51
|
Angus HCK, Urbano PCM, Laws GA, Fan S, Gadeock S, Schultz M, Butt G, Highton AJ, Kemp RA. An autologous colonic organoid‐derived monolayer model to study immune: bacterial interactions in Crohn's disease patients. Clin Transl Immunology 2022; 11:e1407. [PMID: 35924188 PMCID: PMC9342672 DOI: 10.1002/cti2.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Crohn's disease (CD) initiation and pathogenesis are believed to involve an environmental trigger in a genetically susceptible person that results in an immune response against commensal gut bacteria, leading to a compromised intestinal epithelial barrier and a cycle of inflammation. However, it has been difficult to study the contribution of all factors together in a physiologically relevant model and in a heterogenous patient population. Methods We developed an autologous colonic monolayer model that incorporated the immune response from the same donor and a commensal bacteria, Faecalibacterium prausnitzii. Two‐dimensional monolayers were grown from three‐dimensional organoids generated from intestinal biopsies, and the epithelial integrity of the epithelium was measured using transepithelial electrical resistance. We determined the effect of immune cells alone, bacteria alone and the co‐culture of immune cells and bacteria on integrity. Results Monolayers derived from CD donors had impaired epithelial integrity compared to those from non‐inflammatory bowel disease (IBD) donors. This integrity was further impaired by culture with bacteria, but not immune cells, despite a higher frequency of inflammatory phenotype peripheral T cells in CD donors. Variability in epithelial integrity was higher in CD donors than in non‐IBD donors. Conclusion We have developed a new autologous model to study the complexity of CD, which allows for the comparison of the barrier properties of the colonic epithelium and the ability to study how autologous immune cells directly affect the colonic barrier and whether this is modified by luminal bacteria. This new model allows for the study of individual patients and could inform treatment decisions.
Collapse
Affiliation(s)
- Hamish CK Angus
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
| | - Paulo CM Urbano
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
- Department of Medicine University of Otago Dunedin New Zealand
| | - Gemma A Laws
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
- Department of Medicine University of Otago Dunedin New Zealand
| | - Shijun Fan
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
- Department of Physiology University of Otago Dunedin New Zealand
| | - Safina Gadeock
- Department of Physiology University of Otago Dunedin New Zealand
- Paediatrics, School of Medicine UC San Diego La Jolla CA USA
| | - Michael Schultz
- Department of Medicine University of Otago Dunedin New Zealand
| | - Grant Butt
- Department of Physiology University of Otago Dunedin New Zealand
| | - Andrew J Highton
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
- Department of Medicine University of Otago Dunedin New Zealand
| | - Roslyn A Kemp
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
| |
Collapse
|
52
|
Yadav MK, Kumari I, Singh B, Sharma KK, Tiwari SK. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Appl Microbiol Biotechnol 2022; 106:505-521. [PMID: 35015145 PMCID: PMC8749913 DOI: 10.1007/s00253-021-11646-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022]
Abstract
Probiotics have been considered as an economical and safe alternative for the treatment of a large number of chronic diseases and improvement of human health. They are known to modulate the host immunity and protect from several infectious and non-infectious diseases. The colonization, killing of pathogens and induction of host cells are few of the important probiotic attributes which affect several functions of the host. In addition, prebiotics and non-digestible food substances selectively promote the growth of probiotics and human health through nutrient enrichment, and modulation of gut microbiota and immune system. This review highlights the role of probiotics and prebiotics alone and in combination (synbiotics) in the modulation of immune system, treatment of infections, management of inflammatory bowel disease and cancer therapy. KEY POINTS: • Probiotics and their derivatives against several human diseases. • Prebiotics feed probiotics and induce several functions in the host. • Discovery of novel and biosafe products needs attention for human health.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Indu Kumari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Bijender Singh
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
- Department of Biotechnology, Central University of Haryana, Jant-Pali 123031, Mahendragarh, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
53
|
Peng V, Jaeger N, Colonna M. Innate Lymphoid Cells and Inflammatory Bowel Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:97-112. [DOI: 10.1007/978-981-16-8387-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
54
|
Jeffery R, Ilott NE, Powrie F. Genetic and environmental factors shape the host response to Helicobacter hepaticus: insights into IBD pathogenesis. Curr Opin Microbiol 2021; 65:145-155. [PMID: 34883389 DOI: 10.1016/j.mib.2021.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/03/2022]
Abstract
Pathobionts are members of the gut microbiota with the capacity to cause disease when there is malfunctioning intestinal homeostasis. These organisms are thought to be major contributors to the pathogenesis of inflammatory bowel disease (IBD), a group of chronic inflammatory disorders driven by dysregulated responses towards the microbiota. Over two decades have passed since the discovery of Helicobacter hepaticus, a mouse pathobiont which causes colitis in the context of immune deficiency. During this time, we have developed a detailed understanding of the cellular players and cytokine networks which drive H. hepaticus immunopathology. However, we are just beginning to understand the microbial factors that enable H. hepaticus to interact with the host and influence colonic health and disease. Here we review key H. hepaticus-host interactions, their relevance to other exemplar pathobionts and how when maladapted they drive colitis. Further understanding of these pathways may offer new therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Rebecca Jeffery
- Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Nicholas E Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
55
|
Probiotics in Intestinal Mucosal Healing: A New Therapy or an Old Friend? Pharmaceuticals (Basel) 2021; 14:ph14111181. [PMID: 34832962 PMCID: PMC8622522 DOI: 10.3390/ph14111181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), Crohn’s disease, and ulcerative colitis are characterized by chronic and relapsing inflammation, while their pathogenesis remains mostly unelucidated. Gut commensal microbiota seem to be one of the various implicated factors, as several studies have shown a significant decrease in the microbiome diversity of patients with IBD. Although the question of whether microbiota dysbiosis is a causal factor or the result of chronic inflammation remains unanswered, one fact is clear; active inflammation in IBD results in the disruption of the mucus layer structure, barrier function, and also, colonization sites. Recently, many studies on IBD have been focusing on the interplay between mucosal and luminal microbiota, underlining their possible beneficial effect on mucosal healing. Regarding this notion, it has now been shown that specific probiotic strains, when administrated, lead to significantly decreased inflammation, amelioration of colitis, and improved mucosal healing. Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate quantity. The aim of this review was to present and discuss the current findings on the role of gut microbiota and their metabolites in intestinal wound healing and the effects of probiotics on intestinal mucosal wound closure.
Collapse
|
56
|
Strigli A, Gopalakrishnan S, Zeissig Y, Basic M, Wang J, Schwerd T, Doms S, Peuker K, Hartwig J, Harder J, Hönscheid P, Arnold P, Kurth T, Rost F, Petersen BS, Forster M, Franke A, Kelsen JR, Rohlfs M, Klein C, Muise AM, Warner N, Nambu R, Mayerle J, Török HP, Linkermann A, Muders MH, Baretton GB, Hampe J, Aust DE, Baines JF, Bleich A, Zeissig S. Deficiency in X-linked inhibitor of apoptosis protein promotes susceptibility to microbial triggers of intestinal inflammation. Sci Immunol 2021; 6:eabf7473. [PMID: 34739342 DOI: 10.1126/sciimmunol.abf7473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by inappropriate immune responses to the microbiota in genetically susceptible hosts, but little is known about the pathways that link individual genetic alterations to microbiota-dependent inflammation. Here, we demonstrated that the loss of X-linked inhibitor of apoptosis protein (XIAP), a gene associated with Mendelian IBD, rendered Paneth cells sensitive to microbiota-, tumor necrosis factor (TNF)–, receptor-interacting protein kinase 1 (RIPK1)–, and RIPK3-dependent cell death. This was associated with deficiency in Paneth cell–derived antimicrobial peptides and alterations in the stratification and composition of the microbiota. Loss of XIAP was not sufficient to elicit intestinal inflammation but provided susceptibility to pathobionts able to promote granulomatous ileitis, which could be prevented by administration of a Paneth cell–derived antimicrobial peptide. These data reveal a pathway critical for host-microbial cross-talk, which is required for intestinal homeostasis and the prevention of inflammation and which is amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Anne Strigli
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Shreya Gopalakrishnan
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Yvonne Zeissig
- Department of General Pediatrics, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Jun Wang
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany.,CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tobias Schwerd
- Department of Pediatrics, Dr von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Shauni Doms
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Kenneth Peuker
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Jelka Hartwig
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Jürgen Harder
- Department of Dermatology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Pia Hönscheid
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Fabian Rost
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Center for Information Services and High Performance Computing (ZIH), Technische Universität (TU) Dresden, 01602 Dresden, Germany
| | | | - Michael Forster
- Institute for Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Andre Franke
- Institute for Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meino Rohlfs
- Department of Pediatrics, Dr von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Ryusuke Nambu
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama 330-8777, Japan
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Helga-Paula Török
- Department of Medicine II, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Medicine III, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Jochen Hampe
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Daniela E Aust
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Sebastian Zeissig
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| |
Collapse
|
57
|
Friedrich M, Pohin M, Jackson MA, Korsunsky I, Bullers SJ, Rue-Albrecht K, Christoforidou Z, Sathananthan D, Thomas T, Ravindran R, Tandon R, Peres RS, Sharpe H, Wei K, Watts GFM, Mann EH, Geremia A, Attar M, McCuaig S, Thomas L, Collantes E, Uhlig HH, Sansom SN, Easton A, Raychaudhuri S, Travis SP, Powrie FM. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat Med 2021; 27:1970-1981. [PMID: 34675383 PMCID: PMC8604730 DOI: 10.1038/s41591-021-01520-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Current inflammatory bowel disease (IBD) therapies are ineffective in a high proportion of patients. Combining bulk and single-cell transcriptomics, quantitative histopathology and in situ localization across three cohorts of patients with IBD (total n = 376), we identify coexpressed gene modules within the heterogeneous tissular inflammatory response in IBD that map to distinct histopathological and cellular features (pathotypes). One of these pathotypes is defined by high neutrophil infiltration, activation of fibroblasts and vascular remodeling at sites of deep ulceration. Activated fibroblasts in the ulcer bed display neutrophil-chemoattractant properties that are IL-1R, but not TNF, dependent. Pathotype-associated neutrophil and fibroblast signatures are increased in nonresponders to several therapies across four independent cohorts (total n = 343). The identification of distinct, localized, tissular pathotypes will aid precision targeting of current therapeutics and provides a biological rationale for IL-1 signaling blockade in ulcerating disease.
