1067-1081. [PMID: 38112024 DOI: 10.1021/acs.jafc.3c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Alzheimer's disease (AD) is distinguished by cognitive dysfunction and neuroinflammation in the brain. 2'-Fucosyllactose (2'-FL) is a major human milk oligosaccharide (HMO) that is abundantly present in breast milk and has been demonstrated to exhibit immunomodulatory effects. However, the role of 2'-FL and HMO in gut microbiota modulation in relation to AD remains insufficiently investigated. This study aimed to elucidate the preventive effect of the 2'-FL and HMO impact of AD and the relevant mechanism involved. Here, the behavioral results showed that 2'-FL and HMO intervention decreased the expression of Tau phosphorylation and amyloid-β (Aβ), inhibited neuroinflammation, and restored cognitive impairment in AD mice. The metagenomic analysis proved that 2'-FL and HMO intervention restored the dysbiosis of the gut microbiota in AD. Notably, 2'-FL and HMO intervention significantly enhanced the relative abundance of Clostridium and Akkermansia. The metabolomics results showed that 2'-FL and HMO enhanced the oleoyl-l-carnitine metabolism as potential drivers. More importantly, the levels of oleoyl-l-carnitine were positively correlated with the abundances of Clostridium and Akkermansia. These results indicated that 2'-FL and HMO had therapeutic potential to prevent AD-induced cognitive impairment, which is of great significance for the treatment of AD.
Collapse
Affiliation(s)
- Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Zhe Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Du
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
73
|
Lamichhane G, Liu J, Lee SJ, Lee DY, Zhang G, Kim Y. Curcumin Mitigates the High-Fat High-Sugar Diet-Induced Impairment of Spatial Memory, Hepatic Metabolism, and the Alteration of the Gut Microbiome in Alzheimer's Disease-Induced (3xTg-AD) Mice. Nutrients 2024; 16:240. [PMID: 38257133 PMCID: PMC10818691 DOI: 10.3390/nu16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The escalating prevalence of metabolic diseases and an aging demographic has been correlated with a concerning rise in Alzheimer's disease (AD) incidence. This study aimed to access the protective effects of curcumin, a bioactive flavonoid from turmeric, on spatial memory, metabolic functions, and the regulation of the gut microbiome in AD-induced (3xTg-AD) mice fed with either a normal chow diet (NCD) or a high-fat high-sugar diet (HFHSD). Our findings revealed an augmented susceptibility of the HFHSD-fed 3xTg-AD mice for weight gain and memory impairment, while curcumin supplementation demonstrated a protective effect against these changes. This was evidenced by significantly reduced body weight gain and improved behavioral and cognitive function in the curcumin-treated group. These improvements were substantiated by diminished fatty acid synthesis, altered cholesterol metabolism, and suppressed adipogenesis-related pathways in the liver, along with modified synaptic plasticity-related pathways in the brain. Moreover, curcumin enriched beneficial gut microbiota, including Oscillospiraceae and Rikenellaceae at the family level, and Oscillibacter, Alistipes, Pseudoflavonifractor, Duncaniella, and Flintibacter at the genus level. The observed alteration in these gut microbiota profiles suggests a potential crosswalk in the liver and brain for regulating metabolic and cognitive functions, particularly in the context of obesity-associated cognitive disfunction, notably AD.
Collapse
Affiliation(s)
- Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (S.-J.L.); (D.-Y.L.)
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (G.Z.)
| | - Su-Jeong Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (S.-J.L.); (D.-Y.L.)
| | - Da-Yeon Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (S.-J.L.); (D.-Y.L.)
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (J.L.); (G.Z.)
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (G.L.); (S.-J.L.); (D.-Y.L.)
| |
Collapse
|
74
|
Koller EJ, Wood CA, Lai Z, Borgenheimer E, Hoffman KL, Jankowsky JL. Doxycycline for transgene control disrupts gut microbiome diversity without compromising acute neuroinflammatory response. J Neuroinflammation 2024; 21:11. [PMID: 38178148 PMCID: PMC10765643 DOI: 10.1186/s12974-023-03004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The tetracycline transactivator (tTA) system provides controllable transgene expression through oral administration of the broad-spectrum antibiotic doxycycline. Antibiotic treatment for transgene control in mouse models of disease might have undesirable systemic effects resulting from changes in the gut microbiome. Here we assessed the impact of doxycycline on gut microbiome diversity in a tTA-controlled model of Alzheimer's disease and then examined neuroimmune effects of these microbiome alterations following acute LPS challenge. We show that doxycycline decreased microbiome diversity in both transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite the change in microbiome composition, doxycycline treatment had minimal effect on basal transcriptional signatures of inflammation the brain or on the neuroimmune response to LPS challenge. Our findings suggest that central neuroimmune responses may be less affected by doxycycline at doses needed for transgene control than by antibiotic cocktails at doses used for experimental microbiome disruption.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Zoe Lai
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Ella Borgenheimer
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA.
