51
|
Yearsley MM, Diaz PT, Knoell D, Nuovo GJ. Correlation of HIV-1 Detection and Histology in AIDS-Associated Emphysema. ACTA ACUST UNITED AC 2005; 14:48-52. [PMID: 15714064 DOI: 10.1097/01.pas.0000142168.72253.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HIV-seropositive individuals are at an increased risk for an accelerated form of emphysema. The purpose of this study was to determine the distribution of HIV-1 RNA in lung tissues and correlate this with the histologic findings and expression of matrix metalloproteases (MMPs). Reverse transcriptase (RT) in situ PCR analysis was performed on 11 AIDS lung autopsy specimens which showed varying degrees of emphysematous changes. In each lung, HIV-1 RNA was detected. In areas of histologically normal lung, very rare HIV-1-infected cells were evident. In contrast, many HIV-1-infected cells were noted in areas of emphysema. HIV-1 gag RNA was evident primarily in macrophages; infected pneumocytes were also seen. Similarly, MMP mRNA and protein, primarily MMP-9, localized to the areas of emphysema. Colabeling experiments documented that MMP expression was found primarily in cells that were HIV-1 negative and adjacent to HIV-1-infected macrophages. These results suggest that AIDS-related emphysema may be due, in part, to direct infection by HIV-1 of, primarily, alveolar macrophages, and concomitant up-regulation of MMP expression in the neighboring, noninfected cells.
Collapse
Affiliation(s)
- Martha M Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210-1228, USA
| | | | | | | |
Collapse
|
52
|
Abstract
HIV-1, like the other lentiviruses, has evolved the ability to infect nondividing cells including macrophages. HIV-1 replication in monocytes/macrophages entails peculiar features and differs in many respects from that in CD4 T lymphocytes. HIV-1 exhibits different tropism for CD4 T cells and macrophages. The virus can enter macrophages via several routes. Mitosis is not required for nuclear import of viral DNA or for its integration into the host cell genome. Specific cellular factors are required for HIV-1 transcription in macrophages. The assembly and budding of viral particles in macrophages take place in late endosomal compartments. Viral particles can use the exosome pathway to exit cells. Given their functions in host defence against pathogens and the regulation of the immune response plus their permissivity to HIV-1 infection, monocytes/macrophages exert a dual role in HIV infection. They contribute to the establishment and persistence of HIV-1 infection, and may activate surrounding T cells favouring their infection. Furthermore, monocytes/macrophages act as a Trojan horse to transmit HIV-1 to the central nervous system. They also exhibit antiviral activity and express many molecules that inhibit HIV-1 replication. Activated microglia and macrophages may also exert a neurotrophic and neuroprotective effect on infected brain regulating glutamate metabolism or by secretion of neurotrophins. This review will discuss specific aspects of viral replication in monocytes/macrophages and the role of their interactions with the cellular environment in HIV-1 infection swinging between protection and pathogenesis.
Collapse
Affiliation(s)
- Alessia Verani
- Human Virology Unit, DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
53
|
Iordanskiy S, Zhao Y, DiMarzio P, Agostini I, Dubrovsky L, Bukrinsky M. Heat-shock protein 70 exerts opposing effects on Vpr-dependent and Vpr-independent HIV-1 replication in macrophages. Blood 2004; 104:1867-72. [PMID: 15166037 DOI: 10.1182/blood-2004-01-0081] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
HIV-1 viral protein R (Vpr) shuttles between the nucleus and the cytoplasm and is believed to contribute to the process of nuclear translocation of the viral preintegration complex, thus facilitating HIV-1 replication in macrophages. In this report, we demonstrate that Hsp70, a heat-shock protein contributing to cellular stress responses, inhibits nuclear translocation of HIV-1 Vpr. In macrophages, Hsp70 is induced shortly after HIV-1 infection. Recombinant Hsp70 or a mild heat shock diminished replication of the wild-type HIV-1, suggesting that Hsp70 might function as an innate antiviral factor. Surprisingly, Hsp70 stimulated nuclear import and replication in macrophages of the Vpr-deficient HIV-1 construct. This finding suggests that Hsp70 and Vpr may function in a similar manner when expressed separately, but they neutralize each other's activity when present together. Consistent with this interpretation, Hsp70 coprecipitated with Vpr from HIV-1–infected cells.
Collapse
|
54
|
Albright AV, Vos RM, González-Scarano F. Low-level HIV replication in mixed glial cultures is associated with alterations in the processing of p55(Gag). Virology 2004; 325:328-39. [PMID: 15246272 DOI: 10.1016/j.virol.2004.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 04/22/2004] [Accepted: 04/28/2004] [Indexed: 10/26/2022]
Abstract
We report a novel long-lived infection model in human mixed glial cultures (microglia) whereby cells harbor replication-competent HIV-1 for up to 2.5 months after infection; a model that potentially mimics latency within the central nervous system (CNS). Infection of mixed glial cultures in the presence of serum, cytokines, and growth factors (activating conditions) resulted in a robust productive infection of microglial cells as previously described for purified microglia. In contrast, similar mixed glial cells cultured in serum-free medium without cytokines or growth factors (mirroring a nonactivated CNS) supported HIV-1 entry, reverse transcription, integration, and transcription, yet released little or no infectious virus. We found instead that nonactivated mixed glial cells expressed almost 10-fold less Gag protein, but more importantly, analysis of the intracellular Gag products in quiescent cells showed an aberrant p55/p24 Gag processing phenotype that appeared to be due to the premature activity of the viral protease. These results suggest that the cellular environment in nonactivated microglia cells in these mixed glial cultures is not conducive to proper Gag processing and virus release. This long-lived infection model will be useful in identifying factors that are key for viral maturation in cells of the macrophage lineage.
Collapse
Affiliation(s)
- Andrew V Albright
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104-6146, USA
| | | | | |
Collapse
|
55
|
Fulcher JA, Hwangbo Y, Zioni R, Nickle D, Lin X, Heath L, Mullins JI, Corey L, Zhu T. Compartmentalization of human immunodeficiency virus type 1 between blood monocytes and CD4+ T cells during infection. J Virol 2004; 78:7883-93. [PMID: 15254161 PMCID: PMC446117 DOI: 10.1128/jvi.78.15.7883-7893.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distinct sequences of human immunodeficiency virus type 1 (HIV-1) have been found between different tissue compartments or subcompartments within a given tissue. Whether such compartmentalization of HIV-1 occurs between different cell populations is still unknown. Here we address this issue by comparing HIV-1 sequences in the second constant region through the fifth hypervariable region (C2 to V5) of the surface envelope glycoprotein (Env) between viruses in purified blood CD14(+) monocytes and CD4(+) T cells obtained longitudinally from five infected patients over a time period ranging from 117 to 3,409 days postseroconversion. Viral populations in both cell types at early infection time points appeared relatively homogeneous. However, later in infections, all five patients showed heterogeneous populations in both CD14(+) monocytes and CD4(+) T cells. Three of the five patients had CD14(+) monocyte populations with significantly more genetic diversity than the CD4(+) T-cell population, while the other two patients had more genetic diversity in CD4(+) T cells. The cellular compartmentalization of HIV-1 between CD14(+) monocytes and CD4(+) T cells was not seen early during infections but was evident at the later time points for all five patients, indicating an association of viral compartmentalization with the time course of HIV-1 infection. The majority of HIV-1 V3 sequences indicated a macrophage-tropic phenotype, while a V3 sequence-predicted T-cell tropic virus was found in the CD4(+) T cells and CD14(+) monocytes of two patients. These findings suggest that HIV-1 in CD14(+) monocytes could disseminate and evolve independently from that in CD4(+) T cells over the course of HIV-1 infection, which may have implications on the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer A Fulcher
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-8070, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Georgiou NA, van der Bruggen T, Oudshoorn M, de Bie P, Jansen CA, Nottet HSLM, Marx JJM, van Asbeck BS. Mechanism of inhibition of the human immunodeficiency virus type 1 by the oxygen radical generating agent bleomycin. Antiviral Res 2004; 63:97-106. [PMID: 15302138 DOI: 10.1016/j.antiviral.2004.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Accepted: 03/18/2004] [Indexed: 11/29/2022]
Abstract
Alternative targets of attack of the human immunodeficiency virus (HIV) are necessary in light of infection persistence due to onset of resistance after conventional reverse transcriptase and protease inhibitor therapy. We have recently shown that the cancer chemotherapeutic agent bleomycin (BLM) dose-dependently inhibits HIV-1 replication. The mechanism of this viral inhibition in vitro was investigated. Cell-free wild-type virions were affected directly by BLM in the presence of H2O2, as shown by a 38% decrease of viral infectivity. Viral inhibition by BLM did not proceed via NF-kappaB inhibition. The viral R/U5 DNA product was reduced by 70% without any effect on reverse transcriptase activity. In both a cell-free system as well as two-cell systems the antiviral dependence of BLM on iron and oxidant species was demonstrated. Bleomycin seems to inhibit HIV-1 replication through the same properties that make it a suitable anti-cancer agent. The results presented in this study describe a novel mechanism of HIV-1 inhibition with potential application in viral infections. The anti-HIV effects of BLM in patients receiving this drug in combination with HAART should be carefully monitored in order to evaluate the clinical significance of the findings described in this study.
Collapse
Affiliation(s)
- Niki A Georgiou
- Eijkman-Winkler Center for Microbiology, Infectious Diseases and Inflammation, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Serhan F, Penaud M, Petit C, Leste-Lasserre T, Trajcevski S, Klatzmann D, Duisit G, Sonigo P, Moullier P. Early detection of a two-long-terminal-repeat junction molecule in the cytoplasm of recombinant murine leukemia virus-infected cells. J Virol 2004; 78:6190-9. [PMID: 15163712 PMCID: PMC416496 DOI: 10.1128/jvi.78.12.6190-6199.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We showed that a U5-U3 junction was reproducibly detected by a PCR assay as early as 1 to 2 h postinfection with a DNase-treated murine leukemia virus (MLV)-containing supernatant in aphidicolin-arrested NIH 3T3 cells, as well as in nonarrested cells. Such detection is azidothymidine sensitive and corresponded to neosynthesized products of the reverse transcriptase. This observation was confirmed in two additional human cell lines, TE671 and ARPE-19. Using cell fractionation combined with careful controls, we found that a two-long-terminal-repeat (two-LTR) junction molecule was detectable in the cytoplasm as early as 2 h post virus entry. Altogether, our data indicated that the neosynthesized retroviral DNA led to the early formation of structures including true two-LTR junctions in the cytoplasm of MLV-infected cells. Thus, the classical assumption that two-LTR circles are a mitosis-dependent dead-end product accumulating in the nucleus must be reconsidered. MLV-derived products containing a two-LTR junction can no longer be used as an exclusive surrogate for the preintegration complex nuclear translocation event.