Collapse
Affiliation(s)
- Matthias Friedrich
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathilde Pohin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Matthew A Jackson
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ilya Korsunsky
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel J Bullers
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kevin Rue-Albrecht
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Zoe Christoforidou
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Dharshan Sathananthan
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Tom Thomas
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Rahul Ravindran
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Ruchi Tandon
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Raphael Sanches Peres
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Hannah Sharpe
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin Wei
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alessandra Geremia
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sarah McCuaig
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lloyd Thomas
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Elena Collantes
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Department of Paediatrics, John Radcliffe Hospital, Oxford, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alistair Easton
- Old Road Campus Research Building, Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Simon P Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Fiona M Powrie
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
58
|
Jacobs I, Ceulemans M, Wauters L, Breynaert C, Vermeire S, Verstockt B, Vanuytsel T. Role of Eosinophils in Intestinal Inflammation and Fibrosis in Inflammatory Bowel Disease: An Overlooked Villain? Front Immunol 2021; 12:754413. [PMID: 34737752 PMCID: PMC8560962 DOI: 10.3389/fimmu.2021.754413] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Eosinophils are leukocytes which reside in the gastrointestinal tract under homeostatic conditions, except for the esophagus which is normally devoid of eosinophils. Research on eosinophils has primarily focused on anti-helminth responses and type 2 immune disorders. In contrast, the search for a role of eosinophils in chronic intestinal inflammation and fibrosis has been limited. With a shift in research focus from adaptive to innate immunity and the fact that the eosinophilic granules are filled with inflammatory mediators, eosinophils are becoming a point of interest in inflammatory bowel diseases. In the current review we summarize eosinophil characteristics and recruitment as well as the current knowledge on presence, inflammatory and pro-fibrotic functions of eosinophils in inflammatory bowel disease and other chronic inflammatory conditions, and we identify research gaps which should be covered in the future.
Collapse
Affiliation(s)
- Inge Jacobs
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthias Ceulemans
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lucas Wauters
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of General Internal Medicine, Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
59
|
Wah-Suárez MI, Vázquez MAM, Bosques-Padilla FJ. Inflammatory bowel disease: The role of commensal microbiome in immune regulation. GASTROENTEROLOGIA Y HEPATOLOGIA 2021; 45:626-636. [PMID: 34543718 DOI: 10.1016/j.gastrohep.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing. Microbiome is one of the most important factors in its development and affects the different clinical outcomes of IBD patients depending on its composition and different alterations. We conducted a systematic review to discuss the association between microbiome and IBD in terms of immune regulation, and therapies that can modify microbiota. A comprehensive systematic literature search was performed through April 2020 in PubMed, Web of Science, the Cochrane Library, and clinicaltrials.gov. Inclusion criteria required IBD immune regulation and alternate therapeutics for IBD. This analysis helps explain the multifactorial origin of microbiome diversity including normal immune regulation, immune pathophysiology of IBD, and shows the evidence of several therapeutic targets to change microbiome in patients with IBD, such as prebiotics, probiotics, antibiotics, fecal microbiota transplant, and others.
Collapse
|
60
|
Goc J, Lv M, Bessman NJ, Flamar AL, Sahota S, Suzuki H, Teng F, Putzel GG, Eberl G, Withers DR, Arthur JC, Shah MA, Sonnenberg GF. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 2021; 184:5015-5030.e16. [PMID: 34407392 PMCID: PMC8454863 DOI: 10.1016/j.cell.2021.07.029] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/08/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance.
Collapse
Affiliation(s)
- Jeremy Goc
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mengze Lv
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Anne-Laure Flamar
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sheena Sahota
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hiroaki Suzuki
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Fei Teng
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gerard Eberl
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - David R Withers
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Janelle C Arthur
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manish A Shah
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Gastrointestinal Oncology Program, Center for Advanced Digestive Care, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
61
|
RORα is critical for mTORC1 activity in T cell-mediated colitis. Cell Rep 2021; 36:109682. [PMID: 34525365 DOI: 10.1016/j.celrep.2021.109682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is multi-factorial chronic intestinal inflammation driven by pathogenic T cells, among which a large portion of patients are resistant to current anti-inflammatory regimes. The mechanisms underlying colitis pathogenicity and drug resistance are not fully understood. Here, we demonstrate that RORα is highly expressed in active UC patients, particularly in those non-responsive to anti-TNF treatment. Rorα deficiency in CD4+ T cells greatly reduced colitis development. Mechanistically, RORα regulated T cell infiltration in colon and inhibited T cell apoptosis. Meanwhile, genome-wide occupancy and transcriptome analysis revealed that RORα promoted mTORC1 activation. mTORC1 signaling, also hyperactivated in active UC patients, is necessary for T cell-mediated colitis. Our results thus demonstrate a crucial role of the RORα-mTORC1 axis in CD4+ T cells in promoting IBD, which may be targeted in human patients.
Collapse
|
62
|
Liu H, Cai Z, Wang F, Hong L, Deng L, Zhong J, Wang Z, Cui W. Colon-Targeted Adhesive Hydrogel Microsphere for Regulation of Gut Immunity and Flora. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101619. [PMID: 34292669 PMCID: PMC8456273 DOI: 10.1002/advs.202101619] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Indexed: 05/03/2023]
Abstract
Intestinal immune homeostasis and microbiome structure play a critical role in the pathogenesis and progress of inflammatory bowel disease (IBD), whereas IBD treatment remains a challenge as the first-line drugs show limited therapeutic efficiency and great side effect. In this study, a colon-targeted adhesive core-shell hydrogel microsphere is designed and fabricated by the ingenious combination of advanced gas-shearing technology and ionic diffusion method, which can congregate on colon tissue regulating the gut immune-microbiota microenvironment in IBD treatment. The degradation experiment indicates the anti-acid and colon-targeted property of the alginate hydrogel shell, and the in vivo imaging shows the mucoadhesive ability of the thiolated-hyaluronic acid hydrogel core of the microsphere, which reduces the systematic exposure and prolongs the local drug dwell time. In addition, both in vitro and in vivo study demonstrate that the microsphere significantly reduces the secretion of pro-inflammatory cytokines, induces specific type 2 macrophage differentiation, and remarkably alleviates colitis in the mice model. Moreover, 16S ribosomal RNA sequencing reveals an optimized gut flora composition, probiotics including Bifidobacterium and Lactobacillus significantly augment, while the detrimental communities are inhibited, which benefits the intestinal homeostasis. This finding provides an ideal clinical candidate for IBD treatment.
Collapse
Affiliation(s)
- Hua Liu
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Fei Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liwen Hong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jie Zhong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengting Wang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
63
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
64
|
Dvornikova KA, Bystrova EY, Churilov LP, Lerner A. Pathogenesis of the inflammatory bowel disease in context of SARS-COV-2 infection. Mol Biol Rep 2021; 48:5745-5758. [PMID: 34296352 PMCID: PMC8297608 DOI: 10.1007/s11033-021-06565-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
To date, the latest research results suggest that the novel severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) can enter host cells directly via the gastrointestinal tract by binding to the enterocyte-expressed ACE2 receptor, or indirectly as a result of infection of type II alveolar epithelial cells. At the same time, entry of SARS-CoV-2 through the gastrointestinal tract initiates the activation of innate and adaptive immune responses, the formation of an excessive inflammatory reaction and critical increase in the expression of proinflammatory cytokines, which, subsequently, can presumably increase inflammation and induce intestinal damage in patients suffering from inflammatory bowel disease (IBD). The aims of the present review were to reveal and analyze possible molecular pathways and consequences of the induction of an innate and adaptive immune response during infection with SARS-CoV-2 in patients with IBD. A thorough literature search was carried out by using the keywords: IBD, SARS-CoV-2, COVID-19. Based on the screening, a number of intracellular and extracellular pathways were considered and discussed, which can impact the immune response during SARS-CoV-2 infection in IBD patients. Additionally, the possible consequences of the infection for such patients were estimated. We further hypothesize that any virus, including the new SARS-CoV-2, infecting intestinal tissues and/or entering the host's body through receptors located on intestinal enterocytes may be a trigger for the onset of IBD in individuals with a genetic predisposition and/or the risk of developing IBD associated with other factors.
Collapse
Affiliation(s)
- K. A. Dvornikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - E. Yu. Bystrova
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - L. P. Churilov
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - A. Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| |
Collapse
|
65
|
Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomed Pharmacother 2021; 141:111817. [PMID: 34126349 DOI: 10.1016/j.biopha.2021.111817] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, an overwhelming amount of evidence has positively recommended a significant role of microbiota in human health and disease. Microbiota also plays a crucial role in the initiation, preparation, and function of the host immune response. Recently, it has been shown that short-chain fatty acids (SCFAs) are the primary metabolites of the intestinal microbiota produced by anaerobic fermentation, which contributes to the host-pathogen interaction. SCFAs, such as propionate, acetate, and butyrate, are bacterial metabolites with immunomodulatory activity, and they are indispensable for the maintenance of homeostasis. Some evidence indicates that they are involved in the development of infections. In the present study, we provide the latest findings on the role of SCFAs in response to bacterial infections.
Collapse
|
66
|
Xiao Z, Liu L, Jin Y, Pei X, Sun W, Wang M. A Potential Prophylactic Probiotic for Inflammatory Bowel Disease: The Overall Investigation of Clostridium tyrobutyricum ATCC25755 Attenuates LPS-Induced Inflammation via Regulating Intestinal Immune Cells. Mol Nutr Food Res 2021; 65:e2001213. [PMID: 34021704 DOI: 10.1002/mnfr.202001213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Indexed: 12/14/2022]
Abstract
SCOPE This study aims to roundly investigate whether Clostridium tyrobutyricum (Ct) alleviates inflammation via regulating immune cells in the small intestines. METHODS AND RESULTS Mice are pre-treated with different concentrations of Ct follow by LPS stimulation. Ct maintains the mice body weight under inflammation. In response to LPS, 107 CFU mL-1 Ct decreases the mRNA expression of inflammatory cytokines in the duodenum, while 108 CFU mL-1 Ct reduces inflammatory cytokines expression in both duodenum and ileum and protected intestinal morphology. The small intestinal immune cells are analyzed using flow cytometry. Ct decreases the numbers of macrophages and mast cells in the intestines in response to LPS. In the duodenum, Ct enhances dentritic cells (DCs), regulatory T cells (Tregs), and T helper cell 17 (Th17) proportions. Ct decreases DCs and Tregs proportions, while enhances Th17 numbers in the ileum. The underlying mechanism of Ct in preventing inflammation may rely on the physiological immune cell composition of the intestines. In response to LPS, Ct may mainly stimulate Tregs via activating DCs in the duodenum while trigger Th17 cells in the ileum, thereby maintaining the intestinal homeostasis. CONCLUSION Ct alleviates the LPS-induce inflammation via regulating different immune cell types in the small intestines, highlighting that Ct is a potential prophylactic probiotic in intestinal diseases.