- Departments of Neurology, Neurosurgery, and Molecular and Cellular Biology, Huffington Center On Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
75
|
Troci A, Philippen S, Rausch P, Rave J, Weyland G, Niemann K, Jessen K, Schmill LP, Aludin S, Franke A, Berg D, Bang C, Bartsch T. Disease- and stage-specific alterations of the oral and fecal microbiota in Alzheimer's disease. PNAS NEXUS 2024; 3:pgad427. [PMID: 38205031 PMCID: PMC10776369 DOI: 10.1093/pnasnexus/pgad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Microbial communities in the intestinal tract are suggested to impact the ethiopathogenesis of Alzheimer's disease (AD). The human microbiome might modulate neuroinflammatory processes and contribute to neurodegeneration in AD. However, the microbial compositions in patients with AD at different stages of the disease are still not fully characterized. We used 16S rRNA analyses to investigate the oral and fecal microbiota in patients with AD and mild cognitive impairment (MCI; n = 84), at-risk individuals (APOE4 carriers; n = 17), and healthy controls (n = 50) and investigated the relationship of microbial communities and disease-specific markers via multivariate- and network-based approaches. We found a slightly decreased diversity in the fecal microbiota of patients with AD (average Chao1 diversity for AD = 212 [SD = 66]; for controls = 215 [SD = 55]) and identified differences in bacterial abundances including Bacteroidetes, Ruminococcus, Sutterella, and Porphyromonadaceae. The diversity in the oral microbiota was increased in patients with AD and at-risk individuals (average Chao1 diversity for AD = 174 [SD = 60], for at-risk group = 195 [SD = 49]). Gram-negative proinflammatory bacteria including Haemophilus, Neisseria, Actinobacillus, and Porphyromonas were dominant oral bacteria in patients with AD and MCI and the abundance correlated with the cerebrospinal fluid biomarker. Taken together, we observed a strong shift in the fecal and the oral communities of patients with AD already prominent in prodromal and, in case of the oral microbiota, in at-risk stages. This indicates stage-dependent alterations in oral and fecal microbiota in AD which may contribute to the pathogenesis via a facilitated intestinal and systemic inflammation leading to neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Alba Troci
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Julius Rave
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Gina Weyland
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Katharina Niemann
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Katharina Jessen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Lars-Patrick Schmill
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Schekeb Aludin
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Thorsten Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
76
|
Wang H, Li J, Tu W, Wang Z, Zhang Y, Chang L, Wu Y, Zhang X. Identification of Blood Biomarkers Related to Energy Metabolism and Construction of Diagnostic Prediction Model Based on Three Independent Alzheimer's Disease Cohorts. J Alzheimers Dis 2024; 100:1261-1287. [PMID: 39093073 PMCID: PMC11380308 DOI: 10.3233/jad-240301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Blood biomarkers are crucial for the diagnosis and therapy of Alzheimer's disease (AD). Energy metabolism disturbances are closely related to AD. However, research on blood biomarkers related to energy metabolism is still insufficient. Objective This study aims to explore the diagnostic and therapeutic significance of energy metabolism-related genes in AD. Methods AD cohorts were obtained from GEO database and single center. Machine learning algorithms were used to identify key genes. GSEA was used for functional analysis. Six algorithms were utilized to establish and evaluate diagnostic models. Key gene-related drugs were screened through network pharmacology. Results We identified 4 energy metabolism genes, NDUFA1, MECOM, RPL26, and RPS27. These genes have been confirmed to be closely related to multiple energy metabolic pathways and different types of T cell immune infiltration. Additionally, the transcription factors INSM2 and 4 lncRNAs were involved in regulating 4 genes. Further analysis showed that all biomarkers were downregulated in the AD cohorts and not affected by aging and gender. More importantly, we constructed a diagnostic prediction model of 4 biomarkers, which has been validated by various algorithms for its diagnostic performance. Furthermore, we found that valproic acid mainly interacted with these biomarkers through hydrogen bonding, salt bonding, and hydrophobic interaction. Conclusions We constructed a predictive model based on 4 energy metabolism genes, which may be helpful for the diagnosis of AD. The 4 validated genes could serve as promising blood biomarkers for AD. Their interaction with valproic acid may play a crucial role in the therapy of AD.
Collapse
Affiliation(s)
- Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jilai Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Wenjun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Yiming Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xia Zhang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
77
|
Nystuen KL, McNamee SM, Akula M, Holton KM, DeAngelis MM, Haider NB. Alzheimer's Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering (Basel) 2024; 11:45. [PMID: 38247923 PMCID: PMC10813760 DOI: 10.3390/bioengineering11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.