Collapse
Affiliation(s)
- Fatima Serhan
- INSERM ERM 0-105, CHU Hôtel-Dieu, 30 blvd. Jean Monnet, 44035 Nantes Cedex 01, France
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Knox KS, Day RB, Wood KL, Kohli LL, Hage CA, Foresman BH, Schnizlein-Bick CT, Twigg HL. Macrophages exposed to lymphotropic and monocytotropic HIV induce similar CTL responses despite differences in productive infection. Cell Immunol 2004; 229:130-8. [PMID: 15474527 DOI: 10.1016/j.cellimm.2004.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
Macrophages are accessory cells that are vulnerable to infection by HIV-1. HTLV-IIIB, a lymphotropic strain of HIV, infects macrophages poorly resulting in either no or low levels of virus expression compared to high levels of productive infection after exposure of macrophages to the monocytotropic HIV strain Ada-M. Whether this results in an impaired ability of HTLV-IIIB-exposed macrophages to initiate protective cytotoxic T lymphocyte (CTL) immune responses against these strains is not well defined. We investigated the ability of monocyte-derived macrophages (MDM) exposed to lymphotropic and monocytotropic HIV strains to initiate primary CTL responses in vitro. MDM exposed to HTLV-IIIB induced a specific primary CTL response that was comparable to MDM exposed to the monocytotropic strain Ada-M despite marked differences in productive HIV infection in MDM between the two strains. CTL generated in this model were MHC-restricted, strain-specific, and CD8+. These data demonstrate that high levels of productive HIV infection in accessory cells are not a prerequisite for the generation of a primary CTL response, suggesting a novel immunologic interaction between MDM and lymphotropic HIV strains.
Collapse
Affiliation(s)
- Kenneth S Knox
- Division of Pulmonary/Critical Care Medicine and Infectious Diseases, Department of Medicine, Indiana University Medical Center, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Schmitz C, Marchant D, Neil SJD, Aubin K, Reuter S, Dittmar MT, McKnight A. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J Virol 2004; 78:2006-16. [PMID: 14747565 PMCID: PMC369432 DOI: 10.1128/jvi.78.4.2006-2016.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 11/01/2003] [Indexed: 11/20/2022] Open
Abstract
The characterization of restrictions to lentivirus replication in cells identifies critical steps in the viral life cycle and potential therapeutic targets. We previously reported that a human immunodeficiency virus type 2 (HIV-2) isolate was restricted to infection in some human cells, which led us to identify a step in the life cycle of HIV-2 detected after reverse transcription but prior to nuclear entry. The block is bypassed with a vesicular stomatitis virus glycoprotein G (VSV-G) envelope (A. McKnight et al., J. Virol. 75:6914-6922, 2001). We hypothesized that, although the restriction is apparent at a post-reverse transcription step, the lack of progress results from a failure of the virus to reach a cellular compartment with access to the nucleus. Here we analyzed molecular clones of the restricted virus, MCR, and an unrestricted virus, MCN. Using sequence analysis and gene swapping, we mapped the viral determinants to gag and env. Site-directed mutagenesis identified a single amino acid at position 207 in CA to be responsible for the gag restriction. Pseudotype experiments indicate that this step is also important for the infection of cells by HIV-1. The HIV-1 NL4.3 core is restricted if supplied with a restricted MCR envelope but not with VSV-G. Also the NL4.3 envelope rescues the restricted core of HIV-2 MCR. Abrogation experiments with MLV demonstrate that the restriction is distinct from Fv1/Ref1/Lv1. We propose that this represents a new lentiviral restriction, Lv2. Thus, the envelope and capsid of HIV act to ensure that the virus is delivered into an appropriate cellular compartment that allows postentry events in viral replication to proceed efficiently.
Collapse
Affiliation(s)
- Christian Schmitz
- Wohl Virion Centre, Windeyer Institute of Medical Sciences, UCL, London W1T 4JF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
60
|
Rogez C, Martin M, Dereuddre-Bosquet N, Martal J, Dormont D, Clayette P. Anti-human immunodeficiency virus activity of tau interferon in human macrophages: involvement of cellular factors and beta-chemokines. J Virol 2004; 77:12914-20. [PMID: 14610214 PMCID: PMC262570 DOI: 10.1128/jvi.77.23.12914-12920.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tau interferon (IFN-tau) is a noncytotoxic type I IFN responsible for maternal recognition of the fetus in ruminants. IFN-tau inhibits human immunodeficiency virus (HIV) replication more strongly than human IFN-alpha, particularly in human monocyte-derived macrophages. In this study performed in human macrophages, IFN-tau efficiently inhibited the early steps of the biological cycle of HIV, decreasing intracellular HIV RNA and inhibiting the initiation of the reverse transcription of viral RNA into proviral DNA. Two mechanisms induced by IFN-tau treatment in macrophages may account for this inhibition: (i) the synthesis of the cellular antiviral factors such as 2',5'-oligoadenylate synthetase/RNase L and MxA protein and (ii) an increased production of MIP-1alpha, MIP-1beta, and RANTES, which are natural ligands of CCR5, the principal coreceptor of HIV on macrophages. Our results suggest that IFN-tau induces the same antiviral pathways in macrophages as other type I IFNs but without associated toxicity.
Collapse
Affiliation(s)
- Christine Rogez
- Service de Neurovirologie. SPI-BIO, c/o Service de Neurovirologie, CEA, CRSSA, Université Paris Sud, EPHE, IPSC, Fontenay-aux-Roses, France
| | | | | | | | | | | |
Collapse
|
61
|
Suzuki Y, Misawa N, Sato C, Ebina H, Masuda T, Yamamoto N, Koyanagi Y. Quantitative analysis of human immunodeficiency virus type 1 DNA dynamics by real-time PCR: integration efficiency in stimulated and unstimulated peripheral blood mononuclear cells. Virus Genes 2003; 27:177-88. [PMID: 14501196 DOI: 10.1023/a:1025732728195] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We established a set of real-time PCR assay to accurately quantify human immunodeficiency virus type 1 (HIV-1) DNA in infected cells. Using this assay we were able to measure the strong-stop, full-length/ 1-LTR circle, 2-LTR circle, and integrated forms of viral DNA, and the data provided was quite consistent with the characteristics of mutant viruses in early phase of infection. Since our assay is particularly applicable to quantify the integrated DNA in small scale of samples, we measured the level of integrated DNA in wild-type virus (WT)- or Vpr-defective virus (deltaVpr)-infected peripheral blood mononuclear cells (PBMC), and examined whether quiescent condition of the PBMC influences integration step of HIV-1. Under stimulating condition approximately 25% of total viral DNA was in integrated form in either WT- or DeltaVpr-infected cells. In contrast, under unstimulated condition the level of integration efficiency was not significantly reduced in WT-infected cells, while this efficiency was severely impaired in the absence of vpr gene. This result clearly demonstrated a crucial role of the Vpr for nuclear localization and subsequent integration of viral DNA in nondividing cells. Therefore, our assay is useful for analyzing the events in early phase of HIV-1 infection under various conditions.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
62
|
Gross E, Amella CA, Pompucci L, Franchin G, Sherry B, Schmidtmayerova H. Macrophages and lymphocytes differentially modulate the ability of RANTES to inhibit HIV-1 infection. J Leukoc Biol 2003; 74:781-90. [PMID: 12960233 DOI: 10.1189/jlb.0403187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The beta-chemokines MIP-1alpha, MIP-1beta, and RANTES inhibit HIV-1 infection of CD4+ T cells by inhibiting interactions between the virus and CCR5 receptors. However, while beta-chemokine-mediated inhibition of HIV-1 infection of primary lymphocytes is well documented, conflicting results have been obtained using primary macrophages as the virus target. Here, we show that the beta-chemokine RANTES inhibits virus entry into both cellular targets of the virus, lymphocytes and macrophages. However, while virus entry is inhibited at the moment of infection in both cell types, the amount of virus progeny is lowered only in lymphocytes. In macrophages, early-entry restriction is lost during long-term cultivation, and the amount of virus produced by RANTES-treated macrophages is similar to the untreated cultures, suggesting an enhanced virus replication. We further show that at least two distinct cellular responses to RANTES treatment in primary lymphocytes and macrophages contribute to this phenomenon. In lymphocytes, exposure to RANTES significantly increases the pool of inhibitory beta-chemokines through intracellular signals that result in increased production of MIP-1alpha and MIP-1beta, thereby amplifying the antiviral effects of RANTES. In macrophages this amplification step does not occur. In fact, RANTES added to the macrophages is efficiently cleared from the culture, without inducing synthesis of beta-chemokines. Our results demonstrate dichotomous effects of RANTES on HIV-1 entry at the moment of infection, and on production and spread of virus progeny in primary macrophages. Since macrophages serve as a reservoir of HIV-1, this may contribute to the failure of endogenous chemokines to successfully eradicate the virus.
Collapse
Affiliation(s)
- Eleanore Gross
- Immunology and Inflammation Center, North Shore-LIJ Research Institute, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
63
|
Golding H, Aliberti J, King LR, Manischewitz J, Andersen J, Valenzuela J, Landau NR, Sher A. Inhibition of HIV-1 infection by a CCR5-binding cyclophilin from Toxoplasma gondii. Blood 2003; 102:3280-6. [PMID: 12855560 DOI: 10.1182/blood-2003-04-1096] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activation of murine dendritic cells by Toxoplasma gondii has recently been shown to depend on a parasite protein that signals through the chemokine receptor CCR5. Here we demonstrate that this molecule, cyclophilin-18 (C-18), is an inhibitor of HIV-1 cell fusion and infection with cell-free virus. T gondii C-18 efficiently blocked syncytium formation between human T cells and effector cells expressing R5 but not X4 envelopes. Neither human nor Plasmodium falciparum cyclophilins possess such inhibitory activity. Importantly, C-18 protected peripheral blood leukocytes from infection with multiple HIV-1 R5 primary isolates from several clades. C-18 bound directly to human CCR5, and this interaction was partially competed by the beta-chemokine macrophage inflammatory protein 1 beta (MIP-1 beta) and by HIV-1 R5 gp120. In contrast to several other antagonists of HIV coreceptor function, C-18 mediated inhibition did not induce beta-chemokines or cause CCR5 downmodulation, suggesting direct blocking of envelope binding to the receptor. These data support the further development of C-18 derivatives as HIV-1 inhibitors for preventing HIV-1 transmission and for postexposure prophylaxis.