Collapse
Affiliation(s)
- Zhiping Xiao
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lujie Liu
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuyue Jin
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xun Pei
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wanjing Sun
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Minqi Wang
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
67
|
Aschenbrenner D, Quaranta M, Banerjee S, Ilott N, Jansen J, Steere B, Chen YH, Ho S, Cox K, Arancibia-Cárcamo CV, Coles M, Gaffney E, Travis SP, Denson L, Kugathasan S, Schmitz J, Powrie F, Sansom SN, Uhlig HH. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut 2021; 70:1023-1036. [PMID: 33037057 PMCID: PMC8108288 DOI: 10.1136/gutjnl-2020-321731] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/16/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Dysregulated immune responses are the cause of IBDs. Studies in mice and humans suggest a central role of interleukin (IL)-23-producing mononuclear phagocytes in disease pathogenesis. Mechanistic insights into the regulation of IL-23 are prerequisite for selective IL-23 targeting therapies as part of personalised medicine. DESIGN We performed transcriptomic analysis to investigate IL-23 expression in human mononuclear phagocytes and peripheral blood mononuclear cells. We investigated the regulation of IL-23 expression and used single-cell RNA sequencing to derive a transcriptomic signature of hyperinflammatory monocytes. Using gene network correlation analysis, we deconvolved this signature into components associated with homeostasis and inflammation in patient biopsy samples. RESULTS We characterised monocyte subsets of healthy individuals and patients with IBD that express IL-23. We identified autosensing and paracrine sensing of IL-1α/IL-1β and IL-10 as key cytokines that control IL-23-producing monocytes. Whereas Mendelian genetic defects in IL-10 receptor signalling induced IL-23 secretion after lipopolysaccharide stimulation, whole bacteria exposure induced IL-23 production in controls via acquired IL-10 signalling resistance. We found a transcriptional signature of IL-23-producing inflammatory monocytes that predicted both disease and resistance to antitumour necrosis factor (TNF) therapy and differentiated that from an IL-23-associated lymphocyte differentiation signature that was present in homeostasis and in disease. CONCLUSION Our work identifies IL-10 and IL-1 as critical regulators of monocyte IL-23 production. We differentiate homeostatic IL-23 production from hyperinflammation-associated IL-23 production in patients with severe ulcerating active Crohn's disease and anti-TNF treatment non-responsiveness. Altogether, we identify subgroups of patients with IBD that might benefit from IL-23p19 and/or IL-1α/IL-1β-targeting therapies upstream of IL-23.
Collapse
Affiliation(s)
- Dominik Aschenbrenner
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
| | - Maria Quaranta
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
| | - Soumya Banerjee
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
- Department of Psychology, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, Oxfordshire, UK
| | - Joanneke Jansen
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, Oxfordshire, UK
| | - Boyd Steere
- Immunology Translational Sciences, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Yin-Huai Chen
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
| | - Stephen Ho
- Immunology Translational Sciences, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Karen Cox
- Immunology Translational Sciences, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Carolina V Arancibia-Cárcamo
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
| | - Mark Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, Oxfordshire, UK
| | - Eamonn Gaffney
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, Oxfordshire, UK
| | - Simon Pl Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
| | - Lee Denson
- Pediatric Gastroenterology, Cincinnati Childrens Hospital Medical Center, Cincinnati, Ohio, USA
| | - Subra Kugathasan
- Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jochen Schmitz
- Immunology Translational Sciences, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, Oxfordshire, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, Oxfordshire, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
- Department of Paediatrics, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
68
|
Deng M, Hu J, Tong R, Guo H, Li X, Liu Y. miR-452-5p regulates the responsiveness of intestinal epithelial cells in inflammatory bowel disease through Mcl-1. Exp Ther Med 2021; 22:813. [PMID: 34131436 PMCID: PMC8193216 DOI: 10.3892/etm.2021.10245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic immune disorders that occur in the intestinal tract. Previous studies have revealed that intestinal epithelial cells (IECs) play critical roles in the development of IBDs, and therapies targeting IECs hold great potential for the treatment of IBDs. However, the roles of microRNAs (miRs) in the regulation of IEC properties and whether they can be used as targets for IEC regulation and IBD treatment are largely unknown. The aim of the present study was to investigate the role of the miR-452-5p/Mcl-1 axis in the regulation of the properties of IECs during the pathology of IBD. A dextran sulfate sodium-induced mouse model of ulcerative colitis (UC) and an in vitro lipopolysaccharide-stimulated IEC-6 cell model were investigated. The results revealed that miR-452-5p expression in the IECs of the mice increased significantly upon UC induction, and the knockdown of miR-452-5p alleviated the IBD symptoms. Furthermore, the suppression of miR-452-5p downregulated the expression of the inflammatory cytokines IL-6, IL-8 and TNFα, and upregulated the expression of intestinal barrier-associated molecules, namely occludin, zona occludens 1 and mucin-2 in IECs in vitro and in vivo. Notably, the results indicated that miR-452-5p modulated the responses of IECs by negatively regulating the expression of Mcl-1, as the knockdown of Mcl-1 abrogated the effects of miR-452-5p suppression on IECs. The present study suggested that miR-452-5p regulated the responsiveness of IECs to influence the development of UC in an Mcl-1-dependent manner. These observations provide important information to improve the understanding of IBD pathogenesis and indicate that targeting the miR-452-5p-Mcl-1 signaling axis in IECs holds potential for IBD treatment.
Collapse
Affiliation(s)
- Ming Deng
- Department of Anorectal Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, P.R. China
| | - Jianglin Hu
- Department of Anorectal Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, P.R. China
| | - Rui Tong
- Department of Anorectal Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, P.R. China
| | - Hongming Guo
- Department of Anorectal Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, P.R. China
| | - Xuehui Li
- Department of Anorectal Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, P.R. China
| | - Yan Liu
- Department of Gastrointestinal Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
69
|
Verma P, Srivastava A, Srikanth CV, Bajaj A. Nanoparticle-mediated gene therapy strategies for mitigating inflammatory bowel disease. Biomater Sci 2021; 9:1481-1502. [PMID: 33404019 DOI: 10.1039/d0bm01359e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder of the gastrointestinal tract (GIT) where Ulcerative Colitis (UC) displays localized inflammation in the colon, and Crohn's Disease (CD) affects the entire GIT. Failure of current therapies and associated side-effects bring forth serious social, economic, and health challenges. The gut epithelium provides the best target for gene therapy delivery vehicles to combat IBD. Gene therapy involving the use of nucleic acid (NA) therapeutics faces major challenges due to the hydrophilic, negative-charge, and degradable nature of NAs. Recent success in the engineering of biomaterials for gene therapy and their emergence in clinical trials for various diseases is an inspiration for scientists to develop gene therapy vehicles that can be easily targeted to the desired tissues for IBD. Advances in nanotechnology have enabled the formulations of numerous nanoparticles for NA delivery to mitigate IBD that still faces challenges of stability in the GIT, poor therapeutic efficacy, and targetability. This review presents the challenges of gene therapeutics, gastrointestinal barriers, and recent advances in the engineering of nanoparticles for IBD treatment along with future directions for successful translation of nanoparticle-mediated gene therapeutics in clinics.
Collapse
Affiliation(s)
- Priyanka Verma
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, By-pass Road, Bhauri, Bhopal-462030, India
| | - C V Srikanth
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad- Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
70
|
Pérez-Jeldres T, Alvarez-Lobos M, Rivera-Nieves J. Targeting Sphingosine-1-Phosphate Signaling in Immune-Mediated Diseases: Beyond Multiple Sclerosis. Drugs 2021; 81:985-1002. [PMID: 33983615 PMCID: PMC8116828 DOI: 10.1007/s40265-021-01528-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid metabolite that exerts its actions by engaging 5 G-protein-coupled receptors (S1PR1-S1PR5). S1P receptors are involved in several cellular and physiological events, including lymphocyte/hematopoietic cell trafficking. An S1P gradient (low in tissues, high in blood), maintained by synthetic and degradative enzymes, regulates lymphocyte trafficking. Because lymphocytes live long (which is critical for adaptive immunity) and recirculate thousands of times, the S1P-S1PR pathway is involved in the pathogenesis of immune-mediated diseases. The S1PR1 modulators lead to receptor internalization, subsequent ubiquitination, and proteasome degradation, which renders lymphocytes incapable of following the S1P gradient and prevents their access to inflammation sites. These drugs might also block lymphocyte egress from lymph nodes by inhibiting transendothelial migration. Targeting S1PRs as a therapeutic strategy was first employed for multiple sclerosis (MS), and four S1P modulators (fingolimod, siponimod, ozanimod, and ponesimod) are currently approved for its treatment. New S1PR modulators are under clinical development for MS, and their uses are being evaluated to treat other immune-mediated diseases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and psoriasis. A clinical trial in patients with COVID-19 treated with ozanimod is ongoing. Ozanimod and etrasimod have shown promising results in IBD; while in phase 2 clinical trials, ponesimod has shown improvement in 77% of the patients with psoriasis. Cenerimod and amiselimod have been tested in SLE patients. Fingolimod, etrasimod, and IMMH001 have shown efficacy in RA preclinical studies. Concerns relating to S1PR modulators are leukopenia, anemia, transaminase elevation, macular edema, teratogenicity, pulmonary disorders, infections, and cardiovascular events. Furthermore, S1PR modulators exhibit different pharmacokinetics; a well-established first-dose event associated with S1PR modulators can be mitigated by gradual up-titration. In conclusion, S1P modulators represent a novel and promising therapeutic strategy for immune-mediated diseases.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Pontificia Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja-Arriarán, Santiago, Chile
| | - Manuel Alvarez-Lobos
- Pontificia Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja-Arriarán, Santiago, Chile
| | - Jesús Rivera-Nieves
- San Diego VA Medical Center (SDVAMC), San Diego, CA, USA.
- Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), 9500 Gilman Drive Bldg. BRF-II Rm. 4A32, San Diego, CA, 92093-0063, USA.
| |
Collapse
|
71
|
Tian B, Zhao J, Zhang M, Chen Z, Ma Q, Liu H, Nie C, Zhang Z, An W, Li J. Lycium ruthenicum Anthocyanins Attenuate High-Fat Diet-Induced Colonic Barrier Dysfunction and Inflammation in Mice by Modulating the Gut Microbiota. Mol Nutr Food Res 2021; 65:e2000745. [PMID: 33629483 DOI: 10.1002/mnfr.202000745] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
SCOPE Gut barrier dysfunction and inflammation originating from a dysbiotic gut microbiota (GM) are strongly associated with a high-fat diet (HFD). Anthocyanins from Lycium ruthenicum (ACs) show antiobesity effects through modulating the GM. However, the mechanism linking the antiobesity effects of ACs and GM modulation remains obscure. METHODS AND RESULTS To investigate the ameliorative effects of ACs on colonic barrier dysfunction and inflammation, mice are fed an HFD with or without ACs at doses of 50, 100, and 200 mg kg-1 for 12 weeks. AC supplementation reduced weight gain, enriched short-chain fatty acid (SCFA)-producing bacteria (e.g., Ruminococcaceae, Muribaculaceae, Akkermansia, Ruminococcaceae_UCG-014, and Bacteroides) and SCFA content, depleted endotoxin-producing bacteria (e.g., Helicobacter and Desulfovibrionaceae), and decreased endotoxin (i.e., lipopolysaccharide) levels. SCFAs substantially activated G protein-coupled receptors (GPRs), inhibited histone deacetylases (HDAC), increased intestinal tight junction mRNA and protein expression levels, reduced intestinal permeability, and protected intestinal barrier integrity in HFD-induced mice. These effects mitigate intestinal inflammation by inhibiting the LPS/NF-κB/TLR4 pathway. CONCLUSION These data indicates that ACs can mitigate colonic barrier dysfunction and inflammation, induce SCFA production and inhibit endotoxin production by modulating the GM in HFD-fed mice. This finding provides a clue for understanding the antiobesity effects of ACs.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
- Institute of Wolfberry Engineering Technology Research, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, P. R. China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P. R. China
| | - Jianhua Zhao
- Institute of Wolfberry Engineering Technology Research, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, P. R. China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P. R. China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Ziqi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| | - Wei An
- Institute of Wolfberry Engineering Technology Research, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, P. R. China
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P. R. China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
72
|
Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev 2021; 60:61-75. [PMID: 33773897 DOI: 10.1016/j.cytogfr.2021.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Cases of inflammatory bowel disease (IBD), a debilitating intestinal disorder with complex pathological mechanisms, have been increasing in recent years, straining the capacity of healthcare systems. Thus, novel therapeutic targets and innovative agents must be developed. Notably, the NLRP3 inflammasome is upregulated in patients with IBD and/or in animal experimental models. As an innate immune supramolecular assembly, the NLRP3 inflammasome is persistently activated during the pathogenesis of IBD by multiple stimuli. Moreover, this protein complex regulates pro-inflammatory cytokines. Thus, targeting this multiprotein oligomer may offer a feasible way to relieve IBD symptoms and improve clinical outcomes. The mechanisms by which the NLRP3 inflammasome is activated, its role in IBD pathogenesis, and the drugs administered to target this protein complex are reviewed herein. This review establishes that the use of inflammasome-targeting drugs are effective for IBD treatment. Moreover, this review suggests that the value and potential of naturally sourced or derived medicines for IBD treatment must be recognized and appreciated.
Collapse
|
73
|
Ruiz F, Wyss A, Rossel JB, Sulz MC, Brand S, Moncsek A, Mertens JC, Roth R, Clottu AS, Burri E, Juillerat P, Biedermann L, Greuter T, Rogler G, Pot C, Misselwitz B. A single nucleotide polymorphism in the gene for GPR183 increases its surface expression on blood lymphocytes of patients with inflammatory bowel disease. Br J Pharmacol 2021; 178:3157-3175. [PMID: 33511653 DOI: 10.1111/bph.15395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Florian Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jean-Benoît Rossel
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Michael Christian Sulz
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Stephan Brand
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - René Roth
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aurélie S Clottu
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emanuel Burri
- Department of Gastroenterology and Hepatology, University Medical Clinic, Kantonsspital Baselland, Liestal, Switzerland
| | - Pascal Juillerat
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Greuter
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
74
|
Uhlig HH, Charbit-Henrion F, Kotlarz D, Shouval DS, Schwerd T, Strisciuglio C, de Ridder L, van Limbergen J, Macchi M, Snapper SB, Ruemmele FM, Wilson DC, Travis SP, Griffiths AM, Turner D, Klein C, Muise AM, Russell RK. Clinical Genomics for the Diagnosis of Monogenic Forms of Inflammatory Bowel Disease: A Position Paper From the Paediatric IBD Porto Group of European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2021; 72:456-473. [PMID: 33346580 PMCID: PMC8221730 DOI: 10.1097/mpg.0000000000003017] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is important to identify patients with monogenic IBD as management may differ from classical IBD. In this position statement we formulate recommendations for the use of genomics in evaluating potential monogenic causes of IBD across age groups. METHODS The consensus included paediatric IBD specialists from the Paediatric IBD Porto group of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and specialists from several monogenic IBD research consortia. We defined key topics and performed a systematic literature review to cover indications, technologies (targeted panel, exome and genome sequencing), gene panel setup, cost-effectiveness of genetic screening, and requirements for the clinical care setting. We developed recommendations that were voted upon by all authors and Porto group members (32 voting specialists). RESULTS We recommend next-generation DNA-sequencing technologies to diagnose monogenic causes of IBD in routine clinical practice embedded in a setting of multidisciplinary patient care. Routine genetic screening is not recommended for all IBD patients. Genetic testing should be considered depending on age of IBD-onset (infantile IBD, very early-onset IBD, paediatric or young adult IBD), and further criteria, such as family history, relevant comorbidities, and extraintestinal manifestations. Genetic testing is also recommended in advance of hematopoietic stem cell transplantation. We developed a diagnostic algorithm that includes a gene panel of 75 monogenic IBD genes. Considerations are provided also for low resource countries. CONCLUSIONS Genomic technologies should be considered an integral part of patient care to investigate patients at risk for monogenic forms of IBD.
Collapse
Affiliation(s)
- Holm H. Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Fabienne Charbit-Henrion
- Université de Paris, INSERM UMR 1163 Immunité Intestinale, APHP, Hôpital Necker Enfants Malades, Service de Génétique moléculaire, Paris, France
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Dror S. Shouval
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus University Medical Center Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Johan van Limbergen
- Amsterdam University Medical Centres, Emma Children’s Hospital, The Netherlands and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marina Macchi
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Frank M. Ruemmele
- Université de Paris, APHP, Hôpital Necker Enfants Malades, Service de Gastroentérologie pédiatrique, Paris, France
| | - David C. Wilson
- Child Life and Health, University of Edinburgh, Department of Paediatric Gastroenterology, The Royal Hospital for Sick Children, Edinburgh
| | - Simon P.L. Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Anne M. Griffiths
- The Hospital for Sick Children, University of Toronto
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Ontario, Canada
| | - Dan Turner
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Israel
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Aleixo M. Muise
- The Hospital for Sick Children, University of Toronto
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Ontario, Canada
| | - Richard K. Russell
- Child Life and Health, University of Edinburgh, Department of Paediatric Gastroenterology, The Royal Hospital for Sick Children, Edinburgh
| |
Collapse
|
75
|
Qaiyum Z, Lim M, Inman RD. The gut-joint axis in spondyloarthritis: immunological, microbial, and clinical insights. Semin Immunopathol 2021; 43:173-192. [PMID: 33625549 DOI: 10.1007/s00281-021-00845-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The strong genetic and clinical overlaps between spondyloarthritis (SpA) and inflammatory bowel disease (IBD) have placed much needed focus on the gut-joint axis of inflammation in SpA, leading to three key hypotheses that attempt to unravel this complex relationship. The arthritogenic peptide hypothesis and the aberrant cellular trafficking hypothesis have been put forth to rationalize the manner by which the innate and adaptive immune systems cooperate and converge during SpA pathogenesis. The bacterial dysbiosis hypothesis discusses how changes in the microbiome lead to architectural and immunological consequences in SpA. These theories are not mutually exclusive, but can provide an explanation as to why subclinical gut inflammation may sometimes precede joint inflammation in SpA patients, thereby implying a causal relationship. Such investigations will be important in informing therapeutic decisions which may be common to both SpA and IBD. However, these hypotheses can also offer insights for a coincident inflammatory relationship between the gut and the joint, particularly when assessing the immunological players involved. Insights from understanding how these systems might affect the gut and joint differently will be equally imperative to address where the therapeutic differences lie between the two diseases. Collectively, this knowledge has practical implications in predicting the likelihood of IBD development in SpA or presence of coincident SpA-IBD, uncovering novel therapeutic targets, and redesigning currently approved treatments. It is evident that a multidisciplinary approach between the rheumatology and gastroenterology fields cannot be ignored, when it comes to the care of SpA patients at risk of IBD or vice versa.
Collapse
Affiliation(s)
- Zoya Qaiyum
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, 5, Toronto, Ontario, KD-408, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, 5, Toronto, Ontario, KD-408, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, 5, Toronto, Ontario, KD-408, Canada.
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
76
|
Guo R, Meng Q, Wang B, Li F. Anti-inflammatory effects of Platycodin D on dextran sulfate sodium (DSS) induced colitis and E. coli Lipopolysaccharide (LPS) induced inflammation. Int Immunopharmacol 2021; 94:107474. [PMID: 33611056 DOI: 10.1016/j.intimp.2021.107474] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Platycodin D (PLD) is a saponin found in Platycodon grandiflorum, which has been reported to have anti-inflammatory effects. However, the effects of PLD on ulcerative colitis (UC) remain unknown. In this study, PLD showed the potential to reduce inflammation, ameliorate intestinal damage, and maintain intestinal integrity in DSS-induced colitis. However, the beneficial effect of PLD was reduced when macrophages were depleted, indicating the key role of macrophages in the beneficial effect of PLD in DSS-induced colitis. Meanwhile, we found that PLD inhibited the expression of M1 markers and promoted the expression of M2 markers in colon. Similarly, we found PLD significantly attenuated the levels of pro-inflammatory cytokines, increased the level of anti-inflammatory cytokine and altered macrophage proportions in LPS-stimulated RAW 264.7 cells in vitro. Moreover, treating LPS-stimulated RAW 264.7 cells with PLD increased the activation of the PI3K/Akt signaling pathway and decreased activation of NF-κB pathway. Furthermore, we found that the anti-inflammatory and macrophage polarization regulatory effects of PLD was Adenosine 5'-monophosphate-activated protein kinase (AMPK)-dependent. These results indicate that PLD attenuates DSS-induced colitis and LPS-induced inflammation, and the mechanism behind the phenomenon may be regulating macrophage polarization via activation of AMPK. Our study provides a theoretical basis for PLD to be used as a potential treatment of colitis.