Collapse
Affiliation(s)
- Kaden L. Nystuen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shannon M. McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
78
|
Ning M, An L, Dong L, Zhu R, Hao J, Liu X, Zhang Y. Causal Associations Between Gut Microbiota, Gut Microbiota-Derived Metabolites, and Alzheimer's Disease: A Multivariable Mendelian Randomization Study. J Alzheimers Dis 2024; 100:229-237. [PMID: 38788075 DOI: 10.3233/jad-240082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Background Multiple studies have demonstrated that the gut microbiome is closely related to the onset of Alzheimer's disease, but the causal relationship between the gut microbiome and AD, as well as potential mediating factors, have not been fully explored. Objective Our aim is to validate the causal relationship between the gut microbiome and the onset of AD and determine the key mechanism by which the gut microbiome mediates AD through blood metabolites using Mendelian randomization (MR) analysis methods. Methods We first conducted bidirectional and mediating MR analyses using gut microbiota, blood amino acid metabolites, and AD-related single nucleotide polymorphisms as research data. In the analysis process, the inverse variance-weighted average method was mainly used as the primary method, with other methods serving as supplementary evidence. Results Ultimately, we found that six types of gut bacteria and two blood amino acid metabolites have a causal effect on AD. Subsequent mediation analysis proved that decreased glutamine concentration mediates the negative causal effect of Holdemanella bacteria on AD (mediation ratio of 14.5%), and increased serum alanine concentration mediates the positive causal effect of Parabacteroide bacteria on AD (mediation ratio of 9.4%). Conclusions Our study demonstrates the causality of Holdemanella and Parabacteroides bacteria in the onset of AD and suggests that the reduced glutamine and increased alanine serums concentration may be key nodes in mediating this effect.
Collapse
Affiliation(s)
- Min Ning
- Department of Geriatrics, Shanghai General Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, China
| | - Lina An
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Dong
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Ranran Zhu
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Hao
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Medicine, Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
79
|
Yu B, Wan G, Cheng S, Wen P, Yang X, Li J, Tian H, Gao Y, Zhong Q, Liu J, Li J, Zhu Y. Disruptions of Gut Microbiota are Associated with Cognitive Deficit of Preclinical Alzheimer's Disease: A Cross-Sectional Study. Curr Alzheimer Res 2024; 20:875-889. [PMID: 38529601 DOI: 10.2174/0115672050303878240319054149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most prevalent type of dementia. The early change of gut microbiota is a potential biomarker for preclinical AD patients. OBJECTIVE The study aimed to explore changes in gut microbiota characteristics in preclinical AD patients, including those with Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI), and detect the correlation between gut microbiota characteristics and cognitive performances. METHODS This study included 117 participants [33 MCI, 54 SCD, and 30 Healthy Controls (HC)]. We collected fresh fecal samples and blood samples from all participants and evaluated their cognitive performance. We analyzed the diversity and structure of gut microbiota in all participants through qPCR, screened characteristic microbial species through machine learning models, and explored the correlations between these species and cognitive performances and serum indicators. RESULTS Compared to the healthy controls, the structure of gut microbiota in MCI and SCD patients was significantly different. The three characteristic microorganisms, including Bacteroides ovatus, Bifidobacterium adolescentis, and Roseburia inulinivorans, were screened based on the best classification model (HC and MCI) having intergroup differences. Bifidobacterium adolescentis is associated with better performance in multiple cognitive scores and several serum indicators. Roseburia inulinivorans showed negative correlations with the scores of the Functional Activities Questionnaire (FAQ). CONCLUSION The gut microbiota in patients with preclinical AD has significantly changed in terms of composition and richness. Correlations have been discovered between changes in characteristic species and cognitive performances. Gut microbiota alterations have shown promise in affecting AD pathology and cognitive deficit.
Collapse
Affiliation(s)
- Binbin Yu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guomeng Wan
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Shupeng Cheng
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Pengcheng Wen
- Statistics Department, Nanjing Mini Silicon Valley Innovation Group Co., Ltd, Nanjing, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Jiahuan Li
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Huifang Tian
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yaxin Gao
- Department of Rehabilitation, Suzhou Municipal Hospital, Suzhou, China
| | - Qian Zhong
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jin Liu
- Clinical Medicine Research Institution, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Li
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
80
|
Liang C, Pereira R, Zhang Y, Rojas OL. Gut Microbiome in Alzheimer's Disease: from Mice to Humans. Curr Neuropharmacol 2024; 22:2314-2329. [PMID: 39403057 PMCID: PMC11451315 DOI: 10.2174/1570159x22666240308090741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 02/23/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, but its etiopathogenesis is not yet fully understood. Recent preclinical studies and clinical evidence indicate that changes in the gut microbiome could potentially play a role in the accumulation of amyloid beta. However, the relationship between gut dysbiosis and AD is still elusive. In this review, the potential impact of the gut microbiome on AD development and progression is discussed. Pre-clinical and clinical literature exploring changes in gut microbiome composition is assessed, which can contribute to AD pathology including increased amyloid beta deposition and cognitive impairment. The gut-brain axis and the potential involvement of metabolites produced by the gut microbiome in AD are also highlighted. Furthermore, the potential of antibiotics, prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions as complementary therapies for the management of AD is summarized. This review provides valuable insights into potential therapeutic strategies to modulate the gut microbiome in AD.