Collapse
Affiliation(s)
- Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bldg 29A, Rm 1A21, 8800 Rockville Pike, Bethesda, MD, 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Truong LX, Luong TT, Scott-Algara D, Versmisse P, David A, Perez-Bercoff D, Nguyen NV, Tran HK, Cao CT, Fontanet A, Follézou JY, Theodorou I, Barré-Sinoussi F, Pancino G. CD4 cell and CD8 cell-mediated resistance to HIV-1 infection in exposed uninfected intravascular drug users in Vietnam. AIDS 2003; 17:1425-34. [PMID: 12824779 DOI: 10.1097/00002030-200307040-00002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify mechanisms of resistance to HIV-1 infection in exposed uninfected individuals. DESIGN We examined in-vitro cell susceptibility to HIV-1 infection in highly exposed Vietnamese intravascular drug users (IDU) who, despite a history of more than 10 years of drug use and a high prevalence of other blood-borne viral infections, remain apparently HIV uninfected. METHODS Forty-five exposed uninfected IDU and 50 blood donors were included in the study. Peripheral blood mononuclear cells (PBMC) or CD4 cell susceptibilities to HIV infection were evaluated using three HIV-1 isolates with different tropisms. Polymerase chain reaction analysis of HIV-1-DNA replication intermediates was used to characterize the restriction of HIV-1 replication in CD4 cells. Homologous CD8 cells were mixed with infected CD4 cells to evaluate their role in virus suppression. RESULTS We observed a relative resistance to PBMC infection with HIV-1 in 21 out of 45 exposed uninfected IDU, but only in five out of 50 unexposed controls (P < 0.001). PBMC resistance was related either to an inhibition of HIV-1 replication in CD4 cells or to CD8 cell-mediated viral suppression. HIV-1 replication in CD4 cells was restricted at the early stages of the viral cycle. CONCLUSION Reduced PBMC susceptibility to HIV-1 infection was associated with resistance to infection in exposed uninfected IDU. Distinct mechanisms are involved in in-vitro resistance and may contribute to the apparent protection from HIV-1 transmission in this systemically exposed population.
Collapse
Affiliation(s)
- Lien X Truong
- Institut Pasteur and bHôpital Binh-Trieu, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bahr GM, Darcissac ECA, Mouton Y. Discordant effects of interleukin-2 on viral and immune parameters in human immunodeficiency virus-1-infected monocyte-derived mature dendritic cells. Clin Exp Immunol 2003; 132:289-96. [PMID: 12699419 PMCID: PMC1808691 DOI: 10.1046/j.1365-2249.2003.02143.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2003] [Indexed: 11/20/2022] Open
Abstract
Use of interleukin-2 (IL-2) in the immunotherapy of human immunodeficiency virus (HIV) has frequently resulted in the restoration of CD4 lymphocyte counts but not of virus-specific responses. We reasoned that the absence of reconstituted functional immune parameters could be related to the inability of IL-2 to correct HIV-induced dysfunctions in antigen-presenting cells. In this study, we used in vitro-differentiated monocyte-derived macrophages (MDMs) and mature dendritic cells (MDDCs), acutely infected with primary HIV-1 isolates, to analyse the effects of IL-2 on virus replication, co-receptor expression, and cytokine or chemokine release. Stimulation of MDMs with IL-2 had no measurable effect on HIV-1 replication, on cytokine secretion, or on CD4 and CXCR4 gene expression. Moreover, although a significant down-regulation of CCR5 mRNA expression could be repeatedly detected in MDMs, this IL-2-mediated effect was not of substantial magnitude to affect virus replication. On the other hand, IL-2 stimulation of MDDCs dramatically increased HIV-1 replication and this effect was highly evident on low-replicating, CXCR4-dependent isolates. Nevertheless, the HIV-enhancing activity of IL-2 in MDDCs was not accompanied by any measurable change in cytokine or chemokine release, in virus receptor and co-receptor mRNA accumulation, or in the surface expression of a battery of receptors implicated in virus entry, cell activation or costimulatory function. Taken together, these findings point to a role for IL-2 in inducing virus purging from dendritic cell reservoirs but indicate no relevant potential of the cytokine in restoring defective elements of innate immunity in HIV infection.
Collapse
Affiliation(s)
- G M Bahr
- Laboratoire d'Immunologie Moléculaire de l'Infection et de l'Inflammation, Institut Pasteur de Lille, Lille, France.
| | | | | |
Collapse
|
66
|
Perez-Bercoff D, David A, Sudry H, Barré-Sinoussi F, Pancino G. Fcgamma receptor-mediated suppression of human immunodeficiency virus type 1 replication in primary human macrophages. J Virol 2003; 77:4081-94. [PMID: 12634367 PMCID: PMC150663 DOI: 10.1128/jvi.77.7.4081-4094.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Permissiveness of monocytes and macrophages to human immunodeficiency virus (HIV) infection is modulated by various stimuli. In this study we demonstrate that stimulation of primary monocytes and monocyte-derived macrophages (MDM) through the receptors for the Fc portion of immunoglobulin G (IgG) (FcgammaR) inhibits HIV type 1 (HIV-1) replication. Viral p24 production was decreased by 1.5 to 3 log units in MDM infected with both R5 and X4 HIV-1 strains upon stimulation by immobilized IgG but not upon stimulation by soluble IgG or by F(ab')(2) IgG fragments. Although MDM activation by immobilized IgG induced high levels of macrophage-derived chemokine secretion as well as a sustained down-regulation of CD4 and a transient decrease in CCR5 expression, these factors did not appear to play a major role in the suppression of HIV-1 replication. Single-cycle infection of FcgammaR-stimulated MDM with HIV-1 virions pseudotyped with either HIV-1 R5 or vesicular stomatitis virus G envelopes was inhibited, suggesting a postentry restriction of viral replication. PCR analyses of HIV-1 DNA intermediate replication forms suggested that reverse transcription is not affected by stimulation with immobilized human IgG, at least during the first replication cycle. The accumulation of PCR products corresponding to nuclear unintegrated two-long-terminal-repeat circles and the relative decrease of integrated HIV-1 DNA signals suggest an inhibition of proviral integration. Our data, showing that FcgammaR-mediated activation of MDM is a potent mechanism of HIV-1 suppression, raise the possibility that FcgammaR cross-linking by immune complexes may contribute to the control of viral replication in macrophages.
Collapse
|
67
|
von Lindern JJ, Rojo D, Grovit-Ferbas K, Yeramian C, Deng C, Herbein G, Ferguson MR, Pappas TC, Decker JM, Singh A, Collman RG, O'Brien WA. Potential role for CD63 in CCR5-mediated human immunodeficiency virus type 1 infection of macrophages. J Virol 2003; 77:3624-33. [PMID: 12610138 PMCID: PMC149503 DOI: 10.1128/jvi.77.6.3624-3633.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages and CD4(+) lymphocytes are the principal target cells for human immunodeficiency virus type 1 (HIV-1) infection, but the molecular details of infection may differ between these cell types. During studies to identify cellular molecules that could be involved in macrophage infection, we observed inhibition of HIV-1 infection of macrophages by monoclonal antibody (MAb) to the tetraspan transmembrane glycoprotein CD63. Pretreatment of primary macrophages with anti-CD63 MAb, but not MAbs to other macrophage cell surface tetraspanins (CD9, CD81, and CD82), was shown to inhibit infection by several R5 and dualtropic strains, but not by X4 isolates. The block to productive infection was postfusion, as assessed by macrophage cell-cell fusion assays, but was prior to reverse transcription, as determined by quantitative PCR assay for new viral DNA formation. The inhibitory effects of anti-CD63 in primary macrophages could not be explained by changes in the levels of CD4, CCR5, or beta-chemokines. Infections of peripheral blood lymphocytes and certain cell lines were unaffected by treatment with anti-CD63, suggesting that the role of CD63 in HIV-1 infection may be specific for macrophages.
Collapse
Affiliation(s)
- Jana J von Lindern
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Chowdhury IH, Bentsman G, Choe W, Potash MJ, Volsky DJ. The macrophage response to HIV-1: Intracellular control of X4 virus replication accompanied by activation of chemokine and cytokine synthesis. J Neurovirol 2002; 8:599-610. [PMID: 12476353 DOI: 10.1080/13550280290100923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During human immunodeficiency virus (HIV)-1 infection, T lymphocytes and macrophages play dual roles. They are the primary targets for virus replication, but they are also primary effector cells in acquired and innate immunity, respectively. The authors are now investigating how these roles come together in the response of human monocyte-derived macrophages (MDM) to certain HIV-1. The authors and others have previously shown that MDM permit entry of some X4 virus strains, but control viral replication intracellularly. In the present study, viral DNA synthesis, entry into the nucleus, and transcription to RNA were all observed in X4 virus-infected MDM. MDM arrested HIV-1 replication prior to expression of mature capsid antigen p24 and production of cell-free infectious viral particles. Cell-associated transmissible HIV-1 was detected by cocultivation of infected MDM and susceptible T lymphocytes. A second protective response of MDM to specific R5 as well as X4 HIV-1 was identified in rapid and extensive secretion of tumor necrosis factor-alpha, macrophage inflammatory protein-1alpha, and RANTES. These findings support the view that MDM act aggressively to control HIV-1 replication: X4 strains by severely limiting the progeny virus production and R5 strains by producing beta-chemokines competent to block virus entry into target cells. Optimizing these innate immune responses offers another means to control HIV-1 infection in the human host.