Collapse
Affiliation(s)
- Ruiqi Guo
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.
| | - Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.
| | - Baisen Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China; The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, China, Changchun, China; Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China; Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China.
| |
Collapse
|
77
|
Maschmeyer P, Heinz GA, Skopnik CM, Lutter L, Mazzoni A, Heinrich F, von Stuckrad SL, Wirth LE, Tran CL, Riedel R, Lehmann K, Sakwa I, Cimaz R, Giudici F, Mall MA, Enghard P, Vastert B, Chang HD, Durek P, Annunziato F, van Wijk F, Radbruch A, Kallinich T, Mashreghi MF. Antigen-driven PD-1 + TOX + BHLHE40 + and PD-1 + TOX + EOMES + T lymphocytes regulate juvenile idiopathic arthritis in situ. Eur J Immunol 2021; 51:915-929. [PMID: 33296081 DOI: 10.1002/eji.202048797] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/27/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
T lymphocytes accumulate in inflamed tissues of patients with chronic inflammatory diseases (CIDs) and express pro-inflammatory cytokines upon re-stimulation in vitro. Further, a significant genetic linkage to MHC genes suggests that T lymphocytes play an important role in the pathogenesis of CIDs including juvenile idiopathic arthritis (JIA). However, the functions of T lymphocytes in established disease remain elusive. Here we dissect the transcriptional and the clonal heterogeneity of synovial T lymphocytes in JIA patients by single-cell RNA sequencing combined with T cell receptor profiling on the same cells. We identify clonally expanded subpopulations of T lymphocytes expressing genes reflecting recent activation by antigen in situ. A PD-1+ TOX+ EOMES+ population of CD4+ T lymphocytes expressed immune regulatory genes and chemoattractant genes for myeloid cells. A PD-1+ TOX+ BHLHE40+ population of CD4+ , and a mirror population of CD8+ T lymphocytes expressed genes driving inflammation, and genes supporting B lymphocyte activation in situ. This analysis points out that multiple types of T lymphocytes have to be targeted for therapeutic regeneration of tolerance in arthritis.
Collapse
Affiliation(s)
- Patrick Maschmeyer
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Christopher Mark Skopnik
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Intensive Care Medicine, Berlin, Germany
| | - Lisanne Lutter
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Frederik Heinrich
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Sae Lim von Stuckrad
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin SPZ (Center for Chronically Sick Children), Berlin, Germany
| | - Lorenz Elias Wirth
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Cam Loan Tran
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - René Riedel
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Katrin Lehmann
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Imme Sakwa
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Rolando Cimaz
- Anna Meyer Children's Hospital and University of Florence, Florence, Italy.,Department of Clinical Sciences and Community Health, University of Milano, Milano, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marcus Alexander Mall
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Philipp Enghard
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Intensive Care Medicine, Berlin, Germany
| | - Bas Vastert
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany.,BCRT/DRFZ Single-Cell Laboratory for Advanced Cellular Therapies - Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Femke van Wijk
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Tilmann Kallinich
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany.,BCRT/DRFZ Single-Cell Laboratory for Advanced Cellular Therapies - Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
78
|
Ye Z, Hu W, Wu B, Zhang Y, Lei C, Williams I, Shouval DS, Kanegane H, Kim KM, de Ridder L, Shah N, Ling G, Yerushalmi B, Kotlarz D, Snapper S, Horn R, Klein C, Muise AM, Huang Y, Uhlig HH. Predictive Prenatal Diagnosis for Infantile-onset Inflammatory Bowel Disease Because of Interleukin-10 Signalling Defects. J Pediatr Gastroenterol Nutr 2021; 72:276-281. [PMID: 32925557 PMCID: PMC8191811 DOI: 10.1097/mpg.0000000000002937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Advances in genetic technologies provide opportunities for patient care and ethical challenges. Clinical care of patients with rare Mendelian disorders is often at the forefront of those developments. Whereas in classical polygenic inflammatory bowel disease (IBD), the predictive value of genetic variants is very low, predictive prenatal genetic diagnosis can inform families at high risk of severe genetic disorders. Patients with IL-10 signalling defects because of pathogenic variants in IL10RA, Il10RB, and IL10 develop severe infantile onset inflammatory bowel disease that is completely penetrant and has a high morbidity and substantial mortality despite treatment. METHODS We performed a survey among tertiary specialist paediatric centers of 10 countries on the utilization of predictive prenatal genetic diagnosis in IL-10 signalling defects. We retrospectively report prenatal genetics in a series of 8 families. RESULTS International variation in legislation, guidelines, expert opinion, as well as cultural and religious background of families and clinicians results in variable utilization of preimplantation and prenatal genetic testing for IL-10 signalling defects. Eleven referrals for prenatal diagnosis for IL-10 signalling defects were identified across 4 countries. We report on 8 families who underwent prenatal preimplantation monogenic testing after in vitro fertilization (n = 2) and/or by amniocentesis/chorion villus sampling (n = 6). A genetic diagnosis was established in 1 foetus and excluded in 7 foetuses (all IL10RA variants). CONCLUSIONS Prenatal genetic testing for IL10R-defects is feasible, yet the legal and ethical considerations are complex and controversial. In some countries, predictive genetics for IL-10-related signalling defects is entering clinical practice.
Collapse
Affiliation(s)
- Ziqing Ye
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai, China
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Wenhui Hu
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Key Lab of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Isabelle Williams
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Dror S. Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramag Gan, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kyung Mo Kim
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children’s Hospital 88, Olympic-Ro 43 Gil, Songpa-Gu, Seoul, Korea
| | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus University Medical Center Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Neil Shah
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Galina Ling
- Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Baruch Yerushalmi
- Pediatric Gastroenterology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Scott Snapper
- Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Ruth Horn
- Wellcome Centre for Ethics and Humanities and the Ethox Centre, University of Oxford, UK
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Aleixo M. Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ying Huang
- Department of Gastroenterology, Children’s Hospital of Fudan University, Shanghai, China
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit
| |
Collapse
|
79
|
Crittenden S, Goepp M, Pollock J, Robb CT, Smyth DJ, Zhou Y, Andrews R, Tyrrell V, Gkikas K, Adima A, O'Connor RA, Davies L, Li XF, Yao HX, Ho GT, Zheng X, Mair A, Vermeren S, Qian BZ, Mole DJ, Gerasimidis K, Schwarze JKJ, Breyer RM, Arends MJ, O'Donnell VB, Iredale JP, Anderton SM, Narumiya S, Maizels RM, Rossi AG, Howie SE, Yao C. Prostaglandin E 2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. SCIENCE ADVANCES 2021; 7:eabd7954. [PMID: 33579710 PMCID: PMC7880593 DOI: 10.1126/sciadv.abd7954] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/24/2020] [Indexed: 05/26/2023]
Abstract
The gut microbiota fundamentally regulates intestinal homeostasis and disease partially through mechanisms that involve modulation of regulatory T cells (Tregs), yet how the microbiota-Treg cross-talk is physiologically controlled is incompletely defined. Here, we report that prostaglandin E2 (PGE2), a well-known mediator of inflammation, inhibits mucosal Tregs in a manner depending on the gut microbiota. PGE2 through its receptor EP4 diminishes Treg-favorable commensal microbiota. Transfer of the gut microbiota that was modified by PGE2-EP4 signaling modulates mucosal Treg responses and exacerbates intestinal inflammation. Mechanistically, PGE2-modified microbiota regulates intestinal mononuclear phagocytes and type I interferon signaling. Depletion of mononuclear phagocytes or deficiency of type I interferon receptor diminishes PGE2-dependent Treg inhibition. Together, our findings provide emergent evidence that PGE2-mediated disruption of microbiota-Treg communication fosters intestinal inflammation.
Collapse
Affiliation(s)
- Siobhan Crittenden
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jolinda Pollock
- SRUC Veterinary Services, Scotland's Rural College, Easter Bush Estate EH26 0PZ, UK
| | - Calum T Robb
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Danielle J Smyth
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert Andrews
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Victoria Tyrrell
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Konstantinos Gkikas
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G31 2ER, UK
| | - Alexander Adima
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Richard A O'Connor
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Luke Davies
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Xue-Feng Li
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Hatti X Yao
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gwo-Tzer Ho
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Amil Mair
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Bin-Zhi Qian
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Damian J Mole
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G31 2ER, UK
| | - Jürgen K J Schwarze
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XR, UK
| | - Valerie B O'Donnell
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - John P Iredale
- Senate House, University of Bristol, Bristol BS8 1TH, UK
| | - Stephen M Anderton
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sarah E Howie
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
80
|
Zhang P, Zhang X, Huang Y, Chen J, Shang W, Shi G, Zhang L, Zhang C, Chen R. Atorvastatin alleviates microglia-mediated neuroinflammation via modulating the microbial composition and the intestinal barrier function in ischemic stroke mice. Free Radic Biol Med 2021; 162:104-117. [PMID: 33279615 DOI: 10.1016/j.freeradbiomed.2020.11.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Our previous work has shown that atorvastatin exerts anti-inflammatory properties in ischemic stroke, and recent studies have revealed that intestinal microbiota plays a vital role in the pathogenesis of stroke. However, it is not clear whether the anti-inflammatory effects of atorvastatin against ischemic stroke is related to gut function and microbiota. We report herein that atorvastatin significantly ameliorated the defects in sensorimotor behaviors and reduced microglia-mediated neuroinflammation by inhibiting proinflammatory polarization of microglia in the peri-infarct cortex of the mice with permanent middle cerebral artery occlusion (pMCAO). Moreover, atorvastatin reversed microbial composition (characterized by increased abundance of Firmicutes and Lactobacillus and decreased Bacteroidetes abundance), increased fecal butyrate level, promoted intestinal barrier function (elevated protein levels of claudin-1, occludin and mucoprotein 2), as well as regulated intestinal immune function (decreased MCP-1, TNF-α and increased IL-10). Atorvastatin also significantly reduced the level of circulating endotoxin (lipopolysaccharide-binding protein), which is a biomarker of leaky gut. Transplantation of fecal microbiota collected from atorvastatin treated mice potently attenuated neuroinflammation in pMCAO mice, and the anti-inflammatory effects of fecal microbiota transplantation were similar to those of oral atorvastatin administration. These results suggested that the atorvastatin-mediated restoration of gut microbiota, improvement of intestinal barrier function and regulation of intestinal immunity were involved in the anti-inflammatory function in stroke mice.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China.
| | - Yuanxiang Huang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China
| | - Junmin Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China
| | - Wenyan Shang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China
| | - Guang Shi
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China
| |
Collapse
|
81
|
Role of PD-L1 in Gut Mucosa Tolerance and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21239165. [PMID: 33271941 PMCID: PMC7730745 DOI: 10.3390/ijms21239165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) mucosa is among the most complex systems in the body. It has a diverse commensal microbiome challenged continuously by food and microbial components while delivering essential nutrients and defending against pathogens. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut mucosal homeostasis. Recent lessons from cancer immunotherapy point out the critical role of the B7 negative co-stimulator PD-L1 in mucosal homeostasis. In this review, we summarize the current knowledge supporting the critical role of PD-L1 in gastrointestinal mucosal tolerance and how abnormalities in its expression and signaling contribute to gut inflammation and cancers. Abnormal expression of PD-L1 and/or the PD-1/PD-L1 signaling pathways have been observed in the pathology of the GI tract. We also discuss the current gap in our knowledge with regards to PD-L1 signaling in the GI tract under homeostasis and pathology. Finally, we summarize the current understanding of how this pathway is currently targeted to develop novel therapeutic approaches.