Collapse
Affiliation(s)
- Chang Liang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Resel Pereira
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Olga L. Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
81
|
Geng C, Wang Z, Tang Y. Machine learning in Alzheimer's disease drug discovery and target identification. Ageing Res Rev 2024; 93:102172. [PMID: 38104638 DOI: 10.1016/j.arr.2023.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Alzheimer's disease (AD) stands as a formidable neurodegenerative ailment that poses a substantial threat to the elderly population, with no known curative or disease-slowing drugs in existence. Among the vital and time-consuming stages in the drug discovery process, disease modeling and target identification hold particular significance. Disease modeling allows for a deeper comprehension of disease progression mechanisms and potential therapeutic avenues. On the other hand, target identification serves as the foundational step in drug development, exerting a profound influence on all subsequent phases and ultimately determining the success rate of drug development endeavors. Machine learning (ML) techniques have ushered in transformative breakthroughs in the realm of target discovery. Leveraging the strengths of large dataset analysis, multifaceted data processing, and the exploration of intricate biological mechanisms, ML has become instrumental in the quest for effective AD treatments. In this comprehensive review, we offer an account of how ML methodologies are being deployed in the pursuit of drug discovery for AD. Furthermore, we provide an overview of the utilization of ML in uncovering potential intervention strategies and prospective therapeutic targets for AD. Finally, we discuss the principal challenges and limitations currently faced by these approaches. We also explore the avenues for future research that hold promise in addressing these challenges.
Collapse
Affiliation(s)
- Chaofan Geng
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - ZhiBin Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China.
| |
Collapse
|
82
|
Ye X, Zhang M, Zhang N, Wei H, Wang B. Gut-brain axis interacts with immunomodulation in inflammatory bowel disease. Biochem Pharmacol 2024; 219:115949. [PMID: 38036192 DOI: 10.1016/j.bcp.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The brain and the gastrointestinal (GI) tract are important sensory organs in the body and the two-way interaction that exists between them regulates key physiological and homeostatic functions. A growing body of research suggests that this bidirectional communication influences the development and progression of functional GI disorders and plays an important role in the treatment of central nervous system (CNS) disorders. Inflammatory bowel disease (IBD) is a classic intestinal disorder with a high prevalence but still unclear pathogenesis that has been widely discussed in recent years. However, in the studies available to date, we find that many authors have chosen to discuss the influence of the brain on intestinal disorders from the top down, starting with physical and psychological disorders. Coming very naturally, based on these substantial research evidence, we focus on exploring the links between bidirectional communication in the gut-brain axis and IBD, and highlight the role of the gut microbiota, vagus nerve (VN), receptors and immune cells involved in regulating IBD through the gut-brain axis in this review.
Collapse
Affiliation(s)
- Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China.
| |
Collapse
|
83
|
Nohesara S, Abdolmaleky HM, Thiagalingam S, Zhou JR. Gut microbiota defined epigenomes of Alzheimer's and Parkinson's diseases reveal novel targets for therapy. Epigenomics 2024; 16:57-77. [PMID: 38088063 PMCID: PMC10804213 DOI: 10.2217/epi-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| |
Collapse
|
84
|
Conn KA, Borsom EM, Cope EK. Implications of microbe-derived ɣ-aminobutyric acid (GABA) in gut and brain barrier integrity and GABAergic signaling in Alzheimer's disease. Gut Microbes 2024; 16:2371950. [PMID: 39008552 PMCID: PMC11253888 DOI: 10.1080/19490976.2024.2371950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
The gut microbial ecosystem communicates bidirectionally with the brain in what is known as the gut-microbiome-brain axis. Bidirectional signaling occurs through several pathways including signaling via the vagus nerve, circulation of microbial metabolites, and immune activation. Alterations in the gut microbiota are implicated in Alzheimer's disease (AD), a progressive neurodegenerative disease. Perturbations in gut microbial communities may affect pathways within the gut-microbiome-brain axis through altered production of microbial metabolites including ɣ-aminobutyric acid (GABA), the primary inhibitory mammalian neurotransmitter. GABA has been shown to act on gut integrity through modulation of gut mucins and tight junction proteins and may be involved in vagus nerve signal inhibition. The GABAergic signaling pathway has been shown to be dysregulated in AD, and may be responsive to interventions. Gut microbial production of GABA is of recent interest in neurological disorders, including AD. Bacteroides and Lactic Acid Bacteria (LAB), including Lactobacillus, are predominant producers of GABA. This review highlights how temporal alterations in gut microbial communities associated with AD may affect the GABAergic signaling pathway, intestinal barrier integrity, and AD-associated inflammation.