Collapse
Affiliation(s)
- Iqbal H Chowdhury
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | |
Collapse
|
69
|
Lin YL, Mettling C, Portales P, Reynes J, Clot J, Corbeau P. Cell surface CCR5 density determines the postentry efficiency of R5 HIV-1 infection. Proc Natl Acad Sci U S A 2002; 99:15590-5. [PMID: 12434015 PMCID: PMC137761 DOI: 10.1073/pnas.242134499] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have recently reported that the mean number of CCR5 coreceptors at the surface of CD4(+) T cells (CCR5 density) correlates with viral load and disease progression in HIV-1-infected persons. Here, we definitively establish that CCR5 density determines the level of virus production and identify the stages of HIV-1 replicative cycle modulated by this effect. We show, by transducing the CCR5 gene into CCR5(+) cells, that CCR5 overexpression resulted in an HIV-1 overinfectability. We sorted HOS-CD4(+)-CCR5(+) cells into two subpopulations, HOS(high) and HOS(low), the former expressing seven times more cell surface CCR5 molecules than the latter. Virus production was 30-80 times higher in HOS(high) cells than in HOS(low) cells after a single round of infection. In contrast, only twice as many viral particles entered the cytosol of HOS(high) cells as compared with the cytosol of HOS(low) cells. Yet, seven times as many early, and 24 times as many late, reverse transcription products were found in HOS(high) cells as compared with HOS(low) cells. Moreover, a 24- to 30-fold difference in the number of copies of integrated HIV-1 DNA was observed. No difference in HIV-1 LTR activation between the two cell lines was evident. Finally, we show that the higher virus production observed in HOS(high) cells is inhibited by pertussis toxin, a Galphai protein inhibitor. Thus, CCR5 density mainly modulates postentry steps of the virus life cycle, particularly the reverse transcription. These data explain why CCR5 density influences HIV-1 disease progression and underline the therapeutic interest of lowering CCR5 expression.
Collapse
Affiliation(s)
- Yea-Lih Lin
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1142, Laboratoire d'Immunologie de l'Hôpital Saint Eloi, France
| | | | | | | | | | | |
Collapse
|
70
|
Vicenzi E, Panina‐Bodignon P, Vallanti G, Di Lucia P, Poli G. Restricted replication of primary HIV‐1 isolates using both CCR5 and CXCR4 in Th2 but not in Th1 CD4
+
T cells. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.5.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Elisa Vicenzi
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; and
| | | | - Giuliana Vallanti
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; and
| | | | - Guido Poli
- AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy; and
| |
Collapse
|
71
|
Lane BR, Liu J, Bock PJ, Schols D, Coffey MJ, Strieter RM, Polverini PJ, Markovitz DM. Interleukin-8 and growth-regulated oncogene alpha mediate angiogenesis in Kaposi's sarcoma. J Virol 2002; 76:11570-83. [PMID: 12388718 PMCID: PMC136744 DOI: 10.1128/jvi.76.22.11570-11583.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of the complex neoplasm Kaposi's sarcoma is dependent on infection with the Kaposi's sarcoma-associated herpesvirus (KSHV) and appears to be greatly enhanced by cytokines and human immunodeficiency virus type 1 (HIV-1) Tat. Interleukin-8 (IL-8) and growth-regulated oncogene alpha (GRO-alpha) are chemokines involved in chemoattraction, neovascularization, and stimulation of HIV-1 replication. We have previously demonstrated that production of GRO-alpha is stimulated by exposure of monocyte-derived macrophages (MDM) to HIV-1. Here we show that exposure of MDM to HIV-1, viral Tat, or viral gp120 leads to a substantial increase in IL-8 production. We also demonstrate that IL-8 and GRO-alpha are induced by KSHV infection of endothelial cells and are crucial to the angiogenic phenotype developed by KSHV-infected endothelial cells in cell culture and upon implantation into SCID mice. Thus, the three known etiological factors in Kaposi's sarcoma pathogenesis-KSHV, HIV-1 Tat, and cellular growth factors-might be linked, in part, through induction of IL-8 and GRO-alpha.
Collapse
Affiliation(s)
- Brian R Lane
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0640, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Kornbluth RS. An expanding role for CD40L and other tumor necrosis factor superfamily ligands in HIV infection. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:787-801. [PMID: 12427285 DOI: 10.1089/152581602760404595] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Immunostimulatory members of the tumor necrosis factor (TNF) superfamily (TNFSF) of ligands are known to be important regulators of the immune system. These trimeric molecules interact with members of the TNF receptor superfamily (TNFRSF) to stimulate immune cells. Of the TNFSF molecules, CD40 ligand (CD40L, also called CD154 or TNFSF5) is the most crucial molecule for activating antigen-presenting cells (APCs) and thereby initiating the immune response. Evidence has accrued indicating that HIV infection either selectively depletes those CD4(+) T cells that express CD40L in response to antigen or down-regulates CD40L expression by these cells. Because CD40L expression is necessary for the immune defense against HIV and opportunistic infections, an insufficiency of CD40L could contribute to the progression of AIDS. CD40L contributes to the antiviral mechanisms of the host by inducing anti-HIV beta-chemokines and activating CD8(+) T cells. However, CD40L stimulation can lead to enhanced HIV replication under certain experimental conditions, due to its immune activating properties and the need for cellular activation for high-level HIV production. On balance, it is believed that reversing the relative CD40L deficiency seen in HIV infection will be important for immune restoration in AIDS. In addition, adding CD40L to a therapeutic or preventative vaccine could lead to strengthened antiviral immunity. Because of the complexities in delivering this molecule, a number of forms of CD40L have been developed, and one form of soluble CD40L has been tested in humans. New strategies are being developed to translate the profoundly immunostimulatory effects of CD40L found in animal models to humans with HIV infection.
Collapse
Affiliation(s)
- Richard S Kornbluth
- University of California, San Diego, and the San Diego Veterans Affairs Healthcare System, La Jolla 92093, USA.
| |
Collapse
|
73
|
Harada T, Tsunetsugu-Yokota Y, Koyanagi Y, Sata T, Kurata T, Kojima A. Role of nucleotide sequences in the V3 region in efficient replication of CCR5-utilizing human immunodeficiency virus type 1 in macrophages. Virology 2002; 299:192-203. [PMID: 12202222 DOI: 10.1006/viro.2002.1521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Macrophages express both CXCR4 and CCR5 coreceptors, but restrict X4 HIV-1 replication unless the Env-V3 region, a major determinant of cell tropism, is exchanged with that of R5 HIV-1. As the V3 exchange concomitantly alters the nucleotide sequences, we introduced silent mutations in the V3 or C2 region of macrophage-tropic R5 JRFL without changing the amino acids. Immunoblot analysis confirmed that viral proteins including Env-gp120 were similarly incorporated in wild-type (wt) and mutant virions. The silent mutants infected CCR5-positive MAGIC5 cells but not CCR5-negative MAGI cells, as productively as wt viruses, indicating that the silent mutations did not alter coreceptor utilization. In contrast, two of three silent V3-mutant viruses failed to replicate efficiently in primary macrophages, whereas other V3- or C2-mutants and wt JRFL infected macrophages productively. Furthermore, synthesis of the full-length viral DNA of the aberrant V3-mutant was largely reduced in macrophages. These results suggest that V3 nucleotide sequences may be one of the postentry factors restricting HIV-1 replication in macrophages.
Collapse
Affiliation(s)
- Takayuki Harada
- Department of Pathology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, Roberts J, Pushkarsky T, Bukrinsky M, Witte M, Weinand M, Fiala M. Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 2002; 76:6689-700. [PMID: 12050382 PMCID: PMC136265 DOI: 10.1128/jvi.76.13.6689-6700.2002] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brain microvascular endothelial cells (BMVECs) present an incomplete barrier to human immunodeficiency virus type 1 (HIV-1) neuroinvasion. In order to clarify the mechanisms of HIV-1 invasion, we have examined HIV-1 uptake and transcellular penetration in an in vitro BMVEC model. No evidence of productive infection was observed by luciferase, PCR, and reverse transcriptase assays. Approximately 1% of viral RNA and 1% of infectious virus penetrated the BMVEC barrier without disruption of tight junctions. The virus upregulated ICAM-1 on plasma membranes and in cytoplasmic vesiculotubular structures. HIV-1 virions were entangled by microvilli and were taken into cytoplasmic vesicles through surface invaginations without fusion of the virus envelope with the plasma membrane. Subsequently, the cytoplasmic vesicles fused with lysosomes, the virions were lysed, and the vesicles diminished in size. Upon cell entry, HIV-1 colocalized with cholera toxin B, which targets lipid raft-associated GM1 ganglioside. Cholesterol-extracting agents, cyclodextrin and nystatin, and polyanion heparin significantly inhibited virus entry. Anti-CD4 had no effect and the chemokine AOP-RANTES had only a slight inhibitory effect on virus entry. HIV-1 activated the mitogen-activated protein kinase (MAPK) pathway, and inhibition of MAPK/Erk kinase inhibited virus entry. Entry was also blocked by dimethylamiloride, indicating that HIV-1 enters endothelial cells by macropinocytosis. Therefore, HIV-1 penetrates BMVECs in ICAM-1-lined macropinosomes by a mechanism involving lipid rafts, MAPK signaling, and glycosylaminoglycans, while CD4 and chemokine receptors play limited roles in this process.