Collapse
|
82
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
83
|
Wang Z, Shi W, Tian D, Qin H, Vallance BA, Yang H, Yu HB, Yu Q. Autotaxin stimulates LPA2 receptor in macrophages and exacerbates dextran sulfate sodium-induced acute colitis. J Mol Med (Berl) 2020; 98:1781-1794. [PMID: 33128578 DOI: 10.1007/s00109-020-01997-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023]
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA) and choline. ATX has been implicated in multiple chronic inflammatory diseases, but little is known about its role in the development of inflammatory bowel disease (IBD). Here, we investigated how ATX contributed to intestinal inflammation during colitis. We found that ATX expression levels were upregulated in the intestines of ulcerative colitis (UC) patients in acute state as well as in the intestines of dextran sulfate sodium (DSS)-induced colitis mice, which is likely due to increased infiltration of inflammatory cells including macrophages. Intriguingly, the inhibition of ATX activity led to reduced production of inflammatory cytokines, as well as attenuated colitis. These findings suggest that ATX may display strong pro-inflammatory properties. Supporting this, treatment with recombinant mouse ATX (rmATX) increased the production of inflammatory cytokines and enzymes in mouse macrophage cell line RAW264.7 and bone marrow-derived macrophages (BMDM), whereas silencing ATX by siRNA reduced LPS-stimulated production of pro-inflammatory factors. Notably, we found that the levels of LPA2 (an LPA receptor) were dramatically upregulated in rmATX-treated RAW264.7 cells and DSS-treated mice. Gene silencing of lpa2 in RAW264.7 cells by siRNA led to reduced production of inflammatory cytokines. Moreover, adenovirus-mediated delivery of lpa2 short hairpin RNA into DSS-treated mice ameliorated colitis. Collectively, our research suggests that ATX may exacerbate DSS-induced colitis by activating LPA2 receptor in macrophages and represent a promising target for the treatment of IBD. KEY MESSAGES: Increased ATX expression and secretion in colitic colons are likely due to increased infiltration of inflammatory cells including macrophages. Recombinant ATX promotes, but ATX silencing inhibits, the production of inflammatory cytokines in LPS-stimulated RAW264.7 cells and BMDM. •LPA2 mediates the pro-inflammatory effects of ATX on macrophages. Inhibition of ATX and downregulation of LPA2 ameliorate DSS-induced colitis.
Collapse
Affiliation(s)
- Zi Wang
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China
| | - Wenjie Shi
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China
| | - Hua Qin
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Hong B Yu
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Avenue, 1095, 430030, Wuhan, People's Republic of China.
| |
Collapse
|
84
|
Kim JM, Kim DH, Park HJ, Ma HW, Park IS, Son M, Ro SY, Hong S, Han HK, Lim SJ, Kim SW, Cheon JH. Nanocomposites-based targeted oral drug delivery systems with infliximab in a murine colitis model. J Nanobiotechnology 2020; 18:133. [PMID: 32933548 PMCID: PMC7493402 DOI: 10.1186/s12951-020-00693-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Infliximab (IFX), a TNF-α blocking chimeric monoclonal antibody, induces clinical response and mucosal healing in patients with inflammatory bowel disease (IBD). However, systemic administration of this agent causes unwanted side effects. Oral delivery of antibody therapeutics might be an effective treatment strategy for IBD compared to intravenous administration. Results All three carriers had a high encapsulation efficiency, narrow size distribution, and minimal systemic exposure. There was a higher interaction between nanocomposite carriers and monocytes compared to lymphocytes in the PBMC of IBD patients. Orally administered nanocomposite carriers targeted to inflamed colitis minimized systemic exposure. All IFX delivery formulations with nanocomposite carriers had a significantly less colitis-induced body weight loss, colon shortening and histomorphological score, compared to the DSS-treated group. AC-IFX-L and EAC-IFX-L groups showed significantly higher improvement of the disease activity index, compared to the DSS-treated group. In addition, AC-IFX-L and EAC-IFX-L alleviated pro-inflammatory cytokine expressions (Tnfa, Il1b, and Il17). Conclusion We present orally administered antibody delivery systems which improved efficacy in murine colitis while reducing systemic exposure. These oral delivery systems suggest a promising therapeutic approach for treating IBD.![]()
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Hye Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jeong Park
- Department of Integrated Bioscience and Biotechnology, Sejong University, 209 Neungdong‑ro, Gwangjin‑gu, Seoul, South Korea
| | - Hyun Woo Ma
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - I Seul Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Mijeong Son
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - So Youn Ro
- Department of Integrated Bioscience and Biotechnology, Sejong University, 209 Neungdong‑ro, Gwangjin‑gu, Seoul, South Korea
| | - Seokmann Hong
- Department of Integrated Bioscience and Biotechnology, Sejong University, 209 Neungdong‑ro, Gwangjin‑gu, Seoul, South Korea.,Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyo Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Dongguk‑ro‑32, Ilsan‑donggu, Goyang, South Korea
| | - Soo Jeong Lim
- Department of Integrated Bioscience and Biotechnology, Sejong University, 209 Neungdong‑ro, Gwangjin‑gu, Seoul, South Korea
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
85
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
86
|
Arai K. Very Early-Onset Inflammatory Bowel Disease: A Challenging Field for Pediatric Gastroenterologists. Pediatr Gastroenterol Hepatol Nutr 2020; 23:411-422. [PMID: 32953636 PMCID: PMC7481055 DOI: 10.5223/pghn.2020.23.5.411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/18/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
With the increasing number of children with inflammatory bowel disease (IBD), very early-onset IBD (VEO-IBD), defined as IBD that is diagnosed or that develops before 6 years of age, has become a field of innovation among pediatric gastroenterologists. Advances in genetic testing have enabled the diagnosis of IBD caused by gene mutations, also known as monogenic or Mendelian disorder-associated IBD (MD-IBD), with approximately 60 causative genes reported to date. The diagnosis of VEO-IBD requires endoscopic and histological evaluations. However, satisfactory small bowel imaging studies may not be feasible in this small population. Both genetic and immunological approaches are necessary for the diagnosis of MD-IBD, which can differ among countries according to the available resources. As a result of the use of targeted gene panels covered by the national health insurance and the nationwide research project investigating inborn errors of immunity, an efficient approach for the diagnosis of MD-IBD has been developed in Japan. Proper management of VEO-IBD by pediatric gastroenterologists constitutes a challenge. Some MD-IBDs can be curable by allogenic hematopoietic stem cell transplantation. With an understanding of the affected gene functions, targeted therapies are being developed. Social and psychological support systems for both children and their families should also be provided to improve their quality of life. Multidisciplinary team care would contribute to early diagnosis, proper therapeutic interventions, and improved quality of life in patients and their families.
Collapse
Affiliation(s)
- Katsuhiro Arai
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
87
|
Zhang Y, Wu Z, Liu J, Zheng Z, Li Q, Wang H, Chen Z, Wang K. Identification of the core active structure of a Dendrobium officinale polysaccharide and its protective effect against dextran sulfate sodium-induced colitis via alleviating gut microbiota dysbiosis. Food Res Int 2020; 137:109641. [PMID: 33233220 DOI: 10.1016/j.foodres.2020.109641] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
It has been claimed that Dendrobium officinale applied as a functional food in China for centuries derived from the excellent anti-inflammatory activities. Herein, we aim to investigate the core structure of a Dendrobium officinale polysaccharide (DOP) based on the linear structural features by a specific endo-β-1,4-mannanase which was required for the protective effect against dextran sulfate sodium (DSS)-induced colitis in mice. Structure characterization revealed that enzymatic fragment contained the core domain (EDOP) which was composed of glucose and mannose in the molar ratio of 1.00:4.76, and consisted of (1 → 4)-β-D-Glcp and (1 → 4)-β-D-Manp with some attached 2-O-acetylated groups. In colitis mice, both DOP and EDOP could dramatically attenuate the clinical signs via blocking pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, and their related mRNA), restoring the levels of short-chain fatty acids (SCFAs), activating the G-protein coupled receptors (GPRs) and modulating the gut microbiota. Gut microbiota dysbiosis is currently considered to be an important factor affecting colitis. The treatment of DOP and EDOP could recall the diversity of gut microbiota and modulate the abundance of the gut microbiota, including increasing the abundance of Bacteroides, Lactobacillus and Ruminococcaceae and reducing the abundance of Proteobacteria. Our findings have suggested that EDOP, as a core domain of DOP, retained similar structural features together with anti-inflammatory activity with DOP, and they could be potentially applied as natural candidates in the treatment of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - HongJing Wang
- Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
88
|
Wu N, Chen D, Sun H, Tan J, Zhang Y, Zhang T, Han Y, Liu H, Ouyang X, Yang XD, Niu X, Zhong J, Wang Z, Su B. MAP3K2 augments Th1 cell differentiation via IL-18 to promote T cell-mediated colitis. SCIENCE CHINA-LIFE SCIENCES 2020; 64:389-403. [PMID: 32737854 DOI: 10.1007/s11427-020-1720-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
T cell-mediated immunity in the intestine is stringently controlled to ensure proper immunity against pathogenic microbes and to prevent autoimmunity, a known cause of inflammatory bowel disease. However, precisely how T cells regulate intestine immunity remains to be fully understood. In this study, we found that mitogen-activated protein kinase kinase kinase 2 (MAP3K2) is required for the CD4+ T cell-mediated inflammation in the intestine. Using a T cell transfer colitis model, we found that MAP3K2-deficient naïve CD4 T cells had a dramatically reduced ability to induce colitis compared to wild type T cells. In addition, significantly fewer IFN-γ- but more IL-17A-producing CD4+ T cells in the intestines of mice receiving MAP3K2-deficient T cells than in those from mice receiving wild type T cells was observed. Interestingly, under well-defined in vitro differentiation conditions, MAP3K2-deficient naïve T cells were not impaired in their ability to differentiate into Th1, Th17 and Treg. Furthermore, the MAP3K2-regulated colitis severity was mediated by Th1 but not Th17 cells in the intestine. At the molecular level, we showed that MAP3K2-mediated Th1 cell differentiation in the intestine was regulated by IL-18 and required specific JNK activation. Together, our study reveals a novel regulatory role of MAP3K2 in intestinal T cell immunity via the IL-18-MAP3K2-JNK axis and may provide a novel target for intervention in T cell-mediated colitis.