Collapse
Affiliation(s)
- Kathryn A. Conn
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily M. Borsom
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA, USA
| | - Emily K. Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
85
|
Han G, Vaishnava S. Microbial underdogs: exploring the significance of low-abundance commensals in host-microbe interactions. Exp Mol Med 2023; 55:2498-2507. [PMID: 38036729 PMCID: PMC10767002 DOI: 10.1038/s12276-023-01120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 12/02/2023] Open
Abstract
Our understanding of host-microbe interactions has broadened through numerous studies over the past decades. However, most investigations primarily focus on the dominant members within ecosystems while neglecting low-abundance microorganisms. Moreover, laboratory animals usually do not have microorganisms beyond bacteria. The phenotypes observed in laboratory animals, including the immune system, have displayed notable discrepancies when compared to real-world observations due to the diverse microbial community in natural environments. Interestingly, recent studies have unveiled the beneficial roles played by low-abundance microorganisms. Despite their rarity, these keystone taxa play a pivotal role in shaping the microbial composition and fulfilling specific functions in the host. Consequently, understanding low-abundance microorganisms has become imperative to unravel true commensalism. In this review, we provide a comprehensive overview of important findings on how low-abundance commensal microorganisms, including low-abundance bacteria, fungi, archaea, and protozoa, interact with the host and contribute to host phenotypes, with emphasis on the immune system. Indeed, low-abundance microorganisms play vital roles in the development of the host's immune system, influence disease status, and play a key role in shaping microbial communities in specific niches. Understanding the roles of low-abundance microbes is important and will lead to a better understanding of the true host-microbe relationships.
Collapse
Affiliation(s)
- Geongoo Han
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| | - Shipra Vaishnava
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
86
|
Cao B, Zeng MN, Hao FX, Hao ZY, Zhang ZK, Liang XW, Wu YY, Zhang YH, Feng WS, Zheng XK. P-coumaric acid ameliorates Aβ 25-35-induced brain damage in mice by modulating gut microbiota and serum metabolites. Biomed Pharmacother 2023; 168:115825. [PMID: 37924791 DOI: 10.1016/j.biopha.2023.115825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease for which there is a lack of effective therapeutic drugs. There is great potential for natural products to be used in the development of anti-AD drugs. P-coumaric acid (PCA), a small molecule phenolic acid widely distributed in the plant kingdom, has pharmacological effects such as neuroprotection, but its anti-AD mechanism has not been fully elucidated. In the current study, we investigated the mechanism of PCA intervention in the Aβ25-35-induced AD model using gut microbiomics and serum metabolomics combined with in vitro and in vivo pharmacological experiments. PCA was found to ameliorate cognitive dysfunction and neuronal cell damage in Aβ25-35-injected mice as measured by behavioral, pathological and biochemical indicators. 16S rDNA sequencing and serum metabolomics showed that PCA reduced the abundance of pro-inflammatory-associated microbiota (morganella, holdemanella, fusicatenibacter and serratia) in the gut, which were closely associated with metabolites of the glucose metabolism, arachidonic acid metabolism, tyrosine metabolism and phospholipid metabolism pathways in serum. Next, in vivo and in vitro pharmacological investigations revealed that PCA regulated Aβ25-35-induced disruption of glucose metabolism through activation of PI3K/AKT/Glut1 signaling. Additionally, PCA ameliorated Aβ25-35-induced neuroinflammation by inhibiting nuclear translocation of NF-κB and by modulating upstream MAPK signaling. In conclusion, PCA ameliorated cognitive deficits in Aβ25-35-induced AD mice by regulating glucose metabolism and neuroinflammation, and the mechanism is related not only to restoring homeostasis of gut microbiota and serum metabolites, but also to PI3K/AKT/Glut1 and MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Bing Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng-Nan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Feng-Xiao Hao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Zhi-You Hao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Zhen-Kai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xi-Wen Liang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuan-Yuan Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yu-Han Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, China.
| | - Xiao-Ke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, China.