Collapse
Affiliation(s)
- Nancy Q Liu
- Department of Medicine, Greater Los Angeles VA Medical Center, 675 Young Drive South, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Serhan F, Jourdan N, Saleun S, Moullier P, Duisit G. Characterization of producer cell-dependent restriction of murine leukemia virus replication. J Virol 2002; 76:6609-17. [PMID: 12050374 PMCID: PMC136263 DOI: 10.1128/jvi.76.13.6609-6617.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Accepted: 03/21/2002] [Indexed: 11/20/2022] Open
Abstract
We previously reported that the human bronchocarcinoma cell line A549 produces poorly infectious gibbon ape leukemia virus-pseudotyped Moloney murine leukemia virus (MLV). In contrast, similar amounts of virions recovered from human fibrosarcoma HT1080 cells result in 10-fold-higher transduction rates (G. Duisit, A. Salvetti, P. Moullier, and F. Cosset, Hum. Gene Ther. 10:189-200, 1999). We have now extended this initial observation to other type-C envelope (Env) pseudotypes and analyzed the mechanism involved. Structural and morphological analysis showed that viral particles recovered from A549 (A549-MLV) and HT1080 (HT1080-MLV) cells were normal and indistinguishable from each other. They expressed equivalent levels of mature Env proteins and bound similarly to the target cells. Furthermore, incoming particles reached the cytosol and directed the synthesis of linear viral DNA equally efficiently. However, almost no detectable circular DNAs could be detected in A549-MLV-infected cells, indicating that the block of infection resulted from defective nuclear translocation of the preintegration complex. Interestingly, pseudotyping of A549-MLV with vesicular stomatitis virus glycoprotein G restored the amount of circular DNA forms as well as the transduction rates to HT1080-MLV levels, suggesting that the postentry blockage could be overcome by endocytic delivery of the core particles downstream of the restriction point. Thus, in contrast to the previously described target cell-dependent Fv-1 (or Fv1-like) restriction in mammalian cells (P. Pryciak and H. E. Varmus, J. Virol. 66:5959-5966, 1992; G. Towers, M. Bock, S. Martin, Y. Takeuchi, J. P. Stoye, and O. Danos, Proc. Natl. Acad. Sci. USA 97:12295-12299, 2000), we report here a new restriction of MLV replication that relies only on the producer cell type.
Collapse
Affiliation(s)
- Fatima Serhan
- Laboratoire de Thérapie Génique, INSERM ERM 0-105, CHU Hotel Dieu, 30 boulevard Jean Monnet, 44035 Nantes Cedex 01, France
| | | | | | | | | |
Collapse
|
76
|
Gorry PR, Taylor J, Holm GH, Mehle A, Morgan T, Cayabyab M, Farzan M, Wang H, Bell JE, Kunstman K, Moore JP, Wolinsky SM, Gabuzda D. Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol 2002; 76:6277-92. [PMID: 12021361 PMCID: PMC136234 DOI: 10.1128/jvi.76.12.6277-6292.2002] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Most human immunodeficiency virus type 1 (HIV-1) viruses in the brain use CCR5 as the principal coreceptor for entry into a cell. However, additional phenotypic characteristics are necessary for HIV-1 neurotropism. Furthermore, neurotropic strains are not necessarily neurovirulent. To better understand the determinants of HIV-1 neurovirulence, we isolated viruses from brain tissue samples from three AIDS patients with dementia and HIV-1 encephalitis and analyzed their ability to induce syncytia in monocyte-derived macrophages (MDM) and neuronal apoptosis in primary brain cultures. Two R5X4 viruses (MACS1-br and MACS1-spln) were highly fusogenic in MDM and induced neuronal apoptosis. The R5 viruses UK1-br and MACS2-br are both neurotropic. However, only UK1-br induced high levels of fusion in MDM and neuronal apoptosis. Full-length Env clones from UK1-br required lower CCR5 and CD4 levels than Env clones from MACS2-br to function efficiently in cell-to-cell fusion and single-round infection assays. UK1-br Envs also had a greater affinity for CCR5 than MACS2-br Envs in binding assays. Relatively high levels of UK1-br and MACS2-br Envs bound to CCR5 in the absence of soluble CD4. However, these Envs could not mediate CD4-independent infection, and MACS2-br Envs were unable to mediate fusion or infection in cells expressing low levels of CD4. The UK1-br virus was more resistant than MACS2-br to inhibition by the CCR5-targeted inhibitors TAK-779 and Sch-C. UK1-br was more sensitive than MACS2-br to neutralization by monoclonal antibodies (2F5 and immunoglobulin G1b12 [IgG1b12]) and CD4-IgG2. These results predict the presence of HIV-1 variants with increased CCR5 affinity and reduced dependence on CCR5 and CD4 in the brains of some AIDS patients with central nervous system disease and suggest that R5 variants with increased CCR5 affinity may represent a pathogenic viral phenotype contributing to the neurodegenerative manifestations of AIDS.
Collapse
Affiliation(s)
- Paul R Gorry
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Affiliation(s)
- A Brelot
- INSERM, Département de Biologie Cellulaire, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, 75014 Paris, France
| | | |
Collapse
|
78
|
Fiala M, Gujuluva C, Berger O, Bukrinsky M, Kim KS, Graves MC. Chemokine receptors on brain endothelia--keys to HIV-1 neuroinvasion? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 493:35-40. [PMID: 11727778 DOI: 10.1007/0-306-47611-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- M Fiala
- Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
79
|
Popik W, Alce TM, Au WC. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4(+) T cells. J Virol 2002; 76:4709-22. [PMID: 11967288 PMCID: PMC136131 DOI: 10.1128/jvi.76.10.4709-4722.2002] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we describe a crucial role of lipid raft-colocalized receptors in the entry of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T cells. We show that biochemically isolated detergent-resistant fractions have characteristics of lipid rafts. Lipid raft integrity was required for productive HIV-1 entry as determined by (i) semiquantitative PCR analysis and (ii) single-cycle infectivity assay using HIV-1 expressing the luciferase reporter gene and pseudotyped with HIV-1 HXB2 envelope or vesicular stomatitis virus envelope glycoprotein (VSV-G). Depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin (MbetaCD) relocalized raft-resident markers to a nonraft environment but did not significantly change the surface expression of HIV-1 receptors. MbetaCD treatment inhibited productive infection of HIV-1 by 95% as determined by luciferase activity in cells infected with HXB2 envelope-pseudotyped virus. In contrast, infection with VSV-G-pseudotyped virus, which enters the cells through an endocytic pathway, was not suppressed. Biochemical fractionation and confocal imaging of HIV-1 receptor distribution in live cells demonstrated that CD4, CCR5, and CXCR4 colocalized with raft-resident markers, ganglioside GM1, and glycosylphosphatidylinositol-anchored CD48. While confocal microscopy analysis revealed that HIV-1 receptors localized most likely to the same lipid microdomains, sucrose gradient analysis of the receptor localization showed that, in contrast to CD4 and CCR5, CXCR4 was associated preferentially with the nonraft membrane fraction. The binding of HIV-1 envelope gp120 to lipid rafts in the presence, but not in the absence, of cholesterol strongly supports our hypothesis that raft-colocalized receptors are directly involved in virus entry. Dramatic changes in lipid raft and HIV-1 receptor redistribution were observed upon binding of HIV-1 NL4-3 to PM1 T cells. Colocalization of CCR5 with GM1 and gp120 upon engagement of CD4 and CXCR4 by HIV-1 further supports our observation that HIV-1 receptors localize to the same lipid rafts in PM1 T cells.
Collapse
Affiliation(s)
- Waldemar Popik
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | | | |
Collapse
|
80
|
Tuttle DL, Anders CB, Aquino-De Jesus MJ, Poole PP, Lamers SL, Briggs DR, Pomeroy SM, Alexander L, Peden KWC, Andiman WA, Sleasman JW, Goodenow MM. Increased replication of non-syncytium-inducing HIV type 1 isolates in monocyte-derived macrophages is linked to advanced disease in infected children. AIDS Res Hum Retroviruses 2002; 18:353-62. [PMID: 11897037 DOI: 10.1089/088922202753519133] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-syncytium-inducing (NSI) strains of HIV-1 prevail among most infected children, including pediatric patients who develop advanced disease, severe immune suppression, and die. A study was designed to address the hypothesis that genotypic and/or phenotypic markers can distinguish NSI viruses isolated during early infection from NSI viruses found in advanced disease. Primary HIV-1 isolates, which were obtained from 43 children, adolescents, and adults who displayed a cross-section of clinical disease and immune suppression but were untreated by protease inhibitor antiretroviral therapy, were characterized for replication phenotype in different cell types. Most individuals (81%) harbored NSI viruses and almost half had progressed to advanced disease or severe immune deficiency. About 51% of NSI isolates produced low levels of p24 antigen (median, 142 pg/ml) in monocyte-derived macrophages (MDMs), 31% produced medium levels (median, 1584 pg/ml), and 17% produced high levels (median, 81,548 pg/ml) (p < 0.001). Seven of eight syncytium-inducing isolates also replicated in MDMs and displayed a dual-tropic phenotype that was associated with advanced disease. Replication of NSI viruses in MDMs varied as much as 100- to 1000-fold and was independent of replication in peripheral blood mononuclear cells. Replication in MDMs provided a clear biological feature to distinguish among viruses that were otherwise identical by NSI phenotype, V3 genotype, and CCR5 coreceptor usage. Low-level MDM replication was characteristic of viruses isolated from asymptomatic individuals, including long-term survivors. Enhanced MDM replication was related to morbidity and mortality among patients. Replication levels in MDMs provide a novel prognostic indicator of pathogenic potential by NSI viruses.
Collapse
Affiliation(s)
- Daniel L Tuttle
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Agostini I, Popov S, Hao T, Li JH, Dubrovsky L, Chaika O, Chaika N, Lewis R, Bukrinsky M. Phosphorylation of Vpr regulates HIV type 1 nuclear import and macrophage infection. AIDS Res Hum Retroviruses 2002; 18:283-8. [PMID: 11860675 DOI: 10.1089/088922202753472856] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is a small accessory protein that regulates nuclear import of the viral preintegration complex and facilitates infection of nondividing cells, such as macrophages. Studies demonstrated that a fraction of Vpr molecules is phosphorylated in the virions and in HIV-1-infected cells, but the role of phosphorylation in nuclear import activity of Vpr has not been established. We found that Vpr is phosphorylated predominantly on the serine residue in position 79, and mutations affecting Vpr phosphorylation significantly attenuated viral replication in macrophages, but not in activated T lymphocytes or cell lines. The replication defect was mapped by polymerase chain reaction analysis to the step of nuclear import. These results suggest that phosphorylation of Vpr regulates its activity in the nuclear import of the HIV-1 preintegration complex.