Collapse
Affiliation(s)
- Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai JiaoTong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Dongping Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai JiaoTong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai JiaoTong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai JiaoTong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai JiaoTong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai JiaoTong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Dong Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai JiaoTong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyin Niu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
- Shanghai JiaoTong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
89
|
Crittenden S, Goepp M, Pollock J, Robb CT, Smyth DJ, Zhou Y, Andrews R, Tyrrell V, Adima A, O’connor RA, Davies L, Li X, Yao HX, Ho G, Zheng X, Mair A, Vermeren S, Qian B, Mole DJ, Schwarze JK, Breyer RM, Arends MJ, O’donnell VB, Iredale JP, Anderton SM, Narumiya S, Maizels RM, Rossi AG, Howie SE, Yao C. Prostaglandin E 2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells.. [DOI: 10.1101/2020.07.12.199513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
AbstractThe gut microbiota fundamentally regulates intestinal homeostasis and disease partially through mechanisms that involve modulation of regulatory T cells (Tregs), yet how the microbiota-Treg crosstalk is physiologically controlled is incompletely defined. Here, we report that prostaglandin E2 (PGE2), a well-known mediator of inflammation, inhibits mucosal Tregs in a manner depending on the gut microbiota. PGE2 through its receptor EP4 diminishes Treg-favorable commensal microbiota. Transfer of the gut microbiota that was modified by PGE2-EP4 signaling modulates mucosal Treg responses and exacerbates intestinal inflammation. Mechanistically, PGE2-modified microbiota regulates intestinal mononuclear phagocytes and type I interferon signaling. Depletion of mononuclear phagocytes or deficiency of type I interferon receptor contracts PGE2-dependent Treg inhibition. Taken together, our findings provide emergent evidence that PGE2-mediated disruption of microbiota-Treg communication fosters intestinal inflammation.
Collapse
|
90
|
Gutierrez-Merino J, Isla B, Combes T, Martinez-Estrada F, Maluquer De Motes C. Beneficial bacteria activate type-I interferon production via the intracellular cytosolic sensors STING and MAVS. Gut Microbes 2020; 11:771-788. [PMID: 31941397 PMCID: PMC7524384 DOI: 10.1080/19490976.2019.1707015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Type-I interferon (IFN-I) cytokines are produced by immune cells in response to microbial infections, cancer and autoimmune diseases, and subsequently, trigger cytoprotective and antiviral responses through the activation of IFN-I stimulated genes (ISGs). The ability of intestinal microbiota to modulate innate immune responses is well known, but the mechanisms underlying such responses remain elusive. Here we report that the intracellular sensors stimulator of IFN genes (STING) and mitochondrial antiviral signaling (MAVS) are essential for the production of IFN-I in response to lactic acid bacteria (LAB), common gut commensal bacteria with beneficial properties. Using human macrophage cells we show that LAB strains that potently activate the inflammatory transcription factor NF-κB are poor inducers of IFN-I and conversely, those triggering significant amounts of IFN-I fail to activate NF-κB. This IFN-I response is also observed in human primary macrophages, which modulate CD64 and CD40 upon challenge with IFN-I-inducing LAB. Mechanistically, IFN-I inducers interact more intimately with phagocytes as compared to NF-κB-inducers, and fail to activate IFN-I in the presence of phagocytosis inhibitors. These bacteria are then sensed intracellularly by the cytoplasmic sensors STING and, to a lesser extent, MAVS. Accordingly, macrophages deficient for STING showed dramatically reduced phosphorylation of TANK-binding kinase (TBK)-1 and IFN-I activation, which resulted in lower expression of ISGs. Our findings demonstrate a major role for intracellular sensing and STING in the production of IFN-I by beneficial bacteria and the existence of bacteria-specific immune signatures, which can be exploited to promote cytoprotective responses and prevent overreactive NF-κB-dependent inflammation in the gut.
Collapse
Affiliation(s)
| | - Beatriz Isla
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | - Theo Combes
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | | | | |
Collapse
|
91
|
Fraschilla I, Jeffrey KL. The Speckled Protein (SP) Family: Immunity's Chromatin Readers. Trends Immunol 2020; 41:572-585. [PMID: 32386862 PMCID: PMC8327362 DOI: 10.1016/j.it.2020.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Chromatin 'readers' are central interpreters of the epigenome that facilitate cell-specific transcriptional programs and are therapeutic targets in cancer and inflammation. The Speckled Protein (SP) family of chromatin 'readers' in humans consists of SP100, SP110, SP140, and SP140L. SPs possess functional domains (SAND, PHD, bromodomain) that dock to DNA or post-translationally modified histones and a caspase activation and recruitment domain (CARD) to promote multimerization. Mutations within immune expressed SPs associate with numerous immunological diseases including Crohn's disease, multiple sclerosis, chronic lymphocytic leukemia, veno-occlusive disease with immunodeficiency, as well as Mycobacterium tuberculosis infection, underscoring their importance in immune regulation. In this review, we posit that SPs are central chromatin regulators of gene silencing that establish immune cell identity and function.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
92
|
Cader MZ, de Almeida Rodrigues RP, West JA, Sewell GW, Md-Ibrahim MN, Reikine S, Sirago G, Unger LW, Iglesias-Romero AB, Ramshorn K, Haag LM, Saveljeva S, Ebel JF, Rosenstiel P, Kaneider NC, Lee JC, Lawley TD, Bradley A, Dougan G, Modis Y, Griffin JL, Kaser A. FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell 2020; 180:278-295.e23. [PMID: 31978345 PMCID: PMC6978800 DOI: 10.1016/j.cell.2019.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/18/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5′-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling. An unbiased LC-MS screen reveals FAMIN as a purine nucleoside enzyme FAMIN combines adenosine phosphorylase with ADA-, PNP-, and MTAP-like activities FAMIN enables a purine nucleotide cycle (PNC) preventing cytoplasmic acidification The FAMIN-dependent PNC balances the glycolysis-mitochondrial redox interface
Collapse
Affiliation(s)
- M Zaeem Cader
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Rodrigo Pereira de Almeida Rodrigues
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Muhammad N Md-Ibrahim
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephanie Reikine
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Giuseppe Sirago
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ana Belén Iglesias-Romero
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Katharina Ramshorn
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lea-Maxie Haag
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Svetlana Saveljeva
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Jana-Fabienne Ebel
- Institute of Clinical Molecular Biology, Christian Albrechts University, Campus Kiel, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University, Campus Kiel, 24105 Kiel, Germany
| | - Nicole C Kaneider
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Allan Bradley
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yorgo Modis
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
93
|
Schmitt H, Ulmschneider J, Billmeier U, Vieth M, Scarozza P, Sonnewald S, Reid S, Atreya I, Rath T, Zundler S, Langheinrich M, Schüttler J, Hartmann A, Winkler T, Admyre C, Knittel T, Dieterich Johansson C, Zargari A, Neurath MF, Atreya R. The TLR9 Agonist Cobitolimod Induces IL10-Producing Wound Healing Macrophages and Regulatory T Cells in Ulcerative Colitis. J Crohns Colitis 2020; 14:508-524. [PMID: 31630153 PMCID: PMC7242005 DOI: 10.1093/ecco-jcc/jjz170] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The topically applied Toll-like receptor 9 [TLR9] agonist cobitolimod is a first-in-class DNA-based oligonucleotide with demonstrated therapeutic efficacy in clinical trials with ulcerative colitis [UC] patients. We here characterized its anti-inflammatory mechanism in UC. METHODS Luminal cobitolimod administration was evaluated in an experimental dextran sodium sulfate [DSS]-induced colitis model. Cultured blood and mucosal cells from UC patients were treated with cobitolimod and analysed via microarray, quantitative real-time PCR, ELISA and flow cytometry. Intestinal slides of cobitolimod-treated UC patients were analysed by immunohistochemistry. RESULTS Cobitolimod administration markedly suppressed experimental colitis activity, and microarray analyses demonstrated mucosal IL10 upregulation and suppression of IL17 signalling pathways. Cobitolimod treatment was associated with significant induction of mucosal IL10+Tr1 and Treg cells and suppression of Th17 cells. TLR9 knockout mice indicated that cobitolimod requires TLR9 signalling for IL10 induction. In UC patients, mucosal TLR9 levels correlated with severity of inflammation. Cobitolimod inhibited IL17A and IL17F, but increased IL10 and FoxP3 expression in cultured intestinal UC T cells. Cobitolimod-mediated suppression of intestinal IL17+T cells was abrogated by IL10 blockade. Furthermore, cobitolimod led to heightened IL10 production by wound healing macrophages. Immunohistochemistry in intestinal biopsies of cobitolimod-treated UC patients indicated increased presence of IL10+mononuclear and regulatory T cells, as well as reduction of IL17+cells. CONCLUSION Activation of TLR9 via cobitolimod might represent a novel therapeutic approach in UC, as it suppresses Th17 cells and induces anti-inflammatory IL10+macrophages and regulatory T cells, thereby modifying the dysregulated intestinal cytokine balance. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.