| |
Collapse
|
87
|
Walker AC, Bhargava R, Bucher M, Brust AS, Czy DM. Identification of proteotoxic and proteoprotective bacteria that non-specifically affect proteins associated with neurodegenerative diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563685. [PMID: 37961318 PMCID: PMC10634778 DOI: 10.1101/2023.10.24.563685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's, Parkinson's, and Huntington's, are a leading cause of death and disability worldwide and have no known cures or effective treatments. Emerging evidence suggests a role for the gut microbiota in the pathogenesis of neurodegenerative PCDs; however, the influence of specific bacteria on the culprit proteins associated with each of these diseases remains elusive, primarily due to the complexity of the microbiota. In the present study, we employed a single-strain screening approach to identify human bacterial isolates that enhance or suppress the aggregation of culprit proteins and the associated toxicity in Caenorhabditis elegans expressing Aβ1-42, α-synuclein, and polyglutamine tracts. Here, we reveal the first comprehensive analysis of the human microbiome for its effect on proteins associated with neurodegenerative diseases. Our results suggest that bacteria affect the aggregation of metastable proteins by modulating host proteostasis rather than selectively targeting specific disease-associated proteins. These results reveal bacteria that potentially influence the pathogenesis of PCDs and open new promising prevention and treatment opportunities by altering the abundance of beneficial and detrimental microbes.
Collapse
Affiliation(s)
- Alyssa C Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Rohan Bhargava
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Michael Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Amanda S Brust
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czy
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
88
|
Chang D, Gupta VK, Hur B, Cobo-López S, Cunningham KY, Han NS, Lee I, Kronzer VL, Teigen LM, Karnatovskaia LV, Longbrake EE, Davis JM, Nelson H, Sung J. Gut Microbiome Wellness Index 2 for Enhanced Health Status Prediction from Gut Microbiome Taxonomic Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560294. [PMID: 37873265 PMCID: PMC10592848 DOI: 10.1101/2023.09.30.560294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Recent advancements in human gut microbiome research have revealed its crucial role in shaping innovative predictive healthcare applications. We introduce Gut Microbiome Wellness Index 2 (GMWI2), an advanced iteration of our original GMWI prototype, designed as a robust, disease-agnostic health status indicator based on gut microbiome taxonomic profiles. Our analysis involved pooling existing 8069 stool shotgun metagenome data across a global demographic landscape to effectively capture biological signals linking gut taxonomies to health. GMWI2 achieves a cross-validation balanced accuracy of 80% in distinguishing healthy (no disease) from non-healthy (diseased) individuals and surpasses 90% accuracy for samples with higher confidence (i.e., outside the "reject option"). The enhanced classification accuracy of GMWI2 outperforms both the original GMWI model and traditional species-level α-diversity indices, suggesting a more reliable tool for differentiating between healthy and non-healthy phenotypes using gut microbiome data. Furthermore, by reevaluating and reinterpreting previously published data, GMWI2 provides fresh insights into the established understanding of how diet, antibiotic exposure, and fecal microbiota transplantation influence gut health. Looking ahead, GMWI2 represents a timely pivotal tool for evaluating health based on an individual's unique gut microbial composition, paving the way for the early screening of adverse gut health shifts. GMWI2 is offered as an open-source command-line tool, ensuring it is both accessible to and adaptable for researchers interested in the translational applications of human gut microbiome science.
Collapse
Affiliation(s)
- Daniel Chang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vinod K Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Sergio Cobo-López
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Kevin Y Cunningham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Insuk Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Vanessa L Kronzer
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Levi M Teigen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Erin E Longbrake
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - John M Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Heidi Nelson
- Emeritus, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
89
|
Zhou Y, Xie L, Schröder J, Schuster IS, Nakai M, Sun G, Sun YBY, Mariño E, Degli-Esposti MA, Marques FZ, Grubman A, Polo JM, Mackay CR. Dietary Fiber and Microbiota Metabolite Receptors Enhance Cognition and Alleviate Disease in the 5xFAD Mouse Model of Alzheimer's Disease. J Neurosci 2023; 43:6460-6475. [PMID: 37596052 PMCID: PMC10506626 DOI: 10.1523/jneurosci.0724-23.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with poorly understood etiology. AD has several similarities with other "Western lifestyle" inflammatory diseases, where the gut microbiome and immune pathways have been associated. Previously, we and others have noted the involvement of metabolite-sensing GPCRs and their ligands, short-chain fatty acids (SCFAs), in protection of numerous Western diseases in mouse models, such as Type I diabetes and hypertension. Depletion of GPR43, GPR41, or GPR109A accelerates disease, whereas high SCFA yielding diets protect in mouse models. Here, we extended the concept that metabolite-sensing receptors and SCFAs may be a more common protective mechanism against Western diseases by studying their role in AD pathogenesis in the 5xFAD mouse model. Both male and female mice were included. Depletion of GPR41 and GPR43 accelerated cognitive decline and impaired adult hippocampal neurogenesis in 5xFAD and WT mice. Lack of fiber/SCFAs accelerated a memory deficit, whereas diets supplemented with high acetate and butyrate (HAMSAB) delayed cognitive decline in 5xFAD mice. Fiber intake impacted on microglial morphology in WT mice and microglial clustering phenotype in 5xFAD mice. Lack of fiber impaired adult hippocampal neurogenesis in both W and AD mice. Finally, maternal dietary fiber intake significantly affects offspring's cognitive functions in 5xFAD mice and microglial transcriptome in both WT and 5xFAD mice, suggesting that SCFAs may exert their effect during pregnancy and lactation. Together, metabolite-sensing GPCRs and SCFAs are essential for protection against AD, and reveal a new strategy for disease prevention.Significance Statement Alzheimer's disease (AD) is one of the most common neurodegenerative diseases; currently, there is no cure for AD. In our study, short-chain fatty acids and metabolite receptors play an important role in cognitive function and pathology in AD mouse model as well as in WT mice. SCFAs also impact on microglia transcriptome, and immune cell recruitment. Out study indicates the potential of specialized diets (supplemented with high acetate and butyrate) releasing high amounts of SCFAs to protect against disease.