Collapse
Affiliation(s)
- Isabelle Agostini
- Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Bakri Y, Mannioui A, Ylisastigui L, Sanchez F, Gluckman JC, Benjouad A. CD40-activated macrophages become highly susceptible to X4 strains of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 2002; 18:103-13. [PMID: 11839143 DOI: 10.1089/08892220252779647] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activating cells of the immune system may stimulate human immunodeficiency virus type 1 (HIV-1) replication and contribute to select pathogenic variants in vivo. Here, we examined the possible effect of a major pathway of immune activation, CD40 interaction with its ligand (CD40L), on the susceptibility of monocyte-derived macrophages (MDMs) to various HIV-1 strains. Stimulation of MDMs with CD40L led to reduced replication of R5 HIV-1(Ba-L), whereas this strongly enhanced the replication of X4 HIV-1(Lai) as well as of X4 primary isolates, and this was associated with strong cytopathic effects. The replication of X4 strains was inhibited by stromal cell-derived factor 1, an indication of the restricted usage of CXCR4 as virus coreceptor in this case. CD40L induced the activation of mitogen-activated protein kinases ERK1/ERK2 and stimulated MDMs to secrete RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, interleukin 6 (IL-6), IL-1beta, and tumor necrosis factor alpha. From this data, it may be hypothesized that activated macrophages represent a favorable environment for the replication of classically T lymphocyte-tropic X4 variants and, thus, may contribute significantly to the selection of such variants at late stages of clinical HIV-1 infection.
Collapse
Affiliation(s)
- Youssef Bakri
- Institut National de la Santé et de la Recherche Médicale EPI-0013, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 75571 Paris Cedex 12, France.
| | | | | | | | | | | |
Collapse
|
83
|
Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D. Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 2001; 75:10073-89. [PMID: 11581376 PMCID: PMC114582 DOI: 10.1128/jvi.75.21.10073-10089.2001] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Accepted: 07/18/2001] [Indexed: 01/16/2023] Open
Abstract
The viral determinants that underlie human immunodeficiency virus type 1 (HIV-1) neurotropism are unknown, due in part to limited studies on viruses isolated from brain. Previous studies suggest that brain-derived viruses are macrophage tropic (M-tropic) and principally use CCR5 for virus entry. To better understand HIV-1 neurotropism, we isolated primary viruses from autopsy brain, cerebral spinal fluid, blood, spleen, and lymph node samples from AIDS patients with dementia and HIV-1 encephalitis. Isolates were characterized to determine coreceptor usage and replication capacity in peripheral blood mononuclear cells (PBMC), monocyte-derived macrophages (MDM), and microglia. Env V1/V2 and V3 heteroduplex tracking assay and sequence analyses were performed to characterize distinct variants in viral quasispecies. Viruses isolated from brain, which consisted of variants that were distinct from those in lymphoid tissues, used CCR5 (R5), CXCR4 (X4), or both coreceptors (R5X4). Minor usage of CCR2b, CCR3, CCR8, and Apj was also observed. Primary brain and lymphoid isolates that replicated to high levels in MDM showed a similar capacity to replicate in microglia. Six of 11 R5 isolates that replicated efficiently in PBMC could not replicate in MDM or microglia due to a block in virus entry. CD4 overexpression in microglia transduced with retroviral vectors had no effect on the restricted replication of these virus strains. Furthermore, infection of transfected cells expressing different amounts of CD4 or CCR5 with M-tropic and non-M-tropic R5 isolates revealed a similar dependence on CD4 and CCR5 levels for entry, suggesting that the entry block was not due to low levels of either receptor. Studies using TAK-779 and AMD3100 showed that two highly M-tropic isolates entered microglia primarily via CXCR4. These results suggest that HIV-1 tropism for macrophages and microglia is restricted at the entry level by a mechanism independent of coreceptor specificity. These findings provide evidence that M-tropism rather than CCR5 usage predicts HIV-1 neurotropism.
Collapse
Affiliation(s)
- P R Gorry
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
In situ amplification permits the histological localization of low-copy DNA and RNA targets. However, in many instances it would be useful to know the specific phenotype of the target-containing cell or to ascertain the distribution of a different nucleic acid sequence in the same tissue section. This review describes a methodology that allows co-in situ localization of two nucleic acid targets or a DNA/RNA sequence and a protein in paraffin-embedded, formalin-fixed tissue. The key variable for detection of low-copy RNA targets by RT in situ PCR is optimal protease digestion to permit cDNA target-specific incorporation of the reporter nucleotide. This is achieved via inactivation of nonspecific DNA synthesis by overnight DNase digestion. The key variable for immunohistochemical localization of proteins is to determine the effect of protease digestion on the antigen-based signal intensity. Background for DNA targets by in situ hybridization or, for targets present in 1-10 copies per cell, PCR ISH is dependent primarily on probe concentration and the stringency of the post-hybridization wash. Radioactive 3H-labeled nucleotides permit an excellent distinction with colorimetric signals for co-localization, although two distinct chromogens can in many instances allow successful localization of two different targets.
Collapse
Affiliation(s)
- G J Nuovo
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| |
Collapse
|
85
|
Maréchal V, Prevost MC, Petit C, Perret E, Heard JM, Schwartz O. Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J Virol 2001; 75:11166-77. [PMID: 11602756 PMCID: PMC114696 DOI: 10.1128/jvi.75.22.11166-11177.2001] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whereas human immunodeficiency virus (HIV) infects various cell types by fusion at the plasma membrane, we observed a different entry route in human primary macrophages, in which macropinocytosis is active. Shortly after exposure of macrophages to HIV-1 and irrespective of viral envelope-receptor interactions, particles were visible in intracellular vesicles, which were identified as macropinosomes. Most virions appeared subsequently degraded. However, fusion leading to capsid release in the cytosol and productive infection could take place inside vesicles when particles were properly enveloped. These observations provide new insights into HIV-1 interactions with a cell target relevant to pathogenesis. They may have implications for the design of soluble inhibitors aimed at interfering with the fusion or entry processes.
Collapse
Affiliation(s)
- V Maréchal
- Unité Rétrovirus et Transfert Génétique, URA CNRS 1930, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
86
|
Bannert N, Farzan M, Friend DS, Ochi H, Price KS, Sodroski J, Boyce JA. Human Mast cell progenitors can be infected by macrophagetropic human immunodeficiency virus type 1 and retain virus with maturation in vitro. J Virol 2001; 75:10808-14. [PMID: 11602722 PMCID: PMC114662 DOI: 10.1128/jvi.75.22.10808-10814.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mast cells are critical components of innate and adaptive immunity that differentiate in tissues in situ from circulating committed progenitor cells. We now demonstrate that human cord blood-derived mast cell progenitors are susceptible to infection with macrophagetropic (M-tropic) and dualtropic human immunodeficiency virus type 1 (HIV-1) isolates but not with T-cell-tropic (T-tropic) strains. Mast cell progenitors (c-kit(+) CD13(+) cells with chloroacetate esterase activity) were purified from 4-week-old cultures of cord blood mononuclear cells maintained in stem cell factor, interleukin-6 (IL-6), and IL-10 using a CD14 depletion column. These progenitors expressed CCR3, CCR5, and CXCR4, as well as low levels of CD4. When infected in vitro with viruses pseudotyped with different HIV and simian immunodeficiency virus envelope glycoproteins, only M-tropic and dualtropic, but not T-tropic, viruses were able to enter mast cell progenitors. Both the CCR5-specific monoclonal antibody 2D7 and TAK-779, a nonpeptide inhibitor of CCR5-mediated viral entry, blocked HIV-1 strain ADA infection by >80%. Cultures infected with replication-competent virus produced progressively increasing amounts of virus for 21 days as indicated by p24 antigen detection. Mast cell progenitors that were exposed to an M-tropic, green fluorescent protein-expressing HIV-1 strain exhibited fluorescence indicative of viral entry and replication on a single-cell level and retained virus production during differentiation. The trafficking of mast cell progenitors to multiple tissues, combined with the long life span of mature mast cells, suggests that they could provide a widespread and persistent HIV reservoir in AIDS.
Collapse
Affiliation(s)
- N Bannert
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Vyakarnam A, Eyeson J, Teo I, Zuckerman M, Babaahmady K, Schuitemaker H, Shaunak S, Rostron T, Rowland-Jones S, Simmons G, Clapham P. Evidence for a post-entry barrier to R5 HIV-1 infection of CD4 memory T cells. AIDS 2001; 15:1613-26. [PMID: 11546935 DOI: 10.1097/00002030-200109070-00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV-1 strains R5 and X4 can infect CD4 memory T cells in vivo. Anti-CD3/28 stimulation induces beta-chemokines and CCR5 down-regulation and renders these cells resistant to R5 HIV-1 infection. Here we describe an additional cellular mechanism that blocks productive R5 HIV-1 infection of CD4 memory T cells. METHODS Blood-derived CD4 memory T cells and CD4 T-cell clones were infected with primary R5 and X4 HIV-1 strains. Virus replication was correlated with CCR5 expression and beta-chemokine production. Virus entry and infectivity were measured by PCR for early and late products of HIV reverse transcription respectively. RESULTS R5 strains were up to 1000-fold less infectious than X4 viruses for CD4 memory T cells. This resistance was independent of CCR5 levels and of the Delta-32 mutation and the CCR2-V64I/CCR5-59653T linked mutations. Blocking endogenous beta-chemokines relieved minimally this restriction. At the single cell level, CD4 memory cells were either permissive or non-permissive for R5 HIV-1 infection. R5 HIV titre was up to 10-fold lower than X4 virus titre even in a permissive clone. However, R5 viruses replicated as efficiently as X4 viruses in the permissive clone when neutralizing anti-beta chemokine antibodies were added. Non-permissive cells blocked a post-entry step of the virus life-cycle and expressed early but not late HIV transcripts. Neutralizing anti-beta chemokine antibodies promoted R5 virus replication marginally in the non-permissive clone. CONCLUSION Some blood memory CD4 T cells retard R5 HIV-1 replication via endogenous beta-chemokines whereas others block productive R5 HIV-1 infection by an additional mechanism that interferes with a post-entry step of the virus life cycle. These natural barriers might contribute to lower pathogenicity of R5 HIV-1 strains for CD4 memory T cells than X4 viruses that emerge late in disease.