Collapse
Affiliation(s)
- Heike Schmitt
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Ulmschneider
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Billmeier
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Patrizio Scarozza
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Internal Medicine Department, University Tor Vergata, Rome, Italy
| | - Sophia Sonnewald
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stephen Reid
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Imke Atreya
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Rath
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Langheinrich
- Department of Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Schüttler
- Department for Anesthesiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Winkler
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - Markus F Neurath
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- First Department of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
94
|
Horton RH, Wileman T, Rushworth SA. Autophagy Driven Extracellular Vesicles in the Leukaemic Microenvironment. Curr Cancer Drug Targets 2020; 20:501-512. [PMID: 32342819 DOI: 10.2174/1568009620666200428111051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/27/2019] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
The leukaemias are a heterogeneous group of blood cancers, which together, caused 310,000 deaths in 2016. Despite significant research into their biology and therapeutics, leukaemia is predicted to account for an increased 470,000 deaths in 2040. Many subtypes remain without targeted therapy, and therefore the mainstay of treatment remains generic cytotoxic drugs with bone marrow transplant the sole definitive option. In this review, we will focus on cellular mechanisms which have the potential for therapeutic exploitation to specifically target and treat this devastating disease. We will bring together the disciplines of autophagy and extracellular vesicles, exploring how the dysregulation of these mechanisms can lead to changes in the leukaemic microenvironment and the subsequent propagation of disease. The dual effect of these mechanisms in the disease microenvironment is not limited to leukaemia; therefore, we briefly explore their role in autoimmunity, inflammation and degenerative disease.
Collapse
Affiliation(s)
- Rebecca H Horton
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Tom Wileman
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
| |
Collapse
|
95
|
Mayr L, Grabherr F, Schwärzler J, Reitmeier I, Sommer F, Gehmacher T, Niederreiter L, He GW, Ruder B, Kunz KTR, Tymoszuk P, Hilbe R, Haschka D, Feistritzer C, Gerner RR, Enrich B, Przysiecki N, Seifert M, Keller MA, Oberhuber G, Sprung S, Ran Q, Koch R, Effenberger M, Tancevski I, Zoller H, Moschen AR, Weiss G, Becker C, Rosenstiel P, Kaser A, Tilg H, Adolph TE. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn's disease. Nat Commun 2020; 11:1775. [PMID: 32286299 PMCID: PMC7156516 DOI: 10.1038/s41467-020-15646-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
The increased incidence of inflammatory bowel disease (IBD) has become a global phenomenon that could be related to adoption of a Western life-style. Westernization of dietary habits is partly characterized by enrichment with the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA), which entails risk for developing IBD. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation (LPO) and cell death termed ferroptosis. We report that small intestinal epithelial cells (IECs) in Crohn’s disease (CD) exhibit impaired GPX4 activity and signs of LPO. PUFAs and specifically AA trigger a cytokine response of IECs which is restricted by GPX4. While GPX4 does not control AA metabolism, cytokine production is governed by similar mechanisms as ferroptosis. A PUFA-enriched Western diet triggers focal granuloma-like neutrophilic enteritis in mice that lack one allele of Gpx4 in IECs. Our study identifies dietary PUFAs as a trigger of GPX4-restricted mucosal inflammation phenocopying aspects of human CD. Dietary lipids are linked to the development of inflammatory bowel diseases through unclear mechanisms. Here, the authors report that dietary polyunsaturated fatty acids trigger intestinal inflammation resembling aspects of Crohn’s disease, which is restricted by glutathione peroxidase 4 in the intestinal epithelium.
Collapse
Affiliation(s)
- Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabelle Reitmeier
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Gehmacher
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Niederreiter
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gui-Wei He
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, Erlangen, Germany
| | - Barbara Ruder
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, Erlangen, Germany
| | - Kai T R Kunz
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Feistritzer
- Department of Internal Medicine V, Haematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicole Przysiecki
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Mucosal Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Oberhuber
- Pathology Department of Innsbruck Medical University Hospital, Innsbruck, Austria
| | - Susanne Sprung
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Qitao Ran
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, USA
| | - Robert Koch
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Mucosal Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Becker
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, Erlangen, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
96
|
Abstract
Crohn's disease is an inflammatory bowel disease that is characterized by chronic inflammation of any part of the gastrointestinal tract, has a progressive and destructive course and is increasing in incidence worldwide. Several factors have been implicated in the cause of Crohn's disease, including a dysregulated immune system, an altered microbiota, genetic susceptibility and environmental factors, but the cause of the disease remains unknown. The onset of the disease at a young age in most cases necessitates prompt but long-term treatment to prevent disease flares and disease progression with intestinal complications. Thus, earlier, more aggressive treatment with biologic therapies or novel small molecules could profoundly change the natural history of the disease and decrease complications and the need for hospitalization and surgery. Although less invasive biomarkers are in development, diagnosis still relies on endoscopy and histological assessment of biopsy specimens. Crohn's disease is a complex disease, and treatment should be personalized to address the underlying pathogenetic mechanism. In the future, disease management might rely on severity scores that incorporate prognostic factors, bowel damage assessment and non-invasive close monitoring of disease activity to reduce the severity of complications.
Collapse
|
97
|
Caër C, Wick MJ. Human Intestinal Mononuclear Phagocytes in Health and Inflammatory Bowel Disease. Front Immunol 2020; 11:410. [PMID: 32256490 PMCID: PMC7093381 DOI: 10.3389/fimmu.2020.00410] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex immune-mediated disease of the gastrointestinal tract that increases morbidity and negatively influences the quality of life. Intestinal mononuclear phagocytes (MNPs) have a crucial role in maintaining epithelial barrier integrity while controlling pathogen invasion by activating an appropriate immune response. However, in genetically predisposed individuals, uncontrolled immune activation to intestinal flora is thought to underlie the chronic mucosal inflammation that can ultimately result in IBD. Thus, MNPs are involved in fine-tuning mucosal immune system responsiveness and have a critical role in maintaining homeostasis or, potentially, the emergence of IBD. MNPs include monocytes, macrophages and dendritic cells, which are functionally diverse but highly complementary. Despite their crucial role in maintaining intestinal homeostasis, specific functions of human MNP subsets are poorly understood, especially during diseases such as IBD. Here we review the current understanding of MNP ontogeny, as well as the recently identified human intestinal MNP subsets, and discuss their role in health and IBD.
Collapse
Affiliation(s)
- Charles Caër
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
98
|
CRISPR/Cas9-targeting of CD40 in hematopoietic stem cells limits immune activation mediated by anti-CD40. PLoS One 2020; 15:e0228221. [PMID: 32155151 PMCID: PMC7064223 DOI: 10.1371/journal.pone.0228221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/09/2020] [Indexed: 01/16/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are complex, multifactorial disorders characterized by chronic relapsing intestinal inflammation. IBD is diagnosed around 1 in 1000 individuals in Western countries with globally increasing incident rates. Association studies have identified hundreds of genes that are linked to IBD and potentially regulate its pathology. The further dissection of the genetic network underlining IBD pathogenesis and pathophysiology is hindered by the limited capacity to functionally characterize each genetic association, including generating knockout animal models for every associated gene. Cutting-edge CRISPR/Cas9-based technology may transform the field of IBD research by efficiently and effectively introducing genetic alterations. In the present study, we used CRISPR/Cas9-based technologies to genetically modify hematopoietic stem cells. Through cell sorting and bone marrow transplantation, we established a system to knock out target gene expression by over 90% in the immune system of reconstituted animals. Using a CD40-mediated colitis model, we further validated our CRISPR/Cas9-based platform for investigating gene function in experimental IBD. In doing so, we developed a model system that delivers genetically modified mice in a manner much faster than conventional methodology, significantly reducing the time from target identification to in vivo target validation and expediting drug development.
Collapse
|
99
|
Lubrano di Ricco M, Ronin E, Collares D, Divoux J, Grégoire S, Wajant H, Gomes T, Grinberg-Bleyer Y, Baud V, Marodon G, Salomon BL. Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-κB. Eur J Immunol 2020; 50:972-985. [PMID: 32012260 PMCID: PMC7383872 DOI: 10.1002/eji.201948393] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 01/06/2023]
Abstract
Several drugs targeting members of the TNF superfamily or TNF receptor superfamily (TNFRSF) are widely used in medicine or are currently being tested in therapeutic trials. However, their mechanism of action remains poorly understood. Here, we explored the effects of TNFRSF co-stimulation on murine Foxp3+ regulatory T cell (Treg) biology, as they are pivotal modulators of immune responses. We show that engagement of TNFR2, 4-1BB, GITR, and DR3, but not OX40, increases Treg proliferation and survival. Triggering these TNFRSF in Tregs induces similar changes in gene expression patterns, suggesting that they engage common signal transduction pathways. Among them, we identified a major role of canonical NF-κB. Importantly, TNFRSF co-stimulation improves the ability of Tregs to suppress colitis. Our data demonstrate that stimulation of discrete TNFRSF members enhances Treg activation and function through a shared mechanism. Consequently, therapeutic effects of drugs targeting TNFRSF or their ligands may be mediated by their effect on Tregs.
Collapse
Affiliation(s)
- Martina Lubrano di Ricco
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Emilie Ronin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Davi Collares
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire NF-κB, Différenciation et Cancer, Paris, France
| | - Jordane Divoux
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sylvie Grégoire
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Harald Wajant
- Division Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Tomás Gomes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Yenkel Grinberg-Bleyer
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Labex DEVweCAN, Centre Léon Bérard, Lyon, France
| | - Véronique Baud
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire NF-κB, Différenciation et Cancer, Paris, France
| | - Gilles Marodon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
100
|
Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T Cells and Human Disease. Annu Rev Immunol 2020; 38:541-566. [PMID: 32017635 DOI: 10.1146/annurev-immunol-042718-041717] [Citation(s) in RCA: 619] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Naturally occurring CD4+ regulatory T cells (Tregs), which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a functionally distinct T cell subpopulation actively engaged in the maintenance of immunological self-tolerance and homeostasis. Recent studies have facilitated our understanding of the cellular and molecular basis of their generation, function, phenotypic and functional stability, and adaptability. It is under investigation in humans how functional or numerical Treg anomalies, whether genetically determined or environmentally induced, contribute to immunological diseases such as autoimmune diseases. Also being addressed is how Tregs can be targeted to control physiological and pathological immune responses, for example, by depleting them to enhance tumor immunity or by expanding them to treat immunological diseases. This review discusses our current understanding of Treg immunobiology in normal and disease states, with a perspective on the realization of Treg-targeting therapies in the clinic.
Collapse
Affiliation(s)
- Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; .,Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - James B Wing
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Atsushi Tanaka
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kenji Ichiyama
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|