Collapse
Affiliation(s)
- Yichen Zhou
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - Liang Xie
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, Victoria, Australia, 3800
| | - Jan Schröder
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Iona S Schuster
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
- Center for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia, 6009
| | - Michael Nakai
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, Victoria, Australia, 3800
| | - Guizhi Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Yu B Y Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Eliana Mariño
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia, 3800
| | - Mariapia A Degli-Esposti
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
- Center for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia, 6009
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, Victoria, Australia, 3800
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia, 6009
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia, 3800
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia, 3800
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia, 3800
| | - Charles R Mackay
- Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China, 6009
| |
Collapse
|
90
|
Hashimoto K. Emerging role of the host microbiome in neuropsychiatric disorders: overview and future directions. Mol Psychiatry 2023; 28:3625-3637. [PMID: 37845499 PMCID: PMC10730413 DOI: 10.1038/s41380-023-02287-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
The human body harbors a diverse ecosystem of microorganisms, including bacteria, viruses, and fungi, collectively known as the microbiota. Current research is increasingly focusing on the potential association between the microbiota and various neuropsychiatric disorders. The microbiota resides in various parts of the body, such as the oral cavity, nasal passages, lungs, gut, skin, bladder, and vagina. The gut microbiota in the gastrointestinal tract has received particular attention due to its high abundance and its potential role in psychiatric and neurodegenerative disorders. However, the microbiota presents in other body tissues, though less abundant, also plays crucial role in immune system and human homeostasis, thus influencing the development and progression of neuropsychiatric disorders. For example, oral microbiota imbalance and associated periodontitis might increase the risk for neuropsychiatric disorders. Additionally, studies using the postmortem brain samples have detected the widespread presence of oral bacteria in the brains of patients with Alzheimer's disease. This article provides an overview of the emerging role of the host microbiota in neuropsychiatric disorders and discusses future directions, such as underlying biological mechanisms, reliable biomarkers associated with the host microbiota, and microbiota-targeted interventions, for research in this field.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
91
|
Shan D, Wang J, Qi P, Lu J, Wang D. Non-Contrasted CT Radiomics for SAH Prognosis Prediction. Bioengineering (Basel) 2023; 10:967. [PMID: 37627852 PMCID: PMC10451737 DOI: 10.3390/bioengineering10080967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) denotes a serious type of hemorrhagic stroke that often leads to a poor prognosis and poses a significant socioeconomic burden. Timely assessment of the prognosis of SAH patients is of paramount clinical importance for medical decision making. Currently, clinical prognosis evaluation heavily relies on patients' clinical information, which suffers from limited accuracy. Non-contrast computed tomography (NCCT) is the primary diagnostic tool for SAH. Radiomics, an emerging technology, involves extracting quantitative radiomics features from medical images to serve as diagnostic markers. However, there is a scarcity of studies exploring the prognostic prediction of SAH using NCCT radiomics features. The objective of this study is to utilize machine learning (ML) algorithms that leverage NCCT radiomics features for the prognostic prediction of SAH. Retrospectively, we collected NCCT and clinical data of SAH patients treated at Beijing Hospital between May 2012 and November 2022. The modified Rankin Scale (mRS) was utilized to assess the prognosis of patients with SAH at the 3-month mark after the SAH event. Based on follow-up data, patients were classified into two groups: good outcome (mRS ≤ 2) and poor outcome (mRS > 2) groups. The region of interest in NCCT images was delineated using 3D Slicer software, and radiomic features were extracted. The most stable and significant radiomic features were identified using the intraclass correlation coefficient, t-test, and least absolute shrinkage and selection operator (LASSO) regression. The data were randomly divided into training and testing cohorts in a 7:3 ratio. Various ML algorithms were utilized to construct predictive models, encompassing logistic regression (LR), support vector machine (SVM), random forest (RF), light gradient boosting machine (LGBM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-layer