Collapse
Affiliation(s)
- A Vyakarnam
- Department of Immunology, GKT School of Medicine and Dentistry, The Rayne Institute, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Zhuge W, Jia F, Mackay G, Kumar A, Narayan O. Antibodies that neutralize SIV(mac)251 in T lymphocytes cause interruption of the viral life cycle in macrophages by preventing nuclear import of viral DNA. Virology 2001; 287:436-45. [PMID: 11531420 DOI: 10.1006/viro.2001.1053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous reports from our lab had shown that sera obtained from SIV(mac)-infected animals neutralized SIV(mac) infectivity in CD4(+) T cells but failed to protect monkey primary macrophages from infection with the virus. However, the antibodies could inhibit completion of the viral life cycle in the macrophages at the postentry stage(s). In this report we examined the mechanisms of the late effect of the antibodies. Using monoclonal antibodies (MAbs), we demonstrated that only antibodies to the SIV envelope protein (KK17 and KK42) but not antibody to the viral core protein (FA2) had the same inhibitory effect as that of the anti-SIV sera. To identify the stage of the viral replication cycle that was inhibited by anti-SIV antibodies in macrophages, we used various PCR techniques to study viral entry/reverse transcription (by amplifying the viral gag gene), viral genome nuclear transport (by amplifying 2-LTR circular forms), viral integration (by Alu-PCR assay), and viral protein expression (by RIPA). We found that in macrophage cultures inoculated with SIV(mac)251 that were preincubated with antienvelope MAbs, viral DNA was detected at 8 h postinoculation but the 2-LTR circular forms and integrated viral DNAs were undetectable, and viral proteins were not expressed in these infected macrophages. These results strongly suggested that anti-SIV antibodies inhibited SIV(mac) replication in macrophages by blocking nuclear transport of viral genomes since viral DNA could not be detected in the nuclei of treated cultures. Furthermore, we showed that although viral replication in macrophages was interrupted by the antibodies, when cocultured with permissive T cells, the viral genomes presented in the cytoplasm of the macrophages could readily transfer to T cells during cell-cell contact. Importantly, this transfer could not be prevented by the antibodies. These results might explain the failure of passive antibody immunization against SIV(mac)251--a critical obstacle in AIDS vaccine development.
Collapse
Affiliation(s)
- W Zhuge
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160-7424, USA.
| | | | | | | | | |
Collapse
|
89
|
McKnight A, Griffiths DJ, Dittmar M, Clapham P, Thomas E. Characterization of a late entry event in the replication cycle of human immunodeficiency virus type 2. J Virol 2001; 75:6914-22. [PMID: 11435571 PMCID: PMC114419 DOI: 10.1128/jvi.75.15.6914-6922.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 05/08/2001] [Indexed: 12/13/2022] Open
Abstract
Certain human cell lines and primary macrophage cultures are restricted to infection by some primary isolates of human immunodeficiency virus type 2 (HIV-2), although early steps of the viral life cycle such as fusion at the plasma membrane and reverse transcription are fully supported. The late postintegration events, transcription, translation, assembly, budding, and maturation into infectious virions are functional in restrictive cells. Apart from primary macrophages, the restrictive cell types are actively dividing, and nuclear import of preintegration complexes (PICs) is not required for infection. We therefore postulate that the PICs are trapped in a cellular compartment, preventing subsequent steps in the replication cycle that lead to integration of the provirus. To test this we showed that HIV-2 particles pseudotyped with vesicular stomatitis virus envelope G protein, which delivers HIV into an endocytic compartment, could overcome the block to infection. We suggest that delivery of the viral core into an appropriate cellular compartment is a critical step during the entry process of HIV.
Collapse
Affiliation(s)
- McKnight A
- Wohl Virion Centre, Windeyer Institute of Medical Sciences, University College London, London W1T 4JF, United Kingdom.
| | | | | | | | | |
Collapse
|
90
|
Tokunaga K, Greenberg ML, Morse MA, Cumming RI, Lyerly HK, Cullen BR. Molecular basis for cell tropism of CXCR4-dependent human immunodeficiency virus type 1 isolates. J Virol 2001; 75:6776-85. [PMID: 11435556 PMCID: PMC114404 DOI: 10.1128/jvi.75.15.6776-6785.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory isolates of human immunodeficiency virus type 1 (HIV-1) that utilize CXCR4 as a coreceptor infect primary human macrophages inefficiently even though these express a low but detectable level of cell surface CXCR4. In contrast, infection of primary macrophages by primary CXCR4-tropic HIV-1 isolates is readily detectable. Here, we provide evidence suggesting that this difference in cell tropism results from a higher requirement for cell surface CXCR4 for infection by laboratory HIV-1 isolates. Transfected COS7 cells that express a high level of CD4 but a low level of CXCR4 were infected significantly more efficiently by two primary CXCR4-tropic HIV-1 isolates compared to the prototypic laboratory HIV-1 isolate IIIB. More importantly, overexpression of either wild-type or signaling-defective CXCR4 on primary macrophages dramatically enhanced the efficiency of infection by the laboratory HIV-1 isolate yet only modestly enhanced infection by either primary CXCR4-tropic virus. Overexpression of CD4 had, in contrast, only a limited effect on macrophage infection by the laboratory HIV-1, although infection by the primary isolates was markedly enhanced. We therefore conclude that the laboratory CXCR4-tropic HIV-1 isolate exhibits a significantly higher CXCR4 requirement for efficient infection than do the primary CXCR4-tropic isolates and that this difference can explain the poor ability of the laboratory HIV-1 isolate to replicate in primary macrophages. More generally, we propose that the cell tropisms displayed by different strains of HIV-1 in culture can largely be explained on the basis of differential requirements for cell surface CD4 and/or coreceptor expression levels.
Collapse
Affiliation(s)
- K Tokunaga
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
91
|
Lane BR, Strieter RM, Coffey MJ, Markovitz DM. Human immunodeficiency virus type 1 (HIV-1)-induced GRO-alpha production stimulates HIV-1 replication in macrophages and T lymphocytes. J Virol 2001; 75:5812-22. [PMID: 11390582 PMCID: PMC114296 DOI: 10.1128/jvi.75.13.5812-5822.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We examined the early effects of infection by CCR5-using (R5 human immunodeficiency virus [HIV]) and CXCR4-using (X4 HIV) strains of HIV type 1 (HIV-1) on chemokine production by primary human monocyte-derived macrophages (MDM). While R5 HIV, but not X4 HIV, replicated in MDM, we found that the production of the C-X-C chemokine growth-regulated oncogene alpha (GRO-alpha) was markedly stimulated by X4 HIV and, to a much lesser extent, by R5 HIV. HIV-1 gp120 engagement of CXCR4 initiated the stimulation of GRO-alpha production, an effect blocked by antibodies to CXCR4. GRO-alpha then fed back and stimulated HIV-1 replication in both MDM and lymphocytes, and antibodies that neutralize GRO-alpha or CXCR2 (the receptor for GRO-alpha) markedly reduced viral replication in MDM and peripheral blood mononuclear cells. Therefore, activation of MDM by HIV-1 gp120 engagement of CXCR4 initiates an autocrine-paracrine loop that may be important in disease progression after the emergence of X4 HIV.
Collapse
Affiliation(s)
- B R Lane
- Department of Internal Medicine, Divisions of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109-0640, USA
| | | | | | | |
Collapse
|
92
|
Singh A, Yi Y, Isaacs SN, Kolson DL, Collman RG. Concordant utilization of macrophage entry coreceptors by related variants within an HIV type 1 primary isolate viral swarm. AIDS Res Hum Retroviruses 2001; 17:957-63. [PMID: 11461681 DOI: 10.1089/088922201750290078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is considerable diversity among HIV-1 strains in terms of their ability to use entry coreceptors on macrophages, especially CXCR4, but it is not known whether virus-specific differences exist among related members of a viral swarm. Defining how entry coreceptors on primary target cells are utilized by the spectrum of HIV-1 variants that emerge in vivo is important for understanding the relationship between coreceptor selectivity and pathogenesis. HIV-1 89.6(PI) is a dual-tropic primary isolate, and the prototype 89.6-cloned R5X4 Env uses both CXCR4 and CCR5 on macrophages. We generated a panel of env clones from the 89.6(PI) quasispecies and found a mixture of R5, R5X4, and X4 variants on the basis of fusion and infection of coreceptor-transfected cell lines. Here we address the use of macrophage coreceptors by these related Envs by analyzing fusion and infection of primary monocyte-derived macrophages mediated specifically through each coreceptor. All R5X4 Envs utilized both CXCR4 and CCR5 on macrophages, while R5 variants used CCR5 only. One variant characterized in cell lines as X4 used both CXCR4 and CCR5 on macrophages. No Env variant fused with macrophages through alternative coreceptor pathways. Thus, there was heterogeneity in coreceptor use among the related Env variants, but use of each coreceptor specifically in macrophages was consistent among members of the viral swarm. Coreceptor use in transfected cells generally predicted use in primary macrophages, although for some Envs macrophages may be a more sensitive indicator of CCR5 use than transfected cell lines.
Collapse
Affiliation(s)
- A Singh
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
93
|
Neil S, Martin F, Ikeda Y, Collins M. Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol 2001; 75:5448-56. [PMID: 11356951 PMCID: PMC114256 DOI: 10.1128/jvi.75.12.5448-5456.2001] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the monocyte lineage can be infected with human immunodeficiency virus type 1 (HIV-1) both during clinical infection and in vitro. The ability of HIV-1-based vectors to transduce human monocytes, monocyte-derived macrophages, and dendritic cells (DCs) was therefore examined, in order to develop an efficient protocol for antigen gene delivery to human antigen-presenting cells. Freshly isolated monocytes were refractory to HIV-1-based vector transduction but became transducible after in vitro differentiation to mature macrophages. This maturation-dependent transduction was independent of the HIV-1 accessory proteins Vif, Vpr, Vpu, and Nef in the packaging cells and of the central polypurine tract in the vector, and it was also observed with a vesicular stomatitis virus-pseudotyped HIV-1 provirus, defective only in envelope and Nef. The level and extent of reverse transcription of the HIV-1-based vector was similar after infection of immature monocytes and of mature macrophages. However, 2LTR vector circles could not be detected in monocytes, suggesting a block to vector nuclear entry in these cells. Transduction of freshly isolated monocytes exposed to HIV-1-based vector could be rescued by subsequent differentiation into DCs. This rescue was induced by fetal calf serum in the DC culture medium, which promoted vector nuclear entry.