perceptron (MLP). Seven prediction models based on radiomic features related to the outcome of SAH patients were constructed using the training cohort. Internal validation was performed using five-fold cross-validation in the entire training cohort. The receiver operating characteristic curve, accuracy, precision, recall, and f-1 score evaluation metrics were employed to assess the performance of the classifier in the overall dataset. Furthermore, decision curve analysis was conducted to evaluate model effectiveness. The study included 105 SAH patients. A comprehensive set of 1316 radiomics characteristics were initially derived, from which 13 distinct features were chosen for the construction of the ML model. Significant differences in age were observed between patients with good and poor outcomes. Among the seven constructed models, model_SVM exhibited optimal outcomes during a five-fold cross-validation assessment, with an average area under the curve (AUC) of 0.98 (standard deviation: 0.01) and 0.88 (standard deviation: 0.08) on the training and testing cohorts, respectively. In the overall dataset, model_SVM achieved an accuracy, precision, recall, f-1 score, and AUC of 0.88, 0.84, 0.87, 0.84, and 0.82, respectively, in the testing cohort. Radiomics features associated with the outcome of SAH patients were successfully obtained, and seven ML models were constructed. Model_SVM exhibited the best predictive performance. The radiomics model has the potential to provide guidance for SAH prognosis prediction and treatment guidance.
Collapse
Affiliation(s)
- Dezhi Shan
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; (D.S.)
- Graduate School, Peking Union Medical College, Beijing 100730, China
| | - Junjie Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; (D.S.)
| | - Peng Qi
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; (D.S.)
| | - Jun Lu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; (D.S.)
| | - Daming Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; (D.S.)
- Graduate School, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
92
|
Francos-Quijorna I, Carrasco E, Gabandé-Rodríguez E. Editorial: Molecular and epigenetic mechanisms in neuroinflammation and neurodegeneration. FRONTIERS IN AGING 2023; 4:1271714. [PMID: 37645543 PMCID: PMC10461551 DOI: 10.3389/fragi.2023.1271714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Affiliation(s)
- Isaac Francos-Quijorna
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Elisa Carrasco
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Gabandé-Rodríguez
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
93
|
Mehramiz M, Porter T, O’Brien EK, Rainey-Smith SR, Laws SM. A Potential Role for Sirtuin-1 in Alzheimer's Disease: Reviewing the Biological and Environmental Evidence. J Alzheimers Dis Rep 2023; 7:823-843. [PMID: 37662612 PMCID: PMC10473168 DOI: 10.3233/adr-220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/08/2023] [Indexed: 09/05/2023] Open
Abstract
Sirtuin-1 (Sirt1), encoded by the SIRT1 gene, is a conserved Nicotinamide adenine dinucleotide (NAD+) dependent deacetylase enzyme, considered as the master regulator of metabolism in humans. Sirt1 contributes to a wide range of biological pathways via several mechanisms influenced by lifestyle, such as diet and exercise. The importance of a healthy lifestyle is of relevance to highly prevalent modern chronic diseases, such as Alzheimer's disease (AD). There is growing evidence at multiple levels for a role of Sirt1/SIRT1 in AD pathological mechanisms. As such, this review will explore the relevance of Sirt1 to AD pathological mechanisms, by describing the involvement of Sirt1/SIRT1 in the development of AD pathological hallmarks, through its impact on the metabolism of amyloid-β and degradation of phosphorylated tau. We then explore the involvement of Sirt1/SIRT1 across different AD-relevant biological processes, including cholesterol metabolism, inflammation, circadian rhythm, and gut microbiome, before discussing the interplay between Sirt1 and AD-related lifestyle factors, such as diet, physical activity, and smoking, as well as depression, a common comorbidity. Genome-wide association studies have explored potential associations between SIRT1 and AD, as well as AD risk factors and co-morbidities. We summarize this evidence at the genetic level to highlight links between SIRT1 and AD, particularly associations with AD-related risk factors, such as heart disease. Finally, we review the current literature of potential interactions between SIRT1 genetic variants and lifestyle factors and how this evidence supports the need for further research to determine the relevance of these interactions with respect to AD and dementia.
Collapse
Affiliation(s)
- Mehrane Mehramiz
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Eleanor K. O’Brien
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
94
|
Kiani L. Early microbiome changes in neurodegenerative disease. Nat Rev Neurol 2023; 19:458. [PMID: 37402802 DOI: 10.1038/s41582-023-00848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
|