Collapse
Affiliation(s)
- S Neil
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
94
|
Pushkarsky T, Zybarth G, Dubrovsky L, Yurchenko V, Tang H, Guo H, Toole B, Sherry B, Bukrinsky M. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A 2001; 98:6360-5. [PMID: 11353871 PMCID: PMC33473 DOI: 10.1073/pnas.111583198] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclophilin A (CyPA) is specifically incorporated into the virions of HIV-1 and has been shown to enhance significantly an early step of cellular HIV-1 infection. Our preliminary studies implicated CD147 as a receptor for extracellular CyPA. Here, we demonstrate a role for CyPA-CD147 interaction during the early steps of HIV-1 infection. Expression of human CD147 increased infection by HIV-1 under one-cycle conditions. However, susceptibility to infection by viruses lacking CyPA (simian immunodeficiency virus or HIV-1 produced in the presence of cyclosporin A) was unaffected by CD147. Virus-associated CyPA coimmunoprecipitated with CD147 from infected cells. Antibody to CD147 inhibited HIV-1 entry as evidenced by the delay in translocation of the HIV-1 core proteins from the membrane and inhibition of viral reverse transcription. Viruses whose replication did not require CyPA (SIV or mutant HIV-1) were resistant to the inhibitory effect of anti-CD147 antibody. These results suggest that HIV-1 entry depends on an interaction between virus-associated CyPA and CD147 on a target cell.
Collapse
Affiliation(s)
- T Pushkarsky
- The Picower Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Bakri Y, Schiffer C, Zennou V, Charneau P, Kahn E, Benjouad A, Gluckman JC, Canque B. The maturation of dendritic cells results in postintegration inhibition of HIV-1 replication. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3780-8. [PMID: 11238620 DOI: 10.4049/jimmunol.166.6.3780] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Maturation of dendritic cells (DC) is known to result in decreased capacity to produce HIV due to postentry block of its replicative cycle. In this study, we compared the early phases of this cycle in immature DC (iDC) and mature DC (mDC) generated from monocytes cultured with GM-CSF and IL-4, trimeric CD40 ligand (DC(CD40LT)), or monocyte-conditioned medium (DC(MCM)) being added or not from day 5. Culture day 8 cells exposed to X4 HIV-1(LAI) or R5 HIV-1(Ba-L) were analyzed by semiquantitative R-U5 PCR, which detects total HIV DNA. CXC chemokine receptor 4(low) (CXCR4(low)) CCR5(+) iDC harbored similar viral DNA amounts when exposed to either strain. HIV-1(LAI) entered more efficiently into DC(CD40LT) or DC(MCM) with up-regulated CXCR4. CCR5(low) DC(CD40LT) still allowed entry of HIV-1(Ba-L), whereas CCR5(-) DC(MCM) displayed reduced permissivity to this virus. Comparing amounts of late (long terminal repeat (LTR)-gag PCR) and total (R-U5 PCR) viral DNA products showed that HIV-1(Ba-L) reverse transcription was more efficient than that of HIV-1(LAI), but was not affected by DC maturation. Southern blot detection of linear, circular, and integrated HIV DNA showed that maturation affected neither HIV-1 nuclear import nor integration. When assessing virus transcription by exposing iDC to pNL4-3.GFP or pNL4-3.Luc viruses pseudotyped with the G protein of vesicular stomatitis virus (VSV-G), followed by culture with or without CD40LT or MCM, GFP and luciferase activities decreased by 60-75% in mDC vs iDC. Thus, reduced HIV replication in mDC is primarily due to a postintegration block occurring mainly at the transcriptional level. We could not relate this block to altered expression and nuclear localization of NF-kappa B proteins and SP1 and SP3 transcription factors.
Collapse
Affiliation(s)
- Y Bakri
- E00-13 Institut National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paris 6, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Ancuta P, Bakri Y, Chomont N, Hocini H, Gabuzda D, Haeffner-Cavaillon N. Opposite effects of IL-10 on the ability of dendritic cells and macrophages to replicate primary CXCR4-dependent HIV-1 strains. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4244-53. [PMID: 11238678 DOI: 10.4049/jimmunol.166.6.4244] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the effect of IL-10 on replication of primary CXCR4-dependent (X4) HIV-1 strains by monocyte-derived dendritic cells (DCs) and macrophages (M Phis). M Phis efficiently replicated CXCR4-dependent HIV-1 (X4 HIV-1) strains NDK and VN44, whereas low levels of p24 were detected in supernatants of infected DCs. IL-10 significantly increased X4 HIV-1 replication by DCs but blocked viral production by M Phis as determined by p24 levels and semiquantitative nested PCR. IL-10 up-regulated CXCR4 mRNA and protein expression on DCs and M Phis, suggesting that IL-10 enhances virus entry in DCs but blocks an entry and/or postentry step in M Phis. The effect of IL-10 on the ability of DCs and M Phis to transmit virus to autologous CD4(+) T lymphocytes was investigated in coculture experiments. DCs exhibited a greater ability than did M Phis to transmit a vigorous infection to CD4(+) T cells despite their very low replication capacity. IL-10 had no effect on HIV-1 replication in DC:T cell cocultures but markedly decreased viral production in M Phi:T cell cocultures. These results demonstrate that IL-10 has opposite effects on the replication of primary X4 HIV-1 strains by DCs and M Phis. IL-10 increases X4-HIV-1 replication in DCs but does not alter their capacity to transmit virus to CD4(+) T lymphocytes. These findings suggest that increased levels of IL-10 observed in HIV-1-infected patients with disease progression may favor the replication of X4 HIV-1 strains in vivo.
Collapse
Affiliation(s)
- P Ancuta
- Unité d'Immunopathologie Humaine, Institut National de la Santé et de la Recherche Médicale, Broussais Hospital, Paris, France.
| | | | | | | | | | | |
Collapse
|
97
|
Kim SS, You XJ, Harmon ME, Overbaugh J, Fan H. Use of helper-free replication-defective simian immunodeficiency virus-based vectors to study macrophage and T tropism: evidence for distinct levels of restriction in primary macrophages and a T-cell line. J Virol 2001; 75:2288-300. [PMID: 11160732 PMCID: PMC114812 DOI: 10.1128/jvi.75.5.2288-2300.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell tropism of human and simian immunodeficiency viruses (HIV and SIV, respectively) is governed in part by interactions between the viral envelope protein and the cellular receptors. However, there is evidence that envelope-host cell interactions also affect postentry steps in viral replication. We used a helper-free replication-defective SIV macaque (SIVmac)-based retroviral vector carrying the enhanced jellyfish green fluorescent protein inserted into the nef region (V1EGFP) to examine SIV tropism in a single cycle of infection. Vector stocks containing envelope proteins from three different SIVmac clones, namely, SIVmac239 (T-lymphocyte tropic [T-tropic]), SIVmac316 (macrophage tropic [M-tropic]), and SIVmac1A11 (dualtropic), were tested. SIVmac239 replicates efficiently in many human T-cell lines, but it does not efficiently infect primary rhesus macrophages. Conversely, SIVmac316 efficiently infects primary macrophages, but it does not replicate in Molt4-Clone8 (M4C8) T cells. SIVmac1A11 replicates efficiently in both cell types. When primary macrophages were infected with V1EGFP pseudotyped by SIVmac316 or SIVmac1A11 envelopes, the infection was substantially (ca. 200- to 300-fold) more efficient than for the SIVmac239 pseudotype. Thus, in primary macrophages, a major component of M versus T tropism involves relatively early events in the infection cycle. Quantitative PCR studies indicated that synthesis and transport of vector DNA into the nucleus were similar for macrophages infected with the clone 239 and 316 pseudotypes, suggesting that the restriction for SIVmac239 infection is after reverse transcription and nuclear import of viral DNA. When the same vector pseudotypes were used to infect M4C8 cells, they all showed approximately equivalent infectivities, even though replication-competent SIVmac316 does not continue to replicate in these cells. Therefore, in M4C8 cells, restriction involves a late step in the infection cycle (after proviral integration and expression). Thus, depending on the cell type infected, envelope-dependent cell interactions that govern SIV M and T tropism may involve different steps in infection.
Collapse
Affiliation(s)
- S S Kim
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
98
|
Gujuluva C, Burns AR, Pushkarsky T, Popik W, Berger O, Bukrinsky M, Graves MC, Fiala M. HIV-1 Penetrates Coronary Artery Endothelial Cells by Transcytosis. Mol Med 2001. [DOI: 10.1007/bf03401950] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
99
|
Peden KW, Farber JM. Coreceptors for human immunodeficiency virus and simian immunodeficiency virus. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:409-78. [PMID: 10987098 DOI: 10.1016/s1054-3589(00)48013-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- K W Peden
- Laboratory of Retrovirus Research, Food and Drug Administration, Bethesda, Maryland, USA
| | | |
Collapse
|
100
|
Alfano M, Vallanti G, Biswas P, Bovolenta C, Vicenzi E, Mantelli B, Pushkarsky T, Rappuoli R, Lazzarin A, Bukrinsky M, Poli G. The binding subunit of pertussis toxin inhibits HIV replication in human macrophages and virus expression in chronically infected promonocytic U1 cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1863-70. [PMID: 11160233 DOI: 10.4049/jimmunol.166.3.1863] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that the binding subunit of pertussis toxin (PTX-B) inhibits the entry and replication of macrophage-tropic (R5) HIV-1 strains in activated primary T lymphocytes. Furthermore, PTX-B suppressed the replication of T cell-tropic (X4) viruses at a postentry level in the same cells. In this study we demonstrate that PTX-B profoundly impairs entry and replication of the HIV-1(ADA) (R5), as well as of HIV pseudotyped with either murine leukemia virus or vesicular stomatitis virus envelopes, in primary monocyte-derived macrophages. In addition, PTX-B strongly inhibited X4 HIV-1 replication in U937 promonocytic cells and virus expression in the U937-derived chronically infected U1 cell line stimulated with cytokines such as TNF-alpha and IL-6. Of interest, TNF-alpha-mediated activation of the cellular transcription factor NF-kappaB was unaffected by PTX-B. Therefore, PTX-B may represent a novel and potent inhibitor of HIV-1 replication to be tested for efficacy in infected individuals. In support of this proposition, a genetically modified mutant of PTX (PT-9K/129G), which is safely administered for prevention of Bordetella pertussis infection, showed an in vitro anti-HIV profile superimposable to that of PTX-B.
Collapse
Affiliation(s)
- M Alfano
- AIDS Immunopathogenesis Unit, Department of Biology and Technology, and Laboratory of Clinical Immunology, Division of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|